HEWLETT hP PACKARD

MEASUREMENT/COMPUTATION

PRODUCT EXCELLENCE WITH LASTING VALUE

Your assurance of lasting value accompanies every Hewlett-Packard product. We intend to continue our long-standing practice of offaring you excellent products, supported by a wide variely of useful services both before and after the sale.

HP design technology

Our responsibility to you begins with product designs which apply advanced technologies, often pioneered at HP through our extensive ongoing research activities. Many of today's cominonly-accopted measurement standards and praclices began with the design of innovative HP products.

Important as advanced rechnology is. it is not the only desien consideration, however. Among other design contributions to an HP produci's lasting value are its "manufacturability" and (especially important after you purchase that product) its "serviceability".

HP manulacturing

HP product designers are closcly attuned to the practical aspecis of product manufacture. This emphasis on modern manufacluring lechnology. coupled with superior workmanship and high productivity, ultimately delivers high-value HP products to you at competitive prices. In addision. HP manufaclurıng facilities contribute to the ultimate serviceability of the producls you purchase by furnishing you with clear and well-writen operating and service instructions.

Today. Hewlell-Packard has 27 prod-uct-responsible manufacturing facilites located in California, Colorado, Idaho. New Jersey. Oregon, Pennsylvania and Massachusetts in the U.S. - as well as in Scorland, the German Federal Republic. France, Japan. Singapore. Malaysia and Brazil.

HP product serviceability

Serviceability can mean many things. In the broadest sense, it means getting rull utilization and value from your purchase. and this is one of HP's principle objeclives in serving you.

In other ways, it can mean having a product that is easy 10 understand and operate - as well as one that works under a variety of adverse conditions and can be depended upon to perform as expected for years to come. As a practical matter. it also means having a product fully backed by a reputable firm so that subsequent maintenance, repairs and parts are readily available. Hewlett-Packard's worldwide service organization helps you receive full and continuing value from your HP purchase, wherever you are located.

HP SALES AND SERVICE: NEARBY ... AND WORLDWIDE

The previously mentioned product excellence and value are only part of the total HP story. Equally important to you is the ready availability of local sales and service support.

To be responsive to your needs and those of other customers. Hewlett-Packard has over 3.000 sales and service engineers and olher lechnical personnel located in more than 172 offices in 65 countries. This means that a significantly high percentage (more than 10%) of our world-wide iotal number of employees are specifically and direcily available to you and onther HP custoniers for pre-and-poss sale techinical suppori.

To locate the HP Sales and Service Office nearest you, please see the complete listing inside the back cover of this catalog.

CATALOG CONTENT

This catalog is designed primarily to serve the needs of engineers, scientists and technicians who are concerned or work with electrical/electronic phenomena. It deals with the broad area of measurement (plus generation and recording), as well as related computation.

HP has many additional capabilities not detailed in this catalog, which are instead summarized on the last few pages. In the event your work is related to any of these other HP capabilities, we will be pleased 10 send you specific product information on request.

Alphabetical Index . 1
Model Number Index 10
Amplifiers 20
Analog Voltmeters 23
Digital Voltmeters 34
Component Test 59
Digital Circuit Testers \& Analyzers 76
Oscilloscopes 94
Displays 160
Power Supplies 171
Recorders \& Printers 208
Electronic Counters 239
Frequency \& Time Standards 268
Pulse and Word Genera:ors 280
Pulse Generators 282
Word Generators 302
Frequency Synthesizers 306
Oscillators \& Function Gencrators 311
Calibrators 320
Signal Generators 326
Sweep Oscillators 349
Power \& Noise Figure Meters 368
Microwave Test Equipment 378
Network Analyzers 406
Signal Analyzers 432
Cabinets \& Measurement Accessories 469
Telecommunications Test Equipment 480
Hewlett-Packard Interface Bus 511
Calculators \& Peripherals 519
Computers: Components \& Systems 529
Physical \& Optical Measurements 552
Civil Engineering/Surveying Equipment 560
Solid State Components \& Circuits 562
Instruments for Chemical Analysis 564
Medical Instrumentation 566
Scientific \& Industrial X-Ray Systems 568
Ordering Information 569
After-Sales Service 570
Warranty, certification \& repairsTraining/Video Tapes572
Information Request Card
Back of calalog

A

AC

Calibrator 322
Current Probe 472
Digisal Volimeter 37-42, 50
Divider Probe 471
Probes 40, 471
RF 28, 32
True RMS 31, 42, 55
Voltmeters 27-31, 35-38, 47
Access System 544
Accessorics 469-479
Base Band Siveeper 510
Cables 469
Cameras 156
Connectors, Adapters 470
Modular Power Supplies 204
Oscilloscopes $150-159$
Signal Generators 348
Spectrum Analyzer 447. 465. 496
AC/DC
Converter Plug-In Module 210
Meter Calibrator 321
Active Probes 151. 423
Adapters
$50-75 \Omega$ 348
Cables/Connectors 469
Coaxial and Waveguide 400
Slotted Line Sweep 394
Air Line Extensions 400
Alphanumeric LED Displays 563
Alphanumeric Printer 236
AM/FM Signal Generators $328,333,338$
Amplifsers
AC Calibrator/High Voluage 322
AC Carrier Preamplifier 227
Digitally Programmable 541
Frequency Standard Distribution 278
General Purpose 20
Leveling 367
Logarithmic 33
Power 20
Power Supply 198
Pulse 20
RF/Microwave 21
Amplitude/Delay Distortion Analyzer 49. 492
Analog-to-Digital Converter 51, 54, 541
Analog Volumeters General Information 23
Analyeical Instrumentation 564
A.nalyzers
Automatic Spectrum 445-447. 548
Audio Spectrum 448, 456, 466
Correlation 467
Digital Signal 466, 496
Distorlion 442-444
Fourier 466. 496
Logic 85
Logic State, 16-Bit \& 12-Bit Parallel 78-82
Low Frequency Specirum $448,456,466,496$
Mechanical Impedance 466
Network 406-431
Noise 466, 496
Power Spectrum 466, 496
Specirum 141, 432-468
Transfer Function 466, 496
Vibration 466
Wave 438, 497
APC-7 Series Adapiers 470
Asynchronous Communications Interface 530, 550
Asynchronous Data Set Interface 530
Asynchronous Multiplexer 530, 550
Atomic Clock 270
Attenuators
75 ohm General Purpose 510
Coaxial 383
Resistive 73
Coaxial Step 384, 386
Waveguide 387
Automatic Capacitance Bridge 70
Automated Measurement \& Control Syst. 546
Automated Test Systems 420, 548
Automatic Dialer Interface 530, 550
Automatic Synthesizer 309
Avionics Signal Generator 336
B
Balancing Transformers 472
Bandpass Filters 348, 397
Basic Control System Software (BCS) 546
Battery Operated
Counters 27, 244
DVM 44
Hand-Held Calculators 519.523
Microwave Power Meter 371, 374
Multifunction Meter
Oscitloscopes 110-115
Volimeter 29
BB Sweeper Accessory 510
Bridge, Directional 404. 423
Broadband Detectors 392
Broadband Sampling Volirneter 32
Buffered Asynchronous Communications Interface 530.550
C
Cables/Connectors 469
Cabinet X-Ray Systems 568
Cabinets 473-479
Cabinets, System II 475-479
Cable Assemblies 469
Calculacors 519-528
Deskiop Programmable 524-528
Hand-Held Business 523
Hand-Held Financial 523
Hand-Held Programmable 521, 522
Hand-Held Scientific 520
Catculator Based Network Analyzer 411.420
Calcu\}ator Controlled Instrument Systems $56,411,445$
Catibrators
AC 320-322
For 432 Series 375
For 435A 371
Peak Power 375
Cameras
Adapters 156
Oscilloscope 155
Oscilloscope Camera Adapter Table 157
Capacirance Bridges; Meters 64-71
Capacitive Voltage Divider 73
Capacitors, Dccade 73
Card Readers 526. 537
Carriage, Slotted Scclion 394
Carrier Preamplifiers 230
Cases, Combining 473
Casselle Subsystem S26
Cavily Frequency Meters 391
Cesium Beam Frequency Siandard 270
Chromatographic Data Systems 564
Clip, Logic 88
Clip-on, DC Milliammeter 26
Clip-on, AC Current Probe 472
Clock, Atomic 270
Coaxial Instrumentasion
Accessories 400
Altenuators 383
Crystal Detectors 392
Directional Bridge 404. 423
Directional Couplers 388
Directional Detectors 389
Dual Directional Coupler 388
Fixed Attenuators 383
Frequency Meters 391
Harmonic Mixer 398
Low-Pass Filters 397
Pad. Altenuators 383
Power Spliter 404. 419
Sliding Load 396
Slonted Line 394
Slotted Section 394
Siep Altenuators $73,384,396$
Swept Slotted Line Systems 394
Switch 399
Termination 396
Thermistor Moune 375
Thermocouple Mount 372
Waveguide Adapters 400
Comb Generator 465
Combining Cases 473
Communication Test Equipment 494
Communications, Data 550
Communications Test Set 484
Component Test, General Information 59
Computers
HP 2000 544
HP 3000 544
21MX, Semiconductor Memory 530
Connector Adapters 470
Constant Current Sources 200, 205
Controller, Vibration 200, 205
Converters
A-to-D 541
D-to-A 50, 54, 205, 236, 256, 541
Serial 10 Parallel 517
Correlator, Spectrum Display 467
Common Carrier Interface 58
Counters, Electronic 239-267
Auto. Freq. Conv. 245
Auto. Ranging 258
Computing 250

ALPHABETICAL INDEX

Counter/Timer 242, 251, 252, 260, 541
Digital Mustimeter/Counter 261
DVM 248, 251, 253, 258
Heterodyne Converter Plug-In 245, 248
HP-IB Programmable 242, 252, 266. 541
Low Cost .. 265
Microwave 245, 248, 266
Plug-In Adapters 245, 250
Portable, Battery Operated 256
Programmable242, 250-252, 266, 541
Reciprocal242, 250, 262, 541
Time Interval 242, 246, 250-252, 259-262, 541
Time Interver Probes 246
Transfer Oscillator Plug-In 248
Universal 242, 251, 259-262
Video Amplifier Plug-In 249
Couplers, Directional (Coax and Waveguide) 388-390, 399
CRT Terminals .. 534
Crystal Detector ... 392, 393
Crystal Oscillators ... 276
Curren:
Divider .. 471
Sources 200, 205, 322, 541

D

D/A Converter 205, 541
Data
Acquisition Systems 53, 56-59, 541, 546
Base Managenient Software IMAGE/2000 545
Centers, Mini .. 543
Communications 53, 481, 550
Communications Interfaces 530
Error Analyzer ... 494
Generator ... 305
Source Interface ... 531
Station ... 534-536
Transmission Test Set 494
Voice Channel Test Set 484
Data Source Interface 530
DC
Amplifier Plug-In Module 210
Attenuator Plug-in Module 210
Bank Amplifier ... 232
Bridge Preamplifier 227
Coupler Plug-In Module 210
Differential Voltmeter 324
Digital Voltmeter 37-44, 48, 50, 54
Milliammeter 26, 38
Nullmeser 24, 324
Offset Plug-In Module 210
Preamplifier Plug-In Module 210
Standard 324
Voltage Divider 471
Voltmeters 25-28
DC Power Supplies 171-207
Amplifier/Power Supply 198
Condensed Listing 172
Constant Current Sources 200
Digitally Controlled 205
Dual Tracking 194
General Information 171
General Purposc: 25 - 200 W Output 180
General Purpose: 100-2000 W Output 184
General Purpose: 300 - 11,000 W Output 188
General Purpose: 0-320 V 184
High Voltage 192
Low Cost Lab 175-179
Modular, Single Output, Series Regulated 201
Modular, Dual Output, Series Regulated 201
Modular, 200-600 W. Switching Regulated 203
Modular, 110 W Switching Regulated 202
Modular, Triple-Output Switching 202
Precision Voltage Sources 195
Programmable 205, 541
Specilications Defínitions 174
Decade Capacitors and Attenuators 73
Delectors
Crystal, Coaxial and Waveguide 392
Directional 389
Slotted Line 394
Digital
AC Voltmeters 38-54
Capacitance Meter 68
Circuit Test 76-93. 541
DC Volemeters 38-54
I/O Sub-system 541
LCR Meter 66
Multimeter 37-54
Ohmmeter 37-54, 62-67
Oscillator 314
Power Meters (RF/Microwave) 370
Pressure Gauge 556
Printer 236
Programmable Power Supplies 205, 541
Signal Analyzers 438, 440, 466, 496, 498
Spectrum Analyzers $445,448,466,496$
Tape Systems 533
Thermometer 533
Vibration Controller 466
Volimeters 34-54, 44-49
Digital-to-Analog Converters $50-54,205,530,541$
Digitizer 526
Dimensional Measurement 552. 558
Diodes 562
Directional Bridge 404. 423
Directionat Couplers Coaxial 389
Waveguide 390
Directional Detectors 389
Disc Sub-Systems 532
DiSComputers 530
Display Terminal Interface 530
Displays 160-170
Cathode-ray Tube 160
High Resolution/Storage 162-165
Large Screen Analog System 170
Large Screen 35.6 cm . (14 in .) 168
Large Screen 43.2 cm . (17 in .) 166
Large Screen 48.2 Atr. (19 in.) 168
Large Screen 53.3 cm . (21 in.) 166
Numeric and Alphanumeric 563
Distance Meters 560
Distortion Analyzers 442-444
Distributed Systems 550
Distribution Amplifiers 278
Divider Probe 471
DME/ATC Test Se: 346
Double Balanced Mixers 348
Dual Tracking, Power Supply 194
Duplex Registers 530
E
EIA Registered Visible Light Emitzing Diodes 563
Electronic Counters 239-267
Electronic Distance Meters 560
Emulation Subsystem 543
Error Measuring Set ($1 \mathrm{~Kb} / \mathrm{s} \times 50 \mathrm{Mb} / \mathrm{s}$) 502
Error Rate Measurement 504
Error Rate Measurement System 504
ESCA Spectrometers 564
Expander, 1-O 538
F
Fast Fortran Processor 530
Faxitron" X-Ray Systems 568
Filters
Bandpass 348, 397. 462
Coaxial and Waveguide 397
High Pass 404
Low Pass 397, 404
Low Pass Plug-In Module 210
Fourier Analyzer 466, 496
FM Signal Generators 328, 333, 338
Frequency
Counters 541
Doubler Probe 346
Doublers 345, 348
Meters, Coaxial and Waveguide 391
Response Test Sets 402
Frequency Slandards
Cesium 270
Distribution Amplifier 278
General Information 268
Quariz 276
Rubidium 273
Standby Power Supplies 279
Frequency and Time Standards 280
Frequency Selective Voltmeter and Tracking Oscillator 440
Frequency Synthesizers 306-308. 328
Function Generators 316-319
Fuseholder, RF 348
G
Gas Chromatographs 564
General Purpose Interfaces 530
General Purpose Interface Bus Controller 530
Generalors
Noise 376,468
Pulse 88,230-301
Signal 326-348
Spectrum 348
Sweep 309. 318. 349-367
Tracking 452, 456. 458-562
Word 302－305
Graphic Plotters 209
Graphic Plotters Terminal 218
Group Delay（Network Analyzer） 416
Group Delay Network Computer 219
Guarded Digital Multimeter 50． 54
H
Hardwired Serial Interface 530， 550
Harmonic Analyzer 438
Harmonic Mixer（Coaxial and Waveguide） 398
Hewlett－Packard Interface Bus（HP－IB） 511－518
Hexadecimal Display with Electronics 563
High Resistance Meter 63
Hi－Rel Numeric Displays 563
I
IMAGE／2000 Sofiware 545
IMAGE／3000 Software 543
Impalt Diodes 562
Impedance Meter 64－66
Impedance Metcr，RF Vector 74
Impedance Probe 423
Impedance Transformers（50－75ת） 423， 465
Inpu1／Output Computer Cards 530
Inspection Systems，X－Ray 568
Instrument Accessories 47）
Insulation Resistance Meter 63
Insulation Tesi 63
Intelligent Terminals 534－536
Interface Bus．Hewlett－Packard 511
Interface Bus Card 542
Interface Cover for 1645A 494
Interface Kit，Digitally Controlled Power Supply 205
Interface Kit，Multiprogrammer 541
Integrating DVM 38． 50,54
Intermodulation Analyzer 445
L
Laboratory Kit，Microwave 378
Laboratory．Strip Charl Recorder 208，220－226
Laboratory，X－Y Recorder 208－216
Laser Measurement 559
Laser Transducer 558
LCR Meter 61
Level Generator 497
Light Emitting Diodes 562
Limiter 465
Line Printers， 200 LPM 533
Liquid Chromatographs 564
Loads／Termination，Coaxial and Wavegujde 396
Logarithmic Preamplifier 230
Logarithmic Volimeter 30
Logic
Analyzer 85
Clip 88
Comparator 89
Lab 92
Probes 84， 87
Pulser 88
State Analyzers $78-82$
Troubleshooting Mini－Kit 91
Troubleshooting Kit 90
Low Distortion Generator 307． 316
Low Frequency Spectrum Analyzer 445，448， 456.
466， 496
Low Gain Preamplifier 227， 230
Low Resistance Meter 62
M
Machinery Analyzer 466
Magnetic Tape Recorder，Digital 234
Magnetic Tape Subsystem，DigitalMark Reader，Optical537
Marker Generator 352
Mass Spectrometers 564
Mechanical Impedance Analyzer 466
Medical Applications 568
Medium Gain Preamplifier 227
Memory Systems 530
Meters
AC 30， 42
AC／DC 27， 38
Capacitance 64－71
Differenzial 324
Digital Multimeter 37－50
Distance 560
Gain Phase 414
High Capacitance 70
Impedance 74
LCR 61， 66
Logarithmic Volimeters 30，33， 42
Milliammeter AC 38， 40
Milliammeter, DC $26,38,40.44$
Milliohmmeter 62
Muitifunction 37-54
Noise Figure 376
Ohmmeter 37-54. 61
Power (RF/Mierowave) 370-374
Selective VM $440.490,498.500$
Standing-Wave-Ratio (SWR) 401
True RMS 31, 42. 55
Microcircuit Interface 530. 541
Microprogrammable Processors 530
Microwave Catalog 378
Microwave Counters 245, 248, 266
Microwave Laboratory Kit 378
Microwave Link Analyzers 506-509
Microwave Power Measuring Equipment 368
Microwave Signal Generators 343-345
Microwave Test Equipment 378-405
Milliohmmeter 62
Mini Data Centers 534
Mixers, Coaxial and Waveguide $348,398,465$
Mixer/Detector 562
Modal Analysis 466
Modular Power Supplies 20|-203
Modulators, PIN Diode 347
Motor Controller, Programmable 538
MPE/3000 Software 543
Mulci-meter $27,38,40,54$
Multiple Span Plug-In Module 220
Multiplexer, General Purpose 538
Multiprogrammer 538
N
Network Analysis, General Information 406-410
Network Analyzers 406-431
Networks, Computer 550
Noise
Analyzer, Acoustic 466
Figure Meter 376
Generator 376, 468
Source (lF) (UHF) (VHF) and Waveguide 376
Null Deiector Plug-In Module 210
Numeric LED Displays 563
0
OEM Displays 160
Modular Power Supplies 201
Strip Chart Recorders 208, 220-224
X-Y Recorders 208, 213
Ohmmeters 27. 37-54. 62
Optical Mark Reader 547
Optically Coupled Isolators 563
Optoelectronics 563
Oscillators
Audio 312
Function Generator 317-319
General Information 311
Low Frequency 316
Quartz 276
Quartz Component 277
RF 307
Sweep 307-309, 349-367
Telephone Test 489
Test 315
Wide Range 312
Oscillographic Recorder 208. 227. 230
Oscilloscopes 94-159
Accessories 150-154
Cameras 155
Contrast Filters 154
275 MHz Delayed Sweep $98-101$
275 MHz Dual-Delayed Sweep with Microprocessor 98-101
200 MHz Delayẹd Sweep 102
200 MHz Dual Delayed Sweep 102
General Information 94-97
High Frequency Plug-Ins 116
High Writing Speed Mainframes 123, 142
Large Screen Mainframe 122
Light Shields 154
Low Frequency 144
Plug-In, 180 series 124
Plug-in, 183 series 142
Protective Covers 154
Portable 110.113
Rack Mounl Slides and Adapters 154
Ruggedized Portables, 35 \& 50 MHz 114
Sampling 134-138
Spectrum Analyzer Plug-In 141. 450.452
Testmobiles 158
100 MHz Third-Channel Trigger View 104-109
Variable Persistence/Storage $112,119-121$
Viewing Hoods 154
Outpul Voltage Divider 348
Pad，Coaxial Attenuator 383
Pattern Analyzer 83
Pattern Generator／Error Detector S02
Peak Power Meter．Analog 375
Phase Lock Synchronizer 367
Phase Meters 414－429
Phase Modulation，Signal Generator 328
Phase Sensitive Demodulator Preamplifiers 230
Phase Shifters，Waveguide 398
PIN Diodes 562
PIN Modulators．Microwave 347
PIN Photodiodes 563
Plotter．X－Y 527
Plug－In Counters 242，247， 250
Plug－In Extender 538
Plug－In Oscilloscopes 116－143
Plug－In Pulse Generator System 292－300
Point Plotter Plug－In Modules 211
Portable
Calculators 519
Counters 256
Instrumentation Tape Recorder 208， 234
Oscilloscopes 110－113
Storage Oscilloscopes 112
Strip Chart Recorder 208， 226
Test Sel 484
Volimeter 29
X－Ray Systems 568
Power Meters，RF \＆Microwave 368－374
Power Sensors 372． 375
Power Meter Calibrators 371，375
Power Splitter 404， 419
Power Supplies 171－207
Amplifier／Power Supplies 198
Atomic Clock 279
Condensed Listing 172
Constant Current Sources 200
Digitally Controlled 205
Dual Tracking 194
Frequency Standards 279
General Purpose： 25 － 200 W Output 180
General Purpose： 100 － 2000 W Outpui 184
General Purpose： 300 － 11.000 W Output 188
General Purpose： $0-320 \mathrm{~V}$ 194
High Voltage 192
Low Cost Lab 175－179
Modular，Single Oulpur，Series Regulated 201
Modular，Dual Output Series Regulated 201
Modular， $200-600 \mathrm{~W}$ ，Switching 203
Modular， 110 W，Switching 202
Modular，Triple－Output Switching 202
Oscilloscope Probe 152
Precision Voltage Sources 195
Programmable 205． 541
Specifications Definitions 174
Standby Counter 245
Power Supply／Amplifier 198
Preamplifiers 21
Precision DC Amplifier
Precision Frequency Source 268
Precision Oscillator
Precision Voltage Sources 174
Preseleclor 462
Pressure Gauge
Printers 236－238
Printer，Line
Printer，Thermal 236
Probes
Accessories 152． 471
Active 151， 423
Current 152， 472
Digital Mulkimeter 40
Frequency Doubler 346
High Frequency 32
Impedance 423
Logic 84． 87
Slotted Line 394， 395
Trigger（TTL，MOS，ECL） 84
Time Interval 246
Voltage Divider 150， 471
Process Control Interface 538
Processors 530
Programmable Counters 541
Programming， 1900 System 300
Pseudorandom Noise Generator 468
Pulse A．mplifiers 20
Pulse and Word Generators 280－305
Pulse Generator 88， 541
Pulse Modulators，Microwave 36， 347
a
Q－Meter 72
Quartz Component Oscillator 277
Quartz Frequency Standard 276

R

Random Noise Generator 468
Range Calibrator (for 435A) 371
Ratio Meter 50
Readers, Card .. 537
Reciprocal Counters 242, 250, 262, 541

Recorders

Oscillographic
208, 227, 230
Portable Instrumentation Tape 208, 234
Strip Chart 208, 220-226
X-Y .. . 208-217
Reflection/Transmission Test Sets402, 419-443
Rellectometer Bridge .. 404
Relay Outpui Cards ... 541
Relay Register 530
Resistance Meter ... 63
RMS Volimeter 31 , 42, 55
Rotary Air Line, Coaxial 400
Rotary Joint, Coaxial 400
Rotary Machinery Analysis 466
Rotary Vane Attenuators, Waveguide 387
Rotating Machinery Analysis 466
RTE-B Real Time System 546
RTE-C Real Time System 546
RTE-ll Real Time System 546
RTE-IlI Real Time System 546
Rubidium Frequency Standard 275
RX Meter 75

S

S-Parameter Test Sets 419, 429
Sampling Oscilloscopes134-138
Sampling \& TDR Accessories 139
Scanner ... 53
Scanner Plug-In Module 210, 541
Scholtky Diodes .. 562
Scientific \& Industrial X-Ray Systems 568
Selective Level Measuring Sei 500
Sclective Level Voltmeters 497
Selective Voltmeter440, 490, 497-499
Self-Test Digital Multimeter44, 50
Sensors, Microwave Power 372, 375
Shoris, Coaxial and Waveguide 396
Signal Analyzers, Digita! 466. 496
Signal Analyzers, General Information432-437
Signal Analyzers141, 432-465
Signal Coupler Preamplifier 230

Signal Generators, General Information 306, 311, 326,
432-437
Signal Generators and Accessories326-348
Signal Generators, HF, VHF, UHF 333-342
Signal Source 33, 307, 311, 322
Signature Analysis 448, 468
Sinewave Generators 307, 311. 322-332
Sinewave Oscillator307, 311
Single Span Plug-In Module 220
Sliding Load (Coaxial and Waveguide) 396
Software, Compuler .. 530
Solid State Displays .. 563
Solid State Lamps .. 563
Spectrometers ... 564
Spectrum Analyzers, General Information432-437
Spectrum Analyzers 141, 445, 448. 452-466, 548
Spectrum Analyzer Preselector 462
Spectrum Display ... 467
Square Wave Gen 313-319. 327-329
Standards: Frequency and Time 268
Standing Wave Ratio (SWR) Meter 401
Step Attenuators 384. 386
Step Recovery Diodes 562
Siepping Molor Control 541
Storage Control Unit 532
Strip Chari Recorder 208, 220-226
Structural Dynamics 466
Sweep Oscillators, General Information349-35t
Sweep Oscillators 307-309, 349-367
Sweeping Slotted Line 394
Switches .. . 541 . 562
Switches, Coaxial .. . 399
Swivel Adapter 400
Synchronizer Counter 339
Synchronizer, Phase Lock 367
Synchronous Communications Interface 530, 550
Synchronous Data Set Interface 530
Synthesizer, Automatic 309
Synthesizer, Frequency 307-310
Synthesized Signal Generators 328
Synthesizers - General Information 326
Synthesizers, Spectrum 466

T

Tape Cassette, Punch, Reader Sub-systems 526
Tape Recorder, Digital Magnetic 234
Telecommunications Test Equipment,
General Information480-483
Telephone Test Oscillators 489
Teleprinter Interfaces 550
Temperature Plug－In Module 220
Terminal，CRT 534
Terminated Output Cable 348
Terminations，Coaxial and Waveguide 140，396
Test Leads 469
Testmobiles，Oscilloscope 158
Test Oscillators 315
Test Set，Voice Band 496
Tesi Sers，Transmission 496
Thermal Printer 236
Thermistor Mounts，Coaxial and Waveguide 375
Thermocouple Power Sensors 372
Thermometer 553－555
Time Base External Module 212
Time Base Plug－In Module 210
Time Domain Reflectometers 137．139
Time Interval Counters 242－262， 541
Time Mark Generator 153
Time Standard 270－273
TIMS 485
Total Siation 561
Tracking Genergtors 452－462
Training／Video Tapes 572－574
Transfer Function Analyzer 466， 496
Transmission Impairment Measuring Sel 485
Transmission Line Test Equipment，Coaxial 380
Transmission \＆Noise Meter Psophmeter 488
Transmission Parameter Analyzer 496
Transmission Test Set 486， 487
Transistor Bias Supply 430
Transistor Test Fixıures 429
Transistors 562
Transponder 496
Triangle Wave Generator 317．319
Trigger Countdown 134
True RMS Voltmeter 31，42， 55
TTY Interface 58
Tuners，Microwave 398
TWT Amplifiers 22
Type N Short 396
U
Universal Bridge 64， 65
Universal Carriage（Slotted Section） 394
Universal Counters 242， 251
Universal Interface 530
V
Variable Phase Funclion Generator 316
Vector Impedance Meter 74
Vector Volimeter 424
VHF Oscillator 346
Vibration Analyzer 466
Vibration Controller 466
Video Tapes 570
Voice Band Analyzer 496
Volimeters 23－58
Volimeter，Vector 424
W
Wave Analyzer 438
Wave Analyzer 439，497
Wave And Distortion Analyzers $440,442,448$
Waveform Analyzer，Fouriẹ 466,496
Waveguide
Altenuators 387
Coaxial Adaplors 400
Crystal Detectors 393
Directional Couplers 390
Frequency Meters 391
Harmonic Mixer 398
Holder 400
Instrumentation and Accessories 471
Instrumentation vs Frequency Bands 382－471
Low－Pass Filters 397
Millimeter Counter 240
Movable Shorts 396
Phase Shifters 396
Precision Altenuators 73． 387
Shorting Switch 396
Slide Screw Tuners 398
Sliding Loads 396
Sliding Short 396
Slotted Section 395
Stand 400
Terminations 396
Thermisior Mounts 375
Variable Attenuators 387
Waveguide－Waveguide Adapters 400
Word Generators 302－305
X
K－Ray Systems，Scientific \＆Industrial 568
X－Y Displays 160－170
X－Y Plotters 208． 218
$\mathrm{X}-\mathrm{Y}$ Recorders 208－216

MODEL NUMBER INDEX

New product listings are printed in bold face type
HP-21 Scientific Pocket Calculator 520
21 MX Minicomputers 530
21 X/2 Memory System 530
HP-22 Business Management Pocket
Calculator 523
HP-25 Scientific Programmable Pocket Calculator 521
HP-35,45 see HP-21, 25
HP-55 Advanced Sclentific Programmable
Pocket Calculacor 521
MX/55 DISComputer 530
HP-65 Programmable Pocket Calculator 522
MX/65 DISComputer 530
HP-70 see HP-22
HP-80 Financial Pockel Calculator 523
100
105A \& B Quariz Frequency Standards 276
123A Oscilloscope Camera 155
140B Oscilloscope Mainframe 143
140T Spectrum Analyzer Mainframe 455
1418 Variable Persistence Storage Oscilloscope Mainframe 143
$141 T$ system Spectrum Analyzers 454
I4IT Spectrum Analyzer Mainframe 455
180 series Plug-in Oscilloscopes 116
180C. D \& TR High Writing Speed Oscilloscope Mainframes 123,451.453
181A, AR, T \& TR Variable Persistence/ Storage Mainframes $119,451,453$
182C \& T Large Screen Oscilloscope Mainfrante $122,451,453$
183A, B \& D Wideband Oscilloscope Mainframes 142
184A \& B High Speed Oscilloscope Mainframes 120
197A Oscilloscope Camera 155
200
200CD Wide Range Oscillator 312
201C Audio Oscillator 312
203A Variable Phase Function Generator 316
204C Oscillator 313
204D Oscillator 3!3
209A Oscillator 313
214A Pulse Generator 291
226A Time Mark Generator 153
230B Tuned RF Amplifier 22
236A Telephone Test Oscillator 489
250 B RX Meter 75
281 series Coaxial-Waveguide Adapters 400
292 series Waveguide-Waveguide Adapters 400
300
310A Wave Analyzer 439
312B \& 313A Frequency Selective Voltmeter and Tracking Oscillator 440
312B Selective Voltmeter 498
331A Distortion Analyzer 442
332A Distortion Analyzer 442
333A Distortion Analyzer 442
334A Distortion Analyzer 442
340B Noisc Figure Meler 376
342A Noise Figure Meter 376
343A VHF Noise Source 376
34SB IF Noise Source 376
347A series Noise Sources 376
349A Noise Source 376
350D Attenuator Set 73
355 series Coaxial Step Altenuators 384
360 series Coaxial Low-pass Filters 397
362A scries Waveguide Low-pass Filters 397
375 series Waveguide Variable Atcenuators 387
382 series Waveguide Precision Variable Altenuators 387
393A Coaxizl Variable Attenuator 386
394A Coaxial Variable Altenuator 386
400
ARS-400 Automatic Receiver System 548
400E \& EL AC Volimeters 30
400 F \& FL AC Vollmeter 30
400GL AC Voltmeter 30
403B AC Volimeter 29
410 C Volmeter 28
415E SWR Meter 401
419A DC Null Voltmeter 25
420A \& B Coaxial Crysial Detectors 392
422A series Waveguide Crystal Detectors 393
423A Coaxial Crystal Detector 392
423B Coaxial Crystal Detector 492
424A series Waveguide Crystal Deicetors 393
427A Voltmeter 27
428B Clip-on DC Milliammeter 26
432 series Power Meters 374
435A Power Meter 371
436A Power Meter 370
440A Detector Mount 395
442B Slotted Line RF Probe 395
444A Slotted Line Detector 395
4468 Slotted Line Detector 395
447B Slotted Line Detector 394
448A \& B Sloned Line Sweep Adapters 394
456A Current Probe for voltmeters 472
461A Amplifies 20
462A Amplifier 20
465A Amplifier 20
467A Power Amplifier 20
478A Coaxial Thermistor Mount 375
485B Waveguide Detector 393
486A series Waveguide Thermistor Mounts 375
489A TWT Amplifies 22
491C TWT Amplifier 22
493A TWT Amplifier 22
495A TWT Amplifier 22
500
532 series Waveguide Frequency Merers 391
536A Coaxial Fsequency Meter 391
537A Coaxial Frequency Meter 391

New product listings are printed in bold face type
600
606B Signal Generator 340
608E Signal Gienerator 341
612A Signal Generator 342
618 C Signal Generator 344
620B Signal Generato： 344
626A Signal Generator 345
628A Signal Generator 345
651 B Test Oscillator 315
652A Test Oscillator 315
654A Test Oscillator 315
680 Strip Charl Recordes 223
700
740B DC SLandard／Differential Volemeter 324
745A AC Calibrator 322
746A．Hi Voltage Amplifier 322
752 series Waveguide Directional Couplers 390
774D Coaxial Dual Directional Coupler 388
775D Coaxial Dual Directional Couples 388
776D Coaxial Duat Directional Coupler 388
777D Coaxial Dual Directional Coupler 388
778D Coaxial Dual Directional Coupler 388
779D Coaxial Directional Coupler 389
786D Coaxial Directional Detector 389
787D Coaxial Directional Detector 389
788C Coaxial Directional Detector 389
789C Coaxial Dírectional Detector 389
796D Coaxial Directional Coupler 389
797D Coxxial Directional Coupler 389
798C Couxial Directional Coupler 389
800
805C Coaxial Sloted Line 394
809 C Universal Carriage 394
810 B series Waveguide Slohted Sections 395
814B Slotted Section Carriage 395
815 B series Waveguide Slotted Sections 395
816A Slotled Couxial Section 394
817A \＆B Coaxial Swept Slotied Line Sysiems 394
870A series Waveguide Slide Screw Tuners 398
885A series Waveguide Phase Shifters 398
895A DC Power Supply 184
900
905A Coaxial Sliding Load 396
907A Coaxial Sliding Load 396
908A Coaxial 50－Ohm Termination 396
908A Option 012 30－Ohm Termination 140
909A Conxial Termination 140,396
910 series Waveguide Terminations 396
911A Coaxial Sliding Load 396
914 series Waveguide Sliding Loads 396
920 series Waveguide Moving Shorts 396
923A Waveguide Sliding Shorl 396
930A Waveguide Shorting Switch 396
932A Waveguide Harmonic Mixer 398
934A Coaxial Harmonic Mixes 398
938A Frequency Doubler Ses 345
940A Frequency Doubler Set 345
970A Probe Digital Multimeter 40
1000
1000A Tesimobile 158
1001A Tesimobile 158
1001B Tesimobile 158
1002A Testmobile 158
1002 B Tesimobile 158
1003A Testmobile 158
1004A Testmobile 158
1010B High Speed Liquid Chromatograph 564
1026A Microwave Laboratory Kit 378
1051A \＆1052A Combining Cases 473
$1104 \mathrm{~A} / 1106 \mathrm{~B}$ Opt 00118 GHz Trigger Coundown 138
I 104A／1108A 10 GHz Trigger Counldown 138
I 105A／1106B 20 ps Pulse Generator 140
I105A／1108A 60 ps Pulse Generator 140
1109B High Pass Filier（type N） 140
IlloA Currenl Probe 152
1111A AC Current Amplifier 152
1114A Testmobile，Oscilloscope 158
1117B Testmobile，Oscilloscope 158
I 120A 500 MHz Aclive Probe 151
II21A AC Probe 423
1122A Probe Power Supply 152
1124A 100 MHz Active Probe 151
I125A 250 MHz Impedance Converter Probe 151
I200A \＆B Dual Channel Oscilloscopes． $100 \mu V /$ div 146
I201A \＆B Dual Channel Storage
Oscilloscopes， $100 \mu \mathrm{~V} / \mathrm{div}$ 146
1205A \＆B Dual Channel Oscilloscopes， $5 \mathrm{mV} / \mathrm{div}$ 146
1220A Dual Channel Oscilloscope，is MHz 144
1221A Single Channel Oscilloscope， 15 MHz 144
1222A Dual Channel，Delay line Osxilloscope， 15 MHz 144
1230A Logic Trigger 84
1300A Large－screen Analog Sysiem Display 170
1310A 48.3 cm （19 in．）Display 168
1311A 35.6 cm （14 in．）Display 168
1317 A 43.2 cm （17 in．）Display 166
1321A 53.3 cm （21 in．）Display 166
1332A High Resolution Display 162
1335A High Resolution Storage Display 162
1400 series Plug－ins for 140 series Oscilloscope Mainframes 143
1600A 16 Bit Logic State Analyzer 78
1601L 12 Bit Logic State Analyzer 82
1607A 16 Bit Logic State Analyzer 78
1620A Pattern Analyzer 83
1645A Data Ersor Analyzer 494
16455 Data Trensmission Test Set 494
1700 series Oseilloscopes 98
1700B Portable Oscilloscope， 35 MHz 110
1700日 Option 300， 35 MHz 114
1702A Portable Storage Oscilloscope 112
1703A Porlable Storage Oxcilloscope，Delayed Sweep 112
1707B Portable Delayed Sweep Oscilloscope， 75 MHz 110
1707B Option 300, 50 MHz 114
1710B Dual Channel Oscilloseope, 200 MHz 102
1712A Dual-Delayed Sweep Oscilloscope, 200 MHz 102
1720A Oscilloscope, 275 MHz 98
1722A 275 M Hz Oscilloscope, Direct Readoul of voles and time 98
1740 A 100 MHz Oscilloscope, Trigger View 104
1801A Dual Channel Vertical Amplifier. 50 MHz 126
1803A Differential DC Offsel Amplifier 130
1804 Four Channel Verlical Amplifier. 50 MHz 128
1805A Dual Channel Vertical Amplifier, 100 MHz 124
1806A $100 \mu \mathrm{~V}$ Dual Channel Differential Amplifier 126
1807A Dual Channel Vertical Amplifier, 35 MHz 126
1808A Dual Channel Vertical Amplifier. 75 MHz 125
1809A Four Channel Vertical Amplifier. 100 MHz 128
1810A I GHz Dual Channel Sampler 136
I8IIA 4 or 18 GHz Sampler 134
1815A \& B TDR/Samplers 138
1816A Sampling Head, 4 GHz 138
1817A Sampler, 12.4 GHz 138
1818A Time Domain Reflectometer, 170 ps t_{r} 137
1820C Time Base 131
1821A Time Base/Delay Generator 131
1824A Time Base and Sweep Expander 132
1825A Tíme Base and Delay Generator 132
1830A Dual Channel Vertical Amplifier, 250 MHz 142
1834A 200 MHz 4-Cbandel Amplifier 142
1835A 200 MHz Dual Channel Amplifier 142
1840A Time Base 142
1841A Time Base/Delay Generator 142
1900A Pulse Generator Mainframe 299
1901A Pulse Generator Mainframe 299
1905A Rate Generator 298
1906A Rate Generator 298
1908A Delay Generator 298
1915A Variable Transition Time Output 301
1916A Variable Transition Time Ourpur 293
1917A Variable Transition Time Output 294
1920A Pulse Output 293
1921A Positive Outpul Pług-in 293
1925A Word Generator 296
1930A PR Binary Sequence Generator 296
2000
2000 Access System 545
2123A DISComputer 532
2300B RTE-B Real Time BASIC Soffware 531
2300C RTE-C Memory Based Real Time Opersting System Soltware 531
2607A Line Printer 533
2640A \& 2644A CRT Terminals 534
2801A Quartz Thermometer 554
2802A Digital Thermometer 553
28118 Quartz Pressurc Gauge 556
2850 Quariz Temperalure Probes 554
3000
$3000 C X$ Mini Datacenters 544
3040A Network Analyzer 411
3042A Network Analyzer 411
3044A Automatic Spectrum Analyzer 445
3045A Automatic Spectrum Analyzer 445
3050B Auto Data Acquisition System 56
3200B VHF Oscillator 346
3310A Function Generator 319
3310B Function Generator 319
3311A Function Generator $3\{7$
3312A Function Generator 318
3320A Frequency Synthesizes 307
3320B Frcquency Synthesizer 307
3320C Level Gcnerator 498
3330B Auromatic Synthesizer 309
3352A Laboratory Data System 564
3373B Electronic Digital Integrator 564
3380A Reporting Integrator 564
3400A RMS Voltmeter 31
3403C True RMS Volmeter 42
3406A Broadband Sampling Voltmeter 32
3450B Mulii-Function Meter 54
3465A Dlgital Multimeter 38
3469B Mullimeter 37
3470A Digital Multimeter 44
3480 C Digital Volimeter 48
3480D Digital Volemeter 48
3484A Multi-Function Unil for 3480 C \& D 48
3490A Multimeter 50
3495A Scanner 53
3550B Communications Test Sct 484
3551A Transmission Test Sel 486
3552A Transmission Test Sel 486
3555B Transmission \& Noise Measuring Set 488
3556A Psophometer 488
3575A Gain/Phase Meter 414
3580A Spectrum Analyzer 448
3581A Wave Analyzer 438
358 IC Selective Voltmeter 490
3590A Wave Analyzer 497
3591A Selective Volimeter 497
3594A Sweeping Local Oscillator Plug-in 497
3702B IF/BB Receiver 508
3710A IF/BB Transmitter 508
3720A Spectrum Display 467
3721A Correlator 467
3722A Noise Generator 468
3730A Down Converter: RF 10 IF 508
3744A BB Sweeper Accessory 510
3745A Selective Level Measuring Set (CCITT) 500
3745B Selective Level Measuring Set (BELLj 500
3750A Altenuator 510
3760A Data Generator 305. 504
3761A Error Detector 504
3770A Amplitude/Delay Dislortion Analyzer 492
3780A Pattern Generator/Error Detector 502
3790A IF/BB Transmitter (140 MHz IF) 506
3792A IF/BB Recelver (140 MHz IF) 506
3800A Distance Meter 560
3800B Distance Meter 560
3805A Distance Meter 560
3810A Total Sistion 561
3960A Porable Instrumentation Tape Recorder 234
4000
4204A Oscillator 314
4260A Universal Bridge 64
4265B Universal Bridge 65
4270A Auromatic Capacitance Bridge 70
4271A Digital LCR Meter 66
4282A Digital High Capacitance Meter 68
4328A Milliohmmeter 62
4329A High Resistance Meter 63
4332A LCR Meter 61
4333A Distortion Analyzer 444
4342A Q Meter 72
4350A \& B High Capacitance Meters 71
4436A Altenuator 73
4437A Attenuator 73
4490B Decade Capacitor 73
4800A Vector Impedance Meter 74
4815A Vector Impedance Meter 74
4940A Transmission Impairment Measuring Sel 485
5000
5000A Logic Analyzer 85
501 IT Logic Troubleshooling Kit 90
50IST Logic Troubleshooting Kit 91
5035A Basic Logic Lab 92
5035T Logic Lab 93
5050B Digital Recorder 238
S055A Digital Recorder 237
K02-5060A Standby Power Supply 279
5061A Cesium Beam Frequency Standard 270
5061A with Option 004 Tube 271
E2I-5061A Flying Clock (Cesium) 271
5062C Cesium Beam Frequency Reference 272
5065A Rubidium Frequency Standard 273
E2I-506SA Portable Rubidium Time Standard 273
5085A Standby Power Supply 279
5087A Distribution Amplifier 278
SI50A Thermal Printer 236
S210A Frequancy Meler
5245L Electronic Counter 247
5245M, see 5345A
5246L, see 5345A
5248 M , see 534SA
5248L Electronic Counters 247
5252A, see 5345A
New product listings are printed in bold face type
5253B Frequency Convertes Plug-in 248
5254C Frequency Converscr Plug-in 248
5255A Frequency Converter Plug-in 248
5256A Frequency Converter Plug-in 249
5257A Transfer Oscillator Plug-in 249
5258A, see 5345A
S261A Video Amplifier Plug-in 249
5262A Time Interval Plug-in 249
5265A Digital Voltmeter Plug-in 249
5267A Time Interval Plug-in 249
5300A Counter Mainframe 256
5300B Counter Mainframe 256
5301 A 10 MHz Counter Modulc 259
5302 A 50 MHz Universal Counter Module 259
5303B 500 MHz Counter Module 260
5304 A Timer/Counter Module 260
S305A 1100 MHz Counter Module 261
5306A Digital Multimeter/Counter 261
5307A Frequency Counter Module 262
5308A Timer Councer Module 262
S310A Batlery Pack Modulc 264
531IB Digital-to-Analog Converter 263
5312A ASCII Converter 263
5326A Universal Counker 251
5326B Universal Counter/Digital Volimeter 251
5326C Multi-Function Counter 251
5327A Universal Counter 2SI
5327B Universal Counter/Digital Voltmeter 251
5327C Multi-Function Counter 251
5328A Universal Counter 252
5340A Microwave Frequency Counter 266
5341A Microwave Frequency Counter 266
5345A Electronic Counter 242
S353A Channel C: Plug-in for 5345A 245
5354A 4 GHz Frequency Converter 245
5360A Computing Counter 250
5363A Time Interval Probes 246
5375A Computing Counter Keyboard 250
5379A Time lnterval Plug-in 250
5381A Frequency Counter 265
S382A Frequency Counter 265
5383A Frequency Counter 265
5451B Fourier Analyzer 466
5453A Transmission Parametcr Analyzer 496
5468A Transponder 496
5501A Laser Transducer 558
5526A Laser Inserferometer 559
5700A Laboratory Gas Chromatographs 564
5831A-9C Dual Flame Detector 564
5950B ESCA Spectrometer 56d
5981 El Mass Spectrometer 564
6000
6101 A DC Power Supply 195
6102A DC Power Supply 195
6104A DC Power Supply 195
6I0SA DC Power Supply 195
6106A DC Power Supply 195
6110A-6116A DC Power Supplies 195
6128C-6131B Digitally Controlled Voltage Sources 205
6140A Digital Current Source 205
6145A Digital Current Source 205
6177C DC Power Supply 200
6181C DC Power Supply 200
6186C DC Power Supply 200
62008-6209B Power Supplies 177
6211A-6218A DC Power Supplies 175
6220B DC Power Supply 180
6224 B DC Power Supply 180
6226B DC Power Supply 180
6227B DC Power Supply 194
6228B DC Power Supply 194
6236A DC Power Supply 176
6237A DC Power Supply 176
6253A DC Power Supply 180
6255A DC Power Supply 180
6256B DC Power Supply 184
6259B DC Power Supply 184
6260B DC Powcr Supply 184
6261 B DC Power Supply 184
6263B DC Power Supply 184
6264B DC Power Supply 184
6265B DC Power Supply 184
6266B DC Power Supply 184
6267B DC Power Supply 184
6268B DC Power Supply 184
6269B DC Power Supply 184
627IB DC Power Supply 184
6274B DC Power Supply 184
6281A DC Power Supply 180
6282A DC Power Supply 180
6284A DC Power Supply 180
6285A DC Power Supply 180
6286A DC Power Supply 180
6289A DC Power Supply 180
6290A DC Power Supply 180
629IA DC Power Supply 180
6294A DC Power Supply 180
6296A DC Power Supply 180
6299A DC Power Supply 180
6384A DC Power Supply 177
64278 DC Power Supply 188
6428B DC Power Supply 188
6433B DC Power Supply 188
6434B DC Power Supply 188
6438B DC Power Supply 188
6439 B DC Power Supply 188
6443B DC Power Supply 188
6448B DC Power Supply 188
6453A DC Power Supply 188
6456B DC Power Supply 188
6459A DC Power Supply 188
$6464 C$ DC Power Supply 188
6466C DC Power Supply 188
6469C DC Power Supply 188
6472C DC Power Supply 188
6475C DC Power Supply 188
6477C DC Power Supply 188
6479C DC Power Supply 188
6483C DC Power Supply 188
6515A DC Power Supply 192
6516A DC Power Supply 192
6521A DC Power Supply 192
6522A DC Power Supply 192
6525A DC Power Supply 192
6823A DC Power Supply/Amplificr 198
6824A DC Power Supply/Amplifier 198
6825A DC Power Supply/Amplifier 198
6826A DC Power Supply/Amplifier 198
6827A DC Power Supply/Amplifier 198
6830A DC Power Supply/A mplifier 198
6831A DC Power Supply/Amplitier 198
6832A DC Power Supply/Amplifier 198
6920B AC/DC Melcr Calibration 321
6940B Mulli-Programmer 538
6941 B Multi-Programmer Extender 538
7000
7004 B X-Y Recorder 210
7010A X-Y Recorder 213
70ISA X-Y Recorder 213
7034A X.Y Reeorder 210
7035B X-Y Recorder 212
7040A X-Y Recorder 214
704IA X-Y Recordcr 214
7044A X-Y Recorder 216
7045A X-Y Recorder 216
7046A X-Y Recorder 215
7047A X-Y Recorder 216
7100B Strip Chart Recorder. 2 Pcn 220
7101B Surip Chart Recorder. 1 Pen 220
7123A Strip Chart Recorder 222
7127A Strip Chart Recorder, I Pen 220
7128A Sırip Char Recorder. 2 Pen 220
1130A Strip Chart Recorder. 2 Pen 224
7131A Strip Chart Recorder. 1 Pen 224
7132A Strip Chart Recorder, 2 Pen 225
7133A Strip Charı Recorder, 1 Pen 225
7143A Strip Chast Recorder 222
7155B Portable Strip Chart Recorder 226
1202A Graphic Plolles 218
7203A Graphic Plotter 218
7210A Digial Ploter 219
7260A Oplical Mark Reader 537
7261A Optical Mark Reader 537
7402A 2-Channel Oscillographic Recorder 227
7404A 4-Channel Oscillographic Recorder 227
7414A 4-Channel Oscillographic Recorder 230
7418A 6 to 8 Channel Oscillographic Recorder 230
7562A Log Voltmetcr/Converter 33
7563A Log Voltmeter/Amplifier 33
7610A High Efficiency Gas Chromatograph 564
7670A Automatic Sampler 564
7900A Disc Drive 532
7905A Dlsc Drive 532
7970 serdey Digital Magnetic Tape Subsystem 533
8000
8002A Pulse Generator 289
8004A Pulsc Generator 289
8005日 Pulse Generator 288
8006A Pulse Generator 304
8007 B Pulse Generalor 287
8008A，see 8082A
8010A Pulse Generator 290
8011 A Pulse Generator 282
8012B Pulse Generator 283
8013B Pulse Generator 283
8015A Pulse Generator 284
8016A Pulse Generator 302
8082A Pulse Generator 286
8403A Modulator 347
8404A Leveling Amplifier 367
8405A Vector Voltmeter 424
8406A Comb Generator 465
8407A Network Analyzer 422
8410B Network Analyzer Mainframe 429
8410 S series Network Analyzers 425
8411A Harmonic Frequency Converter 428
8412A Phase－Magnilude Display 422， 428
8413A Phase Gain Indicator 428
8414A Polar Display 422， 428
8418A Auxiliary Power Supply 428
8430A series Bandpass Filters 397
8443A Tracking Generator 458
8444A Tracking Generator 460． 463
8444A Option 058 Tracking Generator 452
844SB Automatic Preselector 462
\＄447 series Amplifiers 21， 465
8470A Coaxial Crystal Delector 392
84708 Coaxial Crystal Detector 392
8471A Codxial Crystal Detector 392
8472A Coaxial Crystal Delector 392
8472B Coexial Crystal Detector 392
8477A Power Meler Calibrator 375
8478B Coaxial Thermistor Mount 375
8481A Power Sensar 372
84814 Power Sensor 372
8482A Power Sensor 372
8482 H Power Sensor 372
8483A Power Sensor 372
8484A Power Sensor 372
8491 series Coaxial Fixed Allenuators 383
8492A Coaxial Fixed Altenuator 383
8493 scries Coaxial Fixed Attenuators 383
8494 series Coaxial Step Attenuators 384
8495 series Coaxial Step Attenuators 384
8496 series Coaxial Step Altenuators 384
8502A \＆B Refection／Transmission Bridges 419
8503A \＆B S－Parameter Test Sets 419
8505A Network Analyzer 416
8507A Automntic Network Analyzer 420
8542B 18 GHz Automatic Network Aralyzer 548
8552A Spectram Analyzer－IF Section 455
8552B Spectrum Analyzer－IF Section 455
8553B Spectrum Analyzer，Tuning Section 458
8554B Spectrum Analyzer，Tuning Section 460
8555A Spectrum Analyzer，Tuning Section 462
8556A Spectrum Analyzer，Tuning Section 456
8557A Spectrum Analyzer 141，450
8558日 Spectrum Analyzer 141.452
8580B Automatic Spectrum Analyer 548
8600A Digital Markes 352， 423
8601A Gencrator／Sweeper 352． 423
8614A Signal Gencrator 343
8616A Signal Generator 343
8620 system Sweep Oscillators 353
8620C Sweeper Malnframe 354
8621B Multiband Sweeper Drawer 362
8640A AM／FM Signal Generator 333
8640B AM／FM Signal Generator 333
8640A \＆B Oplion 002，AM／FM Signal Generators 333
8640B Option 004．A vionics Signal Generator 336
8040M Signal Generator 337
8654A Signal Generator 138
8654B Slgnal Generator 338
8655A Synchronizer／Counter 339
8660A Syruthesized Signal Gencrator 328
8660C Synthesized Signal Generator 328
8690B Sweep Oncillator 364
8691B－8695B RF Units（PIN leveled BWO） for 8690B 365
8691 A－8697A RF Units（Grid Leveled BWO） for 8690 B 365
8698B．8699B Solid State RF Units for 8690 B 365
8700A RF Drawer for 8690B 365
8705A Signal Mulliplexer for 8690 B 367
8706A Control Unit for 8690B 367
8707A RF Unil Hoider for 8690B 367
8709A Phase－lock Synchronizer 367
8717B Transistor Bies Supply 430
8721A Coaxial Directional Brídge 423
8731.8735 series PIN Modulators 347
8740A Transmission Test Unit 430
8741A Reflection Test Unit 430
8742A Reflection Test Unit 430
8743A Reflection／Transmission Test Unit 429
8745A S－Parameter Test Set 429
8746B S－Parameter Test Sel 410
K \＆R 8747A Waveguide
Reflection／Transmission Test Units 431
$X \& P 8747 \mathrm{~A}$ Waveguide
Reflection／Transmission Test Units 43）
875s Frequency Response Test Sets 402
876）A \＆B Coaxial Switches 399
8801 A Low Gain Preamplifier 231
8802A Medium Gain Preamplifier 23）
8803A High Gain Preamplifier 231
8805A Carrier Preamplifier 231
8805B Carrier Preamplifics 231
8806B Phase Sensitive Demadulator 231
8807A AC／DC Converter 231
8808A Logarithmic Preamplifier 231
8809A Signal Coupler 231
8820A DC Bank Amplifier 231
8821A DC Bank Amplifier 231
8900 B Peak Power Calibratos 375
8925A DME/ATC Test sel 346
9000
9500 series Automatic Test Systems 548
9510D Automatic Test System 548
9540D Transceiver Test System 549
955ID Inserument Calibration System $\$ 49$
9600 Measurement and Cantrol Systems 546
9602A Automatic Measurement \& Control System 546
9603A Automatic Measurement \& Control System 546
9603R Remote Measurement \& Control Systems 546
9604A Automatic Measurement \& Control System 546
9611A Industrial Measurement \& Control System 546
9611R Remote Measurement \& Control Systems 546
9640 Automatic Measurement \& Control System 546
9700A Distributed Systems Central 550
9810A Programmable Calculator 524
9815A Programmable Calculator 528
9820A Programmable Calculator 524
9821A Programmable Calculator 524
9830A Programmable Calculator 525
9862A X-Y Ploter 527
9863A Tape Reader 526
9864A Digitizer 526
9865A Tape Casselte 526
9866A Thermal Printer 527
9858A I/O Expander 526
9869A Hopper Card Rcader 526
9870A Card Reader 526
9871A Page-width Printer 528
9880B Mass Memory 525
9881 A Linc Printer Subsystem 527
9882A CRT Subsystem 527
9883A High Speed Tape Reader Subsystem 526
9884A Tape Punch Subsystem 526
10000
10001A 10:1 Divider Probe 150
10001B 10:I Divider Probe 150
10002A 50:1 Dívider Probe 150
10002B 50:1 Divider Probe 150
10003A 10:1 Divider Probe 150
10004D 10:1 Divider Probe 150
10005D 10:1 Divider Probe 150
10006D 10:1 Divider Probe 150
10007B I:I Divider Ptobe 150. 471
10008B I:I Probe 150.471
10011 B BNC Adapter Tip 153
10013A 10:1 Divider Probe 150
10014A 10:1 Divider Probe 150
10016A 10:I Divider Probe 150
10020A Resissance Divider 150
10034A Probe Ground Lead Kit 153
10035A Probe Tip Kis 153
10036A Probe Tip Kit 153
10037A Probe Tip Kit 153
10100B 100 ohm Feedihrough Termination 153
10100C 50 ohm Feedihrough Termination 153
10102A RFI Screen. 1700-1707B 154
10104A Viewing Hood, 1700-1722A 154
10106A Camera Bezel Adapter 156
IOIIOA BNC Male to Dual Banana Posi 470
1011IA Shielded Banana Plug to BNC Female 470
101I3A Triple Banana Plug to Dual BNC
Female 470
10115A Blue Contrast Filter (1700-1722A) 154
10116A Light Shield (1220A/1221A 1222A) 154
10140A Viewing Hood (1740A) 154
10166A Panel Cover (180C. 181A, 183A. 184A) 154
10169A Panel Cover (1200 series cabinet) 154
10176A Viewing Hood 154
10178A Mesh Conırast/RFI Filter 154
10190A Light Shield (182) IS4
10233A Cable, 1645A to 5055A or 5150A 495
10235A Interface Cover for 164SA 494
10250A TTL Trigger Probe 84
1025IA MOS Trigger Probe 84
10252A ECL Trigger Probe 84
10352B Graflok Back 156
10353A Pack Film Back 156
10355A Camera Bezel Adapter 156
10356A Camera Bezel Adapter 156
10358B Camerá Carrying Case 156
10360A Camera Bezel Adapter 156
10361A Camera Bezel Adapter 156
10362A Camera Bezel Adapter 156
10363A Camera Bezel Adapter 156
10366B Camera Bezel Adaptes 156
10367A Camera Bezel Adapter 156
10369A Camera Bezcl Adapter 156
10370A Camera Bezel Adapter 156
10371A Camera Bezel Adapter 156
10372A Camera Bezel Adapter 156
10374A Camera Carrying Case 156
10375A Camera Bezel Adapter 156
10376A Camera Bezel Adapter 157
10387A Interface. Type 303 Modems (1645A) 495
10388A interface, CCITT V35 (1645A) 495
10389A interface. Breakout Box (RS-232C)
(1645A) 495
10407 P Plug-in Extender (180 system) 153
10475A 3 in. Drawer for 1117 B 158
10476A 8 in. Drawer for $1117 B$ 158
10491A Rack Mount Adapter, 1710B-1722A 154
10501A Cable 469
10502A Cable 469
10503A Cable 469
10511A Spectrum Generator 348
10SI4A Double Balanced Mixer 348
10519A Accessory 469
10525.60012 Tip Kits 91
10525T, 10525H \& 10525E Logic Probes 87
10526T Logic Pulser 88
10528A Logic Clip 88
10529A Logic Comparator 89
10533A Printer Interface 264
10534A Double Balanced Mixer 348
10536A Plug-in Adapter for 5360A 250
10541A Reference Boards 91
KOI-10541A Preprogrammed Reference 91
I0544A Componem Oscillator 277
10548A Service Kil for 5300 series 264
10590A Plug-in Adapter for 5345A 245
10631A. B \& C HP-IB Cables 517
10638A Degausser (Cesium Std.) 271
10653A, B \& C Retrofit Kits 271
10810A \& B LED Clock Kits 271
11000
11000A Cable 469
11001A Cable 469
11002A Tesi Lead 469
11003A Test Lead 469
Il02lA Probe Accessories 471
I l035A Cable 469
It036A AC Probe for 410C 471
11040A Probe Aocessory 471
11042A Probe Accessory 471
Il044A Probe Accessory 471
IIO4SA DC Voltage Divider for 410 C 471
Il047A Probe Accessory 471
ll086a Cable 469
Il096A High Frequency Probe 27. 264
Ill43A BNC to Clip Leads 469
II202A 8-bit Parallel I/O Interface Card 527
11203A BCD Input Interface Card 527
11205A Serial interface Card 527
11285A Data Comnunication Interface and ROM 527
112978 Binary Synchronous ROM 527
11298B Interactive ROM 527
Il456A Test Card for 3470 series 46
II457A Rack Kit for 3470 series 46
11458A Strap for 3470 series 46
11473A-11476A Cursent Probe Balancing Transformers 472
11500a Cable 469
11501A Cable 469
IIS07A Ouipul Termination 348
II508A Terminated Output Cable 348
11509a Fuseholder 348
11511^ Type N Shore 396
11512A Type N Shore 396
11517A Mixer 465
II5I8A-IIS20A Waveguide Taper Sections 465
II524A APC7 10 N Adapter 400
1 1525A APC7 10 N Adapter 400
IIs31A Test Plug-in for 8690B 367
IIS33A APC7 10 SMA Adapter 470
11534A APC7 to SMA Adapter 470
II536A Probe Tee for 8405A 424
IIs40A Waveguide Stand 400
II S42A-1I548A Waveguide Clamps 400
11549A Power Spliter for 8405A 424
II565A APC-7 Short 396
11566A Air Line Extension 400
11567A Air Line Extension 400
11570A Accessory Kit for 8405A 424
II581A Altenuator Set 383
11582A Atlenuator Set 383
11583A Altenuator Set 383
11587A Accessory Kit for 8410 series 431
Il588A Swivel Adapter 400
II589A \& IIS90A Bias Networks 431
II599A Quick-Connect Adapler for 8745A 431
11600B Transistor Fixlure 429
11602B Transistor Fixlure 429
11604A Universal Exiension for 8745A 429
11605A Flexible Arm for 8743A 429
11606A Rotary Air Line 400
1)607A Small Signal Adapter for 8745A 431
11608A Transistor Fixiure 430
11609A Cable Kit for 8410 S 431
11650A Accessory Kit for 8410 S 431
Il652A Reflection/Transmission Kit [or 8407A 423
Il654A Passive Probe Kit for 8407A 423
II65SA Impedance Probe for 8407A 423
11658A Matching Resistor for 8407A 423
Il661B Exlension Module for 8660A \& C 329
11664A Detecior for 8755 405
11665B Modulator for 8755 405
11666 A Reflectometer Bridge for 8755 404
11667 A DC- 18 GHz Power Splitter 404
11668A 50 MHz High Pass Filter for 8755 404
11671A Interface Kil for 8660A \& C 332
Il672A Service Accessory Kil for 8660A \& C 332
Il678A Low Pisss Filter Kit 404
II683A Range Calibrator 371
11687A Adapter, 50 to 75Ω 348
II690A Frequency Doubler 348
11691D Coaxial Directional Coupler 389
11692D Coaxial Dual Diractional Coupler 388
11693A Limiter 465
11694A Matching Transformer. 50-75 465
11697A, B \& C Band-pass Fillers 348
11707A Test Plug In for 8660A \& C 332
11850A \& B Power Splitters 419
1185IA RF Cable Kit for 8505A 419
I 1857A Test Port Extension Cables for 8503A 419
12000
I2531C Teleprinter Interface 550
1253ID Terminal Interface 550
1255IB 16-Bit Relay Register 530
12554A 16-Bit Duplex Registes 530
I2555B Digital to Analog Converter 530
12565B Mierocircult Interface 530
12587B Asynchronous Communications Interface 530
12589A Automatic Dater Interface 530
12597A 8-Bít Duplex Register 530
12604B Data Source Interface 530
12618A Synchronous Communications Interface 530
12859A Direct Memory Access 530
12890A Display Terminal Interface 530
12889A Hardwired Serial Interface 530
12920B Asynchronous Muluiplexer 530
12930A Universal Interface 530
12960A 5 Megabyze Disc 530
12962A 15 Megabyte Disc 530
12966A Buffered Asynchronous Interface 530550
12967A Synchronous Communications Interface 530
12968A Asynchronous Communications Interface 530
12970A Magnetic Tape Subsystem 533
12971A Magnetic Tape Subsystem 533
12972A Magnetic Tape Subsystem 533
12977A Fast FORTRAN Processor 530
12978A Writable Control Store 530
13000
13037A Storage Control Unit 532
13215 A Power Supply 532
13390A DISCU/15 532
13515A Frequency Doubler Probe 346
14000
14550A-14534A Accessories for 6940B \& 6941 B 541
16000
16008A Resistivity Cell 63
17000
17012B Point Plater 211
17012C Point Plotter 211
17108A Time Base 212
17170A DC Coupler 210
17171A DC Amplifier 210
17172A Time Base 210
17173A Null Detector 210
17174B DC Oflses 210
17175A Filter 210
17176A Scanner 210
17177A AC/DC Converter DC Preamplifier 210
17178A DC Attenuator 210
17400A High Gain Preamplifier 227
1740!A Medium Gain Preamplifier 227
17402A Low Gain Preamplifier 227
17403A AC Carrier Preamplifier 227
17404A DC Bridge Amplifier 227
17500A Multiple Span 220
17501 A Multiple Span 220
17502A Temperalure Module 220
17503A Single Span 220
17504A Síngle Span 220
17505A High Sensitivity 220
17506A Single Span 220
18000
18019A Carrying Case 533
18641A PRT Temperature Probes 533
18642A PRT Temperature Probes 533
18643A PRT Temperature Probes 533
18644A PRT Temperature Probes 533
20000
20854A Timeshare BASIC "F" Software 531
2085SA BASIC Control System Software 531
20856A Timeshare Basic "E" Soflware 531
24307 B DOS-IIl Software 531
24337A Basic Analysis and Mapping Program Software 531
24342B Terminal Control System Software 531
24376B Image/2100 Software 531
24380A HP Remote Job Entry Software Package for BCS 531
24383A Course Writing Facility 531
24383B Course Writing Curriculum Conversion 531
30000
30130B 2780/3780 Emulation Subsystem for 3000 CX 550
33300 series Step Altenuators 386
33311B Coaxial Switch 399
33320 series Cosxial Step Attenuators 386
33321 serles Cosxial Step Attenuators 386
33322 series Coaxial Step Attenuators 386
34701A DC Volimeter 45
34702A Multimeter 46
34703A DC/DCI/Ohm Meter 47
34720A Battery Module 46
3472 1B BCD Module 47
34740A Display 44
34750A Display 44
40000
43501A X-Ray Sysiem 568
43804 X-Ray System 568
43805 X-Ray System 568
43807 X-Ray System 568
50000
59301A ASCII-Parallel Converter 517
59303A Digital-to-Analog Converter 517
59304A Numeric Display 517
59306A Relay Actuator 517
59307A VHF Sivitch 517
59308A Timing Generator 517
59309A ASCII Digiral Clock 517

New product listings are printed in bold face type
59310A HP-1B Computer Interface 542
59400 A HP-IB TTY Interface 58
59403A HP-IB Common Carrier Interface 58
59405A HP-1B Calculator Interface 447, 511
59500A Multiprogrammer Interface 541
KI5-59992A Standby Power Unit for 3345A 244
60000
60063B-60246B Modular Power Supplies 201
62005A-62048G Modular Power Supplies 201
62212A-62215G Deal Output Modular Supplies 201
62605M-62628J 200-600W Switching Power Supplies 203
63005C 110 W Switching Power Supply 202
63315D Triple-output Swliching Power Supply 202
69321B Multiprogrammer D/A Voltage Converter 541
69325A-69328A Amplifier Contsol Cards 541
69330A Relay Output Card 541
69331 A Digital Output Card 541
69332A Open Collector Output Card 54!
69335A Stepping Motor Control Card 541
69351A Voltage Regutator Card 541
69370A D/A Current Converter Card 541
69380A Breadboard Ouipul Card 541
69421 A Voltage Monitor Card 541
69430A Isolated Digital Input Card 541
69431A Digital Input Card 541
69433A Relay Output With Readback Card 541
69434A Event Sense Card 541
69435A Pulse Counter Card 541
69436A Process Interrupi Card 541
69480A Breadboard Inpui Card 541
69500A Unloaded Resistance Output Card 541
69501A-69513A Power Supply Control Cards 541
69600A Programmable Times Card 541
69601 A Frequency Reference Card 541
80000
85031A APC-7 Callbration and Verlification Kit for 8507A 421
85032A Type-N Callbration Kit for 8507A 421
85033 A SMA Calibraton Kit for 8507 A 421
85034A GR-900 Calibration Klif for 8507A 421
85426A Bias Inserlion Nelwork 423
85428B Minimum Loss Pad 423
86200 series Sweeper Plug-ins for 8620 C 360
86222A \& B Sweep Oscillator Plug-ins for 8620C 358
86290A Broadband Sweeper Plug-in for 8620 C 356
86300 series Sweeper Modules for 8620 C 362,365
86601A RF Section for 8660A.C 329
86602B RF Section for 8660A, C 329
86603A RF Secrion for 8660A, C 329
86631 B A wxillary Section for 8660A, C 331
86632B AM/FM Section for 8660A,C 331
86633B AM/FM Section for 8660A,C 331
86634A Phase Modulation Section for $8660 \mathrm{~A}, \mathrm{C}$ 331
86635A ФМ, FM Section for 8660 A, C 331
90000
91007A Distributed System Kit for 8505B
Systems 550
91008A Distrlbuted Systems Kit for 8542B Systems 550
91214A Remote Data Base Access Package 550
91703A-91705A Distributed Systems Kits for 9600 Systems 550
91707A-91708A Distributed Systems Kits for 9500 Systens 550
91780A Remote Data Transmission Subsystem 530
92001A RTE-II Disc Based Real Time Operating System Soltware 531
92002A Batch Spool Monitor Software 531
92060A RTE-III Real Time Operatíng System Software 531
97001A Rechargeable Battery Pack for 970A 4)
97002A AC/DC Current Shunt/Bench Cradle for 970A 41
97003A RF Adapter for 970A 41
97004A Accessory Kit for 970A 41
97010A Batlery Charger for 970A 41
$0950-0090$ GR-874 to 500 Termination 470
1250-0076 90° BNC Male-Female 470
1250-0077 Type N Female to BNC Male 470
1250-0080 BNC Female to Female 470
1250-0082 Type N Male to BNC Male 470
1250-0176 Type N Male to Type N Female 90° 470
1250-0216 BNC Mate to Male 470
1250-0239 GR. 87490° Elbow 470
1250-0240 GR-874 10 Type N Female 470
1250-0559 Type N Tee, 1 Male, 2 Female. 470
1250-0777 Type N Female to Type N Fernale 470
1250-0778 Type N Male to Male 470
1250-0780 Type N Male to BNC Female 470
1250-0781 BNC Tee 1 Male, 2 Female 470
1250-0846 Type N Tee, 3 Female 470
1250-0847 GR-874 to Type N Male 470
1250-0849 GR-874 to BNC Male 470
1250-0850 GR-874 to BNC Female 470
1250-1158 SMA Female to Fensale 470
1250-1159 SMA Male to Male 470
1250-1206 GR-874 10 Type C Male 470
1250-1207 GR-874 to Type HN Female 470
1250-1208 GR-874 to Type C Female 470
1250-1209 GR-874 to TNC Female 470
1250-1210 GR-874 to TNC'Male 470
1250-121| GR-874 to Type HN Male 470
[250-1263 BNC Mate to Single Banana Posi 470
1250-1264 BNC Mate to Dual Banana Post 470
12S1-2277 Dual Banana plug to BNC Female 470
1251-2816 Dual Banana plug (for cable) 470

General purpose amplifiers

461A, 462A Description

These gencral purposc amplifiers can be used as preamplifiers to raise the level of a signal or as a bulfer.
Solidestatc HP amplifiers, Models $4 \delta I A$ and $462 A$. provide slable 20 and 40 dB gain over a wide frequency range with last rise lime.

461A Specifications

Frequency response: $\pm 1 \mathrm{~dB}, 1 \mathrm{kH} \mathrm{\%}$ io 150 MHz when optrating into a 501) resistive load (500 kHz referencc).
Galn at $500 \mathrm{kHz} .40 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ or $20 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$. selected by frone. panel swith (invering).
Inpul Impedance: nominal 50Ω.
Maximum Inpul: I V rms of 2 Vp -p pulsc.
Maximum de input: $\pm 2 \mathrm{~V}$.
Maximum outpul; 0.5 V mins into 50Ω resistive load.
Equivalent wide-band input nolse level: $<40 \mu \vee$ in 40 dB position when loaded with 50 ?
Distortion; <5\% at maximum oulpul and rated load.
Overload recovery: <1 us for 10 limes overload.

Dimensions: 130 mm widt $\times 76 \mathrm{~mm}$ high $\times 279 \mathrm{~mm}$ dcep $\left(51 / \mathrm{x}^{\prime \prime} \times 3^{\prime \prime}\right.$ $\times 11$ ")
Weight: net. $1.8 \mathrm{~kg}(4 \mathrm{Jb}) .5 h i p p i n g ، 2.7 \mathrm{~kg}(6 \mathrm{lb})$.

462A Specifications

Pulse response: leading cdge and 1railing edge: rise time. <4 os: overshoul, < 5%.
Pulse overload recovery: <1 μs for 10 times overload.
Pulse duralion for 10% droop: $30 \mu s$,
Pulse delay; mominally l2 to 14 ns .
Equivalent Inpul noise level: $<40 \mu \mathrm{~V}$ in 40 dB position (50ns load).
Inpul impedance: nominal 50Ω.
Maximum Input: IV rms or $2 \mathrm{~V} p-\mathrm{p}$ pulse.
Maximum de Inpul: \pm ? V .
Gain: 20 or 40 UB selected by Fronl panel switch (inverting).
Outpul: I V_{p-p} into $50 n$ resisitive lead.
Dimensions 130 mm wide $\times 76 \mathrm{~mm}$ h/gh $\times 279 \mathrm{~mm}$ deep $\left\langle 51 / \mathrm{s}^{*}\right.$
$\times 3^{N} \times 1 \mathrm{IN}^{\prime \prime}$)
Welght: ne1, 1.8 kg (4 lb). Shipping. $2.7 \mathrm{~kg}(6 \mathrm{lb}$).

465A Description

HP's 465A amplifier provides 20 dB or 40 dB gain (X10 or X100) with flal frequency renponse from $5 \mathrm{Hzio}: \mathrm{MHz}$ with floating inputs.

465A Specifications

Voltage gain: $20 \mathrm{~dB}(\mathrm{XIO})$ or $40 \mathrm{~dB}(\mathrm{XI} 100)$, open circuit.
Galn accuracy: $\pm 0.1 \mathrm{~dB}\left(\pm \mid \% \mathrm{~K}_{\mathrm{a}}\right)$ a l) kHz.
Frequency response: $\pm 0.1 \mathrm{~dB}, 100 \mathrm{~Hz} 1050 \mathrm{kHz}:<2 \mathrm{~dB}$ down al 5 Hz and I NHz .
Outpul: $>10 \mathrm{~V}$ rms open circuit: $>5 \mathrm{~V}$ rms into $50 \Omega(0.5 \mathrm{~W})$.
Distorlon: <10, 10 Hz to $100 \mathrm{kHiz}:<2 \mathrm{~m}, 5 \mathrm{~Hz} 1010 \mathrm{~Hz}$ and 100 kHz to I MHz.
Input Impedance: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Output impedance: 50Ω.
Nolse: $<2 S_{\mu} \vee$ rms referred to input (with I $M 9$ source resistance).
Dlmensions: 130 mm wide $\times 76 \mathrm{~mm}$ bigh $\times 279 \mathrm{~mm}$ deep $1.5^{\circ "} \times 3^{\prime \prime}$ $\times 11^{\prime \prime}$.
Welght: nel, 1.8 kg (4 lb). Shipping, 3.2 kg (7 lb).

467A Description

HP's 467^ Power Amplilier/Supply is a 10 wall peak power ampliFicr and $-20 \mathrm{~V}(10+20 \mathrm{~V})$ de power supply. The wide band widih of. fers law de drifil from de to I MHz and 0.3 gain. With conlinuously variable gain and floating inpuls. HP's 467A can also be used as a power supply.

467A Specifications

Power amplifer
Voltage galn (non-inverting): fixed sieps: X1, X2, X5, XJ0. Variable: $0-10$, resolution is beticr than 0.1% of full ollipul.
Accuracy: $\pm 0.3 \%$ from de $1010 \mathrm{kHz}: \pm 1.0 \%$ from 10 kHz 10100 $\mathrm{kHz}: \pm 10 \%$ from 100 kHz to I MHz with load of $>40 \Omega$.
Outpul: $\pm 20 \mathrm{~V}$ pat 0.5 Ap .
Distortion: <0.01, at $1 \mathrm{kHz}:<1$ 多 at $100 \mathrm{kHz}:<3$ al 1 MHz .
Input impedance: $50 \mathrm{k} \Omega$ shuntud by 100 pF .
DC power supply
Voltage range: $> \pm 20 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 2 \mathrm{~V} . \pm \mathrm{I} \mathrm{V}$ with adjusiable vernier. Resolution: better ithan 0.1% of full outpul.
Current: $\pm 0.5 \mathrm{~A} \mathrm{p}$.
Load regulailon: (front pancl) $<10 \mathrm{mV}$, no load 10 full load.
LIne regulation: $<10 \mathrm{mV}$ for a $\pm 10 \%$ change in line voltage.

Genergl

Oulput Impodance: (front panel): 5 mi in series with $1 \mu \mathrm{H}$.
Current limil: $<800 \mathrm{~mA}$.
Dimensions 130 mm wide $\times 159 \mathrm{~mm}$ high $\times 279 \mathrm{~mm}$ decp ($51 / x^{\prime \prime} \times$ $6 Y_{4}{ }^{*} \times I^{\prime \prime}$).
Welght: net, 4.5 kg (10 lb). Shipping. 6.8 kg (IS Ib).
Model number ard name Price
HP 46 IA Amplifier $\quad \$ 465$
HP 462A Amplificr
$\$ 465$
HP 46SA Amplifier
$\$ 340$
HP 467 A Power Amplifier/Supply $\$ 860$

- Wide Band
- Flat Response
- Low Noise

The HP 8447 geries of general purpose amplifiers combines high ecliability and convenience.
High pertormance
The performance of these amplifiers qualifies them for a number of
uses: to improve the sensitivity of counlers, spectrum anatyzers, RF voltmeters, EMI meters, power meters and other devices without distortion or degradation of amplitude aceuracy: to increase the maximum power available from a signal generator or sweeper.

Aroadband frequency cuverage

The 8447 series offers an amplifier for nearly every application in the 100 kHz to 1.3 GHz frequency range. The wide bandwidths are compatible wilh other wideband instruments and accommodate wideband spectra.

Optlons

A variety of options are available: a 75Ω impedance model (Option 002) for applications such as television/tM broadcasting and CATV: two dual chanmel versions (Option 001-BNC comnectors and Option Oll-Type N eonnectors) which operate with dual channel syseens such as oscilloscopes or netivork amatyzers for the chamels may be cascaded for increased gain): Type N vennectors rather than the standard BNC connectors (Option 010).

General

Welght: net, 1.56 kg (3 pounds, 7 ounces). Shipping. 2.30 kg (5 pounds, 1 ounce).
 $\left.\times 81 /{ }^{\prime \prime}\right)$.
Power requirementa: 110 or $230 \mathrm{Vac} \pm 10 \% .48-440 \mathrm{~Hz}, 15$ watls.
Model number and name Price
8447A Preamp
$\$ 595$
camp
$\$ 675$
8447C Power Amp $\$ 525$
8447D Preamp $\$ 695$
gs47E Power Amp
$\$ 750$
8447F Preamp. Power Amp

Specifications

	$8447 \mathrm{~A}$ Preamp	8447 Preamp	$\begin{aligned} & \text { 8447C } \\ & \text { Power Amp } \end{aligned}$	8447D Sreamp	$\begin{gathered} \text { 8447E } \\ \text { Powel Amp } \end{gathered}$	8447F Preamp- Power Amp
Frequency Range	0.) - 800 MHz	$0.4-1.3 \mathrm{GHz}$	$30-300 \mathrm{MHz}$	$100 \mathrm{kHz}-1.36 \mathrm{~Hz}$	$100 \mathrm{kHz}-1.3 \mathrm{GHz}$	$100 \mathrm{KHz}-1.3 \mathrm{GHz}_{2}$
Typical 3 dB Bandwidth	$50 \mathrm{kHz}-700 \mathrm{MHz}$	$0.35-1.35 \mathrm{GHz}$	$10-400 \mathrm{MHz}$	$50 \mathrm{kHz}-14 \mathrm{GHz}$	$50 \mathrm{kHz}-1.4 \mathrm{GHz}$	$50 \mathrm{kHz}-1.4 \mathrm{CHz}^{\text {che }}$
Gain (Mean)	$20 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ al 10 MHz	$>20 \mathrm{d8}$ 22 dB typlca!	$30 \mathrm{~dB} \pm 1 \mathrm{d8}$	$\begin{aligned} & 26 \mathrm{~dB} \pm 15 \mathrm{~B} \\ & \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 22 \mathrm{~dB} \pm 15 \mathrm{~dB} \\ & \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \end{aligned}$	
Gaín Fiatness Across full frequency Range	$\pm 0.5 \mathrm{~dB}$	$\pm 1.58 \mathrm{~B}$	± 188	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	
Noise figure	< 5 dB	$\begin{aligned} & <5 \mathrm{~dB} 0.4-1.0 \mathrm{GHz} \\ & <6 \mathrm{E} .0-1.3 \mathrm{GHz} \end{aligned}$	< II di	$<8.5 \mathrm{~dB}$	<1] 6 dypacal	
Outpul Power for 1 dB Gain Compression	> +6 dBm	>-3 $\mathrm{fBm}^{\text {m }}$	$>+17 \mathrm{dBm}$	$>+7 \mathrm{dBm}$ typleal	$>+15 \mathrm{dBm}$	
Harmonic Oistorhion		$\begin{aligned} & -30 d 8 \text { for }-15 \\ & \text { a8m oulfoul } \end{aligned}$	$\begin{aligned} & \hline-35 \mathrm{~dB} \mathrm{For}+10 \\ & 18 \mathrm{moulpul} \end{aligned}$	-30 dB loi 0 d8m oulpul (lypical)	$-30 d 8 \text { tor }+10$ aBm oulpul	
Iypical Outpul for <-6008 Harmonic Distortion	-25dBm	-45 68 m	$-15 \mathrm{dBm}$	-30 dBin	-20 d8m	
VSWR	<1.7	$\begin{aligned} & <2.0 \text { input } \\ & <22001 \text { put } \end{aligned}$	<2.0	$\begin{aligned} & <2.0 \text { inpul } \\ & <2.2 \text { outpul } \\ & \mathrm{I}-1300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & <2.2 \\ & 1-1300 \mathrm{MHz} \end{aligned}$	
impedance	508	500	50Ω	$50:$	50π	
Reverse Isolation	$>30 \mathrm{~dB}$	>4068	$>35 \mathrm{~dB}$	$>40 \mathrm{~dB}$	>4068	
Maximum DC Vollage Inpul	$\pm 10 \mathrm{~V}$					
Options Available	001	001, 010, 011	002	001.010 .011	010	010

2308

Tuned RF power amplifier

The HP 230B is a tuned RF power umplititer covering 10 to 500 MHz in six continuous ranges. It provides up 1030 dB of gain and has a maximum rated power output of 4.5 waths. With a lypical monse figure of 人 109 dB . it is also suitable for low-level applications as dcscribad in Application Note 76.

230B Specifications

Frequency range: 10 to 500 MHz in six bands: $101018.5 \mathrm{MHz}, 18.5$ $1035 \mathrm{MHz}, 35$ to $65 \mathrm{MHx}, 65 \mathrm{G} 125 \mathrm{MH}$. 125 to $250 \mathrm{MHz}, 250$ to 500 MHz.
RF gain: 30 dB (10 to 125 MHz) , $27 \mathrm{~dB}(12510250 \mathrm{MHz}$). 24 dB (250 10500 MHz), with 10 volis outpul into 50 ohms.
RF bandwldth: $>700 \mathrm{kHz}(10$ to 150 MHz). $>1.4 \mathrm{MHz}$ (150 to 500 MHz), with 10 volls oulpur into 50 ohms.
RF output:
Level: up to 15 volis across external 50 ohm load (4.5 watis).
Level monitor: full scate ranges of 3,10 . and 30 volis, accurate to 10% from 10 to 500 MHz .
AM range; reproduces 0 to 100 免 modulation of driving source.
Conneclors: type N female.
Dlmensions: 425 mm widc. 183 mm bigh, 459 mm deep ($163 /{ }^{\circ} \times$ $\left.71 / 1 s^{\prime \prime} \times 181 / 4^{\circ}{ }^{\circ}\right)$.
Welght: nel, 15.8 kg (35 lb). Shipping. 23.4 kg (52 lb).

Microwave TWT amplifiers

Amplification of frequencies from I to 12.4 GHz is accomplished in four ranges by the Hewlett-Packard medium-power, microwave amplifiers. Each delivers over 1 wat1 for an input of 1 mW or less - a gain of al least 30 dB . These TWT amplifiers fenture amplitude modulation capabilities, front panel meler readeve wf cathote current, and fail-safe proteclive circuits. Combined with the 8620 or 8690 sweep onsillator they makk an exeellent high power swept source.

[^0]

Appllcations

Antenna ciriciency and patern measurements.
Extends altenuation measuring systems capability by at least 30 dB . RFI susceptability tests.

489A-495A Specifications

Oulpul power: I wat for an inpul of 51 mW .
Galn: 30 dB at rated outpul.
input/oulpul: impedance. sosl; connectors, type N female.
Nolse iligure: $\leq 30 \mathrm{~dB}$.
Amplitude modulation:
Sensitivity: modulation inpul of $>-20 \mathrm{~V}$ pcak reduces RF ouiput by $\geq 20 \mathrm{~dB}$ from dc 1030 kHz .
Frequency response: do to 500 kHz (3 dB).
Pulee response: <1 μ s rise and fall times.
Dimensions: 426 mm wide. 140 mm high. $467 \mathrm{~mm} \mathrm{decp}\left(16 \% \%^{*} \times 51 / 2^{*}\right.$ $\left.\times 18^{31 / 2}\right)$.
Welght: net. 14.9 kg (33 lb). Shipping. 18.0 kg (40 lb),

	489^	491C	493A	495A
frequency range (CHz)	1.2	2-4	4.8	7.124
Gain variation wilh freq. at rated output small signal across any 10\% of band across tull band	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	$\leq 6 d B$ $\leq 50 B$ $\leq 12 \mathrm{~dB}$	$\leq 6 \mathrm{~d} 8$ ≤ 508 $\leq 12 \mathrm{~dB}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \\ & \leq 5 \mathrm{~dB} \\ & \text { for } 300 \mathrm{MHz} \\ & \leq 10 \mathrm{dg} \end{aligned}$

Options	Price
908: Rack Flange Kit	add \$10
Model number and name	
230B. RF tuned power amplifiter	\$1900
489 A .1 to 2 GHz TW' amplifier	\$2900
491C, 2 to 4 GHz TWT amplifier	\$2900
493A, 4108 GHz TWT amplificr	\$3300
495A. 7 to 12.4 GHz TWT amplifier	\$3300
Information on 12.4 to 18 GHz TWT on request	

ANALOG VOLTMETERS

Meter movements

Voltage, current and resistance measurements can be easy. fats, and accurate with electronic instruments using meter movements.

The meter movement readout continues to be popular since is is economical and suitable for many jobs. It also kends itself well to special, nunlinear seales such as dB seales.
dB scale and therefore. a nonlinear voliage scale. Several different types of meter lacos are illustrated in Figure i.
Analog meters (Figure 2) usually have nonlinearities and/or offsets present in the allenuators and amplifiers. The meter movement itself can have nonlinearitics - even with in. dividually calibrated mieter seales. Nonlinearilics cause percent of reading erross, and

Figure 1. Four different fypes of meter scales avallable. (a) Linear $0-3 \mathrm{~V}$ and $0-10 \mathrm{~V}$ scales plus a de scale. (b) Linear dE scale plus non-llnear (logarithmic) voltage scales. (c) dB scale piaced on larger arc for greater resolution. (d) Linear $=20$ to 0 dB scale uselut for acoustical and communications applications.

Voltmeter considerations

Accuracy - Before we cant discuss meler accuracy. we must have a lainiliarity with the various meter scales available. Many instruments have meter scales marked in both volts and decibel (dB) units. It shoutd be noted that dB and voltage are complements of each other. That is, if a valtage scale is made fincar. the dB scale on the same meter face will be legarithmic or nonlinear. Likewise, if the $\mathrm{d} \cdot \mathrm{B}$ scale is made linear, the valtage scale becomes nonlinear. The term "lincar-log scale" is epplied to an instrument that has a linear
offsets cause percent of full scale errors. Percent of reading errors ate constant no matter where the meter pointer is. Percent of fullseale error increases as the pointer god further down seale.

Looking at instrument specificetion sheets. accuracy specifications are usually expressed in one of three ways: 1. percent of the fullscole value, 2 . percent of the reading. 3. (percent of reading + percent of full-scale). The first is probably the most commonly ased aceuracy specification. The secend (percent of reading) is more commonly applied 10 meters

Figure 2. Non-linearikies cause \% of reading errors. Offsats cause \% of full scale errors.
having a logarithmic seale. The lasi melhod has been used more recently to obtain a tighter accuracy specification on a linearscale instrumient.

Hewlett-Packard uses the two-part accusacy specification to take advantage of the upper-scate accuracy and yel maintaina reasenable specitication for the lower portion of the scale.

For a thorough evaluation of accurscy, the following should be considered: Does it apply at all input-volage levels up to maximum overrange point? (Linearity specifications maty be added to qualify this poins.) Does it apply to all frequencies throughout its specified bandwidth? Does it apply on all ranges? Does il appiy over a useful temperature range for the application? If not, is temperature coefficient speciñed?

Selecting an analog voltmeter

Basic specs for Hewlett-Psekard analog meters are in Table 1. Guidelines are restated below.

1. For measurements involving de applications, seled the instrument with the broadest eapability meeting your requirements. Refor to HP Application Note 69. 2. For ac meakurements involving sine waves with only modest amounts of distortion ($<10 \%$), the average-responding volmeter ean perform over a bandwidth excending to several megsherta. Refer to HP Application Note 60 , 3. For high-frequeney metsurements $\{>10$ MHz). the peak-responuling voltmeter with the diode-probe input is the most econumieal choice. Peak-responding circuils are ateceptable if inaccuracies caused by distortion in the inpur waveform can be tolerated. 4. For measurcments where in is importent to determine the eifective power of waveforms that depart from a true sinusoidal form, the true rms-responding voltmeter is the appropriate choice. In general, true-rms meters reveal only the rms value of an ac signal. Becesuse they are ac coupled. most voltmeters have a frequency cut-off around 20 Hz . This sestriction keeps the rrue-ms voltmeter from accounting for any low frequencies or de components in a signal.
The 3403C RMS Digital Volimeter measures de plus ac from 2 Hz to 100 MHz . See page 42.
For very wide bandwidths (up to 1 GHz) and high-sensitivity measurements of sinusoidal or nonsinusoidal waveforms, the HP $3406 A$ is the proper choice. Although the 3406 A is averuge-responding. it has a sample hold output which makes analysts of waveforms pussible.

Table 1. HP analog instruments

OC VOLTMETERS	Vollage Range	Frequency Range Accuracy sl fS*	Inpul Impedance	Model	Set Page
OC NULL VOLTMETER	$\begin{aligned} & \pm 3 \mu V- \pm 1 \text { WV end } \\ & \text { scale } \\ & 0.1 \mu V \text { resolution (18 } \\ & \text { ranges) } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \pm 28+1 \mu \mathrm{~V} \end{aligned}$	$100 \mathrm{k}-100 \mathrm{Mn} \text { de. }$ pending on range (inInile when nulled)	119A	25
DC YOLT-AMMETER	$\begin{aligned} & 0 C \pm 1 \mathrm{mV}, \pm 300 \mathrm{~V} \\ & (12 \text { ranges }) \\ & \pm 1 \text { nA, } \pm 300 \mu \mathrm{~A}(12 \\ & \text { ranges }) \end{aligned}$	$\pm 3{ }^{9} d \mathrm{c}$	10 MSI all ranges	43048	See Dats Shee:
DC OIFFERENY的 VOLTMETEA	$1 \mathrm{nv}-1 \mathrm{kV}$ (7 ranges)	```dc \pm (0.005% ceading +0.0004% range)```	$>10^{10}$	7408	324
AC VOLTMETERS	Vollage gange	Frequency Range Typical Accuracy	Response inpul łmpedance	Model	$\begin{aligned} & \text { See } \\ & \text { Page } \end{aligned}$
RECHARGEABLE BATIERY AC VOLTMEIER	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V}(12 \\ & \text { ranges) } \end{aligned}$	$\begin{aligned} & 5 \mathrm{H}_{2}-2 \mathrm{MH}_{2} \\ & \pm 2 \%- \pm 5 \% \end{aligned}$	Average $2 \mathrm{Mn} /<30-<60 \mathrm{p} \delta$	4038	25
fAST-RESPONSE AC VOLTMETER 100 kHz low-pass fillet ac amplitie!	$\begin{aligned} & 100 \mu V-300 V-90 \\ & d B-+52 d B \end{aligned}$	$\begin{aligned} & 20 \mathrm{~Hz}_{2}-4 \mathrm{MHz}_{2}- \pm 1 \% \\ & - \pm 48 \end{aligned}$	Average $10 \mathrm{Ma} / 10-25 \mathrm{of}$	400 CF 400 FL	30
HIGH ACCURACY dB VOLTMETEA 20 dB log scale (0 di $=1 \mathrm{~V}$)	$\begin{aligned} & -100 \mathrm{~dB}-+60 \mathrm{~dB} \\ & \text { (8 ranges) } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~Hz}-4 \mathrm{MHz}- \pm 02 \\ & \mathrm{~d} 8-0.4 \mathrm{~dB} \end{aligned}$	Avelage $10 \mathrm{Mn} /<15-<30 \mathrm{pr}$	4006L	30
MIGH ACCUPACY AC VOLTMETER has dc ouldul (± 0.5) Ior driving recorder	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V}-70 \mathrm{~dB} \\ & -+52 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz}-10 \mathrm{MHL} \pm 1 \% \\ & \pm 5 \% \end{aligned}$	Avelage $10 \mathrm{Ms} /<12-<25 \mathrm{pF}$	400 E 400 EL	30
RMS VOLTMETER provides ans readings ol complex segnals. Has de output ícr driving DVM's or reconders	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V}(12 \\ & \text { ranges) } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~K}_{2}-10 \mathrm{MHz} \pm 1 \% \\ & - \pm 5 \% \end{aligned}$	$10 \mathrm{M} \cap / 15-40 \mathrm{pF}$	34008	31
SAMPLING RF VOLTMEYER provides lrue rms measuremenls when used with 3400A. Many accessories	$1 \mathrm{mV}-3 \mathrm{~V}$ (8 ranges)	$\begin{aligned} & 10 \mathrm{KHz} \mathrm{to}>1,2 \mathrm{GHz} \\ & \pm 3 \%- \pm 133^{\circ} \end{aligned}$	Stalistical Average: Inpul Z depends on probe lio used	3406 A	32
RF MILLIYOLTMETER	$\begin{aligned} & 10 \mathrm{my}-10 \mathrm{y} \\ & (7 \text { ranges) } \end{aligned}$	$\begin{aligned} & 500 \mathrm{hHz}-1 \mathrm{GHz} \\ & \pm 3 \%-1 \mathrm{~dB} \end{aligned}$	Average Inpul 2 depends on probe tip used	4ILA	Sep Dala Sheel
VECIOR VOLTMEER phase and amplifude measurements	$\begin{aligned} & 100 \mu \mathrm{~V}-10 \mathrm{~V} \\ & \text { (9 ranges) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{MH}_{2}-1 \mathrm{GH}_{1} \pm 0.5 \\ & \mathrm{~dB} \pm \pm 1 \mathrm{~dB} \end{aligned}$	Average 0.11 M M $3 / 2.5$ of	8405A	424
MILLIOHMMETER; two prodes used when making 4 lerminal measuremenls	$0,001 \text { to } 100 \Omega \mathrm{FS}(1)$ ranges)	$\begin{aligned} & 1 \mathrm{KH} \text { (lixed) } \pm 2 \% \\ & \text { FS } \end{aligned}$	Max. oulput Voilage: 20 mv	4328A	62
HIGH RESISTANCE METER and picoammeter	$\begin{aligned} & 0.5 \mathrm{MR} \text { to } 2 \times 1016 \Omega \\ & \mathrm{FS}(7 \mathrm{ranges}) 0.05 \mathrm{pA} \\ & -20 \mu \mathrm{~A} \end{aligned}$	Voliage: $\pm 10 \%$ CurrenL $\pm 5 \%$	Max oulput Vollage: 1kV	4329A	63
MULIIF UNCIION METERS	Vollage Range (Acouracy)	Curfenl Range (Acculacy)	Resislance Range (Accuracy)	Model	$\begin{aligned} & \text { See } \\ & \text { Page } \end{aligned}$
BATERY-OPERATED MULTIFUNCTION METER has 10 MIT dc ITput impedance and $10 \mathrm{MQ} / 20 \mathrm{dF}$ ac inpul impedance	$\begin{aligned} & \text { DC: } \pm 100 \mathrm{mV} \text { to } \\ & 1000 \mathrm{~V}(\pm 2 \%) 9 \\ & \text { ranges } \mathrm{AC}: 10 \mathrm{mV}- \\ & 300 \mathrm{~V} 10 \mathrm{~Hz}-) \mathrm{MHz} \\ & (\pm 2 \text {) } 10 \text { ranges } \end{aligned}$		10s - 10 Manmd . scale \pm Sc: Irom 03 to 3 on life meter scale (3 ranges)	427a	27
VERSATILE VOLTMETER has $100 \mathrm{M} \Omega$ dc ingul impedance and $10 \mathrm{M} \Omega / 1.5$ of ac impedance	$\begin{aligned} & \text { DC: } \pm 15 \mathrm{mV} 10 \\ & \pm 1500 \mathrm{~V}(\pm 28) 11 \\ & \text { ranges AC: } 0.5 \mathrm{~V}- \\ & 300 \mathrm{~V} 20 \mathrm{~Hz}->700 \\ & \mathrm{MHz}(\pm 3 \% \text { al } 400 \\ & \mathrm{Hz}) 7 \text { ranges } \\ & \hline \end{aligned}$	$\begin{aligned} & D C: \pm 1.5 \mu A \text { to } \\ & \pm 150 \mathrm{~mA}(\pm 3 \%) 11 \\ & \text { langes } \end{aligned}$	105-10 Ms! (center scale) 0 lo midscale: $\pm 5 \%$ or ± 2 " 0 ol midseale \{whichever is greater 77 3 mpus	A10C	28
CURRENT METERS	Current Range	Accuracy	Frequency Range	Motel	$\begin{aligned} & \text { See } \\ & \text { Page } \end{aligned}$
OC MILLAMMETER with clip on probe eliminales direcl connection	$1 \mathrm{~mA}-10 \mathrm{AFS}$ (9 ranges)	$\pm 3 \%$	$\mathrm{dc}-400 \mathrm{~Hz}$	4288	26
AC CLIP.ON CUPRENT PROBE makes measuremenls whoul breah. ing circuil	I mA - I A Ims (10 25 A with divider)	± 29 to 3 dB	$25 \mathrm{~Hz}-20 \mathrm{MHz}$	456A	472

- For phact accuracy reter to page designated

Description

Eighteen voltage runges with $0.1 \mu \vee$ resolution on the lowest range sel this HP solid-state de null volimeter apart from previous de null meters. Accuracy of this rechargeable battery-operated instrument is $\pm 2 \mathrm{e}$ of end senle $\pm 0.1 \mu \mathrm{~V}$ on all ranges. Noise is less than $0.3 \mu \mathrm{~V}$ p-p. and drift is less than $0.5 \mu \mathrm{~V} / \mathrm{das}$.
An internal nulling voslage allows inpul voltages up to 300 mV to be nulted giving an inlinite input impedance. Inpul impedance above 300 mV range is 100 megohms.

Seven pushbuttons allow rapid function selection. This de null voltmeter operates from ace line or from internal rechargeable batteries. During operation from ac line, batterics are trickle-charged. A fustcharge pushbutton is provided o increase the charging rate, recharging batueries in approximately 16 hours. Battery voliage may be easily checked with the battery-test pushbution. The zero pushbution allows compensation ior any internal olfsels before measurement. When this pushbution is depressed. the positive leg of the voltmeter is disconnected from the positive inpul terminal.

When the volimeter pushbutton is depressed. HP 419A functions us a zero-center scale $3 \mu \mathrm{~V}$ to 1000 V de volimeter.

When the AM pushbution is depressed, HP 419A functions as a zero-center scale 30 pA 1030 nA ammeter.

Specifications

DC null voltmeter
Aanges: $\pm 3 \mu \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$ de in 18 zero-center ranges.
Aceuracy: $\pm(2 \mathrm{c}$ of range $\pm 0.1 \mu \mathrm{~V})$.

Zero conirol range: $> \pm 15 \mu \mathrm{~V}$.
Zero drift: < $0.5 \mu V /$ day atter 30 min warm-up.
Zero lemperature coefficient: $<0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Fesponse Ime: 3 s 10 within $95{ }^{5}$, of final reading on $3 \mu \mathrm{~V}$ range; I s to within 95% of final reading on $10 \mu \mathrm{~V} 101000 \mathrm{~V}$ ranges.
Noise: $<0.3 \mu \mathrm{~V}$ p-p. input shorted. Noise amplitude approximates Gaussian distribution. RMS value (standard deviation) is $<0.075 \mu \mathrm{~V}$. p-p noise value is $<0.3 \mu \vee 95 \%$ of the lime.
Input characteristios
At null: infinite resistance on $3 \mu \mathrm{~V}$ through 300 mV ranges in set null mode. Negative input terninal can be floated $10 \pm 500 \mathrm{~V}$ de from power line ground.
Of null:

Yollage rante	Inpui resisiance
$3 \mu V-3 \mathrm{mV}$	$100 \mathrm{k} \mathrm{\Omega}$
$10 \mathrm{mV}-30 \mathrm{mV}$	1 MO
$100 \mathrm{mV}-300 \mathrm{mV}$	$10 \mathrm{M} \Omega$
$1 \mathrm{~V}-1000 \mathrm{~V}$	$100 \mathrm{M} \mathrm{\Omega}$

Negative input terminal can be floated up to $\pm 500 \mathrm{~V}$ de from powerline ground.
AC normal mode rejection: ac voliages 50 Hz and above and 80 dB greater than end scale affect reading <2\%. Puak ac voluge not to ex. ceal maximum overload voliage.

DC ammeter

Ranges: $\pm 30 \mathrm{pA}$ to ± 30 nA in 7 zcro-wnter sanges.
Aceuracy: $\pm(35 \mathrm{c}$ of range $+1 \mathrm{pA})$.
Zero control range: $> \pm 150 \mathrm{pA}$.
Zero dritt: <S PA day after 30 min warm-up.
Zero temperalure coefflelent: $<0.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$.
Nolse: <3 pA p-p. input shorted.
Input resistance: $100 \mathrm{k} \Omega$ on all ringes.
Amplifier
Gain: 110 dB on $3 \mu \mathrm{~V}$ range. decreases $10 \mathrm{~d} . \mathrm{B}$ per range.
Outpul: 0 to $\pm 1 V$ at I mA maximum for end-scale reading. Output level adjustable for convenience when used with rccorders.
Output reslatance: depends on seting of output level caniral. < 35 il when output control is set to maximum.
Noise: 0.01 Hz to 5 Hz : same as voltmeter (referred to inpus). $>5 \mathrm{~Hz}$: $<10 \mathrm{mV} \mathrm{ms}$ (referred to output).

General

Overload protection: the following voltages can be applied withoul damage to instrument.

1 V to 1000 V range: 1200 V dc.
10 mV to $\mathbf{3 0 0} \mathrm{mV}$ range: 500 V dc.
$3 \mu \vee$ to 300 mV range: 50 V dc .
Operating temperature: instrument will operale within specificalions from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Operating humidity: <70\% R.H.
Storage temperature: $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz} 10440 \mathrm{~Hz}, 2 \mathrm{VA}$ max. or 4 in cemal rechargeable baiteries (fumished). 3 ahr operation per techarge. Operation from ac fine permissible during recharge.
Dimenslons: 197 mm vide. 156 mm high (withoul removable foel), 203 mm deep $\left(71_{3}^{\circ} \times 61 / 3^{\circ} \times 8^{\prime \prime}\right)$.
Welght: net, $3.7 \mathrm{~kg}(8.3 \mathrm{lb})$. Shipping, $5.4 \mathrm{~kg}(12 \mathrm{lb})$.
419A DC Null Volt-Anmeter

1 mA to 10 A clip-on de milliammeter

Model 428B

- No circuit interruption
- No circuit loading

Description

Direct current from 1 milliampere to 10 amperes full seale can be measured without interrupting your measered circuil of producing loading crrors. With the HP Model 4288 Clip-on Milliammeter, cutling wires for insertion of current meters and earleulating curremt from voltoge and resistance readings are eliminated. All that is required for fast, accurate readings is to clip around the wire and select the propor cuirent range.
The 428B measures current by utilizing a clip-on transducer that converts the magnetic field around the conductor to an ac voltage proportional to de current. This voliage is delected and displayed as direet current on the 428B's meter. Since there is no direet contact with the eircuit being messured, complete de isolation is assured.
The meter responds to de current only and is therefore nol susceptibe to common mode curfents. However, low frequency currents up to 400 Hz can be measured by connecting an oscilloscope or volimeter to the convenient from panel output; or this output can be used to drive a strip ehart recorder for permanent long ierm records.

For even greater sensitivity. several loops of the measured conduclor can be put through the probe, increasing sensitivity by the same factor as the number of turns used. Sum or difference measurements of currents in separate wires can also be made. By placing the wires through the probe whth currents nowing in the same direction, their sum is indicated; currents flowing in opposite directions will give a difrerence indication. In this way, balancing currents is easily accomplished by making any difference equal to zero.
To decrease sensitivity on circuits carrying more than 10 amps, it is only necessary to shumt a section of the eircuit with two or more wires of the same resistance. A cufrent divider is thereby constructed and the probe cen be used to measure the current in one leg. Total cuerent in the circuit is measured by muthiplying the 428 B reading by the number of legs in the divider.

Specifications

DC current range: I mA to 10 A full scale, nine ranges.
Accuracy: $\pm 3 \%$ of fall seake $\pm 0.15 \mathrm{~mA}$, from $0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}$ (when insirument is calibrated to probe).
Probe inductance: $<0.5 \mu \mathrm{H}$.
Probe inducted valtage: < $15 \mathrm{mV} p$ (worst case at 20 kHz and har. monis:).
Output: variable linear output level with switeh position for callibrsted) V into open circuil (corresponds to full scale defeetion). I.5 \checkmark max. inte open circuil in uncalibrated position. $0.73 \pm .01 \mathrm{~V}$ into I $k \Omega$ in calibralas position.
Nolse: 1 mA range. $<15 \mathrm{mV}$ rms across 1 kn ; 3 mA range, $<5 \mathrm{mV}$ rms across $1 \mathrm{kn} ; 10 \mathrm{~mA}$ through 10 A ranges, $<2 \mathrm{mV}$ rms across 1 kQ . Frequency range: de to 400 Hz (3 dB poínt).
AC relection: signals abowe 5 Hz with p value < <ull scalle affect meter accuracy $<2 \%$ (exeepl al 40 xHz carricr frequenc) and its harmonics). On the 10 A range, ac p value is limited 104 A .
Power: 145 or $230 \mathrm{~V} \pm 10 \mathrm{~B}, 501060 \mathrm{~Hz}$, approx. 75 VA max.
Operating tempersture range: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Probe Insulation: 300 V maximum.
Probe tip size: approximately $1 / 2^{\prime \prime}$ by $7 / 3_{1}{ }^{*}$ apersore diameter $y_{12}{ }^{\prime \prime}$.
Dimenslons: cabine: 191 mm wide, 292 mm high, 368 mm decp (7.2" $\times 111 / 3^{\prime \prime} \times\left(41 / 3^{\prime \prime}\right)$; rack moum: 483 mm widc. 177 mm high. 330 mm deep $\left(19^{\prime \prime} \times 6 \times 1 / 33^{\prime \prime} \times 13^{\prime \prime}\right)$.
Weight: nel, 8.6 kg (19 lb). Shipping. 10.9 kg (24 lb) (eabinet); nel, 10.8 kg (24 lb). Shipping. 14.4 kg (32 lb) (rack mount).

Description

Hewlett-Packard's Model 427A is a portable, versatile, low cont multi-function meter which is valuable in any laboratory, production line, service deparment, or in the field. It is capable of measuring de voliages from 100 mV to 1 kV foll scole; ac voltage from 10 mV to 300 V full seale at frequencies up to 1 MHz ($>500 \mathrm{MHz}$ with the 11096 A High Frequency Probe); and resistance from 100 to $10 \mathrm{M} \Omega$ center scale.

The 427A will operate continuously for more than 300 hours on its internal 22.5 V dry celt battery. λ C line and battery operation is avail. able with option 001 .

Specifications

DC voltmetor
Ranges: $\pm 100 \mathrm{mV} 10 \pm 1000 \mathrm{~V}$ in 9 ranges in 10 dB steps.
Accuracy: $\pm 2 \%$ of range.
Input resistance: 10 Mn .
AC normal mode rejection (ACNMR): ACNMR is the ratio of the normal mode signal to the resultant error in readout. 50 Hz and above: $>80 \mathrm{~dB}$.

Overload protectlon: 1200 V dc .

AC voltmeter

Renges: 10 mV to 300 V in 10 ranges in 10 dB steps.
Frequency range: 10 Hz lo 1 MH .
Response: responds to average value, colibrated in ms,
Accuracy:

Frequency	Range	
	0.01 V 1030 V	100 V 10300 V
10 Hz to 100 kHz	20 of range	20 of range
100 kHz 101 MHz		

Input Imperdance: 10 mV to I V range, 10 MO shurited by $\langle 40 \mathrm{pF}: 3$ \checkmark to 300 V range. $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Overload protection: 300 V ms momenarily. I V range and below: 425 V rms nax sbove I V range.

Ohmmeter

Ranges: 10n to 10 M (eenter scale in 7 decade ranges. Accuracy (Irom 0.3 to 3 on scale): ± 5 of reading.
Source current (ohms turminal positive):

Range	Open circuit Yoltage	Sherl circult Current
$X 10$	0.1 V	10 mA
$\times 100$	0.1 V	1 mA
$X 1 \mathrm{~h}$	1 V	1 mA
$X 10 \mathrm{k}$	1 V	$100 \mu \mathrm{~A}$
$X 100 \mathrm{~h}$	1 V	$10 \mu \mathrm{~A}$
$X I \mathrm{M}$	1 V	$1 \mu \mathrm{~A}$
$X 10 \mathrm{M}$	1 V	$0.1 \mu \mathrm{~A}$

General

Input: may be floalco up $10 \pm 500 \mathrm{~V}$ de above chassis ground. Ohms input open in any function except ohms. Volts input open when insirument is off.
Operating temperature: $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$.
Power >300 hr operation per battery.
HP 427A: 22.5 V dry cell bettery, Eveready No. 763 or RCA VSI02. HP 427A Option 001: baller' operation or ac line operation, selectable on rear panel. 115 V or $230 \mathrm{~V} \pm 30 \mathrm{~m} .48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 2 \mathrm{VA}$ max.
Dimensions: (stsndard $1 / 3$ module): 130 mm wide. 159 mm high (without removable feet), 203 nm deep ($51 / 4^{*} \times 66^{\prime 2} \times 8^{\prime \prime}$).
Welght: net, $2.4 \mathrm{~kg}(5.3 \mathrm{lb})$. Shipping, 3.6 kg (8 fb).

Accessories available

HP I 1096 A High Frequeney AC. Probe extends range to $>500 \mathrm{MHz}$, With the 11096 A, you can measure 0.251030 V rms signals out to 500 MHz with better than $\pm 1 \mathrm{~dB}$ accuracy. Usable relative measurements can be made up lo$) \mathrm{GHz}$ (3 dl point at 700 MH). The 1109 GA is a peak-responding detector calibrated 10 produce a de outpul proportsonal to the m s value of at sine wave input. Input impedance is 4 Mn shanted by 2 pF .

Options and accessories

Price
11075A High Impact Casc. A rugged case for carrying.
storing and operating the 427A
11096A High Frequency AC probe $\$ 87$
$11001 \mathrm{~A} 45^{\circ}$ test lead, dual bamana plug to male BNC $\$ 17$
$11002 \mathrm{~A} 60^{\circ}$ test lead, dual banana plug to alligator clips
11003A 6or rest lead, dual banana plug to pencil probe and alligator clip
10111A BNC female to doal banana adapter

Model number and name

427A Mulii-function Merer (includes batteries)

Model 410C

Description

HP's Model 4lOC is a versatile general purpose instrument for use anywhere electrical meásurements are made. This instrument measures de voluges from 15 inV to 1500 V , direct current from $1.5 \mu \mathrm{~A}$ to 150 mA full scale. and recistance from 0.2Ω to $500 \mathrm{M} \Omega$. With a standard plug in probe, se voltages al 20 Hz to 700 MHz from 50 mV to 300 V and comparative indications 103 GHz are altainable.

Specifications

DC voltmeter

Voltage rangers: $\pm 15 \mathrm{mV}$ to $\pm 1500 \mathrm{~V}$ full scale in 15 . 50 sequence (1) ranges).
Accuracy: ± 2 \% of full scate on any range.
Input realstance: $100 \mathrm{Mn} \pm 1 \%$ on 500 mV range and above. 10 M 月 $\pm 3 \%$ on 150 mV range and below.

$A C$ vollmeter

Voltage ranges: 0.5 V io 300 V full scale in $0.5,1.5$. 5 sequence (7 ranges).
Frequency range: 20 Hz io 700 MHz .
Accuracy: $\pm 3^{\prime \prime \prime}$ of full scale at 400 Hz for sinusoidal voltages from $0.5 \vee$ to 300 V rms. The ac probe responds to the positive peak-aboveaverage value of the applied signal. The meter is calibraled in $\mathbf{r m s}$.
Frequency reaponse: $\pm 2 \%$ from 100 Hz to $50 \mathrm{MH} /\left(400 \mathrm{H}_{2}\right.$ rer.) : 0 to - 48 from 50 MHz to $100 \mathrm{MHzz} \pm 10 \%$ from 20 Hz 10100 Hz und $\pm 1.5 d$ from 100 MHz to 700 MHz .
Input Impedance: input capacilance 1.5 pF , input resistance >10 $\mathrm{M} \Omega$ at low frequencies. At high froquencies, impedance drops off due to dielectric loss.
Salety: the probe body is grounded to chassis at all unasis for salety. All ac measuriments are referenced to chassis ground.
DC ammeter
Current renges: $\pm 1.5 \mu \mathrm{~A}$ 10 $\pm 150 \mathrm{~mA}$ full scale in $1.5,5$ sequence (II ranges).
Accuracy: $\pm 3 \%$ of full scalc on any range.
Inpul resistance: decreasing from 9 kR on $1.5 \mu \mathrm{~A}$ range to approximately 0.3Ω on the 150 mA range.
Speclal current ranges: $\pm 1.5, \pm 5$ and ± 15 na may be measured on the 15.50 and 150 mV ranges using the de valumeter probe, with $\pm 5 \%$ accuracy and $10 \mathrm{M} \Omega$ inpur resisance.

Ormmeter

Resibtance ranga: resistance from lon to 10 MS center scale (7 ranges).
Accuracy: vero 10 midscale: $\pm 5 \%$ of reading or $\pm 2 \mathrm{~F}_{0}$ of midscale, whichever is greater: $\pm 7 \%$ from midscale to scale valuc of $2 ; \pm 8 \%$ from scale value of 2103 ; $\pm 9 \%$ from scale valuc of $3105 ; \pm 10 \%$ from seale value of 51010 .

Amplifier

Voltage galos: 100 maximum.
AC rejoction: 3 dB at 0.5 Hz : approximately 66 dB at 50 Hz and higher frequencies for signals <1600 Vp or 30 umes full scale. whichever is smatler.
Isolation: impedance betwecn common and chassis is $>10 \mathrm{M} \Omega$ in parallel with $0.1 \mu \mathrm{~F}$. Common may be floated up to 400 V de above chassis for de and resimance measurements.
Output: proporlional to meter indication: 1.5 V de at full scale, maximum cerrent, 1 mA .

Output impedance: <3n at dc.

Nolse: < 0.5 , of full scale on any range ($p-p$).
DC drift: <0.5等 of full scale/yr at constant temperature. $<0.02 \%$ of full scale/ $/{ }^{\circ} \mathrm{C}$.
Overload recovery: recovers from 100:1 overload in <3s.

General

Maximum input: (sec overload recovery). DC: 100 V on 15, 50 and 150 mV ranges, 500 V on 0.51015 V ranges, 1800 V on highcr ranges. AC. 100 times full scale or 450 Vp whichever is less.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$. 48 Hz 10 $440 \mathrm{~Hz}, 13 \mathrm{VA}$ (20 VA with 11036A AC Probe).
Dlmensions: 130.2 mm wide. 165 mm high (without removable fect). 320.7 mm deep ($\left.5^{\mathrm{V}} / \mathrm{k}^{\prime \prime} \times 61 / 2^{-2} \times 11^{\prime \prime}\right)$ behind panel.

Woight: net. 4 kg (8 lb). Shipping. $5.44 \mathrm{~kg}(12 \mathrm{lb})$.
Accessorles furnished: delschable power cord. NEMA plug. llojba AC Probe.
Accebsorles available: sce Pages 469.474.
Model number and name
Price
$410 C$ Option 002 (less AC probe)
HP \&10C with HP 11036A Detachable AC Probe
less $\$ 45$
$\$ 805$

Description

The Hewlet-Packard 403B AC Volmeter is a versatik, general purpose instrument for laboratory and production work yet is ideal [or use in the field since it is solid-state, batiery-operated, and porable.

It measures from 100 microvoles to 300 volts, covering $S \mathrm{~Hz}$ to 2 MHz . It operates from internal batteries and thus may be completely isolated from the power tine and external grounds. permitsing aocurate measurements al power line frequency and its harmonics without concern for beat effects. Isolation from external ground also permits use where ground loops are troublesome. Turnover effect and waveform errors are minimized because the meler responds to the average value of the inpui signal.

The 403B operates from an ac line as well as from the internal batlery pack, and batterics recharge during ac operation. Battery charge may be eessily checked with a front-panel switch to assure reliable measurements. Normaliy, about 60 bours of ac operation recharges the batteries; but an intental adjustment is provided which nearly doubles the charging rate. The Model 403B can be used while its balteries charge. A sturdy taut-band meter eliminates friction and provides greater precision and repeatability.

For improved resolution in d8 measurenents. the 403B Option 001 is available. This version spreads ous the dB seale by making it the top seale of the meter.

Specifications

HP Model	403B	4038 Oplion 001
Range		
Meter	Responds to average value of inpul wavelorm, calibrated in the rms value ol a sine wave.	
Frequency Range	5 Hz to 2 MHz	$5 \mathrm{~Hz}_{2}$ to 2 MHz
Accuracy	wilhin ± 2 号 at full scale from 10 Hz to IMHz within ± 5 禺 al lull scale from 5 to 10 Hz and I to 2 MHz , excepl $\pm 10 \%$ Ite 2 MHx on the 300 V range (0 to $50^{\circ} \mathrm{C}$).	wilhin $\pm 0.20 \mathrm{~dB}$ of full scale from 10 Hz to $) \mathrm{MHz}$ withan $\pm 0.4 \mathrm{~dB}$ of full scale from 51010 Hz and 1 to 2 MHz . except $\pm 0.8 \mathrm{~dB} 1$ to 2 MHz an the 3000 Y range ($0100^{\circ} \mathrm{C}$).
Input Impedance	$2 \mathrm{M} \Omega$; shunted by $<60 \mathrm{pF}: 0.001100 .03 \mathrm{~V}$ ranges: $<30 \mathrm{DF}$. 0.1 to 300 V ranges.	5ame as 4038
Maximum dnpul	fuse protecled (signal ground can be $\pm 500 \mathrm{~V}$ dc from chassis).	same as 4038
Power	4 rechargeable balleries, 40 hr. operation per recharge. up 10500 recharging cycles. self-cimataned fecharging circuit lunctions during operalison from ac line.	same as 4038
Dimensions	130 mm wide. 159 mm high (withoul ierrovable teel), 203 mm $\operatorname{drep}\left(51^{\prime \prime}{ }^{\prime \prime} \times 6^{1 / 4^{\prime \prime}} \times 8^{\prime \prime}\right)$.	same as 4038
Weighl	nel, 2.9 kg (64 lb). Shipping, 3.6 kg (8 Ib).	same as 4038
Price	\$475	add \$29

Specifications

	400E/El*	400F/FL*	400GL.
Voltage range:	1 mV to 300 V F.S. 12 ranges	$100{ }_{\mu} \times 10300$ V F.S. 14 ranges	$-80 \mathrm{~dB} 10+60 \mathrm{~dB} \mathrm{F.S.8} \mathrm{ranges}$
Frequency range:	10 Hz to 10 MHz	$20 \mathrm{~Hz}-4 \mathrm{MHz}$	$20 \mathrm{~Hz}-4 \mathrm{MHz}_{2}$
Inpul impedance:	10 M 2 on all ranges <25 of to <12 pF depending on ranges	$10 \mathrm{M} \Omega$ on all ranges <25 of $10<10$ of depending on ranges	$10 \mathrm{M} \Omega$ on all ranges <300 pF $10<15$ pf depending on ranges
Accuracy *	$\begin{aligned} & \pm(\% \text { reading }+\% \text { range }) \\ & 3 \mathrm{mV}-300 \mathrm{~V} \text { ranges } \\ & 10 \mathrm{~Hz}-40 \mathrm{~Hz} \pm(2.5+2.5) \\ & 40 \mathrm{~Hz}-2 \mathrm{MHz} \pm(1+0) \\ & 2 \mathrm{MHz}-4 \mathrm{MHz} \pm(1.5+1.5) \\ & 4 \mathrm{MHz}-10 \mathrm{MHz} \pm(2.5+2.5) \end{aligned}$ 1 mV range $10 \mathrm{~Hz}-40 \mathrm{~Hz} \pm(2.5+2.5)$ $40 \mathrm{H}_{2}-500 \mathrm{kHz} \pm(1+0)$ $500 \mathrm{kHz}-4 \mathrm{MHz} . \pm(2.5+2.5)$	$\begin{aligned} & \pm(\% \text { reading }+5 \text { range }) \\ & 300 \mu \mathrm{~V}-300 \mathrm{~V} \text { ranges } \\ & 20 \mathrm{~Hz}-40 \mathrm{~Hz} \pm(2+2) \\ & 40 \mathrm{~Hz}-100 \mathrm{~Hz} \pm(1+1) \\ & 100 \mathrm{~Hz}-1 \mathrm{MHz} \pm(1 / 2+\mathrm{h}) \\ & 1 \mathrm{MHz}-2 \mathrm{MHz} \pm(1+1) \\ & 2 \mathrm{MHz}-4 \mathrm{MHz} \pm(2+2) \\ & \\ & \\ & 100 \mu \mathrm{~V} \text { range } \\ & 30 \mathrm{~Hz}-60 \mathrm{~Hz} \pm(2+2) \\ & 60 \mathrm{~Hz}-100 \times \mathrm{Hz} \pm(1+1) \\ & 100 \mathrm{xHz}-500 \mathrm{kHz} \pm \mathrm{I}(+0-7) \end{aligned}$	$\begin{aligned} & +60 \mathrm{~dB} \text { range } \\ & 20 \mathrm{~Hz}-40 \mathrm{kHz} \pm 0.4 \mathrm{~dB} \\ & 40 \mathrm{~Hz}-100 \mathrm{kHz} \pm 0.2 \mathrm{~dB} \\ & -60 \mathrm{~dB} \mathrm{mri}+40 \mathrm{~dB} \text { rangs } \\ & 20 \mathrm{~Hz}-40 \mathrm{~Hz} \pm 0.4 \mathrm{~dB} \\ & 40 \mathrm{~Hz}-500 \mathrm{kHz} \pm 0.2 \mathrm{~dB} \\ & 500 \mathrm{kHz}-2 \mathrm{MHz} \pm 0.4 \mathrm{~dB} \\ & 2 \mathrm{MHz}-4 \mathrm{MHz}+0.2-0.8 \mathrm{~dB} \\ & \\ & -80 \mathrm{~dB} \text { range } \\ & 30 \mathrm{~Hz}-60 \mathrm{~Hz} \pm 0.4 \mathrm{~dB} \\ & 60 \mathrm{~Hz}-100 \mathrm{kHz} \pm 0.2 \mathrm{~dB} \\ & 100 \mathrm{kHz}-500 \mathrm{kHz}+0.2-0.8 \mathrm{~dB} \end{aligned}$
Recovery.	<2 s loi 80 d8 overload		
Overload:	- 500 Y ims ac, 300 Vdc		- 1200 V rms max, iniputi 1000 V de max, ingul
Calluralion:	Scale $-1010+2 \mathrm{~dB}, 10 \mathrm{~dB}$ betwaen ranges, 100 divisions on 0 lo l scale. The dB scale reads $-1010+2 \mathrm{~dB}$: 10 dB between ranges.		Linear d8 scate. 100 divisions trom -20 to 0 dB . Log voltage scate $0 \quad 0 \mathrm{~B}=1 \mathrm{~V}$.
Weight:	Net, 2.7 kg (6 lb). Shipping, 4.1 kg (9 1b)		
Dimensions:	130 mm wids. 159 man high (withoul remiovable leat), $279 \mathrm{mmdeep}\left(5 k^{\prime \prime} \times 6 \mathrm{k}^{*} \times 1\right)^{\prime \prime}$)		
Power:	$A C^{-} 115$ or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 6 \mathrm{VA}$ max. DC: Exterfal balteries, 4 and - voltages between 35 V and 55 V		
Price:	400E,\$440;400EL, \$460	400F\$ 440 : $1005 \mathrm{~L}, 5460$	4006L. $\$ 460$
- NOTE: 400 EL same as 400 E , and 400 FL game as 400 F , extept for calitration. Limear d8 sacie $-10 \mathrm{AE} 1 \mathrm{D}+2$ $d B, 10 d 8$ between ranges. Log vollage scales 0.3 to 1 and 0.8 to 3,120 divisions from -10 to +2 dE dogr L sccuracy is \% of reading in of only. -Ac overioad voltage interassas with intrásing freavency.			

- 10 MHz bandwidth
- High crest factor for accurate pulse measurements
- Stable. linear dc output

Description

The Hewlett-Packard Model 3400A is a true root-mean-square (rms) volumeler, providing a meter indication proportional to the de heating power of the input waveform.

Six-decade irequency coverage makes the 3400A extremely fexible for all audio and mose rl measurements and permits ihe messurcment of broadband noise and fast-rise pulse.

Pulses or other non-sinusoids with crest factors (ratio of peak to rms) up to $10: 1$ can be measured full scale. Crest iactor is inversely proportional to meter deflection, permitting up io 100:1 crest factor at 108:i of full scale.

Permanent plols or measured dala and higher resolveion measurements can be oblained by connocing an X-Y plotter, strip chart recorder or digital voluneter to the conveniene rear-panel de outpul. The de outpul provides a linesr 0 to 1 volt drive proportional 10 meter denection.

- 1 mV full-scale sensitivity
- $10 \mathrm{M} \Omega$ input impedance
- Taut-band individually calibrated meter

RMS current

True rms current measurements can be made conveniendy by using the MP Model 456A Current Probe with the Model 3400A. See page 476.

Specifications

Volfage range: 1 mv to $300 \vee$ full scale, 12 ranges.
DB range: -72 so $+52 \mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ inlo 600 d).
Frequency range: $10 \mathrm{~Hz}_{2}$ to 10 MHz .
Responser responds to rms value (heating value) of the input signal for all waveforms.
Meter accuracy: ${ }^{\circ} \mathrm{c}$ of full scale $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right){ }^{*}$
10 Hz

50 Hz		1 MHz		2 MHz		3 MHz		10 MHz
55%	$\pm 1 \%$	$\pm 2 \%$	$\pm 3 \%$	$\pm 5 \%$				

Ac-to-dc converter accuracy: \% of full scale $\left(20^{\circ} \mathrm{C} \text { 10 } 30^{\circ} \mathrm{C}\right)^{*}$

Crest laclor: (ratio of peak to rms amplitudc of input signal): 10 to 1 ar 「ull scale (except where limited by maximum input) inversely proportional to meter deflection, fe,g., 20 to 1 at half-stuale, 100 to 1 at terith scale).
Maximum continuous Input volfager: 500 V ac péak at I kHz on all ranges; 600 V de on all ranges.
Input impedance: from 0.001 V 100.3 V range: $10 \mathrm{M} \Omega$ shunted by $<50 \mathrm{pF}$. From 1.0 V to 300 V range: 10 M 0 shunied by $<20 \mathrm{pF}$ accoupled input.
Response time: for a siep function, $\langle 5$ s to final value.
AC overload: 30 dB above full scale or 800 V p. whichever is less, on cach range.
Output: negative I V de into open circuit at full-scale deflection, proportionat to meter deflection from $10-100 \%$ ol full seake. I mA maximum; nominal source impedance is 10008 . Outpul noise $<1 \mathrm{mV}$ mns.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to 66 Hz is VA max.
Dimenslons: 130 mm wide, 159 mm high (without removable fect). 279 mm decp $\left(51 / 3^{\prime \prime} \times 61 /^{\prime \prime} \times 11^{\prime \prime}\right)$; $1 / 1$ modulc.
Welght nel, $3.3 \mathrm{~kg}(7 / 1 \mathrm{lb})$. Shipping. 4.5 kg (10 lb).
Accessorles furnighed: 10110A Adapter, BNC 10 dual banana jack.
Accessories available:
Price
11001 A Cable, 45 in . long, male BNC to dual banana plug
10503A Cable, 4 ft. long, male BNC connectors $\$ 15$
11002 A Test Lead, dual banana plug to alligator clips $\$ 11$
11003a Test Leads, doal benana plug to probe and alligator clip
11076A Carrying Case
456A AC Current Probe. $1 \mathrm{mV} / 1 \mathrm{~mA}$
Model number and name
3400 A option 001 spreads out the dB scalc by making it the top scale of the meler
Rear icrminals in parallel with front panel terminals and linear log scale uppermost on the meter lace are available on special order.
3400A RMS volimater
$\cdot \pi \mathrm{Ci} \pm 0.1 \%$ from $0^{\circ} \mathrm{C}$ ta $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Description

High frequency vollages can be measured easily with HP's 3406^ Sampling Volimeler. Employing incoherent sampling techniques, the HP 3406A has extremely wide bandwidth (10 kHz to 1.2 GHz) with high inpul inspedance. Signals as small as $50 \mu \mathrm{~V}$ can be resolved on the sampling volimeter's linear scalc. Full scale sensitivity from I mV 103 V is selected in cight 10 dB sleps and may be read directly from - 62 dBm to +23 dBm for power measurements. Accessory probe lips make the HP 3406A suitable for vollage measurements in many applications such as reoervers, amplifiers and coaxial transmission lines.

Measurement indications can be retained on the 3406A meter by depressing a pushbution located on the pen-type probe. This feature is useful when measurements are made in awhard positions where the operator cannot observe the meter indication and probe placements at the same time. Other features include a de recorder outpul and sample hold outpus for connection to oscilloscopes, and peak or iruc rms voltmeters if other than absolute average measurements are required.

Specifications

Vollage range:) mV to $3 \vee$ full scalc in 8 ranges; decibels from -50 $10+20 \quad \mathrm{~B}$ пи $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into SOO$)$; average-responding instrument calibrated to rms value of sine wave.
Frequency range: 10 kHz to 1.2 GHz : uscivi sensitivity from 1 kHz to beyond 2 GHz .
Full-scale accuracy (\%) with appropriale accessory (after probe is properly cslibrated)

10	20	25	100	100	700	1	1.2
kHz	kHz	kHz	kHz	MHz	MHz	GHz	GHz

Input Impedance: inpul capacily and resistance will depend upon accessory lip used. 100,0008 shuntod by $<2.1 \mathrm{pF}$ at 100 kHz with bare probe: $<10 \mathrm{pF}$ with 11072 A isolator tip supplied.

Sample hold output

Psovides ac signal whose unelamped portion has statistics that are
narrowly distributed about the statistics of the input. inverted in sign (operaling into $>200 \mathrm{k} \Omega$ load with $\langle 1000 \mathrm{pF}$). Output is 0.116 V at f.s. on any range.
Nolse: $<175 \mu \vee$ ims referred to inpul.
Accuracy (atter probe is properly callbrated): 0.01 V range and above: same as full scale accuracy of instrument. 0.001 V 100.003 V range: value of input signat can be computed by laking into sceount the residual noise of the instrument. Jitter: meter indicates within $\pm 2 \% \rho$ of reading 95% of time (as measured with HP 3400A True RMS Vollmeter).
RMS crebl faclor: 0.001 V $100.3 \mathrm{~V}, 20 \mathrm{~dB}: I \mathrm{~V}, 13 \mathrm{~dB} ; 3 \mathrm{~V}, 3 \mathrm{~dB}$.

Meter

Meler scales: linear vollage. 0 to 1 and 0 to 3: decibel. $-1210+3$. 1 n dividually calitrated tau-band meter.
Response Ime: indicalcs withon specified accuracy in <3 s. Jiller:土 1% pcak (ol readíng).

General

DC recorder outpul: adjustable from 0101.2 mA into 1000 ohms al full seale, proportional to meter deflection.
Overload recovery time: meler indicates within specified accuracy in <5s (30 v p-pmax.).
Maximum Input: $\pm 100 \mathrm{~V} d c, 30 \mathrm{~V} p-\mathrm{p}$.
RFI: conducted and radiated leakage limits are below those specified in MIL-618ID and MIL-1-16910C excepi for pulses emisted from probe. Speciral intensty of these pulses are nominally $50 \mathrm{mV} / \mathrm{JHz}$ spcetrum exicnds beyond 2 GHz .
Temperature range: insirument. $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; probe. $+10^{\circ} \mathrm{C}$ 10 $+40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to $66 \mathrm{~Hz}, 25 \mathrm{VA}$ max.
Dimensions: 197 mm wide. 159 mm high (without iemovable feel). $279 \mathrm{~mm} \operatorname{dccp}\left(74^{4} \times 61 / 4^{\prime \prime} \times 11^{4}\right)$: $1 / 2$ module.
Weight: net, $5.4 \mathrm{~kg}(12 \mathrm{lb})$. Shipping, $6.8 \mathrm{~kg}(15 \mathrm{lb})$.
Acceseories: refer to dala sheel.

Temperature coefficient: $\pm 0.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum. Slewing speed:

Range selling

0.5 Hz	$1 \mathrm{~dB} / \mathrm{s}$
5 Hz	$10 \mathrm{~dB} / \mathrm{s}$
50 Hz	$60 \mathrm{~dB} / \mathrm{s}$

Osellloscope output: approx. $0.5 \vee$ rms regardess of input.
Crest factor: $5: I$ untess limited by max. inpul voleage.
Maximum peak input voltage: 425 V on 1 mV to 10 V rangc; ± 230 V on 10 mV to 100 V range.

General speciflcations

Operating temperalure: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up time: 20 minutes nominal.
Connectors: front and rear inpul and output BNC connectors.
Power requirements: $11 \mathrm{~S} / 230 \mathrm{Vac}, 5010400 \mathrm{hz}, 40 \mathrm{VA}$
Dlmersiong: 88 mm high. 197 mm wide, 292 mm deep $\left(31 / \mathrm{m}^{\circ} \times 71 / \mathrm{m}^{\prime \prime}\right.$ $\times 11 / 2)$.
Weight: Nex. 3.6 kg (8 lb). Shipping 5.4 kg (12 ib).

7563A Specifications

Performance specifications
Jnput
Dynamic range: 110 dB .
Voltage range: $316 \mu \mathrm{~V}$ io 100 V . Accepis eithcr positive or negative signals, selectable by Iront panel switch.
Output
Voltage: 0 to 1.1 V de corresponding $1010 \mathrm{mV} / \mathrm{dB}$. Rtar terminals: adjustable $11010 \mathrm{mV} / \mathrm{dB}$.
Output impedance: less than 5Ω front pancl, 300Ω sear.
Meter becuracy: reading accurate to $\pm 1.5 \mathrm{~dB}$, referred to outpue.
Input impedance: 100 kn , shunted by less chan 100 pF ; single ended. Accuracy: (at $25^{\circ} \mathrm{C}$).
$316 \mu \mathrm{~V}$

1 mV		10 Y	
$\pm 0.5 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$

Temperature coefficlent: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum and $\pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referred to input.
Zero stablity: $\pm 0.25 \mathrm{~dB}$ at constant temperature.
Rlee Time:

Marimum Rise Пme	
Signal Level	$1 \mathrm{mV} \cdot 10$ Y Range
$316 \mu \mathrm{~V}-1 \mathrm{mV}$	$2000 \mu \mathrm{~s}$
$1 \mathrm{mV}-10 \mathrm{mV}$	$400 \mu \mathrm{~s}$
$10 \mathrm{mV}-100 \mathrm{mV}$	$40 \mu \mathrm{~s}$
$100 \mathrm{mV}-1 \mathrm{~V}$	$4 \mu \mathrm{~s}$
$1 \mathrm{~V}-100 \mathrm{~V}$	$2 \mu \mathrm{~s}$

General specticatlons

Operating lemperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up time: 20 minutes nominal.
Connectors: front and rear input and oulpul BNC connectors.
Power requirements: $115 / 230 \mathrm{~V}$ ac 50 to $400 \mathrm{~Hz}, 40 \mathrm{VA}$.
Dlmenslons: 88 mm high, 197 mm wide, 292 mm dcep ($31 / 0^{\circ} \times 7 \mathrm{M}^{\prime \prime}$ X $\|$ I h^{n}).
Weight Nel, $3.6 \mathrm{~kg}(8 \mathrm{lb})$. Shipping, $5.4 \mathrm{~kg}(12 \mathrm{lb})$.

Model number and name

Digital voltmeters

Digital volimeters (DVM's) offer many advantages over other lypes of voltmelers. Among the advantages of DVM's are greater speed. increased aceumey and resolution. reduction of operator crrors and the ability to provide aulomatic measurements in systems applications.

Digital voltmeters display measurement results as discrete numerals rather than as 3 pointer defloction on a conlinuous seale. which is commonly used in analog devices. Human error and iedium are reduced by direct numerical readout, and operator iraining is minimized by automatic polarity and range-changing features of somu DVM's.

Digital volimeters are available to measure ac and de voltages, current, resistance and ratio. Appropriatc iransduccrs can bc used to measure olher parameters such as strain or temperature. An increasingly popular use of DVM's is in automatic medsurement systems. Such a sysiem can be as simple as conoecting the DVM digital output to a digital priniec or as powerful as a calculator or computer controlled DVM system that provides automatic data reduction and unaltended operation.

Guilding blocks

Digutal volumeters convert an analog signal 10 an equivalent degital value. To do this, the input signal (ac/ds vollage or eurrent. or ficsistor valuc) must pass through the basic bulding blocks shown in Figure 1.

Figure 1 - Basic bullding blocks of a DVM
Digital volimeters that have current mensuring eapability use internal shunt resistors to conver unknown current to an ac or dc vallage. This volage is then digitized and
scaled (hy shunt valuc) to provide a reading of the current.

The signal to be measured first passe: through an input signal conditioner. This converts ac signals, de signals, or resistances to a proportional de voltage that is within the range of operation of the analog-io-digital (\wedge-to-D) converter.

The A-tu-D converter gencrates numbrical values that correxpond to the de voltage out of the signal condtioner. The logic block controls the order of internal information llow and manages the communication of dig. ital information with external devices. A visual result of measurement is provided by the display block.

Signal conditioners

Of all the parts of a DVM, the signal conditioning and conversion part has the greatest influence on the instrument's characterislics.

A de input often must be amplified or sttenualed to be within the range of the A-10-D converter. For example, if full seale inpul of the $A-10-D$ unit is 10 V . the de input amplifier/atienuator would amplify the signol on the 100 mV and I V ranges and altenuate the signal on 100 V and 1000 V ranges.

There are two types of as converters in common use soday. average responding and true rms responding. The average responding convertor is relatively incexpensive and is intended primarily for mehsurement of sine waves having litile or no distortion. This iype of converter measures average value of the roetified sine wave which is then multiplied by a scale factor (rms $=1.11$ ave.) to provide the mos value. Errors result from this technique when the input signal is not a distortionless sine wave.
The true rms responding converter is the most aocurate ac signal conversion technique. It has wider bandwidth, ability to measure nonsinusoids and is insensitive to distorlion. True roms converiers measure equivalcol heating power of the waveform uxing a thermocouple or thermopile. The resulting de vollage is equivalent to heating power, or trae ims, of the ae signal. Some Hewletl-Packard true rims converters measure not only ac signal. but also de components which. in $1 u m$. improves low frequency pertormance. The compositc equals $\sqrt{(d c)^{2}+(a c ~ r m s)^{2}}$.

Ohms converters measuro value of resisrors by supplying a known constant de current to the unknown resistor and then measuring the resulting voltage drop across it. There are three popular techniques lor supplying de current to the unknown resistor: 1wo-wire, ihree-wire, and four-wire.
The two-wire lechnique is most common and most economieal for applications where test leads are short. Since the same input terminals are used to supply de current and measure voltage drops, this ischnique is affeered by lead resistance.

Figure 2 - Simple two-whre ohms converter

A de current source that is totally isolated from the measuring circuils (Figure 3) is usod by the four-wire technique to overcome sensitivities to tead resistance. This scheme offers the ulimate in periormance for ohms measurements, particularly for remote measurements, while the ewo-wite method is more suited to bench use where leads arc short.

Figure 3 - Simplifled d-wire ohms converter

Like the two-wire converter, the three-wire converter is sensitive to lead resistance. especially on the low side of the input but it may be possible to null out error caused by lead resistance with an interial adjustment.

A-to-D converters

Analog-to-digital converters change de sig. mal from signal conditioners and converters to discrete numerical values, The conversion technique used determines speed, resolution and noise rejection characleristics of the DVM. For a detailed discussion refer 10 Hewlett-Packard Application Note 158.

Noise rejection

Source and type of noise are important in determining the lype of noise rejection needed. There are two types of noise which may alfect aceuracy and sensitivity of 3 DVM: normal mode and common mode.

Normel mode noise enters the DVM with the signal and is superimposed on it. Filtering is the simplest way to cut down on noise bul it slows measurement speed. Integration "calculates" noise out of the measurement by looking at the input signal over a period of
time equal to the period of expected noise. Fillering is advantageous for rejecting broudband noise. while integration is better for rejecting line related noise. Figure 4 shows typical noise rejection for filtering and integrating methods.

Figure 4 - Normal mode noise rejection Ior two DVM's, one using fllering and the other using integration

Common mode noisc appears between the DVM's inpur terminals and ground. It is usually cansed by grounding differences befween the DVM and the device being medsured.

Errors caused by common mode noise may be reduced by a passive sechnique called "guarding." Guarding shunts the noise to ground and away Trom input lerminals. By proper connection of the guard (Figure 5), a remarkable improvement can be seen in a DVM's ability te reject common mode noise.
"Effective" common mude rejection is the specification that usually appears in data sheets. Effective refers to the final reading. Effective CMR is the combined result of "pure" CMR due to guarding plus normal mode rejection of the instrument.

Figure 5 - Best connection-guard connected to low at source

Specifications

Resolution and sensilivity

DVM's are classified according to the number or Full digits. An overrange digit is an extra digit added to allow the user to read beyond full scalc. This overrange digit is ofien called a "one-half" or a "partial" digit since it cannal display all numbers through 9. Overranging greatly extends a DVM's usc-「ulness by mainaining resolution up 10. and beyond. full scalc. For example, if a signal changes from 9.999 V to 10.012 V . a rourdigit DVM without overranging could measure the first voltage as " 9.999 V ," but would require a range change to make the second measurement with a resulting reading of "I0.01 V." The 0.002 V change would not be seen. With overranging, the second measurement could be made as " 10.012 V " with no loss of resolution.

Overranging is given as a percenonge. A four-digit DVM with 100 , overranging would have a muximum display of "19999." A spec of 20 : overranying would provide a maximum reading of "il99."

Resolution is the falio of the maximum number ef counts that can be displayed to the least number of counts. Full-scale resolution of a live-digh DVM is 100,000 to 1 , or 0.001%. Overranging is gencrally ignored in pesolution.
Sensitivity refers to the smallest incremental voltage change that the DVM is able to derect. Mathematically. at is the lowest rullscale range mulliplied by the resolution of the DVM. Sensitivity of a five-digit DVM with resolution of 0.001% and a 100 mV lowest full-seale range is $0.001 \% \times 100 \mathrm{mV}=1 \mu \mathrm{~V}$.

Accuracy

Accuracy is the exactness to which a voltage can be determined, relative to the Legal

Volt maintained by the U.S. National Bureau of Slandurds. Accuracy specification equals errors involved in traceubility to N.B.S. as well as crrors made by the instrument.
To be meaningful, accuracy must be stated along with the conditions under which it will hold. These conditions should include time. emperature. line variations and humidity. Conditions specified should be realistic relalive to intended use. For example, a DVM specified with a lemperature range of $29^{\circ} \mathrm{C}$ $\pm 1^{\circ} \mathrm{C}$ would require a highly conirolled environment, whereas $\pm 3^{\circ} \mathrm{C}$ would cover the majority of enviromments.
The period of time over which accuraty holds is especially important since il indicales the DVM's stability and how often it will have to be calibraled.

Accuracy is usually expressed us a percent of the reading plus a percent of the range (or full scale). Figure 6 shows that accuracy is slways better at or above full scale.

Figure 6 - Typlcal Iour-digIt DVM accuracy

Reading rate

Most DVM's have their own internal irigger source which may be adjustable or fixed.

Quite onen. Ingeer rate is independent of response time of the analog circuits. For example. a DVM may have a fixed sample rate of five readings per second. which is fine for ds measurements, bul the ac converter may lake two seconds to respond. This means that the usor must wail for several samplen before obtaining a steady reading. Thus, as Figure 7 shows, the DVM's speed is delermined by setling time of its input circuitry, plus timic icquired to digitize the signal.

Figure 7 - DVM speed depends upon response itme and reading perlod

When a DVM is used in an automatic aystem, its internal irigger is seldom used. External triggers atre issued by the system incorporating the appropriate delay 10 allow for scllling.

Additional Information

For more information on DVM operation and selection, refer to Hewletr-Packard Applicuntion Note 158.

DVM SELECTION GUIDE

DIGITS	dc	ac	Ohms	Current	Special Fealures	HP Model No.	Page
3	-	-	-	Opl.	Probe	970A	40
3	*	-			Irue rmi de, dB disolay	3403C	42
3	\bullet	\bullet	-	-	AC sensilivily	34698	37
4	*	-	-	-	(NEW) $1 \mu v$ sensitivity	3465A	38
4	*	Opl.	Opl.		High speed, plugins	3880C/D	48
4/5	-	00 l	-	Opt.	Snep-on flexbility	3470A Series	44
5	-	-	-		Sell lest \& HP-18	3490A	50
5	-	Opl.	Opl.		Sysients oplions	3450日	54

Description

Twenty－six different range and funclion combination：ol ac voles． de volts，ohmes and de current

Specifications

AC vollmeter
Ranges： $1 \mathrm{mV}, 10 \mathrm{mV} .100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V} .1000 \mathrm{~V}(500 \mathrm{~V}$ max input）．
Accuracy above 1% of range：$\pm\left(\%\right.$ reading $+\%$ range, $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ ．
1 mV range（ 0.3 mV and above）：

10 mV to 1 V ranges：
20 Hz 100 Hz 100 kKz

$0.5+0.5$	$0.3+0.3$	$1+1$	$2.5+2.5$

$10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges：
$20 \mathrm{~Hz} 100 \mathrm{~Hz} \quad 100 \mathrm{kHz}$

$1+0.5$	$0.4+0.3$	$1+1$	$2.5+2.5$

Input impedance： $10 \mathrm{M} \Omega$ shanted by＜25 pF．Inpul common con－ nected to chassis．
Overload prolection： 500 V al frequencies $\leq 60 \mathrm{~Hz}$ ．
DC voltmeter
Ranges： $100 \mathrm{mV}, ~ I \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$
100 mV range：$\pm(0.2 \%$ rcading $+0.1 \%$ range $)$ ．
$1 \vee$ to 1000 V ranges：\pm（0．1\％reading +0.1 曾．rangc $)$ ．
Inpul impedance： 10 Mal ．
Overload protecilon： 1000 V ．
Normal mode rejection
$60 \mathrm{~Hz}: 40 \mathrm{~dB}$ ．
Common mode rejeclion
$D C: 60 \mathrm{~dB}$ ．
Floating vollage：$\pm 500 \mathrm{~V}$ max．
Ohmmeter
Ranges： $1 \Omega, 10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, \mathrm{I} \mathrm{M} \Omega, 10 \mathrm{M} \Omega$ ．
Accuracy（ $20^{\circ} \mathrm{C} 1030^{\circ} \mathrm{C}$ ）
1月 range：$\pm(0.25 \%$ reading $+0.5 \%$ range $)$ ．
10Ω range；$\pm(0.3 \%$ reading $+0.2 \%$ range）．
100Ω to $10 \mathrm{M} \Omega$ range：$\pm(0.2 \%$ reading $+0.2 \%$ range $)$ ．

Source characterlstics

Short circult current； $0.1 \mu \mathrm{~A}$ to 10 mA depending upon range．
Open circuil voltage： 10 V negative with respect to common（com－ mon connecied to chassis）
DC input protecilon：$\pm 100 \mathrm{~V}$ max．
AC Inpul prolection： 130 V rms max．
DC ammeter
Ranges： $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}$ ．
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right): \pm(0.2 \%$ reading $+0.2 \%$ range $)$ ．
Full bcale vollage drop； 100 mV ．
Overload protection：S limes full scalc．
Flosting vollage：$\pm 500 \mathrm{~V}$ max．

General

Sample rate：8／s．
Overrange： 100 号
Out of range and iltegal range indication： 3 least signilicant digits blank．
Polarlty：automatic．
Operaling temperature range： $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ．
Warmup； 10 min ．
Power： 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 10 \mathrm{VA}$ ．
Dimenslons： 130 mm wide， 159 mm high（without removable feel）， $279 \mathrm{~mm} \operatorname{dec}\left(51 / \mathrm{s}^{\prime \prime} \times 161 / \mathrm{d}^{\prime \prime} \times 11^{\mu}\right)$ ，
Welght：nel． 3.15 kg （ 7 lb ）．Shipping． $4 \mathrm{~kg}(9 \mathrm{lb})$ ．

Description

The HP model 3465 A is a $4 / 2$-digit multimeter that provides up 10 100% overranging. Five multimeter functions span a wide range of application measurements of $A C$ voltage, $D C$ voltage, $A C$ current, $D C$ current, and ohms which are conveniently made using the HP 3465A.
The DC volage capability provides measurements from $1 \mu \mathrm{~V}$ to 1.000 V with a midrange accuracy of $\pm(0.02 \%$ of reading $+0.01 \%$ of range). Input protection permits up to 1,000 volis on any range withoul damage.

The AC voltage function provides measurements from $10 \mu \mathrm{~V}$ 10 500 volts with midband accuracy of $\pm(0.13 \%$ of reading $+0.05 \%$ of range $)$. The bandwidih spans 40 Hz 1020 kHz , with inpur protection up to 500 V RMS on any range without damage.

Ohms measurements are made for values from 10 milliohms to 20 Min's using ó ranges. The input is protected for up to 350 V peak. An accuracy of $\pm(0.02 \%$ of reading $+0.01 \%$ of range) is obtained for the nominal ranges. Maximum open circuit voltage is less than 5 volts.
$A C$ and DC current capability is provided as a standard feature. A 10 nA sensitivity results in a wide dynamic range of performance. DC current accuracy for the 10 mA range is $\pm(0.11 \%$ of reading $+0.01 \%$ of range). AC current measurenients are made over a frequency band of 40 Hz to 20 kHz with a mid-band accuracy of $\pm(0.25 \%$ of reading $+0.05 \%$ of range). Should an accidental averload occur, the fuse is front-panel mounted for easy replacement.

3465A

AC line operation with rechargeable Nickel Cadminm batteries is provided in the basic unit. The batteries are 2 of the battery packs found in mosI HP hand-held calculators. Five hours of continuous use is provided by the bateries which recharge fully overnight.

3465A Option 001

AC only operation is provided and you save $\$ 20$, the price of the re chargeable batteries. Should you decide later to use batteries simply purchase 2 sets of the 82001A batteries.

3465A Option 002

Saves you $\$ 73$ by removing the internal power supply, recharger. and adding 4 D cell "primary batteries. This configuration is well suited to field or bench operation. The D cells operate for 60 hours and the batteries can be purchased at your local store - while you're in the field. The HP model 82002A battery charger for most of HP's handheld calculators can be used as a battery eliminator to provide DC power to operate the instrument on the bench from normal AC line. - 0.2 batifries in Europe.

Specifications

OC voltage
Voltage range: $\pm 10.000 \mathrm{mV}, \pm 100.00 \mathrm{mV}, \pm 1.0000 \mathrm{~V}, \pm 10.000 \mathrm{~V}$. $\pm 100.00 \mathrm{~V}$. $\pm 1000.0 \mathrm{~V}$.
Overrenge: 100% on all except 1000 V range.
Sensitivity: 1 microvolt on 10 mV range.
Polarity: automatically sensed and displayed.
Accuracy: 90 days, $\left(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$):

Rango	Specifications		
10 mV	$\pm 0.03 \%$ of Reading, $\pm 0.02 \%$ of Range		
100 mV through	$\pm 0.02 \%$ of Reading, $\pm 0.01 \%$ of Range		
100 V		\quad	1000 V
:---			

Temperature cosilicient: $\left(0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}\right): \pm 0.003 \%$ of Reading/ ${ }^{\circ} \mathrm{C}$
Inpur characlerletice: input resistance:

Range	Specifications
10 mV through 1 V	$\geq 10^{10} \Omega$
10 V through 1000 V	$10 \mathrm{Mn} \pm 1 \%$

Normal mode rejection: $>60 \mathrm{~dB}$ (at $50 / 60 \mathrm{~Hz} \pm 0.1 \%$)
Effectlve Common Mode Fejection (1 kD unbalance)
$A C:>120 \mathrm{~dB}$ (at $50 / 60 \mathrm{~Hz} \pm 0.1 \%$)
Overload protection: 1000 V Max DC and Peak AC.
DC Current
Current range: $\pm 100.00 \mu A_{\star} \pm 1.0000 \mathrm{~mA}, \pm 10.000 \mathrm{~mA} . \pm 100.00$ $\mathrm{mA}, \pm 1000.0 \mathrm{~mA}$.
Ovarrange: 100\%.
Benslifity: 10 nA .
Accuracy: 90 days, $\left(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$:

Range	Specificatlons
$100 \mu \mathrm{~A}, 1 \mathrm{~mA}$	$\pm 0.07 \%$ of Reading, $\pm 0.01 \%$ of Range
10 mA	$\pm 0.11 \%$ of Reading, $\pm 0.01 \%$ of Range
$100 \mathrm{~mA}, 1000 \mathrm{~mA}$	$\pm 0.6 \%$ of Reading, $\pm 0.01 \%$ of Range

Temperature coetflelenl $\left(0^{\circ} \mathrm{C}\right.$ to $50^{\circ} \mathrm{C}$):

Rante	Speetifications
$100 \mu 4$	$\pm 0.005 \%$ of Reeding $/{ }^{\circ} \mathrm{C}$
1 mA .10 mA	$\pm 0.004 \%$ of Rexding/ ${ }^{\circ} \mathrm{C}$
$100 \mathrm{~mA}, 1000 \mathrm{~mA}$	± 0.01 ch of Reading $/{ }^{\circ} \mathrm{C}$

Voltage burden: full seale $<250 \mathrm{mV}$ on 1 A range; $<125 \mathrm{mV}$ on all other ranges.
Protecifon: 2 amp Iusc. Separate terninals

AC Voltage

Voltage range: $100.00 \mathrm{mV}, 1.0000 \mathrm{~V}, 10.000 \mathrm{~V}, 100.00 \mathrm{~V}, 1000.0 \mathrm{~V}$ (500 V miax.)
Overrange: 100% excepl 500 V rms max on 1000 V range $(100 \% 1010$ kHz decreasing linearly to 0% at 20 kHz).
Sensitivity: $10 \mu \mathrm{~V}$ on 100 mV range.
Accuracy: 90 days. $\left(+23^{\circ} \mathrm{C} 105^{\circ} \mathrm{C}\right)$ converter is average responding calibrated to RMS.

Temperature coefficient ($0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$): $\pm 0.005 \%$ of Reading, ± 0.002 定 of Range $/{ }^{\circ} \mathrm{C}$.
Inpul impedance
Resistance: $1 \mathrm{M} \Omega$.
Shunt C: <100 pr.
Overload protection: 600 V DC Max., 500 V AC RMS, and 800 V peak.
AC Current
Current range: $100.00 \mu \mathrm{~A}, 1.0000 \mathrm{~mA}, 10.000 \mathrm{~mA}, 100.00 \mathrm{~mA}$, 1000.0 mA .

Overrange: 100% to 10 kHz decreasing linearly to 0 多 $\mathbf{a l} 20 \mathrm{kHz}$. Sensitivity: 10 mA .
Accuracy: $\pm(0.05 \%$ of range $+0.4 \%$ of reading) $10 \pm(0.15 \%$ of range 40.6% of reading) from 40 Hz to 20 kHz on the $100 \mu \mathrm{~A}$ and 10 mA ranges; \pm (0.05% of range $+0.65 \%$ to +0.8 F of reading) from 40 Hz to 1 kHz on the 1 A range and from 40 Hz to 2 kHz on the 100 mA range.

Temperalure coetficient $\left(0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}\right): \pm 0.01 \%$ of Reading $/{ }^{\circ} \mathrm{C}$, Voltage burden: full scale $<250 \mathrm{mV}$ on 1 A range: $<125 \mathrm{mV}$ on all olher ranges.

Reslistance

Ohms ranges: $100.00 \Omega, 1,0000 \mathrm{k} \Omega .10 .000 \mathrm{k} \Omega .100 .00 \mathrm{k} \Omega .1000 .0 \mathrm{k} \Omega$, $10.000 \mathrm{M} \Omega$.

Sensitivity: 10 miliohm on 100 ohm rarge.
Accuracy: 90 days, $\left(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$:

Range	Speciflcations
100Ω	$\pm 0.02 \%$ ol Reading, $\pm 0.02 \%$ of Range
$1 \mathrm{k} \Omega$ through 1 M	$\pm 0.02 \%$ ol Reading, $\pm 0.01 \%$ of Range
$10 \mathrm{M} \Omega$	$\pm 0.1 \%$ of Reading, $\pm 0.01 \%$ of Range

Temperature coefficlent: ($0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$):

Range	Speciflcations
600Ω through 1 MII	$\pm 0.0015 \%$ of Reading $/{ }^{\circ} \mathrm{C}$
$10 \mathrm{M} \mathrm{\Omega}$	$\pm 0.004 \%$ ol Reading $/{ }^{\circ} \mathrm{C}$

Conflguration: 2 wire
Open circult vollage: $<5 V$ max.
Protection: 350 V (DC + peak AC)
Current through unknown:

Range	1
100Ω	1 mA
$1 \mathrm{k} \Omega$	1 mA
$10 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$
100 kg	$10 \mu \mathrm{~A}$
1000 ks	$1 \mu \mathrm{~A}$
$10 \mathrm{M} \Omega$	$0.1 \mu \mathrm{~A}$

General
Integration time. 100 msec.
Reading rale: 2% readings per second.
Display: light-emitting diodes.
Overload indication; display blanks.
Opereting temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$; NiCad Batery: $0^{\circ} \mathrm{C}$ so $40^{\circ} \mathrm{C}$.
Storage lemperature: $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$; NiCad Battery: $-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Humidly range: 95% at $40^{\circ} \mathrm{C}$.
Dimensions: $10.16 \mathrm{~cm} \times 21.27 \mathrm{~cm} \times 27.94 \mathrm{~cm}(4 \mathrm{in} \times 8 \mathrm{l}, \mathrm{in} \times 11$ in.)
Welghts: 2.04 kg (4 lbs, 8 ozs)
Power
3465A Ac Ine: 86-127 V: 48 10 440 Hz , 176-254 V: 4810440 Hz
Batterles: 2-rechargeahle Nickel Cadmium packs common to HP hand-held caleulators, 5 hours continuous use. Battery charger buill-in. < 3 W .
3465A Option 001 AC line: $86-127$ V; 48 to $440 \mathrm{~Hz} ; 176-254 \mathrm{~V}: 48$ to 440 Fz . Batlery charger built in. $<250 \mathrm{~mm}$.
3465A Optlon 002: 4 type D alkaline dry cells (U-2 cells Europe). (0) hours enntinuous use. Reecplacle to use Model 82002A hand-held ealculator battery charger (82002 A nol ineluded). $<250 \mathrm{~mW}$.
Instrument operates on 50 Hz .60 Hz and 400 Hz power lines.

Options
Option 001 AC line only
Option 002 includes $03465-80002$
03465-80000 - replaceable AC/Nickel Cadmium
Power Module - includes batteries
03465-80002 - replaceable D cell power module wiib connector for using HP hand-held calculator charger (charger not included)

> Price
> less $\$ 20.00$
> less $\$ 75.00$
$\$ 75,00$
$\$ 25.00$
82002 A - HP hand held calculator charger
82001A - Nickel Cadmium Battery Pack (2 required)
1420-0224 - alkaline D cell USA; U-2 Europe $\{4$ required)
$\$ 18.00$
each $\$ 10,00$
each $\$ 1.00$
11096 n RF probe 10 kHz to 700 MHz . Use onis on 10. 100 V de ranges.
$\$ 87.00$
11003 A: Test leads. Dual banana to probe and alligator $\$ 11.00$
11002A: Test leads. Dual banana to dual alligator \$11.00
5061-2005: Sub-module front handle $\quad \$ 7.50$
5061-00R8: Froni Hande Kit
$\$ 15.00$
5061-0054: Rack adapter kit (includes $1 / 3$ module filler)
$\$ 15.00$
3485A includes 03465-8000 $\$ 500$

- Puts a complete DMM in the palm of your hand
- Autoranging, autozero, autopolarity

Description

Hewlett-Packard's 970A Probe Digital Multimeter is completely se)f-contained and autoranges through five ranges of ac and de volis and ohms.

The pocket-sized multimeter is ideal for field, lab, or bench application. All electronics, including display and batteries. are in one small seven-ounce hand-held package with only one function control to sel.

HP's Model 970A automatically selects the right runge, making it easy to use by technicians, repairmen, telephone verfemen and engineers. This batlery-operated probe is the first known hand-held DMM incorporating solid-statc autoranging icchnology. All solid-state switching is in sis one MOS integrated circuit.

A Jive-digit light emitting diode cluster is used in this $31 / 2$ digit DMM. All probe voltage readings are in volls, and resistance readsings in kilohms so there are no scales to misinterpred. Decimal placement is sulomatic.

Automatic decimal placernent and automatic polarily indication save timo. After sctling the function seloctor (acV , deV or $k \Omega$), simply connect the ground clip, touch the probe tip io it test point, press the Push-to-Read bar, and the solid-state LED readout automatically displays the correct reading and polariy. When measuring ohms or de volts, it takes typically less than two seconds to range and settle to a proper reading.

Since display is close to point of measurement, in closely packed circuits. the probe can be held in one hand and circuil and readoui can be seen al a glance. The display can be electronically inverted co avoid errors.

97004A Accessory Kit
HP's 970A Probe Digital Multimeter can be converted into a fivefunction bench instrument with optional 97002A Currem Shunt/ Bench Cradle. A sir-position manual switch sctects five ranges of ac and de current plus a straight through position to measure ac and de volis and ohms.

Two genaral purpose binding posts accepl wrap-around, screwdown, clsp-on or banana plug terminations.

AC voltage meosurements can be made over a frequency range of 100 kHz to 500 MHz from 0.25 V to 30 V with optional RF adapter. HP 97003A. A broad line of tips, adaplers and cees are also avaibible.

970A Specifications

DC voltmeter

Ranges: 0.1 V, , V, $10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}(500 \mathrm{~V} \max$ inpul).
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$: $\pm(0.7 \%$ of reading $+0.2 \%$ of range $)$.
Input resistance: $10 \mathrm{M} \Omega . \pm 5 \%$.
Input proteclion: 5750 V peak.
Temperalure coetflclent: $\pm\left(0.05 \%\right.$ of reading 40.2% of range) $/{ }^{\circ} \mathrm{C}$.
$A C$ volimeter
Ranges: $0.1 \mathrm{~V}, ~ I \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}(500 \mathrm{~V}$ mons sine wave max inpu1).
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$:

Ranga	45 Hz lo 1 kHz	1 kHz lo 3.5 kHz
1 V to 1000 V	$\pm(2 \%$ of reading	$\pm(3 \%$ of reading
	$+0.5 \%$ ol range $)$	$+0.5 \%$ ol range $)$
$0.1 \mathrm{~V}(>3 \mathrm{mV})$	$\pm(2 \%$ of reading	$\pm(5 \%$ of reading
	$+0.5 \%$ ol range $)$	$+0.5 \%$ ol ranga $)$

Inpul resistance: $10 \mathrm{M} \Omega, \pm 5 \%$
Inpul capacitance: $<30 \mathrm{pF}$.
Inpul protection: $\leq 750 \mathrm{~V}$ peak.
Temperature cootliclent: $\pm(0.05 \%$ of reading $+0.05 \%$ of range $) /{ }^{\circ} \mathrm{C}$.

Ohmmeter

Renges: $\mid \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1000 \mathrm{k} \Omega, 10,000 \mathrm{k} \Omega$.
Accuracy ($20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$): $\pm(1.5 \%$ of reading $+0.2 \%$ of range).
Input voltage proteclion (reslator fueed - clip mounted): $\leq 115 \mathrm{~V}$
rms for up to 1 minute. $\leq 250 \mathrm{~V}$ rms for up to 10 soconds.
Temperalure coefflelent: $\pm(0.05 \%$ of reading $+0.02 \%$ of range $) /{ }^{\circ} \mathrm{C}$.

General

Ranging: automatic.
Sample rale: 3 /sucond.
Overrange: 10%.
Calibralion cycle: 1 year.
Callbralion adjualmants: one.
Operating environmental condílions:
Temperalure range: $0^{\circ} \mathrm{C} 1040^{\circ} \mathrm{C}$.
Humldity: ≤ 95 先 R H.
Power: rechargeable batscrics.
Typleal operating time using fully charged battery: 2 hours continuous al $25^{\circ} \mathrm{C}$.
Typloal battery charging time: 14 hours at $25^{\circ} \mathrm{C}$. (Indeñoite charging will nol damage bathery).
Welght (with battery pack): ner, 200 g (7 az). Shipping, 1.8 kg (4 lb).
DJmensions: 165 mm long $\times 45 \mathrm{~mm}$ wide $\times 30 \mathrm{~mm}$ deep $\left(61 / 2^{\prime \prime} \times 11 \mathrm{~s}^{\prime \prime}\right.$ $\left.\times 1 / 4^{n}\right)$.

97010A UL Approved Battery Chargor

97002A Specifications

DC ammeter

Ranges: $0.1 \mathrm{~mA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 0.1 \mathrm{~A}, 1 \mathrm{~A} . S$.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right): \pm(2.5 \%$ of reading $+0.2 \%$ of range $)$.

AC ammeter

Panges: $0.1 \mathrm{~mA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 0.1 \mathrm{~A}, 1 \mathrm{~A}$ F.S.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $30^{\circ} \mathrm{C},>3 \%$ of renge $)$: 4 Szz co $\mathrm{kHz}: \pm(4 \%$ of reading $+0.5 \%$ of range), 1 kHz 103.5 kHz ; $\mathbf{~ (7 \%}$ of reading $+0.5 \%$ of range).
DC V, ac V, ohms: same as 970A specifications.

General

Full range Insertion voltage: $<0.25 \mathrm{~V}$.
Input protection: 2 amp fast acting fuse.
Welght: net, 170 g (602). Shipping. 1.8 kg (4 lb).
Dlmensions: 95 mm long, 95 mm wide, $51 \mathrm{~mm} \operatorname{dec}\left(33^{\prime \prime} \times 33 / /^{*} \times\right.$ $2^{\prime \prime}$).

97003A Specifications

Response: The 97003A is a peak responding detector and is calibrated to read rms value of a sine wave.
Voltage range: 0.25 V to 30 V mims.
Max Inpul: 30 V nाएs ac: 200 V dc.
AC to de transfor accuracy when operating Into HP 970A:

*HP's 97003 A is usable from 10 MHz to 500 MHz and 7.5 V rms 1030 V rms. It is not Lraceable 10 the United States National Bureau of Standards over that range.
Inpul impedance: inpul resisiance: $>25 \mathrm{k}$? .
Shunl copacitance: $<3 \mathrm{pF}$ for plascic tips. $<4 \mathrm{pF}$ for metal high fre. quency adapler lip.

General

Accessories suppfled: ground lead, straight tip, battery charger, soli carrying casc.
Accessorles avallable: II $063 \mathrm{~A}, 50$-ohm lee: IIS36A. 50-ohm tee: 10218A, BNC Adapter; 10219A. Type 874 Adapter; 10220A, Mierodol Adapter.
Model number and name Price
97001A exira rechurgeable baitery pack
97002A ac/de current shunt/bench cradle $\$ 49$
97003A R1: adapter
9700-4 a accessory kit
97010A ballery charger
970A Digilal Mulimeter (inchudes son carrying casc.
ballery and charger)

True RMS voltmeter
Model 3403C

- DC and 2 Hz To 100 MHz
- $31 / 2$ digit

Description

The Model 3403 C is usable for dc. luv frequency, audio, RF and IF measurements. True ynis is capocially valuable for measurements of noise, multiplexod signals, modulated waves and other complex signaks with high harmonic content.

Optional dB aleplay

The dB display oplion provides readings direcily in dB. a major convenience to ac users. The dB reference to which the measurement is made is conveniontly adjusiable from the front panel to provide referenced dB measurements, or to provide a convenient means to offret the reading by as much as 13 dB for unreferenced measurements.

Sysiems optlons

A systems option is avaitable, allowing the 3403C io be used with Hewlell-Packard printers or inlegrated into more complex systems.

Specificatiohs

Aanges
Full range depplay: 10.00 mV (ac only): $100.0 \mathrm{mV}: 1.000 \mathrm{~V}: 10.00 \mathrm{~V}$; $100.0 \mathrm{~V}: 1000 \mathrm{~V}$.
Overrange: $>90 \%$ on all ranges excepl as limitcd by max mput volt. age.
Ranging information: front panel annunciators indicate overrange (approximately 190 of full range). or underrange (approximately 17\% of full range) conditions.

Performance

AC Irequency range
Slow reaponse: 2 Hz co 100 MHz .
Fast resporse: 25 Hz to 100 MHz .

Response IIme
fast response: Is.
Slow response: 10 s .
Instrument reads final reading $\pm 0.1 \%$ of input change in stated response (ime.
Display rale
Fast response: 4 readings pers.
Slow response: 2 readings per $\$$.
REAOING
ACCURACY $= \pm \%$ OF RANGE $+ \pm \%$ OF READING **

CAUTION: Irequencies and ranges in this aroa may resuli in invalld readings without ranging indication.

* $D C+A C$ function and slow response time only
** \% of reading specification is reprosentative of typical flatness.

Functlons

DC: responds to de component of input signal.
AC: sepponds to true mis value of ac coupled input sigmil.
AC + DC: rasponds to true rms value of de and ac input signal: reading is $\sqrt{(d c)^{2}+(\mathrm{sc} \mathrm{rms})^{2}}$.
Temperature coafficlent: $\pm 0.1 \times$ reading accuracy* $/{ }^{\circ} \mathrm{C}$ oulside the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range.
Accuracy: 90 days $\left(25^{\circ} \mathrm{C}+5^{\circ} \mathrm{C},<95 \%\right.$ RH, 17% of range to 190% of range)
Input characterigtics
Input Impedance: $<10 \mathrm{MHz}$.
1 V to 1000 V range: $10 \mathrm{M} \Omega \pm 10 \%$ shunted by $19 \mathrm{pF} \pm 10 \%$.
10 mV and 100 mV ranger; $20 \mathrm{M} \Omega \pm 10 \%$ shunted by $16 \mathrm{pF} \pm 10 \%$.
10 MHz to 100 MHz : the following table gives maximum foading due to input shunt impedance across a terminated source.

System lmpedance	Frequency	
(source and load)	10 MHz	100 MHz
$50 \Omega \%$	1%	10%
$75!?$	2%	20%

Crest lactor:

2 Hz to 25 Hz	$2: 1$ al full range inpul.
$>25 \mathrm{~Hz}$	10:1 al full range inpul.

Maximum Input vollage

High to low:

1000 V rms. 1500 peak or $10^{\mathrm{n}} \mathrm{V}-\mathrm{Hz}$ on any range. Maximum dc voltage in ac mode: 500 V de.
Low to chassls:
$\pm 500 \mathrm{~V}$ dc, when noated with sptecial banana to BNC adapter.

Options

Autoranging (3403C option 001)

Automatle ranging: uprange at approximately 190% of full range: downranges at approximately 17% or full range.
Aulorange time: fast response: I s per range change. Slow response: 10 s per range change.
Remote control + dighal output + autoranging (3403C oplton 003)

Provides femote control of all front pamel functions, ranges. Aggital output and sutoranging.
dB display (3403 C option 008)
Measurement range: $108 \mathrm{~dB}(-48 \mathrm{dBV} 10+60 \mathrm{dBV})$.
Galibrated dB reference: $0 \mathrm{~dB}=1.000 \mathrm{~V}$: reference level may be set for $0 \mathrm{dBm}(600 \mathrm{O})$ by adjusting front panel dB calibration adjusiment. Variable d日 reference: reference level may be shifted downward from calibrated position >13 dB.

- Arta from accuracy charts.
dB recorder output: outpuc voliage: 200 mV for 20 dB . Outpul resistance: $1 \mathrm{kSt} \pm 500 \mathrm{R}$.
Accuracy: 90 days $\left(25^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} .<95 \% \mathrm{RF}\right.$).

General

Operaling condhions

Temperalure range: $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$.
Humldity: <95m RH.

Reconder output

Output voltage: IV de open circuit for full range input. Output resisiance: $/ \mathrm{k} \Omega \pm 10 \%$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 35 \mathrm{VA}_{\mathrm{A}}$ max. (includ ing all options).
Input terminale: BNC front panel comnector standard for low to high terminals: rear panch connecior available by internally reversing position of ac converter module.
Welght: including all uplions: Ne1, 5 kg (11 lb). Shipping. including all options: Nel. $7.2 \mathrm{~kg}(16 \mathrm{lb})$.
Dimensions: 234.9 mm wide $\times 127 \mathrm{~mm}$ high $\times 196.8 \mathrm{~mm}$ decp ($91 / 4^{*}$ $\times 5^{n} \times 71^{\prime \prime}$.
Accessories furnished: noating adapter-banana to BNC

Model number and name	Price
Option 001 sutoranging	add. $\$ 147$
-Option 003 remote control + digital output auloranging	add \$335
- Oprion 000 dB display	add \$305
3403C True RMS volimeter	\$2240

Model 3470 systerm

Description

Hewlet1-Packard's 3470 is a low cost line of DVM's using a nexible snap-10gehter package. Two display sections provide a choice or 4 or 5 digits, both with 100% overranging and LED display. These displays lock on to a choice of a DC Volimeter, an $\mathrm{AC} / \mathrm{DC} / \Omega$ Mullimeter or a high sensitivity DCV/DCA/Il meter. In addicion, a temperature module is available for use with the four-digit display section. Battery pack and BCD module are optional. Functions and ranges are clearly labeled. All maximum voltages are indicated at the input terminals. Volage prolection is 1200 V on ac V and de V . Protection on ohmsex. tends to 350 V peak. This excellent protection prevents accidental damage. Hewlett-Packard's 3470 uses rugged metal castings held together by shock resistant slides. Modular construction makes the 3470 versatile and capabilisy may be expanded as needed. Modules may be shared between displays. This sysiem deters obsolescence.
Snap-oul PC boards make servicing casy. Once tbe display PC board and voltmeler board have been removed from the ease. they may be recombined. Components and tesi points may be reached withoul extender boards or special connectors. A self-lest jumper in the display forces a full scale reading to sel as a quick check.

34740A Display

This $41 / 2$-digit display locks on to any ecner section or volimeter module to form a complete DVM using a clear, LED display with 4 full digits plus 100% overranging.

34750 A Display

This $51 / 2$-digit display offers five-digil resolution with any volimeter modules shown on the opposite page. As with the 34740 A , it uses a LED display with 100% averranging.

34701 A DC voltmeter

This plug-on provides 4 ranges of de from $1 \vee 101000 \mathrm{~V}$ at an eco. nomical price.

34702A Multimeter

This plug-on provides four ranges of bothac and de plus six ranges of ohms. AC function covers 45 Hz 10100 kHz . Ohms ranges are 100Ω
to $10 \mathrm{M} \Omega$ full scale.
34703A DCV/DCA/OHM meter
This plug-an provides six ranges of de valts from 10 mV full seale to 1000 Y full scale, sux ranges of de current from I $\mu \mathrm{A}$ full scalc 10100 mA full scale, and eight ranges of ohms from 1Ω full scalc to 10 M . null scalc. Autoranging and self-test further expand the 34703's capabilitics.

34720A Gattery module

This center section makes HP's 3470 into a portable DVM with up 10 six hours of controuous operation. Batteries are rechargeable. Module has side handeles and fromt panel batery charge indicator.

34724 日 GCD module

This center section provides nonisolated BCD output for operation with printers.

2802A Thermometer

This unt includes 4 thermomodule (lower unil) which contains temperature measuring circuits, probe connections and operating controls; HP's 34740A 41/2 digit display is included. Option 001 deleles the display for those that want to use their own $41 / 2$ or $~ \$ 1 / 2$ digit display.

34701A Specfications

DC voltage
Renge: $\pm 1 \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$ full scale in four decade ranges.
Dlaplay: 4-digil (34740A) or 5 -digil (34750A).
Full range display:

Range	4-digit display	5-digit display
$\pm 1 \mathrm{~V}$	$\pm 1.0000 \mathrm{~V}$	$\pm 1.00000 \mathrm{~V}$
$\pm 10 \mathrm{~V}$	$\pm 10.000 \mathrm{~V}$	$\pm 10.0000 \mathrm{~V}$
$\pm 100 \mathrm{~V}$	$\pm 100.00 \mathrm{~V}$	$\pm 100.000 \mathrm{~V}$
$\pm 100 \mathrm{~V}$	$\pm 1000.0 \mathrm{~V}$	$\pm 1000.00 \mathrm{~V}$

Overrange: $100^{\circ} \cdot \mathrm{except} 20 \%$ on 1000 V range.

Range selection: manual pushbultons.
Accuracy (30 days, $+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, 595% R.H.):
4-diglt display: $\pm(0.03 \%$ rdg $+0.01 \% \mathrm{rng}$).
$5-\mathrm{dlglt}$ display, $\pm(0.025 \% \mathrm{rdg}+0.005 \% \mathrm{rng})$ -
Temperalure coefficlent $\left(0^{\circ} \mathrm{C}\right.$ 10 $\left.+50^{\circ} \mathrm{C}\right)$:
4-dlglt dlsplay: $\pm\left(0.0035^{\mathrm{m}} \mathrm{rdg}+0.001 \% \mathrm{rng}\right) /{ }^{\circ} \mathrm{C}$.
5 -diglt display: $+\left(0.0025^{\circ} \%\right.$ rag $+0.0002^{\text {置 } \mathrm{mg})} /{ }^{\circ} \mathrm{C}$.
Stabllily ($\mathbf{2 4}$ hours, $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$):
4-digil dlaplay: $\pm(0.01 \% \mathrm{rdg}+0.005 \%$ rng $)$.
5 -diglt display: $\pm(0.008 \%$ rdg $+0.004 \% \mathrm{rng})$.
Reading rale:

Display option	4-dielt display	5-digit display
0 pt $060(60 \mathrm{~Hz}$ rejection)	$5 / \mathrm{s}$	$5 / \mathrm{s}$
Opl 050 (50 Hz rejection)	$8 / \mathrm{s}$	$4 / \mathrm{s}$

Input terminala; Moating pair.
Input resistance: $10 \mathrm{M} \Omega \pm 0.1 \%$.
Effective CMF: $1 \mathrm{k} \Omega$ unbalisnce: $>80 \mathrm{~dB}$ at dc.
Normal mode rejection: $>60 \mathrm{~dB}$ at $50 \mathrm{~Hz} \pm 0.1 \%$ (Opı O50) or al 60 $\mathrm{Hz} \pm 0.1 \%$ (Opl 060).
Maximum Input voltage: $\pm 1200 \mathrm{~V}$, high to low: $\pm 500 \mathrm{~V}$ low to chas. sis.
34702A Specifications (same as 34701A excepi):

DC Voltage

Input reslatance: $1 \mathrm{l} .11 \mathrm{Mn} \pm 0.2 \%$ on JV and 10 V ranges: 10.1 M !
$\pm 0.2 \%$ on 100 V range: $10 \mathrm{M} \Omega \pm 0.2 \%$ on 1 kV range.

AC Voltsge

Voltage range: I V ac to 1000 V ac full seale in four decade ranges. Full range display:

Range	4-digi display	s-digit dlyplay
1 V	1.0000 V	1.00000 V
10 V	10.000 V	10.0000 V
100 V	100.00 V	100.000 V
1000 V	1000.0 V	1000.00 V

I. Because the internal temperature differs on line and basteyy cpention, relerences musi ber ajjusted to ie ginin this specification when tyge of power source is rmanged

Detector: average-responding.
Scale: rms for a sinewave.
Frequency ranger. 45 Hz 10100 kHz
Accuracy (30 days, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 595 \%$ RH):

Oisplay	45 Hz to 20 kHz	20 kHz to 160 kHz
d.digh	$\pm(0.25 \% \mathrm{rdg}+0.05 \% \mathrm{rgg})$	$\pm(0.75 \% \mathrm{dg}+0.05 \% \mathrm{rng})$
$5 \cdot$ digit	$\pm(0.25 \% \mathrm{idg}+0.05 \% \mathrm{rng})$	$\pm(0.75 \% \mathrm{rdg}+0.05 \% \mathrm{mg})$

Temperalure coetflclenl $\left(0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}\right): \pm(0.03 \% \mathrm{rdg}+0.001 \%$ $m g) /{ }^{\circ} \mathrm{C}$.
Slabilily (24 hourg $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$):
45 Hz to $20 \mathrm{kHz}: \pm(0.15 \% \mathrm{rdg}+0.05 \% \mathrm{rng})$.
20 kHz to $100 \mathrm{kHz}:(0.4 \mathrm{~F} \mathrm{rdg}+0.05 \% \mathrm{rng})$
Response time: <2 5 to within $+0.3 \%$ of final value or 20 counts. whichever is greater.
Input impedance: $11.11 \mathrm{M} \Omega \pm 0.2 \%, 80 \mathrm{pF}$ shumi on I V and 10 V ranges; $10,1 \mathrm{M} \Omega \pm 0.2 \%, 80 \mathrm{pF}$ shunt on 100 V jange: $10 \mathrm{M} \Omega \pm 0.2 \%$.
80 pF shunt on 1000 V range.
Input terminale: noating pair
Maximum inpul vollage: 1200 V ms high to low, excepr $2.5 \times 10^{3} \mathrm{~V}$ Hz limil on 1 V range with minimum prolection of 300 V mss und maximem of 1200 V pi $\pm 500 \mathrm{~V}$, p. de 10440 Hz low 10 chassis.
Resistonce
Range: 1000 to $10 \mathrm{M} \cap$ full scalc in 6 decade ranges.
Full range display:

Range	4-digil display	5-digll display
100Ω	100.00Ω	100.000Ω
$1 \mathrm{k} \Omega$	$1.0000 \mathrm{k} \Omega$	$1.00000 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$	$10.000 \mathrm{k} \Omega$	$10.0000 \mathrm{k} \Omega$
$100 \mathrm{k} \Omega$	$100.00 \mathrm{k} \Omega$	$100.000 \mathrm{k} \Omega$
$1 \mathrm{M} \Omega$	$1.0000 \mathrm{M} \Omega$	$1.00000 \mathrm{~m} \Omega$
$10 \mathrm{~m} \Omega$	$10.000 \mathrm{M} \Omega$	10.0000 Mn

Overrange: 100% on all ranges.
Accuracy (30 days, $+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 595 \% \mathrm{RH}$):

Range	4-aiglit display	5-digit display
10 Ma	$\pm(0.25 \% \mathrm{og}+0.02 \% \mathrm{mg})$	$\pm(0.258$ ($08+0.015 \% \mathrm{flg})$
Others	$\pm(0.05 \% \mathrm{rdg}+0.02 \mathrm{rmg})$	$\pm(0.045 \%$ rdg $+0.015 \%$ rug)

Temperalure coefflelent ($0^{\circ} 10+50^{\circ} \mathrm{C}$):
10 Ma ranga: $\pm(0.035 \% \mathrm{rdg}+0.001 \% \mathrm{mg}) /{ }^{\circ} \mathrm{C}$.
Other ranges: $\pm(0.006 \%$ rdg $+0.001 \%$ rng $){ }^{\circ} \mathrm{C}$
Stabillty (24 hours, $+23^{\circ} \mathrm{C}$):
$10 \mathrm{M} \cap$ range: $\pm(0.1 \% \mathrm{r} \partial \mathrm{g}+0.01 \% \mathrm{mg})$,
Olher ranges: $\pm(0.02$ 㣻 rdg $+0.02 \%$ rng $)$.
Input lerminals: floating pair (differen! from voligge input terminals).
Current through unknown: 10 mA on 100Ω range decreasing one decade per successively higher range.
Overlead protectlon: $\pm 350 \vee p$ (248 V sine wave).

34703A Specifications（same as 14701A excepl）
Range selection：auto or manual．
DC vollage
Aange：$\pm 10 \mathrm{mV}$ to $\pm 1000 \mathrm{~V}$ full suale in six ducade ranges． Full range dleptay：

gange	4－digll display	5－digl displsy
10 mV	$\pm 10.000 \mathrm{mV}$	$\pm 10.000 \mathrm{mV}$
100 mV	$\pm 100.00 \mathrm{mV}$	$\pm 100.000 \mathrm{mV}$
1 V	$\pm 1.0000 \mathrm{~V}$	$\pm 1.00000 \mathrm{~V}$
10 V	$\pm 10.000 \mathrm{~V}$	$\pm 10.0000 \mathrm{~V}$
100 V	$\pm 100.00 \mathrm{~V}$	$\pm 100.000 \mathrm{~V}$
1000 V	$\pm 1000.0 \mathrm{~V}$	$\pm 1000.00 \mathrm{~V}$

Overrange： 100% excepl 20% on 1000 V range．
Accuracy（ 30 days， $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ）：

Aange	4－diglt display	5－digit display
10 my	$\pm(0.05 \% \mathrm{rdg}+0.03 \% \mathrm{rag})$	\pm（0．04\％ $\mathrm{dg}+0.025 \%$ \％ mg ）
$\begin{aligned} & 100 \mathrm{mV} \\ & \& 1 \mathrm{~V} \end{aligned}$	$\pm(0.04 \% / 8 \mathrm{~g}+0.01 \% \mathrm{mg})$	$\pm(0.04 \% \mathrm{Fmg}+0.01 \mathrm{mmg})$
Others	$\pm(0.05 \% \mathrm{rdg}+0.02 \mathrm{~N} \mathrm{mg})$	\pm （0．05\％rog $+0.02 \% \mathrm{rgg})$

Temperature coetflcient（ 0° to $50^{\circ} \mathrm{C}$ ）：

Range	4－difll display $(\% \mathrm{Cdg}+\% \mathrm{mg}) \mathrm{per}{ }^{\circ} \mathrm{C}$	5 digit display
10 mV	$\pm(0.003 \%+0.0035 \%)$	$\pm\left(0.0035+0.0035 \%^{\circ}\right)$
$\begin{aligned} & 100 \mathrm{my} \\ & 81 \mathrm{~V} \end{aligned}$	$\pm(0.003 \%+0.001 \%)$	$\pm(0.003 \%+0.001$ 雼）
Others	$\pm(0.0045+00018)$	$\pm(0.004 \%+0.0005 \%)$

Stability（ 24 hours， $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ ）：

Range	4－digil display	5．digit display
10 mV		$\pm\left(0.008{ }^{\circ} \mathrm{mdg}+0.025 \% \mathrm{mg}\right)$
All others	\pm （0．01\％ 0 dg $+0.01 \%$ rag $)$	$\pm\left\langle 0.008 \% \mathrm{P}^{\circ} \mathrm{dB}+0.009\right.$ 界 mg$)$

Inpul terminals：foating pair．
Maximum inpul vollage：$\pm 1200 \mathrm{~V}$ ，high 10 low：$\pm 500 \mathrm{~V}$ ．Iow 10 chassis．
Input reslistance：$\geq 10^{10} \Omega$ on $10 \mathrm{mV}-\mathrm{IV}$ ranges： $10 \mathrm{MQ} \pm 1 \%, 10 \mathrm{~V}-$ 1000 V ranges．
EHective CMR（1 k
Normal mode rejection：$>60 \mathrm{~dB}$ a： $50 \mathrm{~Hz} \pm 0.01 \%$（Op1 050）or 60 $\mathrm{Hz} \pm 0.1$ fí（Op1 060）．
Ohms：four－terminal measurement．
Range：in to $10 \mathrm{M} \cap$ lull scale in six decade ranges．
Full range display：

Range	4－digit display	5－digil display
1Ω	1.0000Ω	1.0000Ω
10Ω	10.0000Ω	10.0000Ω
100Ω	100.000Ω	100.000Ω
$1 \mathrm{k} \Omega$	$1.00000 \mathrm{k} \Omega$	$1.00000 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$	$10.0000 \mathrm{k} \Omega$	$10.0000 \mathrm{k} \Omega$
$100 \mathrm{k} \Omega$	$100.000 \mathrm{k} \Omega$	$100.000 \mathrm{k} \Omega$
$1 \mathrm{~m} \Omega$	$1.00000 \mathrm{~m} \Omega$	$1.00000 \mathrm{~m} \Omega$
$10 \mathrm{~m} \Omega$	$10.0000 \mathrm{~m} \Omega$	$10.0000 \mathrm{M} \Omega$

Overrange： 100% ．
Accuracy： 30 days． $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ．

Range	4－digit display	5－diet oisplay
$1 \Omega-100 \Omega$	$\pm(0.07 \% \mathrm{cog}+0.03 \% \mathrm{mg})$	$\pm(0.06 \% 10 \mathrm{~g}+0.03$ 多 mg ）
$1 \mathrm{k} \Omega \sim$ $1 \mathrm{Mn}$	$\pm(0.06 \% 10 \mathrm{~g}+0.01 \% \mathrm{mg})$	$\pm\left(0.05 \% \mathrm{tag}+0.0 \mathrm{I}^{\circ} \mathrm{rmg}\right)$
$10 \mathrm{M} \Omega$	$\pm(0.12 \% 108+0.01 \% \mathrm{mg})$	\pm（0．12\％rdg +0.01 石（ng）

Slabllity（ 24 hours， $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ ）：

Range	4－dipit display	5－4IEIT dirplay
112	$\pm(0.01 \% \mathrm{rdg}+0.03 \% \mathrm{rgg})$	
109\％theu I MS	\pm （0．01\％rdp $+0.01 \% \mathrm{rag})$	$\pm(0.008 \% \mathrm{rdg}+0.009 \mathrm{grg})$
10 ma	$\pm 10.05 \% \mathrm{sdg}+0.01 \% \mathrm{mg})$	$\pm(0.05 \% \mathrm{rdg}+0.009 \% \% \mathrm{rag})$

Temperature coefficlent $\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$ ：

Range	4－digh display $(\% \mathrm{dd}+\% \mathrm{mq}) \text { per }{ }^{\circ} \mathrm{C}$	5－digil display （ $\% \mathrm{rdg}+{ }_{8}^{\circ} \mathrm{rng}$ ）per ${ }^{\circ} \mathrm{C}$
1Ω	$\pm(0.0095 \%+0.004 \%)$	$\pm(00095 \%+0.0032 \%)$
$\begin{gathered} 10 \Omega- \\ 1 M \Omega \end{gathered}$	$\pm(0.0095 \%+0.001 \%)$	$\pm(0.0035 \%+0.0005 \%)$
$10 \mathrm{~m} \Omega$	$\pm(0.0685 \%+0.001 \%)$	$\pm\left(0.0685 \%\right.$ 管 $+0.0002{ }^{\text {c }}$ ）

Input temminal：Moating pairs（4 lemminals）．
Maximum voltage across unknown： 8 V ．
Maximum current thru unknown： 10 mA on 1 I range decreasing 10 $0.1 \mu \mathrm{~A}$ on $10 \mathrm{M} \Omega$ range．
Overload prolectlon：$\pm 350 \mathrm{~V}$ peak（ 248 V sine wave）
Elfective CMR（ 1 k ！unbalance）：$>80 \mathrm{~dB}$ al dc．
Normal mode rejection：$>60 \mathrm{~dB}$ at $50 \mathrm{~Hz}+0.1 \%$（Opı 050）or 60 Hz $\pm 0.01 \%$（Opl 060）．
DC current
Renge： $1 \mu \mathrm{~A} 10100 \mathrm{~mA}$ full scale in six decade ranges．

Full scale display;

Renge	4-digil display	5.dgil display
$1 \mu \mathrm{~A}$	$\pm 1.0000 \mu \mathrm{~A}$	$\pm 1.0000 \mu \mathrm{~A}$
$10 \mu \mathrm{~A}$	$\pm 10.000 \mu \mathrm{~A}$	$\pm 10.000 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$	$\pm 100.00 \mu \mathrm{~A}$	$\pm 100.00 \mu \mathrm{~A}$
1 mA	$\pm 1.0000 \mathrm{~mA}$	$\pm 1.0000 \mathrm{~mA}$
10 mA	$\pm 10.000 \mathrm{~mA}$	$\pm 10.000 \mathrm{~mA}$
100 mA	$\pm 10000 \mathrm{~mA}$	$\pm 100.00 \mathrm{~mA}$

Overrange: 100\%.
Accurecy (30 days, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$):

Range	4-dipil display	5-digil display
$1 \mu \mathrm{~A}-1 \mathrm{~mA}$	$\pm(0.10 \% \mathrm{rdg}+0.03 \% \mathrm{rmg})$	
$\begin{aligned} & 10 \cap \mathrm{~A}- \\ & 100 \cap \mathrm{~A} \end{aligned}$	$\pm(0.30 \% \mathrm{rdg}+0.03 \% \mathrm{mrg})$	$\pm(0.30 \% \mathrm{rdg}+0.03 \% \mathrm{rag})$

Slability (24 hours, $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$):

Range	4-dipit display	5-digil display
All ranges	$\pm(0.02 \% \mathrm{rdg}+0.03 \% \mathrm{rgg})$	

Temperature coetficient: $\pm(0.004 \%$ rdg $\pm 0.004 \%$ rng $) /{ }^{\circ} \mathrm{C}$.
Maximum Input currenl: 300 mA pk .
Input resistance: $10 \mathrm{k} \Omega$ on $1 \mu \mathrm{~A}$ range decreasing to 18 on 100 mA range.
Effectlve CMR ($1 \mathrm{k} \Omega$ unbalance): $>80 \mathrm{~dB}$ at dc.
Normal mode rejection: 260 dB at $50 \mathrm{~Hz} \pm 0.1 \%$ (Opt 050) or 60 Hz $\pm 0.1 \%$ (Op1 060).

2802A Specifications

2802A Digital Thermomefer is complete with di! digil HP 34740A display, less probe. OpLion 050 for 50 Hz or Opian 060 for 60 Hz operation must be speciliced.
These specifications ure "rotal systen specificalions" meining they apply to bolh the instrument and the probe working together (not just the best electronic specifications for the instrumen by itself). HP 2802A Thermometer specifications relate directly to system perfor. mance under actual working conditions.
Ranges: $-200^{\prime} 10+600^{\circ} \mathrm{C}$ and $-100^{\circ} 10+200^{\circ} \mathrm{C}$.
Resolution: $0.1^{\circ} \mathrm{C}$ on -200° to $+600^{\circ} \mathrm{C}$ range. $0.01^{\circ} \mathrm{C}$ on -100° to $+200^{\circ} \mathrm{C}$ range.
Accuracy: $\pm\left\{0.5^{\circ} \mathrm{C} \pm 0.25\right.$ \% of rading) on both ranges.
Dlaplay: $4!2$ digits LIED on HP 34740A Module
Stablalty: $\pm 0.2^{\circ} \mathrm{C}$ for seven days ($23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient).
Linear analog outpul: $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ on $-200^{\circ} 10+600^{\circ} \mathrm{C}$ range (-0.2 V $10+0.6$ V FS $) .10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ on $-10010+200^{\circ} \mathrm{C}$ range ($-1.0 \mathrm{~V} 10+2.0$ \checkmark F'S), Voltage accuracy equal to that of digial display. Outpuat impcdance I k Ω un boih ranges.
Environmental standerd: HP 2802A 7 hermometer operalus winhn these specifications in envirunments of 0° to $50^{\circ} \mathrm{C}$ and up to 95% relative humidity over mow of this temperature range. After calibration in some arbitrary ambient temperature, instrument calibration remains valid with anshient temperature changes up to $10^{\circ} \mathrm{C}$.

For the following probes, time constant is determined using water nowing at 1 m per second. Sensar ranges specified below are nominal. Consideration must be given to heat deterioration of lead insulation at elevated temperatures.
186.4)A Probe contains the sensor in the tip of a I\} cm (5 in) stainless steel sheath, 6.4 mm ($1 / 2 \mathrm{~m}$.) diameter, with armored cable 1.8 m (6 fi.) tong. It operates from -200 to $+500^{\circ} \mathrm{C}, 10+600^{\circ} \mathrm{C}$ short ierm. Cahle novement must be prevented above $250^{\circ} \mathrm{C}$. Time constant is live seconds.

18642A Probe is the same as the 18641 A except shat it has a Tef Ion-insulated cable 1.8 m long. This cable must be kept below $250^{\circ} \mathrm{C}$.

18643A Probe contains the sensor in the tip of a 13 cm stamess steel sheuth. For fast response, the last $5.1 \mathrm{~cm}(2 \mathrm{in}$) or the sheath tip is reduced to $0.32 \mathrm{~cm}(0.13 \mathrm{in}$.$) diameter. This probe operates from$ $-200^{\circ} 10+500^{\circ} \mathrm{C} .10+600^{\circ} \mathrm{C}$ short term. It has a 1.8 m Teflon-insulated cable. This cable must be kept below $250^{\circ} \mathrm{C}$. Time constant is I .8 seconds.

For all models

Operating temperature: $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $74^{\circ} \mathrm{C}$.
Power: ≤ 8.7 VA at $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}+5 \%,-10 \%$ switchable: 48 Hz to 440 Hz .

Weight:	Nel	Shipping
34701^ DC VM, 34702A or		
34703A Multimeter	$0.9 \mathrm{~kg}(2 \mathrm{lb})$	1.47 kg (3 lt. 4 oz)
34740A 4-digit display or		
34750A 5-digil display	$1.36 \mathrm{~kg}(3 \mathrm{lb})$	$1.92 \mathrm{~kg}(4 \mathrm{lb} 40 \%)$
34750A Batiery module	2.27 kg (5) $\mathrm{Jb}^{\text {) }}$	$2.95 \mathrm{~kg}(6 \mathrm{lb} 4 \mathrm{oz})$
34721 A BCD module	$0.68 \mathrm{~kg}(1 \mathrm{lb} 8 \mathrm{oz}$)	$1.25 \mathrm{~kg}(2 \mathrm{lb} 2 \mathrm{oz})$
2802 A Thermomodule + display	2.27 kg (5 lb)	3.39 kg (7 lb 8 oz)

Dimenslons:

Dlaplay + meter: 247.7 mm decp $\times 158.8 \mathrm{~mm}$ wide $\times 98.4 \mathrm{~mm}$ high $\left(91 / \pi^{*} \times 61 / 3^{*} \times 31 / \pi^{\prime \prime}\right)$.
Whh battery module: 247.7 mm deep $\times 171.5 \mathrm{~mm}$ wide $\times 136.5$ mm high $\left(91:{ }^{*} \times 6 \%{ }^{*} \times 53 /{ }^{*}\right)$.
Wlth 日CD module: 247 mm deep $\times 171.5 \mathrm{~mm}$ wide $\times 127 \mathrm{~mm}$ high ($9 y_{4} \times 6032^{n} \times 5^{\prime \prime}$).
Accessories avaliable: 11096 A High Frequency Probe, measures to 500 MHz . A ccepts 0.25 V 1030 V signals with input impedance of 4 Mn shunted by 2 pF : 11456 A Read Out Test Card for iesting and troubleshooiing either display: II457A Rack Mount Kit for either display: 34721A BCD Module and one bottom section 11458 Carrying Strap: 18019A Carrying Case accommodatex elther display, a censer section and a bollom section plus power cord and input cables; 36A10C Cable for operating 5055A Digital Recarder: 18641A Probe; 18642A Probe: 18643A Probe: 18644A Probe Kil.

Opllons and accoseories	Price
Oplion 050, 50 Hz rejection	N / C
Oplion 060,60 Hz rejection	N/C
2802A Digital Thermometer (includes 41/2-digil display)	
Option 050 (50 Hz rejection) Oplion 060 (60 Hz rej.)	N/C
Option 001 - (botiom module only).	\$750
I 1096a High Frequency Probe	\$87
11456A Read Out Test Card	\$62
II457A Rack Mount Kit (for either display)	\$45
11458 Carrving Sirap	\$5
56A-J6C Cable for operating 5055A Digital Recorder	\$60
18019A Carrying Case	\$35
18641A Probe	\$165
18642A Probe	\$150
18643A Probe	\$180
18644A Probe Kil	\$105
Model number and name	
34701A DC Volmmer	\$184
34702A Multimeter	\$315
34703A DCV/DCA/8 Mcter	\$725
34720A Botlery Module	\$245
34721 B BCD Module	\$210
34740A 4-digii display'	5405
34750a 5 -digil display	\$665

Option 050. 50 Hz rejection
ice
Oplion 060, 60 Hz rejection
2802A Digital Thermometer (includes $41 / 2$-digil display)
Option 050 (50 Hz rejection) Option 060 (60 Hz rej.)
N/C
Option 001 - (botiom module only).
562
II4S7A Rack Mount Kit (for cither display) \$45
11458 Carrving Sirap \$5
56A-J6C Cable for operating 5055A Digital Recorder $\$ 60$
18019A. Carrying Case $\$ 35$
8641 A Probe
18642A Probe
$\$ 150$
8643A Probe

Model number and name
3470IA DC Vohmeter \$184
34702A Multimeter \$315
34703A DCV/DCA/Q Mcter \$725
20A Batlery Madule
34740A 4-digil display
34750A 5 -digit display $\$ 665$

3480 C/D Description

HP's 3480C/D Digital Volimeter covers a variety of systems and bench applications. The Jour-digit mainliame has 50 品 overeanging which is available in two sizer, one-half modyle 3480C. or full rack width. 3480D. These mainframes accommodate the 3484A. The 3484A has five de ranges, five true rms ac ranges and six ohms sanges.

Mainframe options further enhance the ncxibility of HPs 3480 . To digitize changing voltages al rates up to 1000 readings $/ \mathrm{s}$. Option 001 Sample-and-Hold is available. Option 004 Isolated BCD is available to provide digital output information.

Optlons

The isolated BCD (Option (004) diglal oulput option is designed to eransmit digital information from the DVM to external devices such as printers. tape punches, couplers, computers, etc. Information transmilled consists of the reading, polarity, range, function, ond overload.

The Sample-and-Hold (Option OD1) allows HF's 3480 to be used to cconomically digilize low frequency wave forms. Precision four-digil measurements are possible on a changing input voltage al reading rates up to $1000 / \mathrm{s}$.

Sample-and-Hold is physically located in the 3480's mainframe. Input voltage is iracked until a trigger is given, then Sample-and-Hoid freezes the input vollage and holds it for the 1 ms digitizing period of the $\mathbf{3 4 8 0}$. A fler digilization, tracking resumes aytomatically.

Sample-and-hold specifications
Plug-in response times, to a step input to settle to within 0.01% of final value are $100 \mu \mathrm{~s}$ on 100 mV \& $70 \mu s$ on $1 \vee 101 \mathrm{XV}$ ranges
Maximum plug-in slew rale: any plug-in, 8% of range $/ \mu$.
Aperture thme; time between the command to hold and the point in time when the signal is actually heid.
I. If Sample/Hold is triggered normally, aperture time is 110 ns .
2. If Sample/Hold is inggered through the built-in delay, add loS $\mu \mathrm{s}$ to the normal aperture time. (Used when input amplifier must be allowed to settle).

General

Operating temperalure: $0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \% .40 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 60 \mathrm{VA}$ max, including any plug-ins or oprions.

DImensions:

3480C: 203.2 mm wide $\times 154.8 \mathrm{~mm}$ high $\times 406.4$ mm deep ($8^{\prime \prime} \times$ $6 y_{12}{ }^{\prime \prime} \times 16^{\prime \prime}$). (Half-rack widıh module).
3480D: 422.8 mm wide $\times 85.7 \mathrm{~mm}$ high $\times 466.7 \mathrm{~mm}$ deep $\left(161 /{ }^{1} \times\right.$ $\left.31 / 8 " \times 181 / 8^{\prime \prime}\right)$. (Rack width module).
Weights:
3480C: nct. 5.7 kg (12 Jb 8 oz). Shipping, 7.65 kg (17 lb).
34800: nel, 6.15 kg (13 ib 8 oz). Shipping 81 kg (18 lb).

3484A Description

HP's 3484A has five de voliage ranger seleciable eirher manually or automatically. Options offer five true rms ac ranges and six ohms ranges. The irue rms ac converter eliminates crror caused by small amounts of distortion on the input signal, and also extends measure. ment capability to measurement of non-sinusoids. Frequency range extends from $1 \mathrm{H} \geqslant$, 010 M Hz The ohms converter covers from 100.00 ohms to 10.000 megohm fuil scale. Remote selection of range. funclion and fliser position is possible with Isolated Remole Control. Op. lion 041 .

3484A Multifunction unit specifications

DC voltages

Renges:
Full range display: $\pm 100.00 \mathrm{mV}, \pm 1000.0 \mathrm{mV}, \pm 10.000 \mathrm{~V}$. $\pm 100.00 \mathrm{~V}$ and $\pm 1000.0 \mathrm{~V}$.
Overrange: 50% on all bul 1000 V range, $\pm 1200 \mathrm{~V}$ max inpul.
Range selectlon: manual, automatic or rcmote.
Automalic ranging: upranges at 140% of range: downranges al 10\% of range.

Pefformance

Accuracy: (90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$).
100 mV range: $\pm(0.01 \%$ of reading $+0.02 \%$ of range $)$.
All other ranges: \pm (0.01\% of reading $+0.01 \%$ of ringe).
Measuring epeed: (the following apply only if no programming changes of any kind occur cither during or betweon readings).
Response tlme to a step input
Fitter out: 1 ms to within I count of final rcading.
Fitter A: 200 ms to within 1 count of final reading.
Filter 8: I sto within l'count of final reading.

Feading rate (wlthout range change):
Manual: initiated with front pand pustbbutton.
Internal: 1 to 25 per s with front pancl control.
External: 0 to 1000 per s with external trigger.

tnput characteristics

Input realstance:
$100 \mathrm{mV}, 1000 \mathrm{mV}, 10 \mathrm{~V}$ ranger: $>10^{10} \Omega$.
$100 \mathrm{~V}, 1000 \mathrm{~V}$ ranget: $10 \mathrm{M} \Omega \pm 0.1 \varepsilon_{i}^{\prime} ;$
Common mode rejection: $>80 \mathrm{~dB}$. dc 1060 Hz ($1 \mathrm{k} \Omega$ unbalanced).
Normal mode rejection:
Fliter out: 0 dB .
Filter $A:>27 \mathrm{~dB}$ al 50 Hz and above.
Filter $\mathrm{B}:>77 \mathrm{~dB}$ al 50 Hz and above.
Filter ealection: manual or renote.
Noles (100 mV range): 4 counts or less of rack will be observed 95% of the time duc to gaussian distribution of the noise.
Maximum Input valtage:
Guard to chassia: $\pm 500 \mathrm{~V}$ peak.
Guard to low: $\pm 200 \mathrm{~V}$ peak.
High to low: $\pm 1200 \vee$ prak.

General

Welght: net $1.9 \mathrm{~kg}(4 \mathrm{lb} 4 \mathrm{oz})$. Shipping, $3.15 \mathrm{~kg}(7 \mathrm{lb})$

Ohms، option 042
Ranges:
Full range display: $100.00 \mathrm{n}, 1000.0 \Omega, 10.000 \mathrm{k} \Omega, 100.00 \mathrm{k} \Omega$. $1000.0 \mathrm{k} \Omega$, and $10.000 \mathrm{M} \Omega$.
Overrange: 50% on all ranges.
Range selectlon: manual, automatic, or remote.
Autornatic ranging: upranges al 140% of range: downranges at 10% of range.

Perfomance

Accuracy: (90 days. $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$). 1000 放 thru $1000 \mathrm{k} \Omega$ ranges: $\pm(0.01 \%$ of reading $+0.01 \%$ of range).
100 r range: $\pm\langle 0.02 \%$ of reading $+0.05 \%$ of range $)$.
10 M Ω range: $\pm(0.1 \%$ of reading $+0.01 \%$ of range).
Mesauring apeed: (the following apply only if no programming
changes of any kind occur either during or berween readings).
Respones lime to a etep input:
Fiter out: 100π thru 100 kin ranges 1 ms to within 1 count of firial reading.
Filter A: 1000 k 12 range. 200 ms to within one count of final read-
ing. 10 M!? fange. 2 s to within 1 coum of final reading.
Fither B: nol recomaiended because of long response time.
Reading rale (without range change):
Manual; rcading may be manually initiated with front panel pushbullon.
Internal: 1 to 25 s with frone panel control.
External: 0 to $1000 / \mathrm{s}$ with external irigger.

Input characteriatics

Voltage acrosa unknown: i V at full scalc, all ranges.
Current thru unknown: 10 mA on 100Ω range. decreasing one decade on cach successively higher range.
Overioad protection: $\pm 75 \vee$ peak on all ranges.
True AMS AC voltage, oplion 043

Ranges:

Full range diaplay: $100.00 \mathrm{mV} .1000 .0 \mathrm{mV}, 10.000 \mathrm{~V}, 100.00 \mathrm{~V}$, and 1000.0 V .

Overrange: 50% on all ranges. 1500 V peak max inpul.
Range seleolion: manual, dutomatic or remote.
Automatle ranging: upranges al 140% of range: downranges at 10% of range.

Performance

Accurscy: (90 days. $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} .95 \% \mathrm{RH}$).
$D C: \pm 1.0 \%$ of reading. 60% to 150% of range.
AC: as specificed by graplas.

Response

VAC (AC) function: responds to true rms value of ac coupled input signal.
VAC (DC) łunction: responds to (rue rms value of dc and ac inpus signal. Reading is $\sqrt{(\mathrm{dc})^{2}+(\mathrm{ac} \mathrm{ms})^{2}}$.
Funclion selection: manual or remole.
Input impedance: 2 Mn paralles $\Delta 5 \mathrm{pF}$.
Creet fector: 7:I al full scale. derated linearly from 35 Hz to 2.2:1 a 5
H
Maximum input vollage
VAC (DC): 1500 V peak $\mathrm{ac}, 100 \mathrm{~V} d c,(10 \mathrm{~V}$ de max on 100 mV range) $d c+a c=1500 \mathrm{~V}$ max.
VAC (DC): $1000 \vee$ гл3s; $d c+a c=1500 \vee$ max.

Measuring speod

Response lime (without range change):
VAC (AC): Is to within 10 counts of final seading (input change from 10% to $100^{\pi_{n}}$ of range) or 20 counts of final reading (inpul change from 1009 to 10 男 of range).
VAC (DC): 155 to within 10 counts of final reading.
Reading rate:
Manual: reading may be manually iniuated with Iront pancl pushbutton.
Internal: I to 25 per s with front panci control.
External: 0 to 1000/s with external trigger.
Accurecy
VAC (AC) AC coupled (these speclicestione are for 60% of fullscale and above):

FREQUENCY

Range	$\begin{gathered} 10 \mathrm{Hzlo} \\ 20 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 20 \mathrm{~Hz} \\ 10200 \mathrm{hHz}_{2} \end{gathered}$	200 kHz to 1 mHz	$\begin{aligned} & 1 \mathrm{mHz} \text { to } \\ & 10 \mathrm{mHz} \end{aligned}$
$\begin{gathered} 100 \mathrm{mV} \\ \text { and } \\ 1000 \mathrm{mv} \end{gathered}$	$\begin{gathered} \pm 0.2 \% \text { ol } \\ \text { reading } \end{gathered}$	$\pm 0.1{ }^{5}$ of resding	$\begin{gathered} \pm 0.25=0 \\ \text { reading } \end{gathered}$	$\begin{aligned} & \pm 2 \% \text { of } \\ & \text { reading } \end{aligned}$
10 V .100 V and 1000 V			± 0.48 ol reading	

VAC (DC) DC Couplad, AC Component (these specifications are for 60% of fullacsile and above):
fREQUENCY

RANGE	$\begin{gathered} 1 \mathrm{~Hz} 10 \\ 20 \mathrm{~Hz} \end{gathered}$	20 Hz lo 100 kHz	$\begin{gathered} 100 \mathrm{kHz} \text { to } \\ 200 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 200 \mathrm{kHz} \text { to } \\ 1 \mathrm{mHz} \end{gathered}$	1 mHz to 10 mHz
100 mV and 1000 mp	± 1 ol reading	$\pm 0.1 \%$ ol reading		$\begin{gathered} \pm 0.25 \% \text { al } \\ \text { reading } \end{gathered}$	$\pm 2 \%$ of reading
$10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V				$\pm 0.48_{0}$ of reading	

DC component $\pm 1 \%$ of readiog
Wolght: net, $2.75 \mathrm{~kg}(6 \mathrm{lb} 2 \mathrm{oz})$. Shipping, $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
General
Weight: nct, $3.2 \mathrm{~kg}(7 \mathrm{lb} .3 \mathrm{oz})$. Shipping, $4 \mathrm{~kg}(8 \mathrm{lb}, 14 \mathrm{oz})$.
Options available: Price
3480C. Option D01, Sample-and-Hold $\$ 580$
3480C, Oplion 004, Isolated BCD Digital Ouipul $\$ 440$
3480D, Option 001, Sample-and-Hold $\$ 580$
3480D. Option 004, Isolated BCD Digital Output $\$ 440$
3484A, Oplion 041, Isolated Remole Control $\$ 245$
3484 A , OpLion 042, Ohms Converter $\$ 280$
3484A, Option 043. True RMS AC Converter $\$ 1280$
Model number and name
3480C Digital Voltmeter $\$ 1160$
3480D Digital Voltmeter $\$ 1195$
3484A Müli-Function Unit $\$ 1420$

Description

Hewlell-Packard's Model 3490A Multimeter is a live-digit integrating digital voltmeter. The basic instrument measures de voltages, ac vollages, and resistances. Additional measurement capability is achieved by the addition of low cost options.

HP's 3490A uses a dual slope integrating rochnique and as lully guarded. providing excellent noise immanity it five readings per secund of all de ranges. Ranging is automatic over all ranges on all luncfions. DC measurements can be made with $1 \mu \vee$ resolution on the 100 mV range. AC voltage measurements can be made from 20 Hz to 250 kHz in four ranges. The I V range provides $10 \mu \mathrm{~V}$ of ac vollage resolution. Ohms measurements can be made, utilizing the four-wire conversion lechnique which eliminates crrors due 10 test head resistances. Six ranges of ohms, including a 1002 range, are provided. All functions and ranges include 20% overranging except the 1000 V range.

Display

The 3490A uses Hewlent-Packard's light emilting diodes (LED's). These display degits are the seven segment type. The extremely high reliability of this L.ED display assures maximum life.

Self-test

At the Mip of a switch. Hewlell-Packard's 3490A Digital Muliimeter sequences itself through 10 lests that cheek timing signals and autoranging circuits, validate the performance of most logic-circuil IC's and check the six-digil LED display. These lests, and six others provided by six additional front-pancl switches, cut calibration costs and ensure the DMM is ready to make accurate measurements.

DC functlons

The standard 3490A includes five ranges of de measurement capability fram 100 mV io 1000 V . Measurements are made from the front panel al a precise tive readings/s, and at slower rates, using digitally controlled sample rate selector. High inpul resisiance, $>10^{10} 2$ on 100 $\mathrm{mV}, \mathrm{I} V$, and 10 V range. assures accurate measurement of high impedance sources.

AC tunctions

Four ranges of ae meakurements ate provided. The arerage ac value is aceurately detected, and the rms value is displayed with five digits of resolution. Full autoranging, wide irequency response, and 20% overranging are designed-in fettures to permit easy operation.

Ohms

Six ohms ranes are slandard. and all ranges provide iruc four-wire ohms measurement capability. Maximum curfent through the unknown is approximately) mA. Over-voltage prolection for ohms sensing terminale insures meximum protection againat inaducrent application of a high voltage to ohms terminals. Over-voltage prolection is provided to 250 V and fuse protection to 1000 V .

Serviceability

HP's 3490A has been "designed for servioubility," Inside. the 3490's low parls density provides easy access for servicing. Test points and jumpers are keyed to demiled diagnostics.

Several diagnostic aids are available 10 furaher minimize 3490A repair time. A service viden lape, Accussory No. III28A, will demonstrate use of self-tesl and frunt pancl symploms to isolaie failures. The III26A aceessory provides a set of IC reference boards wilh mosl of the 3490A logic IC's Jor use with HP 10529A Logic Comparator. Using these boards with the Logie Comparator, a faulty IC can be isolated in seconds without removing it from the cireuin. Also, a spare parls set, Acoessory No. 11127 A , containing most critical components of the ?490A, will be available.

Options

Systems applicatlons

Model 3490A offers builu-in חexibility for sysiems applications. HP's 3490A offers both HP-lB interface and a bit parallel (BCD coded) interface. This combination provides the necessary versatility to configure the lowest cosi instrument system.

Fath, opl 080

DC/DC and AC/DC ihreewire ratio measurements can be conveniently added to the 3490 A . This cupability offers both auto-polarity and a selection of (wo reference ranges. The 1 V and 10 V ranges are specified from 10% to 120% of selected range. Ratio function is not programimable.

50 Hz operallon, opt 050

60 Hz operalion, opt 060

Maximum noise immunily is achieved when power line frequency is harmonically relatod to the sample period of the iniegrating DMM. Option 050 will maxinvize normal and common mode rejeclion l'or 50 Hz power line frequency. and Option 060 will psovide this rejection lor 60 Hz .

Sample/hold, optlon 040 and 045

Sample/Hold provides HP's 3490A with extra and unique measurement capability.

The Sample/Hold option has iwo modes of operation to solve difficult measurement problems.

Track and hold: in this mode. input vollage is held instantly upon recciving an cxtermal command. This mode is useful in digitization of repetilive or transicnt waveforms.

Acquire and hoid: in this mode, a known delay is insented to permil the input amplifier to settle to a specified accuracy. This is useful in measuring pulse height or any similar slep input.
Digital output, opt 021 and remote control, opt 022
These options provide digital control and data output in the paral. lel BCD code of 8-4-2-1. either negative or positive irue logic. Seleclion is accomplished by positioning an inlernal switch. The remoie control option provides complete control of all funclions, ranges. and external irigger commands. The digital outpui option provides nine columns of information which includes iunction, polarity, data, and range. These options may be purchased separately (o) meet specific application requirements. Either of these options requirc Option 020 Systems Expand.

ECD/remote

Both Oplion 021 and 022 require Option 020, BCD/Renrole Expand. This option provides the required internal and extemal conneelors to permit user installation of Digital Oulput. Opt 021 and /or Remote Conirol, Opt 022 and should be ordered as an initial oplion on HP's 3490A. This option includes ewas lerminals in parallel (switchable fronl/rear (erminals are ayailable as a special - H19). HP-IB (character serial bt parallel) data inpul/output, opt 030

The data control and dala oulput option permils HP Model 3490A 10 operate on a single data/control bus with up 1014 other instruments. This serial code is an eight-bit byte lypically using an ASCIIlype coding. A unique "talker/listencr" address siructure makes the system's hardware more economical and associated software much simpler. The HP-IB is compatible with Hewlett-Packard Model 9800 Series calculators us well ds Hewlelt-Packdid computers.

Specifications

DC voltage ranges
Full range display: $\pm .100000 \mathrm{~V}, \pm 1.00000 \mathrm{~V}, \pm 10.0000 \mathrm{~V}, \pm 100.000$ V. $\pm 1000.00 \mathrm{~V}$.

Overrange: 20% on all ranges except 1000 V range.
Range selectlon: manual, iutomatic, or remote (oplional).

DC voltege performance

Accuracy: \pm (\% of reading $+\%$ of rangc).

		0.1 VRarice	15101000 U Rance
		\% rdg. \% mg.	\% idg. qring.
24 his	$\left(23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right)$	$\pm(0.005+0.001)$	$\pm(0.004+0.001)$
30 days	($23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)	$\pm(0.01+0.005)$	$\pm(0.008+0.002)$
90 days	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$)	$\pm(0.01+0.005)$	$\pm\{0.0\}+0.002)$
6 months	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.013+0.005)$	$\pm(0.013+0.002)$
1 year	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.015+0.005)$	$\pm(0.015+0.002)$

DC voltage input cheracterlstics: fully guarded with 140 dg ECMR at de and $60 \mathrm{~Hz} \pm 0.1 \%$ witr: kn imbalance between suard and low.
Maximum input vollage:
0.1 V to 1000 V ranges: $\pm 1500 \mathrm{~V}$ pcak.

Guard 10 chasgls: $\pm 500 \mathrm{~V}$ peak.
Guard lo low: $\pm 300 \mathrm{~V}$ peak.

Inpul realetance:

0.1 V to 10 V ranges: $>2 \times 10^{16 \Omega}$. ($<70 \% \mathrm{R} . \mathrm{H}$.).

100 V and 1000 V ranges; $10 \mathrm{MR} \pm 0.15 \%$.
Maximum reading rate: 5 readings/s.
Normal mode rejection ratio: $50 \mathrm{~Hz} \pm 0.15 ; 60 \mathrm{~Hz} \pm 0.15 \%>50 \mathrm{~dB}$.

Noles:

1. On the 1000 V range, add $0.04 \mathrm{ppm} /$ volt to the \% of reading specification.
2. Thermal EMF's generated external to the DVM may be compensated to achieve the \% of range accuracy specified by utilizing the rear panel zero adjust provided in the 3490 A .

AC voltage ranges

Full renge display: $1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}, 1000.00 \mathrm{~V}$.
Overrange: 20% on all ranges excepl 1000 V range.
Range seleation: manua), automatic, or semote (optional).

AC voltage pertormance
Accuracy: \pm (\% of rcading + \% of range):

		$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	$50 \mathrm{~Hz}-100 \mathrm{kHz}$	$100 \mathrm{hhz}-250 \mathrm{kHz}$
24 hrs	$\left(23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right)$	$\pm(0.32+0.05)$	$\pm(0.09+0.025)$	$\pm(0.7+0.06)$
30 days	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.35+0.05)$	$\pm(0.1+0.025)$	$\pm(0.75+0.06)$
90 days	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.35+0.05)$	$\pm(0.1+0.025)$	$\pm(0.75+0.05)$
6 monlhs	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.40+0.06)$	$\pm(0.12+0.035)$	$\pm(0.75+0.08)$
1 year	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.45+0.07)$		

AC voltage input impedance

Whinout rear terminals: $2 \mathrm{M} \cap \pm 1 \%$ shunted by $<65 \mathrm{pF}$.
With rear terminals: $2 \mathrm{Mn} \pm 1 \%$ shunted by $<90 \mathrm{pF}$.
$A C$ voltage maximum reading rate: I reading/s.
AC voltage response ilme: <1 s to within rated accuracy for a slep input applied coincident with encode trigger.
AC maxlmum input vollage: 1000 V rms: $\pm 1500 \mathrm{~V}$ peak.

Noleas:

1. Guard must be connected to low.
2. On the 1000 V range. add $0.01 \mathrm{ppm} /($ voll $1-\mathrm{kHz}$).
3. Frequencies $>100 \mathrm{kHz}$ specified on 1 V and 10 V ranges only.
4. Specifications are for input levels above $1 / 100$ h of full scalc.

Ohres ranges
Full range display: $100000 \times \Omega, 3.00000 \mathrm{k} \Omega, 10.0000 \mathrm{k} \Omega, 100.000 \mathrm{~km}$, $1000.00 \mathrm{k} \mathrm{n} .10000 .0 \mathrm{k} \Omega \mathrm{l}$.
Overranga: 20% on all ranges.
Range selectlon: manual, automatic, or remote (optional).

Ohms performance

Accuracy: \pm (\% of reading $+\%$ of range).
Note: Themal EMFs generated external to the DVM may be compensated to achieve the \% of range accuracy specified by utilizing the rear panel zero adjust provided in HP's 3490A.

		0.1 kI	$1 \mathrm{k} \Omega$ - $100 \mathrm{k} / 3$	$1000 \mathrm{k} \Omega$	$10.000 \mathrm{k} \Omega$
		$\% 108.8 \%{ }^{\circ} \mathrm{mg}$		\% 108.8 mmg	$\% \text { ofg. } \quad \% \text { ing. }$
24 hrs	$\left(23^{\circ} \mathrm{C} \pm\right)^{\circ} \mathrm{C}$)	$\pm(0.006+0.001)$	$\pm(0.005+0.001)$	$\pm(0.007+0.001)$	$\pm(0.025+0.001)$
30 days	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.012+0.005)$	$\pm(0.010+0.002)$	$\pm(0.012+0.002)$	$\pm(0.035+0.002)$
90 days	$\left(23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$)	$\pm(0.012+0.005)$	$\pm(0.012+0.002)$	$\pm(0.015+0.002)$	$\pm(0.035+0.002)$
6 monlhs	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$)	$\pm(0.015+0.005)$	$\pm(0.015+0.002)$	$\pm(0.020+0.002)$	$\pm(0040+0.002)$
1 year	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$)	$\pm(0.018+0.005)$	$\pm(0.018+0.002)$	$\pm(0.025+0.002)$	$\pm(0.050+0.002)$

Ohms terminal characteriatics

Maxdmum voilage generated across unknown: 20 V for overload: 13 V for valid reading.
Ohms current thru unknown:
$0.1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ range: 1 mA .
100 kO to $1000 \mathrm{k} \Omega$ renge: $10 \mu \mathrm{~A}$.
10,000 kR range: $1 \mu \mathrm{~A}$.
Ohme overload protection:
Nondestruclive: 250 V rms.
Fuge dealrucive: $\pm 1000 \mathrm{~V}$ peak.
Ohms maximum reading rate:
$0.1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ range: ς readings $/ \mathrm{s}$.
1000 kR range: 4 reading s / s.
$10,000 \mathrm{k} \Omega$ range: 2 readings/s.

General

Data oulpul (8CD), aption 021
Data oulpul is 1-2-4.8 TTL outpul which is compatible with HP 562A. SOSOB. and 5055A Digital Reconders. Either high true or low irue logic code can be selected with an internal switch.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Power: 100 V. 120 V. 220 V. $240 \mathrm{~V}+5 \%,-10 \%, 48 \mathrm{~Hz}$ to 400 Hz linc operation $\leq 60 \mathrm{VA}$ with all options.
Dlmensions: 425.4 mm widc, 85.7 mm high. 466.7 mm decp ($161 /{ }^{*} \times$ $33 / /^{*} \times\left(83 / x^{*}\right)$.
Welght: nel, 9.38 kg ($20 \mathrm{lb} / \mathrm{I}$ or). 5 hipping. 11.79 kg (26 lb).
Opllons Price

020: BCD /remole expand. includes rear lerminals in
parillel $\$ 236$
$\begin{array}{ll}\text { 021: BCD } \\ \text { 02: full parallet, } 1-2-4-8 \text { code } & \text { \$295 }\end{array}$
022: Remole* - full parallel. 1-2-48 code $\$ 1045$
030. HP -IB remote control and data output $\begin{aligned} & \text { 040: Sample-and-hold }\end{aligned} \begin{aligned} & \text { \$1045 } \\ & \$ 525\end{aligned} l$

045: Sample-and-hold (without Opi, 020 or 030) $\$ 550$
050 or 060.50 Hz or 60 Hz operation N / C
080 : Three-wire ratio $\$ 236$
Rack mounting kit furnished.
Model number and name
3490A Digital Multimeter (includes ac, dc, \& ohms) $\$ 1985$
Op1 050 Noise Rejection for 50 Hz
Opt 060 Noise Rejection for 60 Hz
N/C
Opi 060 Noise Rejeclion for 60 Hz

Nole Rack mpunting recuites support in reat of instrament.

Switched guard

- Relay actuation

Description

General

The 3495A Scanner is a versatile instrument programmable via the Hewlett-Packard Interface Bus (HP-I8) which will scan or provide contact closure control for up to 40 channels. Two types of relay assemblies are availabic: a Low Thermal Scanner for conncelion to low level sources such as Uhermocouples and strain gauges, and a Relay Aclualor assembly for controling higher currens selays and distributing low current de or ac voltages. Each assembly contains 10 channels and the 3495A can hold up to four of thene assemblies for a maximum of 40 channels. Multiple 3495's may be used on the HP-[B to provide more ihan 40 chansels

Low thermal assembly

The Low Thermal Assembly is a ihree-wire 1010 : multiplexes for connection to low level sources such as thermocouples and strain gauges. The signal switching relays for each channel are low thermal dry reed relays constructed in such a way as to minimize temperature gradients between high and low inpuls. An uncertainty of $<2 \mu \mathrm{~V}$ thermal EMF is maintained through the Low Thermal Assembly. Each channel has a separate guard relay to minimize the effect of common mode volage on low tevel measurements.

The Low Thermal Assernbly has a break-before-make fealure which assures that only one channel is closed at a time 10 prevent the possibility of connecting two inpuls. However, the 3495A has a חexible addressing scherne belween relay assemblies which permits multiple wire scamning for applicalions such as four-wire ohms measurements.
Appllcallons: low level de measurements; de volts, ac volts, and resistance scanning.
Transducer semsing: thermocouples, ihermistors, strain gauger, pH meters.

Relay aclualor assembly

The relay actuator assembly provides 10 independently programmable two-wire closures for contsoling higher current relays, distributing low eurrent de ur ac voltages, or external control functions. Each channel contains a lwo-pole armature type relay capable of switching up to two amps tris. This relay is more suited to higher eurrent, lower voltage applications than the low thermal assembly.

Two normally open coneacts for each rolay are available on the channel ieminal connector. Any combination of channels on this assembly may be closed or opened simulianeously.
Appllcations: process control, actuate visual or audio indicators. control higher current relays, 8×10 Matrix switching.

Specifications, 3495A scanner

Low-thermal channels, option 001
Number: 10 to 40 fully guarded, multiplexed channels available in each scanner. Additional scanners can be used for more channels. ${ }^{\text {. }}$ Type: three-pole, low-thermal dry reed selays. Third pole switches guard and is not low-thermal.
Acluator channels, optlon 002
CAUTION: for use in circuits fused at iwo amperes or less.
Number: 10 to 40 noncommon chanmels available in each scanner. Addiljonal scanners can be used for more channels."
Type: two-pole armature relay; four terminals per channel. Single unswitched guard for 10 chansels. Ten independenily conerolled relays permit any number of channels 10 be closed simultaneously.
 Scanners, meabifirid instrumerls, and othet petiotiortis.
Optlon 001002

Maximum contact ralings

Voltage	200 V peak	100 V rms
Current	200 ma	2 Arms
	(non-inductive)	
Power	2 VA	200 VA
Isolation	$>10^{10} \Omega$	(no spec)
Maximum input voltage		
Between any two terminals	230 V peak	230 V peak
Guard to chassis	200 V peak	200 V peak
Guard tolow	200 V peak	200 V peak
Uncertainty (diHerentlal EMF)	$<2 \mu \mathrm{~V}$	$<30 \mu \mathrm{~V}$
Switching time	$<10 \mathrm{~ms}$	$<40 \mathrm{~ms}$

ing time

General

Operating lemperalure: $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$
Humidty range: $<95 \%$ R.H., $0^{\circ} \mathrm{C}$ 10 $+40^{\circ} \mathrm{C}$
Dimeneions
Height: 190.5 mm (7.5 inches), including feet; 177.8 (7 inches), without feet. Width: 428.6 (16.875 inches). Depth: 520.7 mm (20.5 inches).
Werght: 3495A (max): net. 17.5 kg (38.5 lb). Shipping. 21.1 kg (46.5 Ib).

Optlons

Price
Order onc or more Option OOL or 002 lo obrain desired number of low thermal or actuator ebannels. Opion 001 und 002 may be used in any combination up loa colal of four relay asscmblies for cach 3495A.
001: ien channel low inermal relay assembly add $\$ 600$
002: ten channel relay actuator assembly add $\$ 400$
907: Front Handle Kis
add \$15
908: Rack Flange Kit
add $\$ 10$
909: Rack Flange \& Front Handle Combination Kit add $\$ 20$
3495A Scarner

Multi-function meter

Moded 3450B

Description

Hewlell-Packard's Model 340 B Multi-Funetion Meter is a fivedigit integrating digital voltmeter. The basic instrument measures de voliage and de voltage ratios. Added mensurement capability is achicved by addition of plug-is oplions, all of which can be easily installed in the field.

HP's 3450B uses o duth-slope integration technique and is fully guarded, providing excellent noise immunity at 15 readings per second on all de ranges. Ranging is autombtic over all ranges on all funclions. Adding the ac option allows ac measureniens from 45 Hz to 1 MHz with true rms response. Six ohms ranges including a 100 R range are provided with the ohms option.

Ratio capability is integral in the basie instrument. When ac and ohms options are installed. ac and ohms falios can be measured. Ratio measurements are made in á truly iselated lashion, allowing measurements never before possible.

A limit text option allows digital comparisons against two prese loeted limits. This capability is applicalale to all functions with no degradation in function performance. Digitall oulpul, remote conerol and rear inpul oplions are also available, atlowing you to tailor order a 3450 B to meel your precise measurement needs.

Speclifications

DC yaltage ranges

Full range display: $\pm 100.000 \mathrm{mV}, \pm 1.00000 \mathrm{~V}, \pm 10.0000 \mathrm{~V}$, $\pm 100.000 \mathrm{~V}$, and $\pm 1000.00 \mathrm{~V}$.
Overranglng: $20 \mathrm{~F}_{\mathrm{c}}$ on gll ranges.
Range selectlon: manual or aulomatic. Remote optional.
DC volizge performance
Accuracy: $30 \mathrm{day}\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.

| 100 mV range: | $\pm(0.008 \%$ of reading, $+0.01 \%$ of range $)$ |
| :--- | :--- | :--- |
| 1 V thn $1000 \vee$ ranges: | $\pm(0.008 \%$ of reading $+0.002 \%$ of range $)$ |
| 90 day: | $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ add 0.002% of range to 30 day specilications. |

DC valtage measuring speed

| 1/10 s inlegralion period: 380 ms reading period. ${ }^{*}$ |
| :--- | :--- |
| I/60 s inlegration period: 65 ms reading period.* |
| Aulorange time: same as reading, periad per range change |

- Hithoul ange dengr.

DC voltage input characteristios
Input reslsiance:

$100 \mathrm{mV}, ~ I V$ and 10 V ranges $>10^{10} \Omega$.
100 V and 1000 V ranges: $10 \mathrm{MQ} \pm 0.1 \%$.

Maximum input valtage (peak value):

X-Inpul	Y-Inpuit
High to low: $\pm 1500 \mathrm{~V}$	High to low: $\pm 200 \mathrm{~V}$
Low lo guard: $\pm 200 \mathrm{~V}$	Low to guard: $\pm 200 \mathrm{~V}$
Guard to chassis: $\pm 500 \mathrm{~V}$	Guard to chassis: $\pm 500 \mathrm{~V}$
\times 1ow 10 Y low: $\pm 200 \mathrm{~V}$	

Nomal mode rejecilion (NMR):

$60 \mathrm{~Hz} \pm 0.1 \%:>80 \mathrm{~dB}(\mathrm{Opt} \mathrm{HO})$); $>60 \mathrm{~dB}$ ($1 / 10 \mathrm{~s}$ integration pc riod) $>30 \mathrm{~d} 8$ ($1 / 60 \mathrm{~s}$ integration period).
EMealive common mode rejection (ECMF):
DC: 160 dB .
1/10 s integration period: min of 145 dB .
1/60 s Integration perlod: min of 130 dB .
AC voltage - optlon 001: true rms-responding (45 Hz to 1 MHz).

Rangea

Full range display: 1.00000 V, $10.0000 \mathrm{~V}, 100.000 \mathrm{~V}$. und 1000.00 V .
Overranging; 200 on all renges. (1500 V peak on I kV .)
Aange selection: manual or automatic. Remole optional.

Performance

Accurscy: 90 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$,
-Nute 1500 Y peah $=$:060 Y for a sing ware.

Inpul charactarisilics

Input impedance:

Front terminals: 2 M 5 shunted by $90 \pm 10 \mathrm{pF}$.
Rear terminals: $2 \mathrm{M} \Omega$ shunted by $135 \pm 15 \rho F$.
Crest factor: 7:I ($1>1 \mathrm{kHz}$ bandwidth $=1 \mathrm{MHz}$).
Maximum input voltage: same as de voltage excepi $< \pm 1000 \mathrm{~V}$ de offset on X terminals ($\pm 1500 \mathrm{~V}$ peak maximum including de offset).
Measurlng speed:

Integration period	Resoling perlod (withoul range change)	Autorange lime (per range change)
$1 / 10 \mathrm{~s}$	2.7 s	2.7 s

Insirument reads within 0.1 the of final valuc in one reading from 10% of range to 100% of range.

DC ratio

Valid ratio neasurements ean be made for Y inputs becween 0.1 V and 120 V and X inpuls beiween 0 and 1200 V .
Overrangling: 20% on all ranges.
Range selectlon: manual or automasic for X input. Remote optional for X input. Automatic for Y impul.

Periormance

Accuracy:

90 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.
$\pm(0.01 \%$ of reading $+0.002 \%$ of ratio range
$\left.+\frac{Y \text { range }}{Y \text { voltage }} \times 0.003 \%\right)$.

- atd 0.005% of reading for X input $>100 \mathrm{~V}$.

Input characterlstica

Inpul resistance, effective comtnon mode rejection, normal mode rejection and max. Inpul voltage: same as de voltage specifications.
AC ratio - option 001: True rms-responding.
Valid ratio measurements can be made for Y inpuls between 0.1 V and 120 V and X inputs between 0.1 V and 500 V .
Overranging: 20% on all ranges.
Range selection: manual or automatic for X impul. Remote optional for X inpul. Automatic for Y inpui.

Pertormance

Aceuracy: 90 day $\left(25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\right)$.
$\pm(0.2 \%$ of reading $+0.01 \%$ of ratio range + sum of accuracies of X and Y inputs delermined from ac accuraty graph).

Input characterlstics

Input conflgurallon: isolated four-terminal, guarded.
Input impedance: same as ac voltage for X and Y.
Crest factor: $7: 1$ ($1>1 \mathrm{kHz}$, bandwidth $=1 \mathrm{MHz}$).
Maximum Input voltage: same as dc vehage, excepi $< \pm 1000 \mathrm{~V}$ dc offet vollage on X terminals.

Ohms, option 002

Ranges:
Full range display: $100.000 \Omega, 1,00000 \mathrm{k} \Omega, 10.0000 \mathrm{k} \Omega, 100.000 \mathrm{k} \Omega$. $1000.00 \mathrm{k} \Omega$, and 10000.0 ks .
Overranging: 20 F on all ranges.
Range seloctions: manual or automatic. Remote optional.

Performance

Accuracy: 30 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.

$$
\begin{array}{|l|}
\hline 100 \Omega \text { range: } \pm(0.01 \% \text { of reading }+0.01 \text { \% of range }) . \\
\hline 1 \mathrm{kn} \text { thru } 100 \mathrm{k} \Omega \text { ranges } \pm(0.01 \% \text { ol reading }+0.002 \% \text { ol range). } \\
\hline 1000 \mathrm{k} \Omega \text { range: } \pm(0.02 \% \text { of reading }+0.002 \% \text { of range). } \\
\hline 10000 \mathrm{k} \Omega \text { range: } \pm(0.1 \% \text { of reading }+0.002 \% \text { of range). } \\
\hline 90 \text { day }\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right) \text {; add } 0.902 \mathrm{~m} \text { of range to } 30 \text { day syecificalions. } \\
\hline
\end{array}
$$

Measuring speed

Same as de voluge excepi 165 ms reading period and autorange time on 10 M la range with $1 / 60 \mathrm{~s}$ inegration period.
Inpul characterlstles
Inpul comflguratlon: four-vire, guarded.
Current through resislance:
100Ω thru $10 \mathrm{k} \Omega$ ranges: 1 mA .
$100 \mathrm{k} \Omega$ and $1000 \mathrm{k} \Omega$ ranges: $10 \mu \mathrm{~A}$.
10000 kR range: $1 \mu \mathrm{~A}$.
Elieclive common mode rejection (ECMR): same as de voltage.
Normal mode relectlon: same as de vallage.
Overioad protection: $\pm 200 \mathrm{~V}$ peak for X or Y inpul.
Ohma ratio, option 002
Valid ratio measurements cian te nrade from Y inputs between 100 l io
12 Mr and X inpuls between 0 and 12 Mn .
Overranging; 20% on all ranges.
Renge selectlon: manual or autombic for X input. Remote optional for X inpul. Autannatic for Y input

Performance

Accuracy: 30 day $\left(2^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ at terminals) \pm (倸 of ratio range $+\%$ of ratio reading error).
Where:
\% of ratio range error $=+\left(0.004 \%+\frac{Y \text { ramge }}{Y \text { resistance }} \times 0,002 \%\right)$.
\% of ratio reading error is the greater pereentage given bolow for either X or Y resistanec.

5%	0.55%	0.1%	0.05%	0.02%	0.05%	0.2%
0Ω	1000	1 kn	$2 \mathrm{k} \Omega$	$9 \mathrm{k} \Omega$	$500 \mathrm{k} \Omega$	$5 \mathrm{~m} \Omega$

-0.01% for ratios between 0.95 and 1.05 o X and Y art sefwees $10 h$ and 500 h
Y ranges: $1 \mathrm{kn}, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{MO}$, and $10 \mathrm{M} \Omega .90$ days $\left(25^{\circ} \mathrm{C}\right.$ $\pm 5^{\circ} \mathrm{C}$ at terminals).
Same as 30 das speciffiction except \% of ratio range error $=$ $+\left(0.004 \%+\frac{\text { Y range }}{\text { Y resistance }} \times 0.00 .3 \frac{\pi}{n}\right)$.
Input characteristics
Input configuration: isolated four-ierminal, guarded. Two wires per resistor.
Current through X and Y resistance: same as ohms function.
Effectlve common mode rejection (ECMR): same as ac voltage for X inpul.
Normal mode relection: same as de voltage for X input.
Overload protection: $\pm 200 \mathrm{~V}$ peak for X or Y inpus.

Limit tesi, option 003

Capability:

Applicable to: dc, de ratio, ac, ac ratio, ohms and ohms ratio. No degradation in performance of above six functions.
Limit selection: two four-digit limits (with 20% overranging), including polarity, are selectable in 1-2-4-8 BCD form with external closure to ground through <3kQ (2.8 mA max) or application of -0.5 V $10+2.5 \mathrm{~V}$.

Output signals

Limit indications: High. Go, Low from panel lights defined as follows: High limit \leq High: Lower limit $\leq G o<H$ igh limil; Low <Lower limit.

Digital output, option 004

Output lines: print command; triget or print command hold off: BCD output of function; polarity; range or ratio range: and digital data. Levels are 0 V and 12 V or S V selectable.

Remote control, option 005

Program lines: $1 / \mathrm{ms}$ simegration period:* 100 ms delay:* $10 \mathrm{M} \Omega$ inpul resistance:" ext. trigger;" integration delay; remote program: function, nontatio range: ratio range decimal point.
"These temote capablities me inciaded in the bssic 3450 B and do hol reguas tos uodilien of ODlier 005.

General

Operaling temperature: $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$, unless otherwise specilicd.
Storage Iemperature: $-40^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 100^{\circ} \mathrm{C}, 50 \mathrm{~Hz} 10400 \mathrm{~Hz} .<75 \mathrm{~W}$ (ineluding all options, horgal environmental conditions).
Dimensions: 425 mm wide. 88 mm high. 542 mm decp ($16 \mathrm{~N}^{2} \times 31 \mathrm{y}_{12}{ }^{4}$ $\left.\times 21 / /^{*}\right)$.

Walght:

Basic Insirument: net, $14,1 \mathrm{~kg}(31 \mathrm{lb})$.
Including alt opllons: net, 16.3 kg (36 lb).
Shlpping: $22.7 \mathrm{~kg}(50 \mathrm{lb})$.
Model number and name Price
Option 001 AC Converier (adds ac. ac ratio) add $\$ 1510$
Option 002 Ohms Converter (adds ohms and ohms add $\$ 510$
ratio)
Option 003 Limit Test add $\$ 460$
Option 004 Digital Ourpul
add $\$ 275$
Option cos Remole Conirol
Option 006 Rear Input Terminals (add front/rear sclec-
lor switch and rear icrminals)
add \$315

H50-3450B. Optimum Noise Rejection for 50 Hz line
H01-3450B. Optimum Noise Rejection for 60 Hz line with progranmable filter
H13.3450B. Optimum Noise Rejoction for 50 Hz line
with programmable filter
add $\$ 88$
add $\$ 76$,
add $\$ 36$ S

3450B (includes dc and dc ratio)
add \$430
For more complete technical information, conlact your local HP of
fice for a datia shoel.

Powerful on-line data analysis

Description

Adding a scanner to a multimeter and controlling them with a calculator yields a low-cost solution to data acquisition and analysis problems.
Scanning random chammels under calculator control, measuring de, ac and ohms at up 103 readings per second, and calculating results online or off-linc are accomplished by HP's 3050B Dala Acquisition System. With a 3495A Scanner coupled to the front end of an HP Model 3490A Digital Multimeter, the system measures de in 5 ranges from 100 mV to 200 V with $1 \mu \mathrm{~V}$ sesolution. AC is measured in 4 range: from I V io 200 V with $10 \mu \mathrm{~V}$ resolution over the frequency range 20 Hz to 100 kH ., and xesistance is measured from 100 obms 1010 megohms with 1 milliohm resolution.
Two switching assemblies are available with the 3050B: a low thermal assembly and a relay acluator assembly. The low thermal assembly has 10 fully guarded channels for switching low level, guarded inpurs to the DVM. Two low thermal assemblies can be used to provide lour-wire ohms measurement capability with jusl one scanmor.
The relay actuator provides 10 two pole relay closures for control of external swiches, low curtent power supply disiribution, or activating tow power devices, Multiple channel closure can be programmed on this assembly for 1 C or cifcuit board testing.

Data logging is under control of an HP Model 9820A. 9821A or 9830A Progrummable Calculator. At the same time, the calculator can be programmed 10 do any marhemacieal calculations required, from Iransducer lincarization 10 statistical analysis. Parameters such as pressure, iemperalure, torque, velocity, acceleration and weight can be measured with appropriale transducers.
In low level data acquisition measurements, cerrain system specifieations are particularly important because many parameters are ordinarily converted into low level electrical signals by aransducers. Full scale output on some of these transducers can be as small as 20 mV and
a change in output voltage due to parameter change is also quite small. For example, a typical thermocouple generates a polential of 22 $\mu \mathrm{V} /{ }^{\circ} \mathrm{F}$. For signals of this level, the 3050 B sensitivity of $\mathrm{I} \mu \mathrm{V}$ is mandatory. In addition, the 3050 B has an uncertainty of less inan $3 \mu \mathrm{~V}$ differential thermal emf noise from the scanner input to minimize the effects of temperalure gradients across the switehing reeds.

Measurement capabilicy is sometimes limited by common-mode noise signals that may be converted 10 normal-mode noise and thus added to the signal being measured. HP's Model 3050B System achieves a 120 dB effective common-mode ratio by making fully Roating mecasurements wilh a switched guard connection for each channel.

In the ficld of dita acquisition, iwo general measurement solutions have bexn available. The simplese alternative is basic data logger (voltmeter/scanner combination with printer or punched tape output) which has no on-site computational capability for analyzing data. When simuliancous data analysis or closed loop control based on measurement results are required, an on-line computerized voltmeter/ scanner system is used.

Now HP's 30508 enables you 10 move up to on-line data analysis for reliable real-time results withoul commilling the money and support required for a highl's capable and complex computer data uequisition system. In applicalion. HP's 3050 B will: (I) control system instruments, (2) acquire and converl analog data from physical sensors to digital form, (3) distribute low current power supply voltages or ac. tivale low power devices, (4) correct data lor nonlinearliy and offsel and convert it to meaningful scientific umits. (5) store data on magnetic cards or tape. (6) determine test results, (7) perform high level statistical and historical analysis, and (8) print. plol, or display resulus.

The most significant effect is an increase in accuracy and dependability, while at the same time releasing skilled people from the costly routine of meter reading and performing zedious test procedures.

3050日 Specifications

DC voltage: 5 ranges. 100 mV to 200 V maximum, 5 digils provide I μV resolution on 100 mV range.
Accuracy: $\pm\left(\%\right.$ of reading $+\%_{\%}$ of range $)\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.

0.1 V Range	IVto 1000 V range	
30 days	$\pm(0.01+0.005)$	$\pm(0.008+0.002)$
90 days	$\pm(0.01+0.005)$	$\pm(0.01+0.002)$

Common mode rejectlon ratla: 120 dB ECMR at de and 60 Hz ± 0.1 每 with $1 \mathrm{k} \Omega$ imbalance between guard and low.
Normal mode relection rallo: $50 \mathrm{~Hz} \pm 0.1 \%$ and $60 \mathrm{~Hz} \pm 0.1 \%$ both SO dB.
AC vollage: 20 Hz to 100 kHz .4 ranges, 1 V 10200 V .
Accuracy: \pm (\% of reading + \% of range)
90 days $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.

$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	$50 \mathrm{~Hz}-100 \mathrm{kHz}$
$\pm(0.35+0.05)$	$\pm(0.1+0.025)$

Ohms: lwo-wire ohms standard, four-wire ohms is casily aceomplished with two low thernul assemblies for each 10 four-wire channels maximum of 20 four-wire charnels per scanner.
6 ranges, 100Ω to $10 \mathrm{M} \Omega$.
I m? resolution on 100 s range.
Accuracy: \pm (\% of reading $+\%$ of range)
90 days $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

$0.1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega-100 \mathrm{k} \Omega$	$1000 \mathrm{k} \Omega$	$10.000 \mathrm{k} \Omega$
$\pm(0.012+0.005)$	$\pm(0.012+0.002)$	$\pm(0.015+0.002)$	$(\pm 0.035+0.002)$

Current thru unknown: 0.1 ks to $10 \mathrm{k} \Omega$ sange: I mA ; $100 \mathrm{k} \$$ to 1000 $\mathrm{k} \Omega$ range: $10 \mu \mathrm{~A} ; 10,000 \mathrm{k} \Omega$ range: I $\mu \mathrm{A}$.

Low Thermal Input Relay Assembly

Channels

Number: 10-40 fully guarded channels. More than 40 channels available. expandable to 520 channcls.
Type: threc pole. Iow thermal dry reed relays. Third pole is used to swivich guard and is not low thermal.
Vollage: 200 volts peak.
Current: 200 ma (noninduciive).
Power: 2 VA.
isolatlon: >1019 .
Maximum Input voltage: 230 V between any two inpul tarminals.
Guard to low: 200 V peak.
Syslem uncertainly: $<3 \mu \mathrm{~V}$ differential emf.

Relay actuator assembly

Caullon: for use only in circuits fused at 2 A or less.

Channela

Number. 10 to 40 channels (more (inan 40 channels availiable).
Type: two-pole armatore relay. Single unswitched guard for 10 channels. Any combination of 10 channels may be closed simultaneously.
Maxlmum conlact ratings
Voliage: 100 V rms.
Current: 2 A rms.
Power: 200 VA.
System uncertalnty; $<30 \mu \mathrm{~V}$ diflerential emf.

General

Calculalor Interiace inpul/output slots: four total. One is used for system, leaving three for other peripherals.
Calculator ROM slats 9820A or 9821A: all positions are used. I1221A Math. 11224A PCII, and II222A UDF ROM's arc supplied in the 3050 B system.
9830A: option 272 Extended I/OROM and II274B Siring ROM supplied.

Typical syatem apeeds

B. 3496A Scanner awltching time: low thennal assembly: 10 ms ; actuator assembly: 40 ms .
D. Optional calculator delay: 9820A: program delay can be added if additional delay is required for settling, cic.
c. Volimeter sample pariod with fixed range (ln milliseconds):

3490A		$0.1 \mathrm{k} \Omega$ -100 kR	1000 $\mathbf{k} \Omega$	10,000 $\mathbf{n} \Omega$	
	DC	AC*			
60 Kz	200	1000	200	250	550
50 Hz	240	1200	240	300	660

 Jrispow.
d. Calculator data manipulatlon: 9820A: data can be manipulated and stored or oulpul durłng the 3490A sample period to shorten test lime. Since output requires a significant amount of cime, the results of a test could be stored to be output later: thas decreasing actual lest time. Add all of the Jollowing typical calculation times that will be used during each measurentent loop to obtain the total calculation time

		Casselle readings		
Output	Prinl	Plol	1 oniy	$\overline{100}$ sequential
Time (ms)	200	50.75	2000	5000

f. Calculalor Insirument control: Sysum: includes seising scanner channel and accepting reading from 3490 A .70 ms minimum (this is slowed down when using the supplied UDF control soutines for programming convenience).

Intertace and documentation

All inerface and assembly is done at the factory. The system is delivered in an equipment rack ready to turn on and connect the seanner inpuls.

Operating and programming manyals with programming instructions and cxample progrims to aid in writing your specific lest roufines and instrument control routines are also supplied.
Operating lemperature: $10^{\circ} \mathrm{C}$ 10 $40^{\circ} \mathrm{C}$.
Power: 108 V to 125 V: 210 V to $250 \mathrm{~V} .50-60 \mathrm{~Hz} .240 \mathrm{VA}$ maximum typical.

Optlone

Price
Order one or more Oplion 001 or Oplion 002 to oblain desired number of low thermal or acluator channels. Option 001 and Option 002 may be used in any combination up to a tolal of four relay asscomblies for each scanner.
001: con channel low thermal relay assembly $\$ 600$
002: (un channel relay actuator assembly
004; 230 V line
005: large equipment rack (56^{*} pancl height)
006: delete slandard $35^{\prime \prime}$ rack (instruments come in 14^{n} combining casc)
007: addilional seanner (one required for each addicional 40 channels up to 520 channels or maximum of 15 HP-IB devices including DVM and calculator 1/O) 008: 3490A Sample and hold
The standard 3050 B is supplied with a 1.7 k (16 bil word) memory 9820 A . Other controllers and memories are available with the following options.
020: 9820A. 5.8 k memory
021: $982 \mathrm{AA}, 1.7 \mathrm{k}$ memory and casselte
022: 982lA. 3.7 k memory and cosselle
023: 9821A. 5.8 k memory and casselle

$\$ 2460$

030: 9830A /9866A. 1.7 k memory \& calssette
031: $9830 \mathrm{~A} / 9866 \wedge .3 .8 \mathrm{k}$ memory and cassette
032: 9830A /9866A, 7.9 k memory \& casscitc
$\$ 4390$
$\$ 6055$
$\$ 8300$
050: 50 Hz !ine
N / C
060: 60 Hz line
N / C
(Oplion 050 or 060 must be ordered)
3050 B (must have at teast one Option 001 or

- Use with HP modified - telatypewriters 2752A and 2754B
- Use with HP CRT terminals 2644A and 2640A for HP-IB input/output device
- Simple HP-IB Controller

59400A HP-IB/RS232-TTY interface

The 59400A HP-IB/RS232.TTY Interface allows an HP CRT Terminal or HP modified idelypewriter to be a simple Hewlett-Packard Inicrface Bus (HP-1B) conlroller or 1/O device. The 59400A has three modes of operation: listener, talker, and simple controller.

Llsten mode

In the listen mode parallel HP-1B data is converted to serial format compatible with HP CRT Terminals and HP modified Ielclypewriters (TTY) and outputs at a 110,300 , or 1200 baud rate as selected on the S9400A front panel. Status of HP-IB control lines ATN. REN, and SRQ is indicated by LED's on the from panel for operator convenience.

Tslk mode

As a talker, the 59400A converts serial dala from the keyboard of HP CRT Terminals and HP modified teletypewriters to paraliel H.P-IB format. The HP-1B handshake is not transmitted between the 59400 A and the inpul deviec (CRT or TTY) but it is possible to address the 59400A as boith alker and listener. Thís enables it 10 retransmit the received codes to the inpul device as they are placed on the HP-1B. Loss of handshake. or data overrun, will be indicaled by the failure of the input device to display or print the iransmitted code.

Control mode

As a system controller. the 59400A allows the HP erminal or telelypewtiter to manually program instruments interfaced to the $\mathrm{HP}^{\mathrm{I}} \mathrm{I}$. Three HP-1B conirol lines - ATN, REN, and SRQ - can be controlled through the 59400 A . Stazus of thesc lines, bowever, is not (ransmitted to the terminal or TTY interface.

Applicallons

Priml or punch HP-IB data using HP modified teletypewsiters. (The 59400 A does not provide automatic punch control for ather telctypewriters.)
Remole display of HP-IB data using HP CRT Terminals.
Manually program instruments interfaced to the HP -IB from HP Terminal or HP modificd icletypewriter keyboards.

General

Operating temperature: $0^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}$
Dimensions: height: 101.6 mm (4 in .) including feet; 88.9 mm (3.5 in.) withoul feet. Widh: 212.9 mm (8.38 in.).
Depth: 430 mm (16.9 in) approximately.
Weight net. 3.9 kg (8.5 fb). Shipping, 5.7 kg (12.5 lb).
Accessories supplied
Cabie Adaptor - 59400A TTY Connector to HP modified lelelypewriter connector.
HP 59400-6160S

- Separate HP-IB Components up to 1000 meters ($3,280 \mathrm{ft}$) using dedicated 4 -wire line.
- HP-IB communication over telephone network using recommended modems:

59403A HP-IB/Common carrier interface

Hewleti-Packard's 59403A HP.IB/Common Currier Interface (CCI) extends the operating distance of the Hewhett-Packard Interface Bus (HP-1B) from the presont 20 meters. With just (wo CCI modules and a two twisted-pair shielded line, HP-IB components can be separaled by up 101000 melers. With the recommended modems, separation is limited only to the distance covered by the available telephone nelworks.

HP-le Communication up to 1000 meters

The HP 59403 A CCl module converts HP.1B data and control lines to a serial bit stream of information. The CCI can then trunsmic chis se rial code over a two iwisted pair dedieated line for up to 1000 meters. to another CCI which converis the information back to standard HPIB format.

HP-IB Communication Over Telephone Network*

When HP-18 sysiem components must be placed more than 1000 meters apari, a full duplex modem can be added to each CCI to permit Iransmititing and receiving all $\mathrm{HP}-\mathrm{JB}$ information over iclephone lines. The telephone lincs can be part of the dial-up telephone network, leased lines, or private lines installed for use with an HP-IB system. When using modems with the telephone network, a Dala Access Arrangement (DAA)" must be rented from the local telephone company to connect the moden to the phone line.
 lations.

General

Recommended dedicated line cable - iwo lwisted pair line with shield. HP Parn No. 8120-1187 (Belden lypc 8723). specify length.
Modems: the CCl is designed to operate with 1 to baud, 300 baud. and 1200 baud asynclironous full duplex or synchronous full duplex modems whech are EIA RS232C or CCITT V 24 compalible. In the U.S., Bell 103A modems with "soft carricr tum-off" are recommended for use on the direct dial (DDD) network.
AC power: $100,120.220$, or 240 volis ($+5 \%,-10 \%$) 60 VA mux. $48-66 \mathrm{~Hz}$
Operaling temperature: $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C},<95 \%$ R.H.
Dimensions: height; 101.6 mm (4 in.) including foet: 88.9 mm ($31 / \mathrm{x}$ in.) without feet: width: 212.9 mm (8.38 in .): depih: 430 mm (16.9 in .) approximately.
Weight: net, 4.5 kg (10 lb). Shipping. 6.1 kg (13.5 lb).

Component Test Solection Guide

Impedanco/Z/O, C, R, L, D \& Q

Hewletr-Packard's family of impedance measurement instrumants combine the familiar null measurement techniques with dig. ita) logic and feedback circuits, to schieve simpli and rapid operation without a sacrifice in precision. The basic specifications for Hewlelt-Packard's impidance fanily is sum. marized on the opposite pilge. Frequency, Q. capaciance, inductance, resistance and basic accuracy can be traded off to sclect the most suitable instrument. For some instruments, capacitance and inductance are not the principil paramelcrs bul are secondary to the primary readoul.

Impedance consideratīons

There are iwo basic ıypes of impedince measuring instruments; bridges and meters. In general, bridge type instruments have the best aceuracy specifications. This ispe of instryment has found wide applicasion and is the basis for the HP 4260A /4265B Universal Bridge. 4270A Aulomatic Capacitance Bridge, and 2508 RX Metur.

In the past, bridge instruments have required considerable operator skill to oblain consistent resules. However, the Universal Bridge was specificilly designed to achicue rapid and consistent audio frequency measurements.

The evolution of bridge measurements has created the need for completcly automatic in. siruments 10 rapidy characterize mulliconductor cables, variable capacitor diades, and discrele capacitors. To satusly these customer requirements, the 4270A Aulomatic Capacitance Bridge was developed. This instrument is completely programmable and displays capacilance and dissipation factor/conductance in digital form. BCD outputs are available for remole processing.

Impedance meters, in general. utilize constance current/voltage sources to excitc the unknown mpedance. Ampliude and phase sensilive volimelers deleci the real and reacsive vollage/current components of the unknown. The display for most impedance meters is an analog meter. Although impedance meicrs do nor have the accuracy of bridge instruments, they are less expensive and casy to use. The 4350A High Capacitance Meler. 4800A Veclor Impulance Meter. and the 4332A LCR Meler utilize Ihis principal. Impedanee meters have analog oulpuls proportional to the displayed function.

The HP 427IA LCR Meter ulilizes a combination of bridge and digital voltmeter tuehniques, to enable it to measure microcircuit paramelets.

Summary

To helf you select an impedance meter suitabic to your needs tbe following guidelines may be used;
(b) For a desired accuracy and cost range. select the instrument with the broadest capability in C. L. R \& D or Q. (2) Bridge insiruments will provide the best accuracies (0.1% 10 loin). However, only the higher prioed bridges olficr the speed and convenience in measurement available in meter lype instruments. (3) To obtain muaningful results, a parts user should make measurements at the same freguency and voliage level specilied by the manufacturer. For additional information on component measurements, HewlettPackard offers for sale a tutorial RCL video lape. The tape has three parts.

Part I - Resistance (7 min.) - explains basic resistance measurements ad identines some of the problems which cause erroneous readings. Mcasurement theory is graphically explored, followed by practical examples of very high, very low, and intermediale resislance mcasurements.

Parl 2 - Capacitance (II min.) - follows the same general sequence as Part I, a review of theoretical capacitors, parameters other than capacitance present in actual capacitars, and the resultant efrors. Some mathods are explored for overcoming erroncous capacitance measurements. General guidclines for measuring very high, very low. and intermediate value capacitors are given. The how and why of dissipation factor in capacitors is explained. This part is concluded with demonstrations of praclical capacitance mea. surements.

Parl 3-1nductance (12 min.) - develops the theory of inductors and their functions in circuils. Capacitance and resistance inherent in all inductors, and the effeel they have on measured values is explained. Quality factor is defined and the difference in effective and indicated quality factor is explained.

You may preview this video tape at your nearest HP Sales Office. Please eall for an appointment. The lape (ID $490249 \mathrm{C} / \mathrm{D}$) is available in $1 /{ }^{\prime \prime}$ EIAJ formar (c) or $1 / 2^{\prime \prime}$ video casserte (D).

Hewle1t-Pickard's impodance instruments have been used in numerous diverse applicacions, from the measurement of the dielectric constant of tiquids. to the wing to luselage continuity on aircraft. If you have an unusual application or need assistance. contact your nearest Hewleu-Packard salus onfice for application information.

Useful Information

$$
\text { To roleto } c_{p} \text { to } c_{p}
$$

To regate Lstal

$$
\begin{aligned}
& \text { PARALLEL CIRCUST SERIES CIRCUIT } \\
& L_{B}=L_{0}\left[\frac{Q^{\prime}}{\left(1+Q^{x}\right)}\right] \quad Q=\frac{1}{Q} \text { Quality Factor }
\end{aligned}
$$

NOYE If $=0.3$ os $Q=3.3$, appraximatejy a 10% điffer. onfe in reading will exist. For other viluss ol D or mine in reading will ex
0 see liguld 1 solew:

Note. This eifference is present when measuring "C's" :and "I's" on sny type of component measuring in. strumert. Oinar errors due to inaccuracios of in. dividual insiruments stould also be conslidered.

- Touch and read operation
- Wlde range
- Low tesi voltage
- Guarded measurement

Description

Hewkel-Packard's Model 4332A LCR Meler measures inductanco. capacilance. and resistance with speed and accuracy. The instrument provides direct-readings of L. C. and R wilh lincar meter scales. The 4332A is exiremely useful for measurcments of bolh linear and nonlinear components such as senticonduetor capracitor values, inductance of coils with ferrite core.

Specifications

Inductance meagurement
Measurement equivalenl circult: serics.
Range: $3 \mu \mathrm{H}$ to 1 H full scale, 12 ranges.

Neasuring Irequency

$3 \mu \mathrm{H}$ to $1000 \mu \mathrm{H}$ ranges: $100 \mathrm{kHz} \pm 5 \%$.
3 mH to 1000 mH ranges: $1 \mathrm{kHz} \pm 5 \%$.
Voltage across sample: $\langle 1.5 \mathrm{mV}$ rins.
Accuracy (al $\left.25^{\circ} \mathrm{C}\right): \pm[1 \%$ reading $+(1.5+3 / Q)$ of full scalc + $0.03 \mu \mathrm{H}$).

Capacitance mosasurement

Measurement equivalent clrcuit: paralicl.
Range: 3 pF $101 \mu \mathrm{~F}$ full scatc. 12 ranges.
Measuring frequency
3 pF 101000 pF ranges: $100 \mathrm{kHz} \pm 5 \%$.
3 nF to 1000 nF ranges: $1 \mathrm{kHz} \pm 5 \%$.
Voltage across sample: approximately 70 mV rms.
Accuracy (al $\left.25^{\circ} \mathrm{C}\right): \pm(1 \%$ reading $+(1.5 \%+3 / \mathrm{Q})$ of full scale + 0.03 pF].

Resistance measurament
Range: 3 to $10 \mathrm{M} \Omega$ full scale, 12 runges.
Measuring frequency: $1 \mathrm{kHz} \pm 5 \%$.
Voltage across sample: $<1 \mathrm{mV}$ rms.
Accuracy (at $26^{\circ} \mathrm{C}$)
$3 \Omega 1030 \mathrm{k} \Omega$ ranges: $\pm\left(0.5^{n}\right.$ reading $+2 \%$ full scalle $\left.+0.03 \Omega\right)$.
$100 \mathrm{k} \Omega$ to $1000 \mathrm{k} \Omega$ ranges: \pm (l员 reading $+2 \%$ full seate).
Analog outputs: 1.0 V de full scale, independent of range in use and 1.0 V or 0.3 V de full scale, corresponding to the range in use.

Oulput Impedance: approximately 500 .
Accuracy: beller than meter reading accuracy by 0.5% full scale.
Overrange: 110% of full stale.

General

Response time: typically 0.25 \& for analog oulputs. Typically 1.0 s for meter.
Operating temperalura: $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$.
Temperature coefficlent: $\pm 0.05 \%$ of full scale $/{ }^{\circ} \mathrm{C}$ or $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$. $1^{\circ} \mathrm{C}$ for $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$.
DC blas: 100 V de maximum can be applied from exiernal source.
Power, IIS V/230V $\pm 10 \%, 48 \mathrm{~Hz} 1066 \mathrm{~Hz}, 8 \mathrm{VA}$.
Dimenslons: $130 \mathrm{~mm} \times 152 \mathrm{~mm} \times 279 \mathrm{~mm}\left(51 / \mathrm{s}^{\circ} \times 6 \%^{\prime \prime} \times 11^{\prime \prime}\right)$,
Welght: nel, 3.5 kg (7 lb II oz).
Accessorles furnished: 16138人 Tesi Leads. Power Cord 8120-1348.

16138A

16019A
Accessorles avallable: 10019 Test Fixture. 16019A Tosl Fixiure

4328A (with 16005A Probes Included)

16006A Probe (2 each Included)

Description

HP's 4328A Milliohmmeter is a portable instrument for measurement of low resistances. It uses a Kelvin Bridge method to obtain its high sensitivity but has incorporated both the current and voltage drives into one probe, so that only two probes are needed in actual measurcmene.

The range of the 4328A extends from 100 ohms to one milliohm full scale. Maximum sensitivity is 20 microhms, making it ideal for measuring contact resistance of switches, relays, and connectors.

A unique phase discriminator in the meter circult permits accurate resistive measurements on samples with a series reactance up to twice full scale resistance.

The milliohmmeter is internally driven by a one kilohertz signal. With un ac drive signal, dc bias up 10150 volts can be superimposed withoul affecting accuracy of measurement. Hence. HP's 4328A can make dynamic recistance measurements in forward-biased diodes.

Maximum voliage across any sample with proper range selection is loss than 200 microvolis peak. In cuse of incorrect range senting, a maximum voliage of 20 millivolts peak will never be exceeded, so that explosive devices such as fuses and squibs can be safely thecked.

The basic 4328A is line operated. With Option OOI, it can be operated from four rechargeable batlerics for IS conlinuous hours. A recorder output provides an output proportional to meter deflection.

Specifications

Fange: 0.001 to 100 ohms full scale in a $1,3,10$ sequence.
Accuracy: ± 2 类 of full scale. No additional error is caused by series reactance of samples up to two limes full scalc.
Measuring frequency: $1000 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$.
Voltage acrose sample: $200 \mu \mathrm{~V}$ peak al full scale.
Maximum voltage acroas sample: 20 mV pcak in any case.
Superimposed de: 150 V dc maximum may be superimposed on samples from an external source:
Aecorder outpul: 0.1 V de output at full scale meter defloction.

Range (ohms)	Applied Curreni (mA)	Maximum Dissigation in Samplas ($\mu \mathrm{W})$
0.001	150	23
0.003	50	8
0.01	15	2.3
0.03	5	0.8
0.1	1.5	0.23
0.3	0.5	0.08
1	0.15	0.023
3	0.05	0.008
10	0.015	0.0023
30	0.005	0.0008
100	0.0015	0.00023

Genaral

Power requiramenis: $115 / 230 \mathrm{~V}$ switch $\pm 10 \%, 50$ to 60 Hz I. 5 VA . Weight: 3.2 kg (7) lb).
Dlmensions: 130 mm high $\times 155.1 \mathrm{~mm}$ wide $\times 279 \mathrm{~mm}$ wide ($51 / \mathrm{r}^{\prime \prime} \times$ $63 / 3,^{\prime} \times 11^{10}$).
Accessorle furniahed: Model 16005A Probe, 16006A Probe and 16007A/B Test Leads. I6143A Probe Cable. Dclachable Power Cord.

[^1] 4328A Milliohmmeler

- Wide range: $500 \mathrm{k} \Omega$ to $2 \times 10^{18} \Omega$

Description

The HP 4129A is a solid-state insulation resistance meter designed for casy. accurate and direct readngs of the very high resistance values typically found in synthetic resins, porcelain, insulating oils and similirt materialx. It is also useful for measurements in electrical components like eapacitors, transforimers, switetes and cables. Seven fully regulated de test voltages (between 10 and 1000 V) are provided as test sources.

Selected seales are identified by illuminated indicators on the meter face. Selected resistance or curreat multiplying factors are also illuminated for rapid, crror-free measuremem. Three resistance scales and one current scale are provided. The HP 4329A is instantly convertible from ungrounded-to-grounded-sample operation via a simple relocation of the front panel ground strap from "guard" 10 "+" posillion. The instrument cabinet itself is always at ground potential. Test voltage shorts or sample breakdown enitents will nol damage instrument circuitry.

The HP 4329A also has a current measurement capability. Minute currents as low as 0.05 pA can be readily measured. The standard instrument package includes HP 16117A Low Noise Test Leads; these are used in most lypes of measurement.

4329A Specifications

Realstance measurement
Range: $500 \mathrm{k} \Omega 102 \times 10^{16} \mathrm{R}$.
Accuracy: tolal accuracy is determined by fest volage and range used. At low resistance end of each scale, accuracy is $\pm 3 \%$, near center seate ± 5, and near the specified upper limit on the meter scale isee table below). nccuracy is $\pm 10 \%$. Aocuracy is not specifed above these limits. On all voltage ranges, if multiplier is set to Rmax., an addilional 4 3\% is included.

- Selectable test voltages: 10 V to 1000 V

Current measurement

Range: $s \times 10^{-14} 102 \times 10^{-5} \mathrm{~A}$ in 8 ranges.
Meter scale; 0 to 20 in 40 linear divisions.
Input resistance: $10^{4} 1010^{4} \Omega \pm 1 \%$, depending on range
Accuracy: $\pm 5 \%$ of full scale dellection (there can be an additional $\pm 3 \%$ error at the top decade). Using current source of infinite z. For finite sources. input resistance must be taken into consideration.

General

Recorder outpul: 0 to 100 mV dc , proportional to meter deflection: $1 \mathrm{k} \Omega$ output resistance
Power: $115 / 230 \mathrm{~V} \pm 10 \%, 48-66 \mathrm{~Hz}$, approximately 1 VA .
Dimenaions: 166 mm high. 198 mm wide. 223 mm deep $\left(61 / 2^{\prime \prime} \times 728 / z^{\prime \prime}\right.$ $\times 8 \mathrm{~V}_{2}{ }^{*}$).
Welght: $3.5 \mathrm{~kg}(7.7 \mathrm{Ib})$.
Accessory turnished: HP 16117A Low Noise Test Leads.
Accessory available: Model 16008A Resistivity Cell.

16008A Description

The HP J6008A can safely, rapidly and conveniently measure the volume and surfaec resistivity of sheet insulation materials. Conversion from valume to surface resistivity measurement requires operation of one switch only: no lead interchange or disconnection is necessary. Designed for use with the HP 4329A Resistance Meter (olhes voltage supplies and picoamnieters mas be used), the complete system allows direct measurement of volume resistivity up 10 approximately $4 \times 10^{r r} \Omega$ (on samples 0.1 cm thick) -and surface resistivits up to approximately $4 \times 10^{\circ} \Omega$. Test voltages up to 1000 V may be used.

16008A Speclifications

Inner electrode: 50 mm diam.
Guard electrode: 70 un diam.
Auxlliary electrode: $100 \mathrm{nim} \times 120 \mathrm{~mm}$.
Maximum sample size: $125 \mathrm{~mm} \times 125 \mathrm{~mm} \times 7 \mathrm{~mm}$.
Maximum teat voltage: 1000 V Jc .
Dlmenslons: 49 mm high. 198 mm wide, 156 mm deep $\left(2^{\prime \prime} \times 711 / \mathbf{n}^{\prime \prime} \times\right.$ 61/").
Weight: $1.4 \mathrm{~kg}(3 \mathrm{lb})$.
Model number and name Price
16008A Resislivity eell
$\$ 430$
4329A High resistance meter
$\$ 1335$

Test vollage	10 y	254	50 V	100 V	250 V	500%	1000 V
Avalable resislance readings	$\begin{gathered} 5 \times 10^{5} \Omega \\ 102 \times 10^{14} \Omega \end{gathered}$	$\begin{aligned} & 1.25 \times 10^{6} 0 \\ & 105 \times 10^{14} 4 \end{aligned}$	$\begin{aligned} & 2.5 \times 10^{6} 0 \\ & \text { to } 1 \times 10^{15} \Omega \end{aligned}$	$\begin{aligned} & 5 \times 10^{69} 9 \\ & 102 \times 10^{15} \pi \end{aligned}$	$\begin{aligned} & 1.25 \times 10^{9} \Omega \\ & 105 \times 10^{15} \Omega \end{aligned}$	$\begin{aligned} & 2.5 \times 10^{10} \\ & 101 \times 10^{16} \Omega \end{aligned}$	$\begin{gathered} 5 \times 10^{9} \mathrm{\Omega} \\ 102 \times 10^{16} \Omega \end{gathered}$
Meter scale	. 51020	13105	. 25 to 10	. 51020	. 13 to 5	25 to 10	. 51020
Upper liruit	5	1.25	2.5	5	1.25	2.5	5

Universal bridge

Model 4260A

- Electronic autobalance - single control null
- Digital readout for C, R, L
- Direction indicators for fast range selection and balance

Deacription

Measurements of C. R, L. D (dissipation Factor of capacitors), and Q are casily made with Hewlell-Packard's Model 4260^ Universal Impedance Bridge.

Readoul for C. R. and L is digital with the decimal point sutomalteally positioned. Unils of ineasurement and equivalent circuit automatically appear with a twist of the function swich. There are no multiplicrs or confusing nomlintar dials which need interpolation.

Operation is simple. Set the function knob for the parameter to be measured. adjust range switch for an on-scale indication, and oblain a null with CRL control. There are no interacting controls to adjust and readjusi, nor any false nuls. A unique electronic autobalance circuit solves all these problems. Componemis with low Q or high Q are as easy to ncalsure as those without loss.

For D or Q measurements, switch out of suto and turn DQ control unit another null is obtained Only one adjus(ment is needed for each measuremen.

Five bridge circuits are incorporatod in HP's 4260A: each is composed of stable, high-quality components for good accuracy and linearily, An internall kHz drives the bridge.

Nulling is easy. Itluminated pointers ($\langle C R(\rangle$) automatically tell whether a null sup- or down-scale. Both range and CRL conirols can be sel watching these pointers.

Components may be biased by connecting a batiery to rear terminats. An externa) oscillator and detection can be used for measurements in the $20 \mathrm{~Hz},-20 \mathrm{kHz}$ range.

Specifications

Capacitance measurement
Range: 1000 pF to $1000 \mu \mathrm{~F}$. in 7 full scalc ranges.
Accuracy: $\pm(1 \%+1$ digit $)$. from $1 \pi F 10100 \mu \mathrm{~F} . \pm(2 \%+1$ digit $)$. from 1 pF to 1 nF and $100 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$.

Dissipation factor
 \section*{Range:}

Low D - (ol series C): 0.001100 .12 .
High D - (ol parallel C): 0.05 to 50.
Aceuracy: for $C>100 \mathrm{pF}$.
Low D土 $\frac{2}{\sqrt{D \text { of reading }}}$ \%.
High D $+(10 \mathrm{D}$ of reading +4) \%

$$
-(10 \sqrt{D \text { or reading }+2})^{\%} \%
$$

Add \pm I dial division for frequencies other than $\mid \mathrm{kHz}$.

Inductance measurement

Range: $1000 \mu \mathrm{H}$ to 1000 H , in 7 full scale ranges.
Accuracy: $\pm(1 \%+\{$ digit $)$. from $\mid \mathrm{mH}$ to $100 \mathrm{H} . \pm(2 \%+1$ digit $)$. from I $\mu \mathrm{H}$ to 1 mHy and 100 H to 1000 H .

Quality factor
 Range:
 Low 0 - (ol series L): 0.021020.
 High O - (of parallel L): 8 to 1000.

Accuracy: for $\mathrm{L}>100 \mu \mathrm{H}$.

High Q $\pm 2 \sqrt{\text { Q of reading }} E_{0}$.
Add \pm I dial division for frequencies other than I kHz

Auto-balance

Eliminates nced for DQ adjusiments in paraltel C and series L measurements at) kHz .
Accuracy: for $\mathrm{D}<1$ and $\mathrm{Q}>1$ add $\pm 0.5 \% 10 \mathrm{C}$ and L accuracy specifications.
Resistance measurement
Range: 10Ω to $10 \mathrm{M} \Omega$. in 7 full scale ranges.
Accuracy. $10 \mathrm{~m} \Omega$ to $30 \Omega \pm(2 \%+1$ digit). $10 \Omega 2101 \mathrm{M} \Omega \pm(1 \%+1$ digit). $\mathrm{M} \Omega$ to $10 \mathrm{M} \Omega \pm(250+1$ digi1).
To oblain better sensitivity use HP 4304B below 100Ω and above 100 81.

Oscillator and detector
iniernal oscillator: I $\mathrm{kHz} \pm 2 \%$, 100 mV rms $\pm 20 \%$.
Internal delector: inned amplifier al 1 kHz functions as a broadband amplifier for measurements with external oscillator.

General

Power: 115 or 230 volls $\pm 10 \%, 50-60 \mathrm{~Hz}$ approx. 7 VA .
Dimenslons: 190 mm wide $\times 166 \mathrm{~mm}$ high $\times 279 \mathrm{~mm}$ deep $\left(71 / 3 /{ }^{\prime \prime} \times\right.$ $611 / 3^{\prime \prime} \times 11^{\circ}$).
Welght: net. 5 kg (II lb). Shipping. 6.8 kg (15 lb).
Optlonal accessories;
4304 B for R measurement <1008 and $>100 \mathrm{k} 32$
204 C Opl. 001 for measurements $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
4260A Universal Elridge

- High accuracy: 0.2\%
- Wide range

C: 0.1 pf to $1111 \mu \mathrm{~F}$
L: $0.1 \mu \mathrm{H}$ to 1111 H
R: $1.1 \mathrm{~m} \Omega$ to i $\mathrm{M} \Omega$

Description

Hewlet1-Packard's Model 4265日 Universal Bridge provides an ceonomical way to make high precision measurcments of L, C, or R and D or Q . Components can be measured in eanges of $0.1 \mu \mathrm{H}$ to IIII H
 $\mathrm{M} \Omega$ in resistance. L and C measurements are performed over a wide range of loss with either scrics or parallel equivalent circuits selected by the function switch. Basic measurement accuracy is 0.2% of reading for L. C. and R.
Measurement frequency range is 50 Hz to 10 kHz wilh an extemal oscillator, and 1 kHz with internal oscillator. A de measurement for resistance is also available with exfermal de power supply and null detecior.
The front panel design provides appropriale space and convenient positioning of knobs for easy balancing. The rugged hundle is used as the tilt stand at angles of 0,40 . or 60 degrees.

Spectfications

Resistance measurement

Full seale range: $1000.0 \mathrm{~m} \Omega$ to $1.0000 \mathrm{M} \Omega .7$ ranges.
Overrange: 11.1%.
Minlmum reaolution: 0.1 m s.

- Accurscy (al 1 kHz): $\pm(0.2 \%$ of reading $+0.01 \%$ of F.S. $), \pm(0.4 \%$ of reading +0.0$) \%$ F.S.) for 1000.0 ms range. Aesidual resiatance: I m Ω.

Inductance measurement
Full scale range: $1000.0 \mathrm{\mu H}$ to $1000.0 \mathrm{H}, 7$ ranges.
Overrange: 11.1%.
Minimum resolution: $0.1 \mu \mathrm{H}$.
" Aceuracy (at 1 kHz): $\pm(0.2 \%$ of reading $+0.01 \%$ or F.S.), $\pm(0.4 \%$
of reading $+0.01 \%$ F.S.) for $1000.0 \mu \mathrm{H}$ range.
Residuai Inductance: $0.04 \mu \mathrm{H}$ (in series with I m Ω).
Loba factor range: (at 1 kHz).
Q of ariles L: 0.001 to 10 , aceuracy \pm (5% of reading +2 minor divi. sions).
Q of parallel L: 1 to 1000 , accuracy \pm (5% of reading +2 minor divisions).

Capacitance measurement

Fuli scale range: 1000.0 pF to $1000.0 \mu \mathrm{~F} .7$ ranges.
Overrange: 11.1%.
Minlmum resolution: 0.1 pF
"Accuracy (at 1 kHz): $\pm(0.2 \%$ of reading $+0.01 \%$ of F.S.) $\pm(0.4 \%$ of seading $+0.01 \%$ F.S.) for $1000.0 \mu \mathrm{~F}$ range.
Realdual capacitance: 0.4 pF .
Lors factor range: (at 1 kHz).
D of series C: 0.001 to 1 , accuracy \pm (5% of reading +2 minor divisions).
D of parallel C: 0.1 to 1000 , accuracy \pm (5% of reading +2 minor divisions).

- 'Sor temperalure of $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$

General

Intemal osclilator.
Frequency: I $\mathrm{xHz} \pm 15 \mathrm{~Hz}$.
Outpul: continuously variable with front pancl control. Maximum voluge is 0.4 V ms

External oscillator:

Frequency range: 50 Hz to 10 kHz or dc for rasistance measurement.
Internal deteclor tuncd amplifier at I kHz. In 1 kHz position, maximum sunsitivity of $10 \mu \mathrm{~V}$, selectivity better than 26 dB . In "flat," opcrates as a broad band detecior from 50 Hz to 10 kHz .
External de bias: capacitance measurements io Cs mode, maximum bias voltage of 250 V dc. Inductanco measurements in $\mathrm{L} \rho$ mode.
Operating temperature: $0^{\circ} 1055^{\circ} \mathrm{C}$.
Power: $100 / 120 / 200 / 240 \mathrm{~V} \pm 10 \%$; $4810440 \mathrm{~Hz}, 5 \mathrm{VA}$.
Dlmensions: 376 mm high. 115 mm deep. 393 mm wide ($1419 / 10^{\circ} \times$ $\left.417 / 35^{\circ} \times 151 / 4^{4}\right)$.
Weight: nel, $5.5 \mathrm{~kg}(12.1 \mathrm{lb})$. Shipping, $7.1 \mathrm{~kg}(15.7 \mathrm{lb})$.
Accessories furnighed: power cord, 230 cm ($71 / 2 \mathrm{n}$). Crystal earphone.
Accossorles avallable: model 16029A Test Fixture.

[^2]
1 MHz digital LCR meter

Model 4271A

\author{

- Precision measurement of low value components
 - Convenient options for data processing
 - High speed
 - $\mathrm{C}=0.001 \mathrm{pF}$ to $19 \mathrm{nF} ; \mathrm{L}=0.1 \mathrm{nH}$ to $1.9 \mathrm{mH} ; \mathrm{R}=0.001 \Omega$ to 19 k ?
}

Description

Hew)e(t-Packard's 4271A 「ealures automatic high-spood measurements of low value components. The four-pair measurement tech-
niqut has the advantage of reducing crrors due to residual inductance and stray capacitance. User benefits ate derived from high accuracy measurements with as maly as ten readings per second.

Specifications

Full scale ranges:

	Range	Capacilance	Conductunct	finductance	Resistance	Disslpation Factor"	
Full scale display	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 10.000 \mathrm{pf} \\ & 100.00 \mathrm{pf} \\ & 1000.0 \mathrm{pf} \\ & 10.000 \mathrm{nf} \end{aligned}$	$\begin{array}{r} 100.00 \mu \mathrm{~s} \\ 10000.0 \mu \mathrm{u} \\ 10.000 \mathrm{~m} U \\ 100.00 \mathrm{~m} \\| \end{array}$	$\begin{aligned} & 1000.0 n \mathrm{HI} \\ & 10.000 \mu \mathrm{HI} \\ & 100.00 \mu \mathrm{Hl} \\ & 1000.0 \mu \mathrm{Hl} \end{aligned}$	$\begin{aligned} & 10.000 \Omega \\ & 100.00 \mathrm{R} \\ & 1000.08 \\ & 10.000 \mathrm{kR} \end{aligned}$	1.0000	
Overranging	1-4	90\%	90\%	90\%	90°	60\%	

-When peading of tol Cis mote tins 150.0 counts

Capacltance:

Range	Test sig loyel.hlgh \pm (\% af reading + counts)	Tesi sig level-low \pm (\% of reading + counts)
1	$0.1+7$	$0.2+8$
2	$0.1+3$	$02+4$
3	$0.1+3$	$0.2+3$
4**	$0.4+3$	$0.4+3$

Conductance:

Range	Tesi sig level.high $\pm\langle \%$ of reading + counis $)$	Tesi sig level-low $\pm(\%$ of reading + counis $)$
1	$0.2+\left(7+\begin{array}{c}\mathrm{Nc} \\ 1000\end{array}\right)$	$0.3+\left(7+\begin{array}{c}2 \mathrm{Nc} \\ 1000\end{array}\right)$
2	$0.2+\left(3+\begin{array}{c}\mathrm{Nc} \\ 1000\end{array}\right)$	$0.3+\left(3+\begin{array}{c}2 \mathrm{Nc} \\ 1000\end{array}\right)$
$3.4 * *$	$1.2+\left(2+\begin{array}{c}2 \\ 1000 \mathrm{Nc}\end{array}\right)$	$1.2+\left(2+\begin{array}{c}2 \mathrm{Nc} \\ 1000\end{array}\right)$

Whate Ne is capaciknise readoul in counts.
Dlsaipation Iactor:

Accuracy

(When conductance reading is ltess than 100 counts and resistance reading is less than 1000 counts.) Accusacy listed in the following table applies over a temperature range of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. (At $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$. accuracy is doubled.)
Warm-up Yime; one hour required to meal all specifications

Range	Tesi sle level.high $\pm(\%$ of reading + counls $)$	Test sig level-low $\pm(\%$ of feading + counis $)$
1	$1.0+\left(10+\begin{array}{c}20.000 \\ \mathrm{Nc}\end{array}\right)$	$1.0+\left(15+\begin{array}{c}30,000 \\ \mathrm{Nc}\end{array}\right)$
2.3	$1.0+\left(10+\begin{array}{c}10,000 \\ \mathrm{Nc}\end{array}\right)$	$1.0+\left(15+\begin{array}{c}20,000 \\ \mathrm{Nc}\end{array}\right)$
$4 *$	$1.0+\left(15+\begin{array}{c}30,000 \\ \mathrm{Nc}\end{array}\right)$	$1.0+\left(15+\begin{array}{c}30,000 \\ \mathrm{Nc}\end{array}\right)$

[^3]Inductance measurement aceuracy Inductance:

Rangt	Tosk sig level-high \pm (\% of resolint + counts)	Test slg level-low \pm (\% of reading + counis)
10 2 3.4 3.4	$\begin{aligned} & 1.0+15 \\ & 0.6+4 \\ & 0.2+4 \end{aligned}$	$\begin{aligned} & 1.0+15 \\ & 0.6+6 \\ & 0.3+6 \end{aligned}$

Resiatance:

Range	Test sla level-high $\pm(\%$ of reading + counls $)$	Test sig level-Low \pm (\% of reading + counls)
$1 \cdots$	$1.2+\left(8+\begin{array}{r}2 \mathrm{NL} \\ 1000\end{array}\right)$	$1.2+\left(8+\begin{array}{c}2 \mathrm{NL} \\ 1000\end{array}\right)$
2	$1.2+\left(2+\begin{array}{r}2 \mathrm{NL} \\ 1000\end{array}\right)$	$1.2+\left(2+\begin{array}{c}2 \mathrm{NL} \\ 1000\end{array}\right)$
3.4	$0.2+\left(2+\begin{array}{c}2 \mathrm{NL} \\ 1000\end{array}\right)$	$0.3+\left(2+\begin{array}{c}2 \mathrm{NL} \\ 1000\end{array}\right)$

Whete N_{L} is inductance readout in counts.
Diselpation Iactor:

Range	Tesl sle level-hloh $\pm(\%$ of reading + counts $)$	Test slg level-low $\pm(\%$ ol reading + counts $)$
$14 *$	$1.0+\left(20+\begin{array}{c}30,000 \\ N L\end{array}\right)$	$1.0+\left(20+\begin{array}{c}30,000 \\ \mathrm{NL}\end{array}\right)$
2.3	$1.0+\left(15+\begin{array}{c}10,000 \\ \mathrm{NL}\end{array}\right)$	$1.0+\left(20+\begin{array}{c}20,000 \\ \mathrm{NL}\end{array}\right)$
4	$1.0+\left(15+\begin{array}{c}20,000 \\ \mathrm{NL}\end{array}\right)$	$1.0+\left(15+\begin{array}{c}30,000 \\ \mathrm{NL}\end{array}\right)$

${ }^{*}$ At Range 1, lest sig level is low anis where N_{L} is inductance readout in counts.
Conductance, resistance measurement accuracy
Accuracy: when capaciance or inductance is less than 1,000 counts.
Conductance:

Range	Tost slg level-high \pm (\% of reading + counls $)$	Tosl slg level-low $\pm(\%$ ol reading + counts $)$
1	$0.2+8$	$0.3+9$
2	$0.2+4$	$0.3+5$
$3.4 .=0$	$1.2+4$	$1.2+4$

- - Don Range 4, Itest sig tevei is how only

Realatance:

Rance	Iesi sig level-high \pm (\% of resding + courts $)$	Yest sig level-fow $\pm(\%$ of readini + counts $)$
1	$1.2+10$	$12+10$
2	$1.2+4$	$1.2+4$
3.4	$0.2+4$	$0.3+4$

Test algnal:

Test Levet	mV ims; toleranct ((\%) capactiance		${ }_{\mu} \boldsymbol{A}$ ims: blerance (息) inductance	
Range	Levo-High	Lovel-Low	Level. Hlgh	Level.Low
1	500 ± 10	20 ± 10	2000 ± 20	2000 ± 20
2	500 ± 10	20 ± 10	500 ± 10	200 ± 10
3	500 ± 10	20 ± 10	500 ± 10	20 ± 10
4	20 ± 20	20 ± 10	50 ± 10	2 ± 10

Frequency: $1 \mathrm{MHz} \pm 0.01 \%$.
Offsel adjustment: offset adj. compensates for (a) stray capacitanoc or residual conductance of test fixture; variable ranges are I pF and I μU, or (b) residual inductance or residual resistance of tesi fixture. Variable ranges are 100 nH and 100 ma .

DC tias (oplional)
Internal source: DC bias is available as a plug-in board. Option 001 . which has followinge specifications:
Range: 00.0 V 1039.9 V , variable in steps of 0.1 V .
Accuraoy: ± 0.2 年 of scting $\pm 5 \mathrm{mV}$ a1 $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. Warm-up lime is >60 min.
Oulput resiatance: $1.5 \mathrm{k} \Omega \pm 10 \%$.
Short circuit current: less than 6 mA .
Control: HP Model 16023A DC Bias Controller (available exira) or HP Model $9810 / 9820 \mathrm{~A}$ Calculator when Option 005 is insialled.
Conirol Input connector: HP P/N 1251-0143, I4-pin receptacle. (Amphenol 57-40140).
Matling connector: HP Part No. 1251-0142. (Amphenol 57-30140). External source: $\pm 200 \mathrm{~V}$ maximum io BNC connector (ext input) on tear pancl. Max bias current 20 mA . Input resistance $10.5 \mathrm{k} \Omega \pm 10 \mathrm{~m}$.
Monltor outpul: bias vollage monjtoring BNC, consector monitor on rear pancl. Output resistance $4800 \pm 10 \%$ to H CUR terminal.

General

Measuring apeed
Flxed range: 100 ms 10250 ms in C - G and L•R masuruments, 160 ms to 400 ms in $\mathrm{C}-\mathrm{D}$ and $\mathrm{L}-\mathrm{D}$ neasurements.
Aulorange: $100 \mathrm{~ms} /$ range step idded 10 above values.
Power: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V} \pm 10 \%, 48-66 \mathrm{~Hz}, 80 \mathrm{VA}$.
Dlmenslons: 88.1 mm high $\times 425.5 \mathrm{~mm}$ wide $\times 496.9 \mathrm{mlm}$ deep ($315 / 32^{*} \times 16 \%{ }^{N} \times 199 / 10^{\circ}{ }^{\circ}$).
Weight: $10 \mathrm{~kg}(22 \mathrm{lb})$.

Accessorles avallable:

16021 A Calibration Connector.
16023A DC Bias Vollage Contsoller, used with Option 001.

16032 A Tcst Leads with BiYC connectors.
16033 A Test Leads with minialure coaxial connectors.
16038A Test Fixture.
16039A Text Fixiure for "D" offsct.

Opuone avallabla:

Option 001 DC Bias supply. 0.0 V io 39.9 V.
Opuion 002 C/L BCD ouipul. May be usod wilh Option 003 for simultancous outpuls +8421 Code.
Oplion 003 G/R/D BCD Oulpul +8421 Code. (See Option 002).
Option 004 Parameter Serial BCD Ouipul. Allows selection of: 1. (C or L) Data only; 2. (D or G or U) Data only; or 3. (C or L) and (D or G or L) Data - 842] Code.
Opion 005 Calculator Interface, HP 9810A or 9820A or 9830A. U(iliecs HP 11202A I/O Card and Cable. Available exira.
Option 010 I MHz Digital LCR Meter. Less 16022A
Test Fixture. Specify 16021A, I6032A, 16033A.

Model number and name:

Price
16021 A Calibration Connector
$\$ 485$
16023 A DC Bias Cóntroller $\$ 410$
16032 A Test leads (BNC) \$156
16033A Tesi Leads
$\$ 178$
16038A Test Firlure
16039A Test Fixture for "D" offset
Option 001 DC Bias Supply
$\$ 165$
$\$ 190$
Oplion 002 C/L BCD oulput
add \$235
Option 003 G/R/D BCD output
Option 004 Parameter Serial BCD outpul
OpLion OOS Calculator Interface
Option 0104721 A Less Teil Fixiure
add $\$ 370$
4721A / MHz Digital LCR Meter
$\$ 4760$

- Wide range - 10 nF to 1 F full scale
- Dissipation lactor or ohm-farad measurements
- Internal bias supply
- Digital and analog outputs for recording

Description

Hewhetr-Packard's Model 4282A Digital High Capacitance Meter will make precision measurements on high value tantalum or aluminum elecirolytic capacitors. Effoctive applicalions are found both in capacitor design and produclion testing - either in incoming or outgoing inspecion.

Two types of leads are supplied with the HP 4282A. One is the stan. dard four-wire alligator clip style, and the olher, two specially designed clips that maintain the Kelvin four-wire measurement.

Two unique features of the HP 4282A are: allemating mode (displays esther capacitance and dissipation factor. C-D, or capacitance and the product of ohms and farads. C-SF alemately and the capability $t o$ double as a ihree-digit DVM.

Both digital and analog oufpuls art available for making permanent recordings.

Four measuring frequencies, $50.60,100,120 \mathrm{~Hz}$ come with the standard model. They represent power line frequencies and their second harmonics. Mosi large value capaciors are used as filters in powes supplics and are operated at these frequencies. If your application requires tests al other frequencies, please refer to Models 4260A. 4265B. $4332 \mathrm{~A}, 4270 \mathrm{~A}$. 4271 A on the adjoining rages.

Specifications

Measurling functions: capacilance, dissipation factor, "ohm-farad
and de voliage. Scleciable by funcion switch.
"Ohm-larad: the producl of capacitance and equivatent sericu resistance of a capacitor.

function swillch setling	Function and display
C	Capacitance measurement.
D	Oissipation faclor measurement.
- ε	Ohm farad measuremenl.
C.D	Capacitance and dissipation lactor measurements allernately.
$\mathrm{C}-8 \mathrm{f}$	Capacilance and ohm.larad measuraments allernalely.
v	DC bias voltage or external vollage measuremenls
	Nole All measurements are conlinuousty repealed as long as unknown is comnected.

Measuring ranges:

Function	Full-scale display	Over. 1 ranglat
$\begin{gathered} \mathrm{C} \\ \text { (capscilance) } \end{gathered}$	10.000 nF to 1.0000 F , doui full digts, 9 ranges in decade stcps, mannal selection.	18\%
D (dissipalion lactor)	1.000 to 10.000, three fult diguls. 2 ranges, aulta selection.	18\%
$\begin{gathered} \Omega F \\ \text { (ohm-farad) } \end{gathered}$	$1.00 \mathrm{~K} \Omega \mathrm{mF}$ to 1000 mf three full digils, 2 ranges. aulo selection.	18\%
$\begin{gathered} V \\ \text { (dc voltage) } \end{gathered}$	10.00 V 101.000 KV . Ihree full digils. 3 annges, in decade sleps. martual suipectorn (inaximum vollage is 600 V).	180

Measurfing circulf: series equivalent circuit using four-terminal meihod.
Measuring Irequencies: 50 Hz .60 Hz .100 Hz and $120 \mathrm{~Hz}(50 \mathrm{~Hz}$ and 60 Hz synchronized by line (requency). Accuracy. $\pm 1.5 \%$.

Measuring voltagers

10 nF to 10 mF renges: <1 V mis.
100 mF renge: $<0 . j \mathrm{~V}$ ims.
1 F range: $<10 \mathrm{mV}$ rms.
Accuracy: $\left(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ after half bour wamm up): \pm (\% of reading + 多 of full-scalc).
Capachance:

C Range	\% of reading	\% of till.scale
10 nF	1.0 + 0.9-Dodg	0.2
100 nF	05+0.5 Drdg	0.1
$\left.1{ }_{4}\right\} 101 \mathrm{mF}$	0.4 + 0.5. Drdg	0.05
10 mf	$1.0+0.5 \cdot \mathrm{Drdg}$	0.05
100 mF	$1.5+0.5 \cdot$ Drdg	0.5
1 F	$2.5+0.5$ - Drdg	1.0

Dissipatlon lactor:

C Range	\% of reading	\% of iull.scale
10 mf	$1.5+0.5 \cdot$ Drdg	$0.2 \cdot \mathrm{Cl}_{3} / \mathrm{Crdg}+0.3$
100 of 901 mF	$1.5+0.2 \cdot 0 \mathrm{dg}$	$0.2 \cdot \mathrm{Cf}_{3} / \mathrm{Crdg}+0.3$
10 nf	$1.5+0.2 \cdot \mathrm{Ordg}$	$0.2 \cdot \mathrm{Cls} / \mathrm{Crdg}+0.5$
100 mf ,) f	$1.5+0.2 \cdot$ Ordg	$0.2 \cdot \mathrm{Crs} / \mathrm{Crdg}+3$

Ohm-farad:

C Rang	\% of readias	\% of tull-scale
10 nf	$1.0+0.5 \cdot 5 ¢ \mathrm{rdg}$	$0.2 \cdot \mathrm{Cls} / \mathrm{Crds}+0.3$
100 n [to 1 mf	$10+0.2 \cdot \Omega 5 \mathrm{rdq}$	$0.2-\mathrm{Cls}_{5} / \mathrm{Ceds}+0.3$
10 mf	$1.0+0.2 \cdot \Omega 510 \mathrm{~g}$	$0.2 \cdot \mathrm{cls} / \mathrm{Crog}+0.5$
$100 \mathrm{mF}, \mathrm{IF}$	$1.0+0.2 \cdot n 7$ rog	$02 \cdot \mathrm{Cl}_{5} / \mathrm{CrO}_{8}+3$

Drdg: reading of dissipation factor.
aFrdg: reidding of ohm-farad.
Crdg; reading of capacitance.
Cis: full-siale of C range setting.
DC voltage measurement accuracy
10 V range: $\pm(0.05 \%$ of reading $+0.1 \%$ of full-scale)
100 V and 1 kV ranges: $\pm\left(0.2^{\mathrm{n}} \mathrm{i}\right.$ of reading $+0.1^{\mathrm{t}} \cdot \mathrm{af}$ (u)l-scale),
Temperature coetflelent: (refurred $10+23^{\circ} \mathrm{C}$, and itmperaiure
fange a $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$):

Function	Temperslure coetficient
$\begin{gathered} \mathrm{C} \\ \mathrm{D} . \mathrm{OF} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 0.02 \% \text { of reading } /{ }^{\circ} \mathrm{C} \\ & \pm 0.03 \% \text { of reading } /{ }^{\circ} \mathrm{C} \\ & \pm 0.01 \% \text { of reading } /{ }^{\circ} \mathrm{C} \end{aligned}$

Opilon 001 leakage current measurement adds following capabilities to standard model:
Leakage current measurgment: (I_{L})
Range: $1.000 \mu \mathrm{~A}$ to $10.000 \mathrm{~mA}, 5$ ranges, ihree full digits.
Overranging: $1{ }^{2 \pi}{ }^{5}$.
Accuracy: $1 \mu \mathrm{~A}$ range: $\pm(2 \%$ of reading $+2.0 \%$ of full-scale). I0 $\mu \mathrm{A}$ to 10 mA ranges: \pm (2% of reading $+0.3 \%$ of full-scalc).
Blas vallages: inernal source: 0 to 10 V .0 to 100 V .2 ranges, con. tinuously variable over each range. Maximum current is 100 mA for 10 V range and 60 mA (for 1 minule) for 100 V range.
External source; usable up to 600 V di atross ext bias terminals on rear pancl.
Protectlve reslator: $1 k \Omega$ for 100 V range and for cxicrnal bias. 18 for 10 V range.

General

DC bias voltage: 0 to 10 V , continuously adjustable with DC bias control. Maximum charging current is 100 mA .
Balancing time: normally one second (when measuring on C ranges of 10 nF through 10 mF . capacitance value near full-scale, dissipation faclor less than one and withoul de bias\}.
Reading rate: conlinuously variable from 0.3 seconds to 2 seconds with rate control.
Peset: iniliates one reading by depressing reset int pushbutton or coniact closure 10 ground or TTL low level at reset ext line. Mating plug for resel text jack: HP pari No. $1251-0918$.
Dighal output: output signals: BCD $+1-2-4-8$. data parallel, decimal point. function and unit, overlozd and unbalance, and polarity.
Level:

State	Level	Characteristics
Low	$0.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	Max sink current 15 mA
High	$3.9 \mathrm{~V} \pm 1.5 \mathrm{~V}$	Max load current $300 \mu \mathrm{~A}$

Print command oulput: negalive going TTL pulse of approx. I ms. Printer hold inpul: TTL low level or contact closure to ground.
Connector: matsing, HP P/N 125I-0084; Amphenol 57-30360-375 (36-pin blue ribbent).
Remote programming: programmable functions, C-range. IL range (oplion OO1) and reset by TTL low level or contace closure to ground.
Connector: mating, HP P/N I2SI-0084; Amphenol 57.30360-375 (36 -pin blue ribbon).
Aralog output: DC outpui of I V full-scale in proportion 10 displayed value.
Accuracy: add $\pm 0.5 \%$ of reading 10 accuracy specification.
Operating anvironment: $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}, ~<90 \% \mathrm{RH}$.
Power requiremente: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ or $240 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ or 60 Hz , approx. 70 VA .
Dimenslons: 425 mm wide $\times 88 \mathrm{~mm}$ high $\times 467 \mathrm{~mm}$ deep ($16 \%^{\circ} \times$ $\left.31 / 2^{*} \times 181 / 3^{*}\right)$.
Weight: net, $8.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. 12.9 kg (5.86 lb).
Accessories furnished
15035A test leads: four alligator chps.
16038A test leads: two alligatorajaw clips. Power cord: 230 cm (71/:斤i), HP Part No. 8120-1378.
Rack mount klt: HP Part No. 5060-8739.

Accessories available	Price
16037A Test Fixture	$\$ 195$
16037A Test Fixture. Oplion: 001 (vertical Icad devices)	$\$ 195$
Optlons	
Option 908: Rack Flange Kit	add $\$ 10$
Model number and name	
4282A with option 001 (leakage current)	$\$ 3790$
4282A Digital High Capacitance Meter	$\$ 3500$

Capacitance bridge
Model 4270A

- Fully automatic:
- 1 kHz to 1 MHz
- Measure from 18.000 pF to $1.2000 \mu \mathrm{~F}$ Full Scale

Description

A unique instrunient from Hewlett-Packard, the 4270A Automatic Capacitanc: Bridge provides a wide variely or high speed measurements of both aclive and passive eapacity values. Five-digil readoul of capacitance from sull-scale ranges of 18.000 pF to $1.2000 \mu \mathrm{~F}$ is complemented by . 001 pF resolution and measurement speed of 0.5 seconds. In addition, a second in-line 4 -digit Nixse@ display of capacitor loss is given simuliancously in terms of parailel conductanec (G) or dissipation factor (D). In the laboratory. HP's 4270A will be cxaremely useful for examination of semiconductor junction capacities, input capaciances of amplifiers and other active devices, as well as analysis of stray capacily values, cables and simple capacitors. DC biasing, four frequencies from I xHz to 1 MHz and a fully guarded measurement will add to laboratory Mexibility.

Specifications

Massuring circult
Float: guarded werminals of unknown are floated from ground, Lground: one side of known terminals is grounded, guard is retained.
Paremeters measured; capacitance, equivalent paralicl conductance and dissipation factor.
Messurling frequency: $1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{xHz}$ and $1 \mathrm{MHz} \pm 1 \%$.

Range modes

Aulo: range selecioion and balance performed auromaticully.
Hold: range is held on fixed position, balance begins with most significant digit. Range determined by previous auto or track range selected or by manually stepping range stop.
Track: range held on fixed position, balance begins with lasi digit. Balancing time: typically 0.5 s .
Measuring rale: measurement cyele equals balance time plus display time. Balance time typically 0.5 si display times selected by meas rate are $70 \mathrm{~ms}, 2$ secs, 5 secs, aod munual.

Test voltage acrogs unknown

Normal: i V ims constant in pF or nF at $\mathrm{IkHz}, 0.1 \mathrm{~V}$ rms constant, in $\mu \mathrm{F}$ at 1 kHz . 0.5 V ms constant at $10 \mathrm{kHz}, 100 \mathrm{kHz}$ and) MHz . Low: $1 / 5$ of normal.
Repeatability: ± 2 digits at normal ical vollage, ± 10 digits as low less voltage.
DC blas: Internal or external to $\pm 200 \mathrm{~V}$, in hold and track mode.

Internal blas at float measunement

Voltage: 0 to 20 V dc: 0 to 200 V dc; continuously variable on front panel, monitored on rear pancl.
Dial acouracy: $\pm 5 \%$ of full scale.
Source resialance: $100 \mathrm{k} \Omega$.
Polarity: low unknown terminal (-). high unknown terminal (+) in noat position of meas ckt conirol.
Remote: programmable by resistor with $250 \Omega / \mathrm{V}$ rate at 20 V range. $25 \Omega / \mathrm{V}$ rate al 200 V range.
Remote accuracy: $\pm 2 \%$ or full scale.
Internal blas al L-ground: an additional conneclion using a blocking espacitor and a conxia) cable is necessary for internal source.
anallagle fuel scale ranges:

Capacilance				Conductance	Dissipation Factor
1 HHz	10 kHz	100 kHz	1 MHz		
180.00 pr	18.000 pf			899.9n U	
$18000{ }^{\text {p }}$	180.00 pf	18.000 pf		8.999% U	
18.000 nf	1800.0 pF	180.00 p	18.000 pF	$89.99 \mu \mathrm{~L}$. 8999
180.00 nf	18.000 nf	1800.0 p	780.00 pF	899.9μ U	
$1.2000 \mu \mathrm{~F}$	180.00 пf	18.000 nf	1200.0p 5	8.999 mb	

NBTE heary line encioses available full-scale ranges in L-GqOUND tull dispidy of D / G is obtained at Ireack MOOE, and is limited by AUTO RESET of 1.5 sec at AUTO/HOLD MOLI

- ficcuracy at L-GROUND is mot specified on this range.

Basic accuracy

	Frequency	1 KHz \& 10 kHz	100 kH		$1 \mathrm{MHz}_{2}$
C	$0<0.1$ Basic Accuracy $0.1<0<0.899$	$\begin{aligned} & \pm 0.11_{0} \pm 1 \text { digil } \\ & \pm 0.01 \rho 5 \\ & \pm 0.2 \% \pm 1 \text { digil } \\ & \pm 0.01 \rho \mathrm{~F} \end{aligned}$	$\begin{aligned} & \pm 0.3 \% \pm \\ & \pm 0.01 \mathrm{p} \% \\ & \pm 0.58 \pm \\ & \pm 0.01 \mathrm{pF} \end{aligned}$	I digit 1 digul	$\begin{aligned} & \pm 1 \% \pm 1 \text { digil } \\ & \pm 0.01 \mathrm{pf} \\ & \pm 2 \% \pm 1 \text { digil } \\ & \pm 0.01 \mathrm{pf} \end{aligned}$
G	Basic Accuracy	$\pm 1 \% \pm 10$ digits		$\pm 3 \% \pm 10$ digits	
D	Bas: Accuracy	\pm 1 \% \pm ($10+C s / C x)$ digils		± 3 第 \pm ($10+\mathrm{Cs} / \mathrm{Cx}$) digets	

Outputa: 4 line BCD.
Inputs
Trigger hold off level: level must be belween 10 V and is V .
Remole programming: eight front-pancl functions can be remotely controlied by external contact closure to ground with impedance less than 400 . Programmable functions are resel, frequency, range mode. test vollage. loss meas, range step. de bias, bias vernier.
Operating temperalure: $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$.
Power requiremente: 115 or $230 \mathrm{Vac} \pm 10 \%, 50$ 10 60 Hz (approximately 110 W).
Weight: ret. 15.5 kg (3 l lb). Shipping, 21.6 kg (48 lb).
Interface kits I6ISOA Conisol Card and I6151A Data Card are avail. able for interface with Hewlett-Packard compulers. Each kil includes mating cable, BCS 4P 4270A driver and diagnostic kape.

Acceseories avaliable:

Accessories for HP's 4270A Automatic Capacilanee Bridge
The following adapters convert BNC Conneetors on HP's 4270A 10 allow direct insertion of components. 16011 A converts from BNC to binding posts. 16012A converis from BNC to lest axial lead devices. It has a centrally localed guard plane to reduce ertors due to stray capacitance. 16013 A converts from BNC to tesi verical lead devicer. It has a guard plane similar to 16012A. III43A converts from BNC 10 elip leads. 44^{*} overall length with third lead to preserve guard terminal.
Opilons and acceasorles
Price
1601 IA BNC Connector
$\$ 58$
16012A BNC Connector
$\$ 68$
16013A BNC Connector
\$68
11143A BNC Cable
4270A Automalic Capacitance Bridge

Description

Hewlelt-Packard Models 4350A/B High Capacitnnce Melers measure high capaciances from $0.02 \mu \mathrm{~F}$ to 300 mF and simultaneously measure dissipation factor. Leakage current can be meanured with the 4350A. HP's 435DA / B provides analog outputs proportional to meter deflection. Combining the 4350A/B with the 40SOA Analog Comparalor incteasts speed in sorting applicalions.

4350A/B Specifications

Capacitance measurement

Capacitance

Range: $1 \mu \mathrm{~F}$ to 300 mF full scale in 12 ranges.
Accuracy (\% of full scale):

	Capacilance Range Full Scale	
Tan δ range	$1 \mu \% 10100 \mathrm{mF}$	300 mF
0101	$\pm 3 \%$	$\pm 4 \%$
1105	$\pm 4 \%$	$\pm 5 \%$

Tan δ^{\prime}
Range: 0.5 or 5 full scale in 2 ranges.
Absolute nceuracy:

0.5 full sciale:	± 0.025
5 full scale:	$+0.06+\frac{\text { (rcading) }^{2}}{20}$
	$-0.06+\frac{\text { (reading) }^{2}}{25}$

Internal test algnal

Frequency: $120 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$.

Internal de bias

Vollage range: 0106 V dc. continuously adjustable.
Response time (C and tan δ): typically 1 s .
Tan of uncal: indicates the reading of tan δ is uncalibrated when the deflection of capacitance meler is below 10% or above 130% of full scale.

Leakage current measurement (4350A only)

Current
Ranges $1 \mu \mathrm{~A}$ to 10 mA full scalc in 9 ranges.
Aceuracy: $\pm 3 \%$ of full scale.

DC blas vollage

Internal: up to 100 V de in 2 ranges.
External: 600 V de max.

Worning lamp: indicales "danger" when de vollage across an unknown is higher than I.5 V oc.
Analog outputs

Capacitance

1 V de all rangers for use with analog comparacor.
7 V dc or 0.3 V de full scale: for use with DVM.
Overrange: 25% of full scile.
Accuracy:

	Capacilance Range full Scase	
Fan 8	$1 \mu 510100 \mathrm{mF}$	300 mf
0101	\pm (1.5礕 of reading $+0.5 \%$ ol lull scale)	$\pm 3 \%$ ol full scale
1105	\pm (1.5\% of reading $+1.5 \%$ of full scale)	$\pm 4 \%$ of full scale

Loss angle (8):
Tan δ vs. analog outpul voltage: $0.1 \mathrm{Y} /$ degree.

Тап δ	δ	Outpul Voltage
0100.5	$0^{\circ} 1026.6^{\circ}$	$(0$ to 2.66 Vdc$) \pm 0.13 \mathrm{Vdc}$
0.5105	$26.6^{\circ} 1078.7^{\circ}$	$(2.66 \mathrm{to} 7.87 \mathrm{Vdc}) \pm 0.3 \mathrm{Vdc}$

Resldual nolse; $40 \mathrm{~m} V \mathrm{p}-\mathrm{p}$ max.
General
Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 V of $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 38.5 \mathrm{VA}$ max.
Dimenslons: 198 mm wide $\times 166 \mathrm{~mm}$ high $\times 305 \mathrm{~mm}$ decp $\left(7^{21} / \mathrm{si}^{\prime \prime} \times\right.$ $\left.619 / 32^{*} \times 12^{\prime \prime}\right)$.
Welght: rec. 4.8 kg (11 lb). Shipping, 6.8 kg (15 lb).
Accessories lurnished: 16035A Test Cable with Jour alligator clips: 16036A Test Cable with two alligator clips.

16035A Test cable (Iurnished)

16036A Test cable (furnished)

Description

Hewleti-Packard Model 4050A Abalog Comparator compares unknown voltage to presel high and low limits. Contact closures with carresponding high-go-low lights will operate external deviocs. HP's 4050A increases speed al which the 4350A /B Hi.C Meter or 4332A. LCR Meter will operate in soring applications.
Model number and name
4350A High Capacitance Meter
4350B High Capacitance Meter
$\$ 1255$

Q Meter

－Frequency range： 22 kHz to 70 MHz
－Qrange： 5 to 1000

Description

The direct－reading expended seate of the 4342A permits measure－ ment of Q fram $\$ 101000$ and readings of very smalf changes in Q re－ sulting from variation in lest parameters．The 4342A is solid state with the elimination of specially matched，fragile thermocouple compo－ nemes．

The 4342A will measure dissipation factor and dielectric constant of insulating materials．The Q meter can measure coefficient of coup－ ling．mutual inductance，and frequency response of eransformers．RF resistance，reactance．and Q of resistors and capacitors can ako be de－ termined．

Push bution operation of frequency range and $Q / \Delta Q$ range setec－ tion provides straightforwand measurement．Automatic indication of neter scales．frequency dials and frequency multipliers are featured． adding to simplicity and reading spced．

Specifications

RF characteristics
RF range： 22 kHz to $70 \mathrm{MH} \angle$ in 7 bands： 22 to 70 kHz .70 to 220 $\mathrm{kHz}, 220$ to $700 \mathrm{kHz}, 700$ to 2200 kHz 2.2 to $7 \mathrm{MHz}, 7$ to $22 \mathrm{MHz}, 22$ 1070 MHz ．
4342A Option 001： 10 kHz 1032 MHz in 7 bands： 10 to $32 \mathrm{kHz}, 32$ to 100 kHz ． 100 to 320 kHz .320 to 1000 kHz ．I to $3.2 \mathrm{MHz}, 3.2$ to 10 $\mathrm{MHz}, 10$ to 12 MHz ．
RF accuracy：$\pm 1.5 \%$ from $22 \mathrm{kHz} 1022 \mathrm{MHz}: \pm 2 \%$ from 22 MHz to $70 \mathrm{MH}_{2}$ ：\pm 蕅 at＂L＂point on frequency dial．
4342A Opllon 001：$\pm 1.5 \%$ from 10 kHz to $10 \mathrm{MHz} \pm 2$ 务 from 10 MHz to $32 \mathrm{MHz:} \pm 1 \%$ al＂ L ＂point on frequency dial．
RF Increnients：approximately 1% resolution

Q measurement characteristics

Q range： 5 to 1000 in 4 ranges： 5 to 30.20 to 100． 50 to 300,200 to 1000.

Q accuracy：\％of indicated value：（al $25^{\circ} \mathrm{C}$ ）．

	$4342 \mathrm{~A} \& 4342 \mathrm{~A} 0 \mathrm{pl.001}$	4342 A
Q	Freq．	$22 \mathrm{kHz}-30 \mathrm{MHz}$
$5-300$	± 7	$30 \mathrm{MHz}-70 \mathrm{MHz}$
$300-600$	± 10	± 10
$600-1000$	± 15	± 15

0 incremenls：upper scale：f from 20 to 100 ：lower scale． 0.5 from 5 1030.
$\Delta 0$ range： 0 io 100 in 4 ranges： 0 to 3,0 to 10,0 to 30,0 to 100. $\Delta 0$ eccuracy：± 10 飛 of full scale．
Δ Increments：upper scale： 0.1 from 0 to 10；lower scilc： 0.05 from 0 in 3.

Inductance measurement characteristics
L range： $0.09 \mu \mathrm{H}$ to 1.2 H ，direct reading at 7 specific frequencies． L accuracy：$\pm 3 \%$ after substitution of residuals（upprox， 10 nH ）．
Resonating capacitor characteristics
Capacitor range：man dial： 2510470 pr ，vernier dial－5 io +5 pF ．
Capactior accuracy：main dial：± 1 of or 1 pF ，whichever is greater； vernier dial $\pm 0.1 \mathrm{pF}$ ．
Capacitor Increments：main dial：I pF from 251030 pF ： 2 pF Irom 30 to 200 pF， 5 pF from 200 to 470 pF ：vernier dial 0.1 pF ．

General

Rear panel oulputs

Frequency monltor： 170 mV mms min into 50Ω ．
O analog oulput： 0 to $1 \mathrm{~V} \pm 50 \mathrm{mV}$ de after 13 minutes warmup． propartional 10 meter deflection．Oulpul impedance approximately I k？
Over Ilmit signal output contact closure at the rear panel．Relay contacl capacity $0.3 \mathrm{~A} / 15 \mathrm{VA}$ ．
Over IImit display time：selectable，I s or continususly on，after limit uxceeded．
Temperalure range： $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ．
Power： 115 or $230 \mathrm{~V} \pm 10 \mathrm{c}_{\mathrm{c}}, 48-440 \mathrm{~Hz}, 27.5 \mathrm{VA}$ max
Dimenstons： 425 mm wide $\times 138 \mathrm{~mm}$ high $\times 414 \mathrm{~mm}$ decp $\left(16^{\prime} / \mathrm{m}^{\sim} \times\right.$ $51 / h^{\prime \prime} \times 153 / 18^{\prime \prime}$ ）．
Welght：nct， $14 \mathrm{~kg}(31 \mathrm{lb})$ ．Shipping． $18.45 \mathrm{~kg}(4 \mathrm{lb})$ ．
Accessories avallable：
HP 16014A：Series Loss Test Adaptor is dengned for measuring low impedance components，low．value inductors and resistors．and also high－value capacitors．Using the adaptor adds convenience in con－ neeting components in series with the test circuil of the 4342A Q Meter．This adaplor consists of a teflan printed－circuil base on which are nomented binding posts，to accept the Reference Inductors，and a pair ol low－inductance series terminats for the unknown．
HP 16462A：Auxiliary Capacitor in designed to exiend the Q and L musuremeni capability of the $4342 \lambda Q$ Meter．It is especially useful for measuring small inductors al low frequencies
HP 16470A refecence inductors：A range of 20 inductors，any of which can be supplied separately，is available for use with ibe 4342A Q Meter for measuring the RF characteristics of capacioors，resistors， and insulating materials．These inductors have three terminals．One terminal is connected to the case to stabilize measurements．

Model number and name	Price，
Option 001 Frequency Range	add \＄163
16014A．Series Loss Test Adaptor	\＄55
16－662A．Auxiliary Capacitor	\＄265
16470A．Reference Inductors，for a set of 20 of 537	\＄790
4342A．Q Meler	\＄2275

4440B Description

The Hewlett-Packard 4440日 Decade Capacitor is a bigh accuracy instrument providing usable capacitances from 40 pF to $12 \mu \mathrm{~F}$. Its 0.25% accuracy makes it sn ideal aid for circuil design or is a working slandard.
Use of silvered-mica capacitors in four decaden of 100 pF provides higher accuracy, low dissipation factors and good temperature cocificient. An air capacitor vernicer provides 100 pF (From 40 pF to $\mathrm{I} 40 \mathrm{pl} \mathrm{F}^{\circ}$) with resolution of pF . Capacitors are housed in a duable whield in such a way that increased capacitance from two terminals tu ihrec terminals is held to pF .

4440B Specifcations

Capactance: 40 pF to $1.2 \mu \mathrm{~F}$ in steps of 100 pF with a 40 pF to 140 pF variable air capacitor providing continuous adjustment tü better than 2 pF between steps.
Direct reading accuracy: $\pm(0.25 \%+3 \mathrm{pF})$ at $\mid \mathrm{kHz}$ for threc-ierminal connection.
Resonant frequency: typical values of the resonals frequency are 450 kHz at $1 \mu \mathrm{~F}, 4 \mathrm{MHz}$ al $0.01 \mu \mathrm{~F}$ and 40 MHz 3100 pF .
Dissipation lactor: for $\mathrm{C}>1040 \mathrm{pf}, 0.005 \mathrm{ar} / \mathrm{kHz}$.
for $\mathrm{C}<1040 \mathrm{pr}, 0.001$ al 1 kHz .
Temperature coefficient: $+70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Insulation reslatance: $5 \mathrm{G} \Omega$ minimum, afier 5 minuter al $500 \mathrm{~V} d c$. Maximum vollage: 500 V peak
Weight: nel, $2.5 \mathrm{~kg}(51 / 2 \mathrm{lb})$; shipping $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Dimenglong: 264 mm wide $\times 152 \mathrm{~mm}$ deep $\times 76 \mathrm{~mm}$ high ($11^{*} \times 6^{*}$ $\times 37$.

4436A/4437A Description

The Hewlett-Packard Models 4436A /4437A Altenuators provide accurate steps of attenuation with 0.1 dB resolution for power-lcuel measurements, communication system tests, and gain or loss measurements on filters and amplifiers, and similar equipment.

4436A Specifications

Maximum attenuatlon: 19.9 3 B .
Attenuation increments; 0.1 dB .
Inpul/output impedance: 60032, batanced.
Frequency range: de $101.5 \mathrm{MHz}(010110 \mathrm{~dB})$ dc $101 \mathrm{MHz}(010$ 119.9 dB).

Accuracy

Allenualian	100 hHz	1 MHz	$1.5 \mathrm{MHz}^{\circ}$
$0 \sim 60 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	$\pm 02 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$
$60 \sim 90 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	$\pm 03 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$
$90 \sim 110 \mathrm{~dB}$	$\pm 02 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
$110 \sim 119.9 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0 \mathrm{~dB}$	

Maximum Input power: +30 dBm .
DC Isolatlon: signal ground may be $\pm 300 \mathrm{~V}$ de from external chassis.
Dlmensions: 198 mm wide $\times 77 \mathrm{~mm}$ high $\times 167 \mathrm{~mm}$ deep ($7 \mu_{\mu^{\prime \prime}} \times 3^{\prime \prime}$ $\left.\times 63 / k^{4}\right)$.
Walght: ret. 1.5 kg (3.3 lb). Shipping. 2.7 kg (6 lb).

4437A Specifications

The Model 2437 A is a 600 ohms unbalanced lype, and its specifica. tions are identical to the 4436A.

350D Description

Two attenuator sections make up the Hewlet1-Packard 350D Atennuator. One section is a 100 dB athenuator, adjustable in 10 dB steps. The other is a 10 dB attenuator. adjustable in 1 dB steps.

350D Specifications

Aftenuation: 0 to 110 dB , 1 dB and 10 dB slcps.
Power capaclfy: 600Ω unbahanced: S W ($5 \leqslant \vee$ de or rms) max, conlinuous duly.
DC leolation: signal ground may be $\pm 500 \mathrm{~V}$ dc from chassis.
Accuracy
10 dB section:

0 dB	
dc $10: 100 \mathrm{kHz}$	$< \pm 0.125 \mathrm{~dB} /$ step
100 hHz to 1 MHz	$< \pm 0.25 \mathrm{~dB} /$ step

100 dB section:

0 dB		$70 \mathrm{d8}$	$100 d 8$
dc 10100 kHz	$< \pm 0.25 \mathrm{~dB}$	$< \pm 0.5 \mathrm{~dB} / \mathrm{step}$	
100 hHz 10 J MHz	$< \pm 0508$	$< \pm 0.75 \mathrm{~dB}$ / step	

Dimenslons: standard Hewtett-Packard module 130 mm wide X 159 mm high $\times 203 \mathrm{~mm}$ decp $\left(5 / /^{\prime \prime} \times 81, \mu^{\prime \prime} \times 8^{\prime \prime}\right)$. Weight: net, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. 2.7 kg (6 lb$).$

Modet number and name	Price
4440B Decade Capacitor	$\$ 530$
4436A Altenuator	$\$ 815$
4437A Allenuator	$\$ 530$
350D Altenuster	$\$ 202$

Model 4800A

HP's 4800A measures the vecior impedance of components, complex networks, and other twoterminal devices. Besides measuring vector impedance, the 4800A measures componene valucs. At frequencies that are decade multiples of $1 / 2 \pi$. as marked on the frequency dial. L and I / C are read direcily if the phase is approximately $\pm 90^{\circ}$, respectively. R is equal to the impedance magnitude at frequencies where the phase is approximately 0°. The vectorimpedance meter also yicids Q and inductor values by using either fo/ $\Delta \mathrm{f}$. $\mathrm{Rp} / \mathrm{wr}$ or the wL/Rs leshnique.

The unit is equipped with analog outpuls for ithree parameters: impedance magnilude, impedance phase, and frequency. The rear panel provision for an external oscillator snput makes possible swept frequency characterizalion of "unknown". The impedance meter can bc swepl over uny decade sange of frequency and imperdance within the range of the insifument.

Specifications

Frequency characteristics

Ranga: 5 Hz to 500 kHz in five bands: $51050 \mathrm{~Hz}, 50$ to $500 \mathrm{~Hz}, 0.510$ $5 \mathrm{kHz}, 51050 \mathrm{kHz} .5010500 \mathrm{kHz}$.
Accuracy: $\pm 2 \%, 50 \mathrm{~Hz}$ to $500 \mathrm{kHz} \underset{i}{ } \pm 4 \%, 5$ to $50 \mathrm{Hzi} \pm 1 \%$ a1 15.92 on frequency dial from 159.2 Hz to $159.2 \mathrm{kHz}: \pm 2 \%$ at 15.92 Hz .
Impedence measurement characteristics: lohm to 10 megohms in seven decade ranges from XI to X 10 M . Accuracy is $\pm 5 \%$ of reading.
Phase angle meesurement characterlsllcs: $0^{\circ} 10 \pm 90^{\circ}$ in 5° in. crements. Accuracy is $\pm 6^{\circ}$.
Direct capacitance measurement capabllities: 0.1 pl 1010,000 uF direct reading at decade multiples of 15.92 Hz . Accuracy is $\pm 7 \%$ of reading for D less than 0.1 at $159.2 \mathrm{H}_{2}$ to $159.2 \mathrm{kHz}, \pm 8 \mathrm{~F}_{\mathrm{c}}$ of reading for D less than 0.1 as 15.92 Hz .
Dlrect Inductance measurement capabilitera: I uH $10100,000 \mathrm{H}$ direct reading as decade multiples of 15.92 Hz Accuracy is $\pm 7 \%$ of reading for Q greater than 10 from 159.2 Hz to $159.2 \mathrm{kHz} \pm 8 \%$ of reading for Q greater than 10 at 15.92 Hz .
Messuring terminal characlerlstles: both terminals above ground. ground terminals provided for shiclding convenience: binding posis spaced $1 / 4$ at centers.

Waveshape: sinusoidal.

External oscillator requirements: $0.9 \mathrm{~V} \pm 20 \%$ into $20 \mathrm{k} \Omega$.
Aecorder oulputs
Frequency: level: 0 to 1 V nom.: source impedance: 0 to $\mathrm{l} \mathrm{k} \Omega$ nom.: proportional to frequency dial rotation.
Impedance: level: 0 to I V nom.: source impedance: I $k \Omega$ nom.
Phase angle: level: $0 \pm 0.9 \mathrm{~V}$ nom: source impedance: 1 kN nom.
Acceseories furnlshed: 13525A Calibration Resisior, 00610A Ter. minal Shield, Veclor Impedance Calculator.
DImensions: $426 \mathrm{~mm} \mathrm{~W} \times 133 \mathrm{~mm} \mathrm{H} \times 467 \mathrm{~mm} \mathrm{D}\left(161 / 1^{\mu} \times 51 /^{\mu} \times\right.$ 181/x").
Welght: net, 10.8 kg (24 lb): shipping. 13.5 kg (30 lb).
Power. 115 or $230 \mathrm{~V} \pm 10 \%, 4810440 \mathrm{~Hz}, 29.7 \mathrm{VA}$.

Model 4815A

The RF Vector Impesiance Meler offers itese significant advanlages:

- Dirocl reading of impedance and phase
- Convenien probe for in-circuil measurements
- Self calibration check provides measurement confidence
- Analog outpuls for data recording
- Low-level tesi signal minimizes circuit dislurbance

The HP 48I5A RF Vector Impedance Meter provides all of the convenience of "probe and read" measurements, In use, the probe is connected directly into the circuit to be evaluated. frequency is sclected, and complex impedance is read. This type measurement allows a straightforward idaptation to various jigs and fixtures for special measurements. Where only component values are to be determined, a quict-mount adapter is provided to allow rapid measurements. For critical component applications, the unit to be evaluated may be mounted directly in iss working circuil and its value delermined in iss actual environment, al the lirequency of interest.

Specifications

Frequency

Range: 500 kHz io 108 MHz in five bands: 500 kHz to $1.5 \mathrm{MHz}, 1.5$ 104.5 MHz . 4.51014 MHz . 14 to $35 \mathrm{MHz}, 3510108 \mathrm{MHz}$.

Accuracy: $\pm 2 \%$ of reading: $\pm 1 \%$ of reading at 1.592 and 15.92 MHz . RF monitor outpu: 150 mV minimum into 50 ohms.
impedance magnitude measurement
Range: I ohm $10100 \mathrm{k} \Omega$; full-scale ranges: $10,30,100,300,1 \mathrm{~K}, 3 \mathrm{~K}$. $10 \mathrm{~K}, 30 \mathrm{~K}, 100 \mathrm{k} \Omega$.
Accuracy: $\pm 4 \%$ of full scale $\pm(\$ / 30 \mathrm{MSkz}+\mathrm{Z} / 25 \mathrm{kR}) \%$ of reading. where $f^{\prime}=$ frequency in MHz and Z is in ohms.
Calibrallon: Jinear metes scale with increments 2% of full scale. Phase angle measurement
Fange: 0 to 360° in two ranges: $0 \pm 90^{\circ}, 180^{\circ} \pm 90^{\circ}$
Accuracy: $\pm(3+1 / 30 \mathrm{MHz}+Z / 50 \mathrm{k} \Omega)$ degrees where f = frequen. cy in MHz and Z is in ohms.
Callbration: increments of 2°.
Adjustments: screwdriver adj. for Magnitude and Phase Zcro.
Recorder outputs
Frequency: 0 to IV from 0 to Lk , sousoe, proportional to selting. Impedance magnilude: 0 to 1 voli from $\mathrm{I} \mathrm{k} \Omega$ source.
Phase angle: 0 ± 0.9 voli from I $k \Omega$ source.
Dimenslone: 426 mm W. $185 \mathrm{~mm} \mathrm{H}, 476 \mathrm{~mm} \mathrm{D}\left(16 y_{4} \times 71 / \mathrm{m}^{\nu} \times\right.$ $18 \%{ }^{*}$)
Welght: 17.6 kg (nel 39 lb), shipping 24.8 kg (55 lb).
Power. 10510 I 25 V or 210 to $250 \mathrm{~V}, 50$ to 400 Hz ، 50 W .

Acceseorias furnished:

00600 A Probe Accessory Kit; contanns BNC Type "N" adapter. Probe Socket, 00601A Component Mounting Adaplet. 2 probe center pins, probe ground assembly.

908: Rack Flange Kit
Model number and name
4815A RF vector impedance meter
$\$ 3200$
4800A Veclor impedance meler
$\$ 2000$

- Self-contained RF bridge

- Adjustable RF level
- 500 kHz to 250 MHz

Description

The 2SOB RX Meler measures wo-terminal RFimpedance in terms of equivalent parallel resistance and capaciance. The self-contained inserument includes a continuously luned ascillator, high-frequency bridge, amplifier-detector, and null indicating meter. Connections may be conveniently made to the bridge lerminals which are arranged for almosi zero lead iength. Easily adjusted bridge balance controls are provided, and measurements may be made continuously from . 5 to 250 MHz . A fromi pancl conirol permits adjustment of the RF excitation signal 10 as low as 20 mV for low level applications. Depression of a momentary switch on the from panel allows the operator to read relative signal level on the null meter. A connector on the sear panel provides an IF output which may be connected 10 a sensitive volimeter (3406A) for improved resolution when nulling during reduced signal level operation.

Specifications

RF characteristics

AF range: $500 \times \mathrm{H}_{2}$ to 250 MHz in eight bands: 0.510) MHz , 1102 $\mathrm{MHz}, 2$ to $4 \mathrm{MHz}, 4$ to $9 \mathrm{MHz}, 9$ to 2! M Hz, 21 to $48 \mathrm{MHz}, 48$ to $1!0$ $\mathrm{MHz}, 110$ to 250 MHz .
RF sceuracy: $\pm 2 \%$.
AF callibation: increments of approx. 1%.

Pesistance measurememt characteristics

Resilstance range: 15 to $100,000 \mathrm{ohms}$.
Rebiatance accuracy:
$\pm\left[2+\frac{F}{200}+\frac{\mathrm{R}}{5000}+\frac{\mathrm{Q}}{20}\right] \% \pm 0.2 \mathrm{ohm}$
$F=$ frequency in $M H_{2} R=R X$ Meler R_{p} reading in ohms. $Q=\alpha^{\prime} C R \times 10^{-11}$, where $C=R X$ Moler C_{p} resding in $p F$.
Realelance calibralion: increments of approx. 3% throughout most of range.
Capacilance measurement characteristics
Capacitance range: 0 to 20 pF (may be extended through use of auxiliary coils).

Capacltance accuracy: $\pm\left(0.5+0.5 \mathrm{~F}^{2} \mathrm{C} \times 10^{-5}\right)$ \% $\pm 0.15 \mathrm{pF}, \mathrm{F}=$ frequency in $M H_{7}, C=R X$ Meter C reading in pF .
Capactor calibration: 0.1 pF increments.
Induckance measurement characteristica
Inductance range: $0.001 \mu \mathrm{H}$ to 100 mH (aclual range depends on frequency: auxiliary resistors employed).
Induclance accuracy: basic accuracy is capacitance accursey given above.
Measurement voltage level
RF: 0.05 to $0.75 \vee$ approx., depending on frequency, with set rf level control in normal position; adjustable 10 below 20 mV when sel rf level swilch is depressed.
DC: OV (External de up to 50 mA may be passed through RX Meter :erminals).
Dimenslons: 509 mm widc, 263 mm high. 343 mm deep ($201 / 14^{* *} \times$ $103 / 8^{\prime \prime} \times 131 / 2^{\prime \prime}$).
Welght: nct, $18 \mathrm{~kg}(40 \mathrm{lb}$). Shipping. $22.5 \mathrm{~kg}(50 \mathrm{lb})$.
Power: 105 to 125 volis of 210 to 250 volts, 50 to $400 \mathrm{~Hz}, 66 \mathrm{VA}$.
Accessories available: OOS15A Coax Adapter Kil.
The 0051SA Coax Adupler Kil permils connoction of any coax transsnission line or fixture, filted with a type " N " malc conneetor, to the RX Meter bridge circuit. The kit also includes the 00S16A, 50-ohm lermination.

Adapter

Connector: rype "N" female.
Charseterlatle impedance: 50 ohms.
Termination; (005I6A)
Connector. type " N " male.
Chapacterlatic Impedance: 50 ohms.
DC resisiance: 50 ohms, ± 10.
Maximum parallel capacilance: $\pm 0.2 \mathrm{pF}$. (mounted on adapier).
VSWA: lcss than I: 10 up to 800 MHz .
Power: $1 / 2$ wall maximum.
Moded number and name
Price
250B RX Meter
$\$ 3300$
005ISA Coax Adapter Kil

Introducfion

The increasing use of digital circuits in new products has created a concurfent need for new equipment to pinpoins and troubleshool defects. Because more and more or these new producls manipulate data. they operate in the data domain, rather than the time or frequency domains that are characteristic of analog circuitry. Instruments that analyze circuits in the time and frequency domains simply cannot cope with digital ddta manipulations.
Data-domain instruments-generally classified as logic State Analyzers-are useful for monitorine bits, words, addresses, and instructions as a function of tirne or sequence rather than voltage as a function of time or frequency. Whether the instrument is monicoring 32 or 16 hit words or a single node, as with a logic probe, the signal display is in bi. nary form-either l's or 0 's on a cathode-ray tube or the on and off states of a lamp. Analysis of eircuil nperation is wircel becrausc you see logic states and word now at a glance. without interpretation of waveforms.

Electrical vs. functional analysis

Electrical and functional analysis are not separabie but each is used to complement the other. For example, only when word how is incorreet as determined with a functional display need a lechnician be coneerned with the voltage conditions that created the wards. Even when word-now errors require elesirical analysis, the number oísignal nodes in the vicinity of the error complicales the use of oscilloscopes. Thus. it is belpiul to define scope functions of probing. triggering. and display in terms of words versus event or sequence. or words versus time rather than in volts versus lime.

Electrical analysis

The iraditional analog picture of absolute voltage versus sweep time allows careful anatysis of electrical parameters. This is trie becaluse the important information - amplilude versus time - is the information that the waveform carries. Tius method can help de-
cipher noise. ringing. spikes. constani de levcts, voluge swings, and so forth. Furiher, il is the analysis domain in which typical users are most experienced and heve the most confidence

Functional analysis

Digital information is oflen nonreperitive. Extremely long (and liast) datu scquences are common. Also, parameters which are significint for analog analysis are less important in a digital measurement. e.p. amplitude is usually important only in that voltage must be above or below threshold values (lagic HIGH. or logic LOW). Also time is ofteh not important in an absolule sense. bul hecomes critical when related to the cloch rate of a syslem in operation. Thas a iunctional measurement consists of an observation of digi. tal information (logic HIGH or LOW) versus system lime (CLOCK).
We can use this definition of functional measurcment lo consiruct a hierarchy of logic state troubleshooling levels. Each level supplies only the information necessary for that level of digital troubleshooting

Logic analyzers

To effectively troubleshoor digital circuis the logic stale anblyzer must meet several basic requiremenis:

1. Daka must be read and presented in binary form for easy reading with to interprectation. 2. There should be enough inputs so that the entire data verd can be monitored al once. 3. A trigger point is required that is rcluted to a unique data word within a seguence.
2. Digital delay is needed to positien the display window to the desired poina in time from the relicrence (trigger word).
3. Digital storage is needed to relain singleshol events along with negative time (data leading up to a desired trigger point).

Digual signals are almost invariably multiline and are diffecult to interpret from a volts vs. time display when you are only inlecested in logic slate vs. system time. The HIP $1600 \mathrm{~A}, 1607 \mathrm{~A}$. and 1601 L solve this probiem by displaying digital words 32. 16, or 12 bils

Figure 1. Digital troublesnooting is fasi and etfictent using the HP tamily of troubleshooting tools. Each instrument provides a functional indication of logic siate activity. whether the problem is at the system level or isolated to an individual IC.
wide versus system clock in a table display which is very easy to use when examining functional relationships. The 32 bit wide word is achieved using a 1600 A and 1607 A in parallet or these may be used in a dual clock mode for monitoring data acroks 1/O pors, for instance.
The table displays are in terms of logic HIGH's (ones) and logic LOW's (zerocs) versus a clock signzl. Triggering is accom. plished by using Irigger word switehes which allow selection of a unique trigger point. Further, the display may be moved in system (ime from the rrgger point using digital delas in either a pusitive or negative direction. Two additional inputs on the 1600 A and 1607A called quabitiors permu even more selectroty of displayed data.

The 1600A offers a new display called Mapping which is a display of 2^{16} dots 1π. stead of a table of l's and 0 's. Each dot localion represents onc possible combination of the 16 inpul lines so that each input word is represented by a dor. Dols are interconnected by vectors so that the sequenec of data transactions can be observed. The map mode is ideal when you are curnine-on a digital whstem because it is a display of data words that shows overall machine operallun. The upper left corner of the display represents word 00.00 and the lower right is FF.FF in hexadecimal. By knowing where the system should be in its program, you can quickly determine if the machune is operating properly. Additionally, the word that is represented by any dot cán be delermined by positioning a arigeser word eursor (circle) over a particular dol with the proper combination of trigger word switch sclings.
Negative digital delay is possible due to the anherent storage featuris of logic analyzers which allow the instrument to display a number of events leuding up to a selected trigeper evenu. The Model 500)(iA Logic Analyzer. for example. can display up to 64 bits (in Serial A mode). of data that oceur before the trigger point.

Positive delay allows movement of the display downsercam from the Irigeter. For inslance, in a dise memory the stant of a sector may be the only available unique trigger point, yel the dala to be analyzed may be thousands of bits downstream from the Irig. ger. An analyzer with digial delay can posilion the display window precinely al the exact localion of the chafacter or signal to be examined.

In digital systems very low repectition rate or single-shol events are encountered that require storage to permit analysis. For example. "once per keysiroke" calculator sequences fall into this category. Logic State Analyzers contain suificient memory to caplure and store such events, thos are highly useful in single-shol applications.

Digital triggering and delas are necessary for functional analysis, but are also of great value when "aiming" or positioning electrical analysis windows on oscilloscopes. These capabililies are needed for both serial and parallel daia stream analyses, because ithey allow a user to "window" in on events that oceur as part of very long data sequences.

Triggering
 \section*{Serlal deta}

In serial data analysis. the problem of data paltern recognition can be solved if the data or insiruction portions of a serial word are known. It then becomes possible to generate a unique trigger from a known serial event. If a patiern set on the Model 1620A Pattem Analyzer, for example, matehes the bits contained in she insiruction pertion of a serial word, a trigger is gencrated. Thus, a unique trigger is delined to allow analysis of scria) data streams. Added to this is the capability of digital delay which allows further indexing from the user-selected irigger point.

Parallel dala

For parallel data analysis, it is often necessary to trigger on the stmultaneous occurrence of several events. For exsmple, if one or more channels of data go high al the same point in lime that the CLOCX signal goes high, a trigger could be generated at this point. Additionally. The selected trigger events could be either high or low polarity signals.

Triggering need not be clock-related, but instead can be aisynchsonous. This allows the ustr to initiate the display sequence on a sig. nal that might not be present when the clock samples the inputs to the analyer. Signals such as spixes, or other random events can therefore be detected or used as (rigger events.

Trigger probes

The llp model 10250 series Trigger Probes feature TTL. MOS, and ECL compatibility, a

4bit AND gate trigger and selectable bit levels (HI, LO, OFF), The circuil-powered probes provide 4-bit paltern recognition triggering for digital signal analysis and may be used for both functional and electrical analysis.

The HP Model 1270n Iriger probe offers 8-bit parallel triggering capability with the addition of digital delay capability of 9998 clocks and synchranous or asynchronous operation. This provides versatile triggering capabilities for ascilloscope windowing 10 digital problom areas.

The IC troubleshootere

Once a fault has been isolated down to a particular circuit area, a group of hand-held lou-cost intiruments arc used to troubleshool specilic nodes and IC's. These products are designed 10 rest digital IC's in-cireuit, and they are extremely valuable in their ability to isolate logic faults.

Logic comparison

The lime-proven lechnique of logic comparison is used to locale specific faulty nodes by testing IC's dynamically within a circuit. This allows IC's to be lested williout remova) from boards, or signal sonrces. Products such as the Model 10529A Logic Comparalot iest the responses of circuit-insialled IC's againsl known-good $1 C$ s plugged into the Comparator. This method is nol affected by faulty signals in the systein or by incorrectly operating feedback loops because the Comparator looks for expected outpuis based on given inputs to two like devices. The Comparator LED display provides a direel indication of which IC pins are operaling incorrectly, thus identilying a bad node.

Nodal analysls

Once a bad circuit node (see Figure 2) has been isolared, there is the problem of delermining which IC connecled to the node is faulty. To belp with this, HP manufactures several logic state stimulus-response, in-ciseuit logic testers.

Logic probes

The 10525T Logic Probe detects leveis or pulses anywhere in a circuil, and displays them by a band of lighe around the probe lip. Circuits that are normatly low and are then pulsed high are indicated by the light turning on periodically. Logic highs thal aré pulsed low are displayed by having a solidly lit band that turrs oli momentarily. The probe also delcets cither very fast, or high frequency pulse activity, and "stretches" them to provide a display at a 10 Hz rale.

While the l052sT probe is used for TTL/DTL applications, probes for ECL, C. MOS. HiNIL, and HTL logic families are also available within the IC iroubleshooler samily.

Figure 2. A typlcal IC tailure, an open output bond, allows all inputs normally orlven by that output 10 lloal to a "bad" level. Thls is usually interpreted as a logic high by the inputs, thus inputs driven by an open bond respond as though a static high signal is applied.

Logle ellp

A multi-pin logic stace indicator, the Model IO528A Logic Clip indicates the states of either 14 - or 16 -pin DIP packnges. Each pin is displayed by an individual LED, which allows a user to easily follow input versus output relationships. When a circuits' clock rate is slowed down or stopped. the Clip provides a very useful in-circuil test of a devices truth table.

Logle putser

The Model 10526 T Logic Pulser provides a unique capability: the ability to inject digital pulses between gates. The Pulser automatically injocts the corred polarity, and the 0.65 ampere, 0.3 microsecond pulse has sufficient capability to drive a low node bigh or a high node low.

Sllmulus-response tealing

The Pulser/Probe or Pulser/Clip combination helps the user to identify the faulty circuits causing a system malfunction. The logic test instruments mentioned here permit arbiirary signal injection and readouts between gates. Thus, an added capability is provided the digital troubleshooter: the ablity to stimwate a circuit and monitor it for an output response.

Educalion

The need for education has also grown stride for siride with the huge growih of IC usage. Both needs (troubleshooling and training) are commonly based, because well Irained logic personnel are by their nature good IC iroubleshooters. The 5035T Logic Lab combines these concepis by providing an HP-quality Icarning experience-even for those users who already know part of the dig. ital story.

HP also provides additional learning tools such as Application Notes 163-1, Techniques of Digital Troubleshooting, and 167 series, The Logic Analyzers. These are available ihrough local HP Sales Offices.

Stan display triggering allows you to page through a system whlle following an algorithm to trace dala How or delermine any malfunctlons that may occur.

Introduction

Models 1600A and 1607A Logic Slate Anulyzers offer digital data measurement capabilitites in an casy-10 read Cormat that ideally suits the Dats Domain. Sixicen parallel data inpuls in either analyzer, or 32 parallel bits with two analyzers bused together at clack apeeds 1020 MHz furnish fast functional measurements of digital data now. You save time in digital design and troubleshooting with the unique mea. surement that shows data the same way the components see it. The functional display is in word formai and is triggered on data words to permil analysis of data, or state sequences, such as program addresses. insiructions, and dala.

These Logic State Analyzers are Data Domuin instruments specifically desinned to debug, lest, and troubleshoot digital processes by capluring and displaying program exccution or data transfer as it occurs in systems operafing al clock rales lo 20 MHz . Data caplurc may either be starled or stopped when the incoming data natathes the patern set on a 16 -bin rigeer word switch repister Digitsl delsy allows the eapture of data to be stapled or slopped up 1099999 clock eycles after the uigger patterm. Data is displayed as a conventional daca lable with the first word at the top of the screen and the last word at the bottom.
Model 1600A is a self-conlained Anslyzer with its own display. The 1607A does not have a display, but provides bolh analog and digital outputs. The $1607 \wedge$ mieilug outpuls are used to convers most oscilloscopes with de-coupled X . Y . and Z inputs into a logic státe analyozer. The 1607 A digital outpuls are used to expand the 1600 A io either a 32 bit wide machine or dual-clock erpability.

Start display triggering

In the Slart Display mode, the Analyzer iriggers on a unique word established by the trigger word switches and displays that trigger word along with the is following words as they are clocked through a machine al operating speeds up 1020 MHz . This mode is valuable for paging thraugh a system while following an algorithm to 1 Itac data llow.

End display triggering

The A nalyzur's digital memory in this mode caplures events leading up 10 and including the trigger word providing a "negative lime" display. This negative lime mode is exiremely valuable for roubleshooling, since you can erigger on an unallowed state or a fault and sue how the machine arrived at the malfunction sather than just the resulis of the error. In addition, delay may be combined with the End Display trigger to permil caplure of bolh posilive and negative time data. This allows positioning the trigeer word so you can see events before and after the (rigger word to reduce analysis time.

Delay

When the data you want lo see does not immediately follow the desied Irigeer word, delay can he used to position the 16 word "window" in exacl number of clock pulses (0 to 99999) from the Irigger word. Digital delay is useful for moving the display window past

The digital memory may be used to caplure events leading up to and Including the trigger word (displays negative time). By also using delay mode, the end disolay trigger word may be pasitloned mid screen 10 display bolh negative and positive time dala.
loops and measuring lenglhs of subroutines white maintaining a desired patcern trigger point. A slable display is always maintained because the delay is determined by the number of clock pulses rather than an analog time delay. A "Delay ON-OFF' switch ollows quiek reference back 10 the trigger word if it has been moved off-screen by the delay.

Trigger word oft

With the Trigger Word pustbution in the OFF position, the Analyzer's dixplay is independent of the Trigger Word switch setzings. With the Trigger Word Off you can trigger a display in the Qualifier Trigger or Trigger Bus modes, or with these modes off the display froe runs.
The free run mode aids in troubleshooting by displaying active (superimposed ones and zeros) and inactive (either a one or a zero) data lines. Another use of this mode is determining in which loop a malchine may be stuck. In this frec eun application, use the single sample mode to capture an arbirary 16 word group. Afier selecting a trigger word Irom thal group. End, Slart, or Delay mode can be used to page through the loop lo determine what is Forcing the machine to remain in the loop.

Bus trigger

The Bus Trigger capability allows the 1600A and 1607 A trigeer words to be bused together to form a 32 bit wide trigger for use in machines with long words. In this mode. the analyzers can be used in single or dual clock modes. In the single clock mode, both analyzer clock inputs are connected to the same clock. In the dual clock mode. independent clocks can show inferaction between two machines at their inierface. If the digital interface between the 1600A and 1607A is also used, the 1600 A displays all 32 bits of data.

1000A logic state anatyzer

Model 1600 A is capsble of displaying 32 channels of information in standard digital format. That is, the most significant bit on the left and the least significant bit on the right with the first word at the top and each suoceeding word under the previous word. The data sequence table is also made tasier to read with the ability to groit the columns of data into blocks of three for reading in octal code or blocks of fout for reading in hexadecimal or BCD codes.
When used with the 1607A, the 1600 A can display two independent tables or one able 32 bits wide for fast analysis of complex machine operation. When the 1600 A is used alone, you can display an active and a stored table of 16 bits each for comparison. The store "A" ino " B " mode ($\mathrm{A}-\mathrm{B}$) duplicates the data in the A memory in the B memory whith then acts as a "save" register. By storing this reference data, you can make comparisons between the A and B tables for quick troubleshooting.
An exclusive OR $(A \oplus B)$ capability displays the A memory data and reduces the B memory 10 a display of logic differences an a bit-bybil basis between the A and B memories. This permits fast, ut-a-glance comparison of complex sequences, even one bil differences are quickly identified. For easier recognition, the ones (differences) in the $1 \oplus$ B field are incensificd.

A Hall when A does not equal B mode ($A \neq B$) autumatically hatis and stores the data in the A table when the data in the A memory does not equal the data in the B memory. This frees you from the ledious waiting and watching chore with infrequent or intermitient malfunctions.

Map display

The map display provides an overall view of machine operation in a repelitive loop and after familiarization permits identification of nuchine activity withou the need to read labular listings. This speeds analysis with a pattern display that the eye can easily recognize. In the map mode, the display is an array of 2^{16} dols where each dot represents one possible combination of the 16 bit lines so that every input word is represented by an illuminated dot. The sixteen bil word is divided in hall with the eight least significant bits driving (thru an A io D converter) the horizontal dellection plates and the cight most significint bis driving the verical deflection plates. The map display presents three types of information - each dot represents a specific address or state the machine goes to, the relalive frequeney of occurrence of that siate (brighiness), and the line berween dous is a vecior whers the brighter end of the vector is the "goes 10 " $\begin{gathered}\text { address. }\end{gathered}$

In the exclusive OR mode ($\mathrm{A} \oplus \mathrm{B}$), A memory date lis displayed on the left while the table on the right displays logic differences between A and B memories. This provides very last "at-a-glance" comparisons.

The map display offers an overall view of machine operation with each dot representing one input word. Atter some familiarizetion. these patterns become easily recognized by the operator. olfering last overvlew analysis of a system.

A map eursor, which is posilioned with the Lrigger word switches, shows the Irigger word or address of any desired dol in the map display. In the map expand mode, the cursor identifies the sector of the map to be expanded 10 full screen for increased resolution. Relurn to lable mode is accomplished with the push of a button with the irigger word selecled by the cursor position.

1607A logic state analyzer

The 1607 A can be systemized with a l600A to provide a 32 bit wide logic state analyzer for large machine applications, or a dual 16 bit analyzer for 1/O measurements or other dual clock applications, or it may be used to convert an oscilloscope ínto a logic state analyzer. Rear panel X, Y, and Z oulpues will drive almosi all modern displays or oscilloscopes (nol recommended for starage displays or ascilloscopes) with de-coupled inputs on all three chanoels. Λ Z-axis disable (ON-OFF) swirch eliminates the need to disconnect the Z-axis input cable when cenventional scope uperalion is desired. Size and posilion adjustments on the 1607 A offer sufficient range of adjusiment to provide the best state display on the CRT display of oscilloscope being yeyed This reduces the amount of readjusting of conurols needed to switch between state and electrical analysis. All of the functions described th the introduction section apply to the 1607 A and oscilloscope combination which form a complete Logic Stale A nalyzer lest system for the digital design engineer.

1600A and 1607A common features

Qualifier inputs

Two additional channels (Q_{0}, Q_{1}) increasc Mexibility in both triggering and data collection. When used to qualily the trigger word, the qualifier inputs expand the trigger word to 18 channels, however the qualifier signals are not displayed.

Seleclive store

In the display (clock) qualification mode, the wo qualifier channels must be truc at the time of the clock edge so that the analyzer only display's "qualified" data. This in parlicularly useful whem montoring mulil-use buses with time multiplexed addresses, instructions, and data. With display qualification, only the desired in Formation is stored in memory. eliminating the need to display the other data.

Trigger oulpuls

The trigger outputs extend troubleshooling cupabilitics in digital circuit analysis by windowing oscilloscopes to the proper digital point in ime for electrical analysis of circuil operation. The Pathern Trigger Output and Delayed Trigger Output are independent of ihe display both when the word patiern, selected by the trigger switches is mel and when the digital delay counis down. This allows the highest possible repetition rate of trigger outputs to synchronize an oscilloscope for the brightest possible display. The Pattern Trigger Outpui may also be used as a "elock stopper" when desired.
Indicators
When a display is not present, the NO ARM, NO CLOCK. NO QUALIFIER and NO TRIGGER indicators quekly pinpoint the problem to show you what is preventing a displidy. There is a hierarchy 10 these indicators which is essentially the mosi significant difficulty to the teft on the 1600 A and from the 10 p on the 1607 A. For example, if clock qualilication is selocted and the qualifice and erigger word are not satisfied. then the no qualifice indicator will light until it is salisfied, then the no trigger light will light unlil it is satished.
Sequentlał triggering
Boih Analyzers may be sequentially triggered by using trigger outputs from olher instruments as arming inpuls. For cxample, this permils a prior event determined with a 1607A to enable a 1600 A to look for a particular event afier qualification. This digital arming capability can be supplied by a Model 1620A Pattern Analyzer, any of the 10250 series 4 bit data probes. or olther external signals that define the desired lime frame.

Additlonal features

Clock ihreshold can be selected for fixed TTL fevels or variable and adjusted to the desired threshold levil. Unused channels may be blanked to remove unneeded channcls from the display from lefl to right. A logic positive or negalive switch permits the displayed pattern 10 match either positive or negative true logic systems. This dors not change the data logic, but changes only the display 10 match the

Digital probes permit direct connection dual in-line packages even on adjacent heads.
system under test. Since the Analyzer samples 16 words of information when the trigger word matches the system data, the display may change too rapidly for analysis - when this happens a display time conirol allows adjusiments of the time a display is held on sereen. A BYTE pushbution allows the display to be arsanged in blocks of 4 bits or blocks of 3 bits for easier reading of BCD . Hexadecmal or octal codes.
Clock and data inputs
Repetilion rate: 0 to 20 MHz .
Input re: $40 \mathrm{kf} \pm 3 \mathrm{k} \Omega$ shunted by $\leq 14 \mathrm{pF}$.
Input bles current: $\leq 30 \mu \mathrm{~A}$.
Inpul threshold: TTL, fixed al approx. +1.5 Vi variable. $\pm 10 \mathrm{~V} \mathrm{dc}$.
Maximum input
Level; - 15 to +15 V de.
Swing: is \vee peak from threshold.

Minimum input

Swing: $0.5 \mathrm{~V}+5 \%$ of $p-p$ threshold voltage.
Clock pulse width: 20 ns al threshold.
Data pulse widit: 25 ns at ibreshold.
Data selup time: time data must be present prior to clock transiion, 20 ns .
Hold time; lirre data must be present afler clock transition, 0 ns .
Pattern and delayed trigger outputs
High: $\geq 2 \mathrm{~V}$ inlo 50 (line driver interface).
Low: <0.4 V into 00 (line driver interface).
Pulse duratlon
Delayed trigger: approx. 25 ns (RZ format) al I V level.
Patiern Trigger: approx. 25 ns in RZ, formal at $1 \vee$ level with delay set to zero or off, With delay on and not sel 10 zero, pattern trig.
ger output staris on roceipt of a pattern (rigger signal and ends when the delay ends.
Trigger arm input
Impedance: 50Ω
Level: loiv state. $0 \mathrm{~V}_{10}<0.4 \mathrm{~V}$: high statc. $2 \mathrm{~V} 10<5 \mathrm{~V}$.
Pulee width: is as minimum al 1.5 v level.
Arming conditione; if the arming pulse posilive coge occurs <4.5 ns after a clock, criggering occurs on the same clock cycle that it is armed. If tbe arming pulse posilive edge occurs >75 ns efler a elock. itiggering oceurs on the next clock cycle.

1607 A X-, Y-, and Z-axes outputs
X-8xis: $<0.6 \vee$ to $>6 \vee \mathrm{p}$-p, $\pm 8 \vee$ mux into $\geq 100 \mathrm{k} \Omega$.
Y -axis: $<0.6 \mathrm{~V}$ to $>6 \mathrm{~V} \mathrm{p}$-p, $\pm 8 \mathrm{~V}$ inax into $\geq 100 \mathrm{k} \Omega$.
Z-axis: 0 so 10 V p-p into $\geq 1 \mathrm{ksl}$.
Dlsplay Interiace requiremente: the 1607A interiaces with oscilloscope or display with the following inpul parameters. (Nor recommended for slorage ascilloscopes or displays).
X and Y Inpute: 0.1101 V div defleciion factors; de coupled input: and $>500 \mathrm{kH} \%$ bandwidth.
Z-axls input: de coupled wilh positive blanking: full blanking must occur with 10 V inpul at 10 mA .

General

Display rate: variable irom < $200 \mathrm{~ms} 10>5 \mathrm{~s}(1600 \mathrm{~A})$, $\langle 50 \mathrm{~ms}$ to >5 5 (1607A).
Power: 100, 120. 220. 240 V ac; -10%. $+5 \% ; 4810440 \mathrm{~Hz} ; 120 \mathrm{VA}$ max.
Logle probe power: rear panel BNC conncetor, +5 V. 0.I A.

Dimensions

1800A: 335 mm ($131 / \mathrm{n} \mathrm{n}$.) wide; $197 \mathrm{~mm}(7 \%$ in.) high: 540 mm
($21 / 4$ in.) Length with handle; 460 mm (181% in.) lingth without handle.
1607A: 284 mm ($111 / \mathrm{in}$ in.) wide; 121 mm ($4 \% \mathrm{in}$.) high: 460 mm ($18 \mathrm{~V}_{8}$ in.) deep.
Operaling environment: remperature, 0 to $55^{\circ} \mathrm{C}\left(+32^{\circ}\right)^{\text {r }}$ to $+130^{\circ} \mathrm{F}$): humidity to 95% relative humidity al $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$: allitude 104600 m (15000 fI) vibrated in three planes for 15 minules cach with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 10 to $\$ 5 \mathrm{~Hz}$.

Welght

Model 1800A: nct, 12.7 kg (28 1b). Shipping, 159 kg (35 lb).
Model 1807A: ne1. 6.4 kg (14 lb). Shipping, 8.2 kg (18 lb).
Model 1800S: nel, $19.1 \mathrm{~kg}(42 \mathrm{lb})$. Shipping. 22.7 kg (50 lb).
Accessories supplied: three 1032IB data proben and one 10230B clock probe: one 230 V fuse package. one $2.3 \mathrm{~m}(7.5 \mathrm{f})$ power cord; and one accessory case.

Accessories

Trigger bus cable: Model 10236A Trigger Bus Cable interconnects the 1600 A and 1607A to provide 32 -bit word capability (supplied with the Model 1600 S).
Welght; nel, $0.2 \mathrm{~kg}(6 \mathrm{oz})$. Shipping, $0.5 \mathrm{~kg}(1 \mathrm{lb})$.
Dala cable: Model 10237A Dasa Cable interconncets the 1607 A and 1600A 10 provide the 32 -bil dala display (supplied with the Model 1600 S).
Weight: nes, $0.23 \mathrm{~kg}(8 \mathrm{oz})$. Shipping, $0.5 \mathrm{~kg}(\mathrm{l} \mathrm{lb})$.

Model aumber and name	Price
1600A Logic State Analzer	$\$ 4000$
1607A Logic Staic Anulyect	$\$ 2750$
1600S includes a 1600A ind 1607A	$\$ 6800$
10236A Trigger Bus Cable (supplied with 1600S)	$\$ 20$
10337A Daia Cable (supplied with 1600S)	$\$ 60$

$10 \mathrm{MHz}, 12$ Bit parallel state analyzer

 Model 1601L

The Model 1601 L Logic State Analyzer provides a new measurement capability with quick comprehension of complex digital processes displayed in an easy-io-read formal. Twelve parallel data stream measurements at clock speeds to 10 MHz furmish fast functional isolation of digital problems 10 basic circuit elements. You save trme in digital design and troubleshooling with the unique display that uses the same format as truth tables and exibooks.
Dala bits in one und zero character form are written horizontally and correspond to the data points where the data probes are connecled. The 12 chanacls (9 bil words with four qualificrs) are displayed vertically in synchronization with 16 consecutive clocks or strobes, maincaining system líming and data relationships. For easy interpretation, the display can be lormatted in octal groups of threx of groups of four 10 match the system under test. A logic sense switch is available to match ibe displayed pattern to either positive or negalive true logic systems.

Digital triggering

Triggering oceurs in clock synchronism when data matches the preser word with the 12 parallel trigger switches. Triggering capabilitics are so varied that the analyzer can easily access virtually any desired 16 word sequence in the data stream. The trigecr word can start the display, stop it to show what oceurred before riggering, or start a counter to dulay the display by any presel number of clock cyclus (up to 99 999) after the trigeer word.

Versatile probes

Te simplify probing en compact digital circuits. small. dual purpose probes were developed for dinoct connection to dual-in-line packages. These probes are small enough to connect to adjacent pins on DIP's and the lips can be slipped off the probe wire for direct connection to $0.6 \mathrm{~mm}(0.025 \mathrm{in}$.$) square pins, IC test clips, and wire wrap pins.$

1601L. Specifications

Clock and data imputs

Repettion rate: 0 to 10 MHz .
Input RC: $40 \pm 3 \mathrm{kN}$ shunted by $\leq 14 \mathrm{pF}$.
Inpul bias current: $\leq 30 \mu \mathrm{~A}$.
Inpul threshold: TTL, fixed at approx. +1.5 V dc: variable, $\pm 10 \mathrm{~V}$ dic.

Maximum Input

Level: +15 V dc: -15 V dc .
Swing: IS V peak from threshold.
Mlnimum input swling; $0.5 \mathrm{~V}+5 \mathrm{~F}$ of absolute threshold voltage p-p.
Minimum clock puise wldth: 2.5 ns ,
Minimum setup time: lime data must be present prior to clock itansition, 35 ns .
Minimum hold tlme: ame dala musi be presenl afier clock transiLion, zere.

Display rate

Variabie: from $<40 \mathrm{~ms}$ to $>5 \mathrm{~s}$.
Pattern trigger and delayed trigger outputs
High: $\geq 2 \mathrm{~V}$ into 50 ohms (line driver interface).
Low: <0.4 V into 50 ohms (line driver interface).
Pulse duration: approx. 40 ns (RZ formal).

General

Weight: nel, 14.4 kg (31.75 lb). Shipping, 19.9 kg (43.75 lb).
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48$ 10 $440 \mathrm{~Hz}, 300 \mathrm{VA}$ max.
Probe power, supplics power to operate one HP Model 10230A Clock Probe and two HP Model 1023IA Six Bit Data Probes.
Dimenslons: 201.6 mm wide, 338.1 mm high, 498.5 mm deep overall ($713 / 16.139 / 16.19 \%$ inches).
Operating environment: temperature. 0 10 $55^{\circ} \mathrm{C} \quad\left\langle+32^{\circ} \mathrm{F}\right.$ to $\left.+130^{\circ} \mathrm{F}\right)$; humidity, 1095% relalive humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$; allitude, 104.6 km (15000 ft): vitrotion, vibrated in three planes for 15 min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 10 to 55 Hz .
Acceasorles supplled: bluc CRT mask, 2.3 m (7.5 ft) power cord, Operating and Service Manuals, one Model 10230A Clock Probe and two Model 10231a Six Bit Data Probes, and a blue lighs filer (P/N 01601-02701) for the 182 display unit.
Model 1601A logic state analyzer
A Logic State Analyzer is also availabie as the Model 1601 A and may use any 180 series mainframe (181 and 184 nol recommended) as a dis̄play unit. The 1601 A includes two Model 10231 a Six Bit Data Probes, and two blue light Filsers, one for 182 (P/N 01601-02701) and one for $180(\mathrm{P} / \mathrm{N}$ 01601-02702) series display units.

Accessories

Probe lead replacement kit: HP Pari No. 10231-68702 contains sct of replacement leads for one Model 10231n or one Model 10231B Data Probe and for one Model 10230A or one 10230 B Clock Probe. One 15.2 cm (6 im.) ground lead and one 15.2 cm (6 in .) ground lead with alligator elip are supplied for use with the 10231 B Data Probe only.
Replacement probe tips: HP Part No. 10230-62101 is available with minimum order.
Model number and name

Price

Probe Lead Replacement Kit, HP Parl No. 10231-68702
Probe Tjp. HP Part No. 10230-62101 (minimum order
\$20)
1601 L Logic State Analyzer (complete)
$\$ 3375$
1601 A Logic State Analyzer Plugrin (includes probes)

1620A Description

Model 1620A Paltern Analyzer gencrales a trigger from serial or parallel digital pattern recognition and／or digital delay for oncillo－ scopes or other externally triggerod instruments．Pattern recognition is scleclable up to 16 bils in cither serial or parallel mode，with digital delay selection up to 999999 bits．

A separate yualifier line is provided for use in the serial mode，en－ abling you to look for bit palterns al a discrele tinic or during time in－ iervals．A serial frame delay gives you window seluction in the bit slream．relative to the qualifier starting edge．

In the parallet recognition mode the Analyzer is capable of either synchronous or asynchronous operation．In the parallel asynchro－ nous mode a selectable pulse width filler reduees the possibility oif false triggering aused by glitches resuling from skew in the data stream entering the Analyzer．

Digieal delay can be started by pattern recognition or by an exter－ nal trigger input（Exi Delay Stari）．This allows you to move the mea－ surement window a selectable number of clock cycles downstream from a uniquels selected trigger point defined by the Analyzer or the trigger input．

To simplify probing in compace digital circuits，small dual purpose 20 MHz probes allow direct connection to dual in－line packages and various pins．These probes are small enough to connect to adjacent pins on DIP＇s or the probes may be slipped off the probe wires for di－ rect connevion to 0.6 mm （ 0.02 sin ）square pios，IC tesi elips，or wire wrap pins．

Serial operation only

Clock，serial data and qualifier inputs are provided on the rear pan－ el through BNC conneecors for use with conventional X10 日ltenua－ Lion probes．For serial applications，the front panel probes ure not required．Option c00 deletes the probes normally supplied with the 1620A

1620A Specifications

Clock and data probe Inpuls
Repetition rate： 20 MHz max．
Input RC： $40 \mathrm{kn} \pm 3 \mathrm{k} \cap$ sbunted by $<14 \mathrm{pF}$ ．
Input blas ourrent（Inpul grounded）：＜10 $\mu \mathrm{A}$ ．

Inpul threshold：TTL，fixed at $1.5 \pm 0.1 \mathrm{~V}$ de．Variable． $10 \pm 10 \mathrm{~V}$ ． Maximum Inpul：level，$\pm 15 \mathrm{~V}$ dc；swing， 15 V peak from threshold． Minimum inpul swing： $0.5 \mathrm{~V}+5$ 虎 of threshold voliage $\mathrm{p}-\mathrm{p}$ ．
Clock pulse width： 20 ns min．
Setup lime： 20 ns min（normally 10 ns ）．
Hold time：zero ns（normally $-5 n \mathrm{n}$ ）．
BNC Inputs：external delay slart．Rear panel；serial data，qualifier． and clock．（ldeal for use with Model S000A Logic Analyzer．）
Exiernal delay starl Input RC： $1 \mathrm{M} 19 \pm 5$ 夋 shumied by $<25 \mathrm{pF}$ in $\times 1$ of $\times 10$ ．
Pattern and delayed trigger outputs
Level：high， 22 V ；low， 50.5 V （buth into 50 ohms）．
WIdth：approx． 25 ns in sync modes．

Operating modes

16－blt serlal pattern recognilion

Oualifler OFF：trigger out approx． 95 ns 3 fer clock edge when pat－ lesn is matched．
Quallifer at LEVEL： 1 rigger out approx． 100 ns after clock edge， paltern match．and qualifier match．
Qualifier at EDGE：trigger out approx． 110 ns after clock edge． patiern match，and frame delay count complete．
16－bil parallel pattern recognition
Synchronous：1rigger oul approx． 80 ns after clock edge and pat－ tern match．
Asynchronous：trigger oul approx． 85 ns after pattern match with Diter at 10 ns （all pushbutions out）．
Digital delay
Delay start：internal from pattern trigger：external from front panel input with positive and negative gaing edge selection and $\times 1$ or $\times 10$ range selection．External start edge musi precede clock edge by approx． 20 ns.
Delay length： 0 to 999999 clock edges．
Pulse widih filter：operates only in parallel asynchronous mode． Pulse width：spprox． 10 ns with all pushbultons out； $20 \mathrm{~ns}, 50 \mathrm{~ns}$ ． 100 ns． 200 ns （ $\pm 15 \%$ ）are selectable．Filter widihs greater than ans one width may be oblained by pressing two or more pushbuthons which provides the approximate sum of the selected widths．

General

Weight：net． 4.5 kg （ 10 lb ）．Shipping． 6.4 kg （ 14 lb ）．
Power：100．120，220，or $240 \mathrm{Vac}+3 \%$－ 10 答： 48 Hz 1040 Hz ．max power 58 VA（nominal 43 VA ）．
Dlmenslons： 28.4 cm （13 $1 / 1 \mathrm{c}$ in． ）widc； 11.9 cm （ $4^{11 / 10 ~ i n .) ~ h i g h ; ~} 40.6 \mathrm{~cm}$ （16 in．）deep．
Operaling environment：same as Model 1601 L
Accessories furnlehed；one Model 10230B clock probe，three Mod－ el 10231 B data probes，one $2.3 \mathrm{~m}(7.5 \mathrm{ft})$ power cord，one Operating and Service Manual．
Option 003：1620＾withoul probes for serial usc less $\$ 650$
Individual probea：
10230B elock probe
$\$ 130$
10231B data probe
$\$ 190$
1620A Pattern Analyzer（Includling probes）

DIGITAL CIRCUIT TESTERS \& ANALYZERS
4 \& 8 Bit parallel trigger probes

4 Bit trigger probes

Model 10250A (TTL), 10251 A (MOS), and 10252A (ECL) Trigger Probes are useful service, production, and design troubleshooting tools that offer digital pattem triggering to enhaned the use of oicitioscopes, logic analyzers, and other test equipment With the 4 bil crig. ger probe, you trigger on four parallel events. The four inputs may be switched to HI, LO. or OFF (don'I care) for convenient selection of the irigger point. No separale power supply is needed because probe power is oblained from the circuil under test.

10250A specifications

Input
Low level: $0.8 \vee(-0.6 \mathrm{Vmin})$: -0.8 mA max at $0.4 \vee(0.5 \mathrm{stan}-$ dard TTL load).
High level: $2 \mathrm{~V}(5.0 \mathrm{~V}$ max): $100 \mu \mathrm{~A}$ max at 2 V .
Output
Swing: 0.5 V to 4.5 V man into 1 megohm.
Trangltion time: 7 ns max from 0.6 V tol V ; 50 ns min 104 V with 1 megohm, 20 pF load.
Delay
Propagation: 30 ns max from any inpul to rigger oulput.
Dillerence: 10 ns max belwown any lwo inpuls.
Power (supplised by clrcult under test)
Voltage: $+5 \mathrm{~V} \pm 5$ 客: -0.4 V to +7 V max
Current: 30 mA nax: normal operation, 17 mA .
Overall length: approx. 168 cm (66 in .).
Accessories included: six minialure probe lips, one Operating
Nolc, and onc vinyl carrying case.
10251A specilicalions
Input
Threshold: ($V+$ plus $V-) \div 2, \pm 20 \%$ of $(V+$ minus $V-)$.
Output
Swing: $V-$ plus 20% of $(V+$ minus $V-)$ to $V+$ minus 20 \% of $(V+$
minus V-) min into 1 megohm.
Delay (with specified threshold voltages)
Propagation: 350 ns max al $5 \mathrm{~V}, 210$ ns max at 10 V : fromany inpul to trigger oulput.
Difterence: 70 ns max at 5 V .35 ns max al 10 V : between any iwo inpuls.
Power (aupplied by clrcult under test)
Vollage: between $+3 \vee$ and $+15 \vee(V+$ minus $V-)$.
Current. 5 mA max.
Overall tength and eccossorles: same as 10250 A

10252A specifications

Input
Low level: approx. $-1.6 \mathrm{~V}\left(\mathrm{~V}_{\infty}=0 ; \mathrm{V}_{\mathrm{cr}}-5.2 \mathrm{~V}\right)$.
High level: approx $-0.9 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{cc}}=0 ; \mathrm{V}_{c c}-5.2 \mathrm{~V}\right)$.
Output
Swing: $0.5 \vee \mathrm{p}-\mathrm{p}$.
Transilion time: 12 ns max with) megohn, 20 pF load.
Delay
Propagation: 20 ns max from any snput to trigger output.
Difference: 5 ns max between any two inpuls.
Power (aupplled by clrcult under lest)
Voltage: $5.2 \mathrm{~V} \pm 105_{0}: \pm 7 \mathrm{~V}$ max.
Current: 70 mA max.
Overall length and accessories: sume as 10250A.

Model 1230A

8 Bit trigger probe with delay (new)

The compact Model I230A Logic Trigger unit gencrates a eriggor output pulse (TTL compaLible) from paraliel digital pattern recognítion with digital delay capabibis for oscilloscopes, logic analyzers, or other externally triggered test equipment. Pattern recognition is selectable to 8 bits with the crigger word sivitches and digial delay is selectable 109998 clocks, with a choice of synchronous or asynchro. поц оретаtion.

1230A specitications
 Inpul

Frequency: is Mhzmax.
Logle levels: logic ' $0^{\prime}: 0 \vee 100.8 \mathrm{~V}$: logic ' 1 ' $: 2 \vee$ to is V .
Current: $-360 \mu \mathrm{~A}$ for logic 0 inpul ($-400 \mu \mathrm{~A}$ for GATE inpul):
$100 \mu \wedge$ for logic ' 1 ' input.
Maximum input vollage range: -1 V to +15 V .
Outpul (negative-going edge true)
Logic ' 0 ': $0,5 \mathrm{~V} \max$ (60 mA current sinking capability).
Logle '1': 2 V min into 50Ω (40 mA source current).

Operating modes

Word recognition
Synchronous paltern recognition: irigger word input recognition only during posilive or negulive edge (selectable) of CLOCK inpul signal.
Minimum set-up tlme: 20 ns.
Minimum hoid-lime: zero ns.
Aaynchranous paltern recognition; independent of CLOCK input. Maximum propagation delay after word recognilion: 45 ns . Minimum Inpul pulse width: 25 ns .
GATE input: for strobing or expanding word recognizer. GATE switch sci to LO. GATE input pulse must be 20 ns longer than wordiruc' time. Sel to HI , GA'TE inpul pulse must be 10 ns longer than 'word-irue' time.

Events delay

Delay range: $\{-9998$ events start counting on positive edge or negative edge (selectable) of CLOCK inpul signal after word recognition.

General

Power requirements: 300 mA al 5 V .
Voltage on Power inputs: $+4.75 \vee 10+15 \mathrm{~V}$ max dc. Protected against reverse polarity.
Model number and name
Price
10250A. 10251A. or 10252A Trigger Probe
$\$ 95$
1230A Logic Trigger \$495

- Logic state vs system time display
- Single shot storage
- 15 ns spike detection
- Negative time display
- Precision digital delay
- Compatible with all logic familles

The 5000 A Logic Analyzer provides a unique analysis capability by allowing the operator 10 "see" data al a circuit node exacily like the digital circuitry being examined, with the same timoing relationships and format. The anslyzer's displaty is lolally digital in nature with amplitude being expressed in a digital formal (logic highs and lows) and time as digital time relative to delined clock transitions (clock cyclei).

The rotally digital nature of the Logic Analyzer allows the user in approach a digital problem in its own domain. The key to this domain is the utilization of the time base of the systern under exanination as the time base for the Anslyzer.

This abildy to see the data in the same timing diagram format as the system under examination. allows fast functional isolation of al circuit malfunction to the basic gate or other circuit element which is causing a problem.

Olaplay

The I M data inputs to the Logic Analyzer will accept data exactly the way a device such as D flip-hop or shilt regisier docs. The Analyzer samples the input ditit on a defined clock (ransition (edjec) and displays it in terms of bits referenced to the clock of the system under lest. These I's (on LIED's) and 0's (nfl LED's) can be direcly compared to the timing diagram of the circut node.

The data display of the Logic Analyzer consists of two rows of 32 LED indicators with each indicator represtrating the logie siate of the sugnal during a particular clock transition. The Analyzer offers display Ilexibilsty to the operator by providing two separate display cbannels (windows), each with a 32 bir capabilits, If a larger display window is needed, a second Analyzer mode may be selected which extends the A channel display 10 a lull 64 bils.

Digital triggering

In any display of informstion with respect 10 lime or events. there must exist some unigue sync or starang point for the display. Delinition af this point in a digital waveform requires a deviation from the traditional negarive or positive shape ariggering technique. The 5000A Logic Analyzer utilizes a new digat eriggering Comat which allows indexing to any position within a data sequenoe by selecting a signal at
either the A or B ínpul, the External Trigger inpul, or logical AND combinations of two or three of these inpute or their complemenas. If more than threc data inputs are required to define a unique starijng poine within a seyuence, the paraltel triggering capability of the Logic Analyzer may he greally expanded by use of the 10250 series of trigger probes. Use of the 10250 provides up 10 six patrallel bits of triggering and two 32 bit display channels' two 10250's will allow nine nuralIcl bits of triggering und innce fut bit display channel.

Another unique mode of display position reference offered exclusively by the Lagic Analyzer is "asynchronous triggering." This triggering technique allows a display sequerce to be initiated on a sienal thut is not present when the inputs are sampled on the selected clock transition (not accessible to synchronous trigecring).

This event could be a spike or a signal (hat ocuurs prior to the present burss of clock pulses.

Digital delay

If the desired data display is not present immodiately following the trigger, the variable digital deluy of the A nalyzer allows repositioning of the display to any point within the data requence. The 32-bil "display window" can tee moved with digital preciseness an cxact number of clack pulsts relative to the fixced trigger point. Data occuring far downstreath in a bit sequeno becomes conveniently visible jusl by di,ling the appropriate delas number into the front-pancl thumbwhel delay register.

The Logic Analyzer also offers a look-ahead or "ncgative delay" fealure. The Analyzer always has access to the last 64-bits of data prior to the occurrence of the erigger and has the ability to display this data if desired. Thus, nol only can a lailure mode be ubserved. but the sequence of events which Icad to the failure can now be displayed for analysis.

Single shot storage

The digital nature of the Andyeer makes single shol storage an inherent capobility. By simply placing the Analyzer in the "STOR E" postion, both inpul channelt will capture the next data sequtnce and hold this data until resei. $I t$ is no longer necessary to adjust a myriad of controls if storage is required.

If seleclive storage is desired, the "STORE 8 " mode may be selocted. In this mode une channcl of data may be held while the other conlinuously accepis new data. This mode may be used for sloring a reference of known good data to which succeeding datá can be compared.

Spike detection

One of the Logic Analyzer's spacial troubleshooting capabilites consists of being able to delect spixes as narrow an 15 in between clock pulses in a data suream. When placed in the "SPIKE A " mode, the

Analyzer ignores synchronous data and only indicates the location of spikes. These spikes may be caused by race conditions, ringing, noise, or design and are delined as more than one 1ransition of the data on the A channel between clock cycles.
The "SPIKE A" mode, used in conjunction with the digital DEL,AY, can be used to look for spikes anywhere in a long serial data stream even on a single shol basis.

Logic family compatability

The Logic Analyzer assures complote compalibility with all logic families (both present and future) by providing variable threstold input amplifiers. Two rear panel controls allow easy adjustment of the input threshold level over a continuous range of $\pm 1.4 \mathrm{~V}$.

The nearly negligible circuii loading of the I M 2.35 pf inputs is further reduesd with the addition of standard $10: 1$ divider probes. With addition of these probes, input impedance is increased to $10 \mathrm{M} \Omega$, 10 pr and the variable threshold range of the input amplifiers is extended to \pm is V . The combination of high RC and wide trigger level range means you can test circuits built from sucb diverse families as TTL. ECL. MOS. RTL, HTL, and even CMOS, completely free of any loading or compatability problems.

Annunciators

Analyzer operation is always made apparent by its front panel LED annunciators. An LED for each of the five signal inpuls functions as a logic probe to dynamically indicate logic states and pulse trains. If a probe isn't making contact or an input isn't receiving pulses, you know it inmediately. Two other LED's light to indicate the occurence of the arming and triggering processes. You never waste time irying to see signals that aren't there.

Combining electrical and tunctlonal measurement

capabilities

In measurements where analog considerations such as ringing, voltage level or asynchronous timing are of interest, an oscilloscope is an invaluable instrument. The combinatorial triggering and precision digital delay available in the Logic Analyzer can be utilized to trigger an oscilloscope and therefore extend the triggering nexibility of the Analyzer to an oscilloscope.

The TRIG OUT signal, available on the back panel of the Logic Analyzer is used as the exiernal trigger input to the oscilluscope. The TRIG OUT signal goes from TTL low to high at a point that corresponds to the loading of the Analyzer display. Thus. the Logic Analyzer may be used to position the oseilloseope display to an exact position within a digital dala sequence.

5000A Specifications

Inputs
Inpul impedance: 1 Ma shunied by 35 pf .
Input threahold vollage: continuously variable over $\pm 1.4 \mathrm{~V}$.
Maximum Jnput vollage: $\pm 200 \mathrm{~V}$ continuous. $\pm 400 \mathrm{~V}$ iransient.

Data and trigger Inputs (channel A.B. external Irlgger).
Minimum eelup time: is ns.
Minimum hold lime: 0 ns .
Clock input
Maximum puise repetilion rate: 10 MHz .
Minimum pulse widin: IS ns.
Word delay input
Maximum pulee repetllon rate: $1 / 2$ of Clock inpul repetition rate.
Input modes
A,B: Iwo-channel operation.
Serlal A: A and B display registers cascaded into a single 64 -hit display louded from Channel A inpul.
Spike A: detects multiple transitions at A input during a cloch period.

MInimum splke width: is ns.

Trigger controls

Minlmum gweep rearming time: 60 ms after last clock pulse of swecp.
Hold off control; increases rearming time to 4 sec .

Triggering modes

Glocked mode: analyzer triggers on first clock pulse after sill inpul condifions defined by slope control switches are met. Trigeer condition musi remain until clock pulse occurs.
Aaynchronous mode analyzer triggers when trigger conditions arte met. Conditions noed not remain until clock pulse occurs.

Minimum pulse width: 40 ns .
Minimum setup time: 60 ns.

Digital delay

Poat-trigeer delay range: display begins 010999.979 clock periods after erigger event.
Pre-trigger (negative) delay range: display begins 0 to 32 clock periods (64 in Serial A mode) before trigger event.

Delay reference

Start: trigger begins delay coumdown. Data input and display begin
N clock periods after trigger event (N is number indicated by ihumb. wheels).
End: delay countdown begins 32 clock periods (64 in Serial A mode) prior to trigger. Thus, when $N=0$, the data displayed is the 32 -bits (64 in Serial A mode) occurring before the trigger.

Word delay:

When enabled, permils 2 levels of digital delay.
Delay range: 0 to 9.999 pulses at Word Delay input plus 01099 pulses at Clock input.

Display

Display modes

Direct: data at A and B inpus displayed by A and B registers.
$A \cdot B$: logical $A N D$ of A and B inputs displayed in A register. B register blanked.
$A+\theta$: logical OR of A and B inputs displayed in A register, B reg. isler blanked.
$A+B$: logical EXCLUSIVE-OR of A and B inpuls displayed in A register, B register blanked.
Display relationship to clock: display advances horizontally onc LED per clock pulse.

General

Power: 115 or $230 \mathrm{~V} \pm 105.4810440 \mathrm{~Hz}$, approx. 35 walls.
Dimenslons: 213 mm wide $\times 178 \mathrm{~mm}$ high $\times 366 \mathrm{~mm}$ deep $\left(8^{\prime} 4^{\circ} \times 7^{-}\right.$ $\times 14.4$).
Temperature: 0 o $55^{\circ} \mathrm{C}$.
Accessories available Price
10013A: 10:! Voltage Divider Probe $\$ 35$
10250A: TTL Trigger Probe
5061-0090: Front Handle Kit
5061-0078: Rack Flange Kit
5061-0084: Rack Flange/'Front Handle Xit
5000A Logic Analyzer

- Dynamic indicator of logic activity'
 - Pulse stretching for narrow pulses
 - Bad level/open circuit detection

TTL/DTL logic probe

Using the HP 10525T Logic Probe grearly simplifics Iracing logic levels and pulses through IC circuitry to find nodes stuck HIGH/LOW, intermittent pulses, and normal pulse activity. it instamly tells whether the node probed is high, low, a bad level, open circuited. or pulsing.
The Logie Probe requires but a simple connection to your circuits s-vole supply to be ready to go imto action: the rigidly strain-relieved power cord and the line voltage protected probe ip insure durability and long life. High input impedance protects against loading your cir-cuit-nat just in the HIGH state bul for logic LOW's as well.
The 10525 T Probe has preset logic thresholds of 2.0 and 0.8 volts which correspond to the high and low states of conventional TTL and DTL circuis. When touched to a high level, a bright band of light appears around the entire probe ups when touched to a low level. the light goes out. Open circuits or voltages in the bad level region bo tween the presel thresholds cause lamp illumination at half brilliance. Single pulses of to ns or greater are easily viewed by stretching to onetwentieth of a second. The lamp flashes on or blinks of depending upon the pulse's polarily. Pulse streams to 50 MHz cause the lamp to blink off and on at e 10 Hz rate. A single lamp at your fingertips provides all this information. Thus, there is never any need for rolaling the Probe to see what's happening, no matter where you are probing.

Since most IC failures show up as a node suck cither HIGH or LOW, the Logic Probe provides an inexpensive yer remarkably casy way of derecting tic fault. And. witha Logic Probe, those single-shot. short pulses that are nearly impossible to see with even the fastest of seopes are readily displayed at your fingertips.
Also. combining the Probe with the 10526T Logie Pulser greatly enhances the ease of troublechooting. The Pulser provides a convenient means of injecting single pulses whose effects are monitored with the Probe.
With its high input impedance. Model l0525T also functions quite well with logic families other than TTL and DTL, such as 5 -volt CMOS, as long as the logic levels are TTL compatible.

10525T Specifications

Inpul impedance: $>25 \mathrm{k} \Omega$ in both the high and low state (<1 low power TTL lond).
Logic one threshold: $2.0 \mathrm{~V} \pm 0.2 \mathrm{~V}$.
Logic zero threghold: $0.5 v+0.2 v,-0.4 v$
Inpul minimum pulse width: 10 ns.
Input maximum pulse repetition frequancy: $>50 \mathrm{MHz}$.
Input overload protection: ± 70 valts continucus, ± 200 volts intermitent, 120 V ac for 30 seconds, 240 V ae for 10 seconds.
Power requirements: $5 \vee \pm 10 \%$ at 60 mA , internal overload proeecton for voltages from +7 to -15 volts. Includes power lead reversal protection.
Temperature: 0° to $55^{\circ} \mathrm{C}$.
Accossorles included: BNC to alligator clips. ground clip.
High leve! logic probe
The Model los2sh brings fingertip convenience to the testing of high level digital circuils such as HTL. HiNIL. MOS. discrele circuits, and reliay logic. Operation is entirely analagous to that of the 10525 T Probe except that the "H" model responds to higher input voltage levels and aceepts a power supply anywhere in the 121025 V range. Electrical Characteristics have been optimized to match the attributes of the lested devices.

10525H Specifications

Inpul Impedanca: $>20 \mathrm{k} \Omega$.
Loglc one lhreshold: $9.5 \vee \pm 1 \mathrm{~V}$.
Logle zero threshoid: $2.5 \vee \neq 1 \mathrm{~V}$.
input minimum pulse widh: 100 ns .
Input maximum pulse repelition frequency: $>5 \mathrm{MHz}$.
input overload protection: $\pm 70 \mathrm{~V}$ contimuous, $\pm 200 \mathrm{~V}$ intermitIent 120 Vac for 30 seconds. 240 Vac for 10 seconds.
Power requirements: $+1210+25 \mathrm{~V}$ at 100 mA . Includes power lead reversal protcelion.
Temperalure: 0° to $55^{\circ} \mathrm{C}$.
Accessorles Included: BNC 10 ulligator clips. ground clip.

ECL logic probe

The HP Model 10525 E Logic Probe extends the time-proven, coststaving logic probe troubleshooting technique to high-speed ECL logic.
Operation of the ECL probe is analagous to that of the 10525 T exeept the 10:25E's high speed circuitry siretches single shot phenomena so that single pulses as narrow as 5 manoseconds may be observed.
The 10525 E may be powercd directly from any -5.2 voll source and iss high input impedance minimizes circuil loading.

10525E Specifications

Input Impedance: 12 kR in boih the high and low state.
Logic one threshold: $-1.1 \mathrm{~V} \pm 0.1 \mathrm{~V}$.
Logic zero threshold: $-1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$.
Input minimum pulse widith: 5 nsec.
Input maximum pulse repetition frequency: 50 MHz (typically 100 MHz al 50% duty cycle.)
Input overload protection: ± 70 volts continuous, 200 volts intermittent, 120 Vac for 30 sceonds.
Power requlremente: $-5.2 \mathrm{~V} \pm 10 \%$ at 80 mA : supply overload protection for voluges from -7 to +400 volls.
Accessorles Included; BNC 10 alligator clips, ground clip.

Accessories available:	Price
10525-60012: Tip Kit	$\$ 25$
Model number and name	
10525T Logic Prabe	$\$ 65$
10525H Logic Probe	$\$ 125$
10525E Logic Probe	$\$ 150$

Logic pulser and logic clip

Models 10526T \& 10528A

- In-clrcult stimulation without unsoldering
- Automatic injection of proper polarity pulse:
- Greatly simplifies digital troubleshooting

Logic pulser

The Model 10526 T Logic Pulser solves the old problen: of pulsing iC's an digital logic boards for designers and iroubleshooters using TTL/DTL circuits. Merely touch the Pulser to the circuil under lest. press the pulse button and all cirevits connected to the node (outpols as well as mpuis) are briefly driven to their opposite state. No unsoldering of IC oulputs is required. Pulse injection is automatic so the user need not concern bimself whether the test node is in the high or low slate: high nodes are pulsed low and low nodes. high. each lime the bunon is pressed.
The Pulser is essemlially a single-shot pulse generator with high output current capability packed in a convenient, easy-to-use probe. Abil11' to source or sink up to . 65 Amperes insures sufficient current to override IC ourpust in cither the high or low state Output pulse widit of $0.3 \mu \mathrm{~s}$ limis the amount of energy delivered to the device under test thereby efiminating the possibility of destruction. Additionally the Pulser output is tri-state so that circtil operation is unaffectod by probing until the pulse bution is pressed.

Combining in-circuit pulse injection with the unique detection capabilities of the HP 10525T Logic Probe and 10528A Logic Clip focuses new power on solving the problems of fault isolation. Pulser/ Probe and Putser/Clip combinations enable the digital designer or troubleshooter to hold complete stimulus-response capability a his finger tips.

Gate operation is tested with the Pulser driving the input and the probe monitoring transmited pulses at the output. When pulses are nol received, the Pulser and Probe on the same pin can detect if the failure is due to a shore to ground or Vac.
Testing sequential circuits is the donain of the Logic Clip and Logic Pulser. The Clip simultaneously monitors all ouiput states while the Pulser applics clock and reset pulses to the device. Improper operation, if present. is immediately obvious since the IC will not so through its prescribed suquence of states.

Though the Pulser can source large curtents, the charge necessary to supply this current is stored in the Pulser, and power supply requirements are less than 25 mA from any 5 voll supply.

10526T Specifications

Output high pulse voltage: $>2 \mathrm{~V}$ at 0.65 A (1 A typical at $\mathrm{V}_{\mathrm{ps}}=5$ V. $25^{\circ} \mathrm{C}$)

Output low pulse vollage: $<0.8 \mathrm{~V}$ at 0.65 A (1 A typical al $\mathrm{V}_{\mathrm{ps}}=5$

V. $25^{\circ} \mathrm{C}$)

Oulput impedance, aclive state: <2 ohms
Output Impedance, off state: $>1 \mathrm{Mcgohm}$
Pulse wldth: $0.3 \mu s$ nominal
Inpul overload protecilon: ± 50 volts continuous
Power supply inpul prolection: ± 9 volis (includes power lead icversal protection)
Power requirement: SV $\pm 10 \%$ al 25 mA
Temperalure: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Accessorles inctuded: BNC 10 alligator clips, ground clip

- Displays IC logic states at a glance
- Self-powered, self-contained
- No adjustments required

Lagic clip

The Model)0525A Logic Clip is an extremely handy service and design iool. This unit clips onlo TTL or DTL DIP IC's and instandly displays the logie states of all 14 or 16 pins. Each of the Clip's 16 lightemitting diodes independently follows level changes al its associated pin; a lighted diode corresponds to a high logic slate.

The Logic Clip's real value is in its case of use. It has no controls to be set, noeds no power connections, and requires practically no explanation as 10 how it is used. The clip has its own gating logic for locating the ground and +5 volts Vas pins and the buffered iniputs reduce circuir loading. Simply clipping the I052kA onto a TTL or DTL dual in-line package IC makes all logic states visible at a glance.

The Logic Clip is much easier to use than either an oscilloscope or a volineter when a logic designer or service engineer is interested in whether a lead is in the high or low stave (I or 0 state), rather than its actual voltage. The Clip, in effect, is 16 binary voltmeters. and the user doce nol have to shift his eyes away from his circuil to make the readings.

The intuitive relutionship of the input to the output-lighted diodes corresponding to high logic states-greatly simplifies the troubleshooting procedure. The user is frec to concentrate his attention on his circuits. rather than on measurement techniques. Timing relationships become especially appitent when clock rates can be slowed to about I pulse per second.

When used in conjunction with the 10526 T Logic Pulser, the Logic Clip offers umparalleled analysis captubility for troubleshooting scquential circunts. The Clip lirst altaches to the IC to be tested: the Pulser is then brought into action. The Pulser's capability to injoct pulses between gates allows it to supply signals to the IC under test aboo. lutely independent of gates connected to the IC. All oulputs may then be observed simultaneously ou the Logic Clip. Deviations from expected results are immediately apparent as the Pulser steps the IC through its oulpul slatcu.

10528A Specifications

Input threshold: $1.4 \pm 0.6 \mathrm{~V}$; TTL or DTL compatible (excepl galus with exparder inputs).
Input impedance: one TTL load (-1.2 miA lypical per inpul).
inpul protection: vollages < -) V or $>7 \mathrm{~V}$ musi be current limited to 10 ms .
Supply voltage: $5 \mathrm{~V} \pm 10 \%$ across any wo or more inputs.
Maximum current consumptlon: 120 mA .
Temperature: 0 to $55^{\circ} \mathrm{C}$.
Dimenalons: $5 S \times 40 \times 25 \mathrm{~cm}(2.15 \mathrm{in}$, high, 1.5 m . wide. 1 in . deep) maximum.
Weight: nel, $45 \mathrm{gm}(1.5 \mathrm{oz})$. Shipping, $120 \mathrm{gm}(4 \mathrm{oz})$.
Accessories Available: Price
10526-60002: Multi-pin Stimulus Kı $\$ 25$
10525-60012: Tip Kit $\$ 25$
$\$ 25$
Model number and name
10526T Logie Pulser
$\$ 75$
10528A Logic Clip
$\$ 75$

- New capabilities added
- Dramatically cuts troubleshooting time
- In-circuit IC testing with no unsoldering

The Model IOS29A Logic Comparator is an extremely useful lield service and production in-circuit troubleshooling tool. Dozens of ic's may be checked-an entife IC at a lime-io detect functional failures in less Ihan a minuse per 1C. The Comparator clips onto powered TTL or DTL IC's and detects funclional failures by comparing the in-circuit lest IC with a known good relerence IC inseried in the Comparator. Any logic state difference between the Iesi IC and the reference IC is identifled to the specilic pin(s) on 14 - or 16 -pin dual in-line packages with the Comparator's display to 16 light emitting diades (LED's). A lighted LED corresponds co logic differcilu. The Logic Comparator can save considerable time in locating a lauliy IC. There are no conerols to be sel und no power connections.

The procedure is very' simple. First the IC to be lested is idenlified. An IC of the same type is placed in the Comparator's IC sockeL, or 3 reference board with an IC or the same type is inserted in the Comparator. The Comparator is clipped onto the lest IC, and an immediate indication is given if the test IC operates differently from the reference 1C. Even very brief dynamic errors are detected, stretched, and displayed.

The Compirator will also provide a Logic Clip function when used with the socket bourd set to the elip mode. In addition to the display of the instantancous states or the 14 or 16 pins of the IC under examina. tion via the Comparator's 16 LED's (ont per pin). the ComparsiorClip also provides slectching on each pin. Thus intermiticnt highs and low's of 300 nanoseconds or longer will be detected.

As a Comparator, the 10529A connects the test and reference IC in. puts in parallel; thus the reference 1 C is exercised by input signalw identical to those of the test IC. The outputs of the twa IC's art conspared any differences in eulputs are delected, and LED's cortesponding to the particular pins are lit on the Comparator's display. Intermitent errors as short as 200 nanoseconds (using a reference board) or 300 nanoseconds (using the socket board) are delected. and the error indication on the Comparator's display is stretehed for a visual indication. A failure on an inpul pin. such as an internal shorn, will appear at a failure on the IC driving the falled IC; Itus a failure indication actually piopoints the mallunctioning node.

All operating power is oblained from the test circuit. Programming for the specitic IC is easily accomplisbed. Two different methods arc avallable. First, the socket board included with the Comparator is inseried in the Comparator drawer. Outputs of the particular IC to be lested are selected via It miniature switches which tell the Compara-
tor which pins of the reference IC are to be allowed to respond freely. The referenoe IC is then inserted into the socket and locked into place. The socket board automatically secks Voa and ground. Any now IC may be set up in seconds. Alternatively, if specific IC types are to be ested repeatedly, the reference IC may be soldered into one of the reference boards provided with the Comparator. The reference board is progeammed by opening the conneetions hetween the lest and reference [C's outpul and solder bridging Voe and ground. The sockel board and ten blank reference boards are included with each Comparalor.

When troubleshooling, it is reassuring to know that the rester is operating properly. A test board is supplied with the Logic Comparator for this purpose. When inserted in place of a reference board or the socket board. the test board exercises all of the Comparator's cifcuitry. Iest leads, and display elements to verify proper operation.

The Logic Comparator is an unparalleled aid for helping 10 locate in-circuil failed IC's. Offen only a Comparator is necessary for finding failures. Since the functional test is made for the circuil's stimutus pattern, it is unimportant whether or not the inpul pattern to the IC is correct or not: thus, tesling in digital feedtack loops is simplified immeusurably. Because the Cumparator converts readily to a Logic Clip, the nature of the failure is readily apparent. Further analysis before taking the grouble to remove the IC often saves valuable time.

The Logic Comparator's ease of use and small size make it an invaluable addition to the troubleshooter's test gear cither in the field or in the factory. With TTL and DTL failures that are functionally related. the Comparator can lind the bad IC up to ten times faster than conventional signal tracing techniques. At its low price. The Logic Comparator can pay for itself in only days.

10529A Specifications

Input threrhold: 1.4 V nominal (1.8 V nominal with socket board). TTL or DTL compaible.
Test IC loading: outputs driving Test IC inpuls are losded by 5 low. power TTL loads plus input of Reforcoce IC. Tesi IC outputs are loaded by 2 low-power TTL loads.
Inpul protectlon; voltages <-1 V or $>7 \mathrm{~V}$ must be current limited to 10 ona
Supply voltage: $S V \pm 10 \%$.
Supply protection: supply voltage must be limited to 7 V .

Maximum current consumption: 300 ml A.

Senglifulty

Epror sanshiulty: 200 ns with refecence board or 300 ns with sockel board. Errors greater than this are delected und streiched to at least 0.1 seconds.

Delay varlatfon immunity: 50 ns . Errors shorter than this value are considered spurious and ignored.
Frequency range: muximum operational frcquency varies with duly cycle. An error existing for a full clock cycle will be delected if the cycle race is less than 3 MHz .
Temperature; $0^{\circ} 1055^{\circ} \mathrm{C}$.
Dimensione: $3.56 \times 8.55 \times 18.2 \mathrm{~cm}(1.4 \mathrm{in}$. decp. 3.375 in . widc. 7.15 in. long),
Welght: nel, 1.14 kg (2 lb 6 oz). Shipping. 1.62 kg (3 l b 6 oz).
Accessorles included: I lesi board: 10 blank refctence boards; I programmable sockel board; I carrying case.
Accessories available: Price1054/A: Twenty Blank Reference Boards for the Logic
ComparalorK0I-10541A: Twenty Pre-progtammed Bourds for theLogic Comparator10529A Logic Comparator595
$\$ 175$

Logic troubleshooting kit

Model 5011T

- Complete TTL/DTL troublesnooting kit
- Stimulus-response capability
- In-circuit fault finding
- In-circuit anatysis
- Dynamic and static testing
- Multi-pin testing

The HP SOIIT Logic Troubleshooling Kit combines all the Iroubleshooting capability of four instruments, the 10529A Logic Comparator, the 10526T Logic Pulscr, tbe 10525 T Logic Probec, and the 10528A Logie Clip. These instruments have been designed 10 work 10 gether to detect in-eıreuit logie failures and 10 analyze failurea for their specific causes. The Logic Comparator attaches to 14 and 16 -pin dual in-line TTL and DTL circuils-bolh scquential and combinatorial logic are testable. The IC under last is allowed to operate nomally while ils outpuls are compared againsl s reference IC of the same lype inserted in the Comparator. Should the cireuit under rest operate improperly. the failure is detected and displayed on the hand held Comparator's pancl. Sixteen LED's exactly pinpoint the failed node. Special sirelching networks within the Compsrator capcure intermitient falures as shorl as 200 nanoseconds and streich the visual indication to a icnilh of a second.

Once a failure has been isolated, the other test instruments can provide exacting analysis. For example. the Logic Probe vill indicate if any pulse aclivity is present at the suspect mude; the Probes ability 10 detcel singlu pulses, high or low, as nirrow as 10 ninoseconds can insure the tolal absence of signals at the sode. Placing the Logic Pulser on the suspeet node with the Probe will allow delection of shorts to ground or the power supply-even the powerliul burst of energy from the Pulser will net cause a pulsc on a supply buss or ground. Or should the node be open-cireuted, the Logic Probe instuntly indicates il. The very high input impedances of the Pulser and the Probe guarantec that they will not affect circuit operation by loading.

Another analysin, method employs the Logic Clip and Logic Pulsur. The Pulser can be used to inject resel and clear signals directly into

Mip-flops, counters, doenders, ele. with the Clip altached to monitor the effeets. With the system chock removed or shorted, the Logic Pulser can inject clock pulses one-at-a-lime, and deviations from preseribed seybences can be observed on the Logic Clip 16-pins-at-a-lime.
Application of the IC Troubleshoolers are endless and limited only by the imagination of the troubleshooler. Easy 10 use, they will capidly create substantial savings of lest time and dollars. The various kit components listed below are described in detail on the pages devoled to the individual instruments.

5011T Specifications

Includes:

10525T Logic Probe
10526T Logic Pulser
10528 A Logic Clip
10529A Logic Comparator
Dlmensiong: $13.2 \mathrm{~cm} \times 20.3 \mathrm{~cm} \times 8.25 \mathrm{~cm}(12.25 \mathrm{in} . \times 8.0 \mathrm{in} . \times 3.25$ in.).
Weight: net, 1.36 kg (3 lb). Shipping, 2.27 kg (5 Ib).
Accessories Availabla:
10541A: Twentiy blank reference boards for Logic Com-
parator
KOI-10541A: Tiventy loaded reference boards for Logic
Comparalor (common TTL IC's)
10526-60002: Multi-pin Stímulus Kil for Logic Pulser
10525-60012: Tip Kit for Logic Probe or Logic Pulser

- TTL/DTL troubleshooting kit
- Stimulus-response capability
- In-circuit analysis

10526-60012

10541A

10526-60002

K01-1054 1 A

Logic test instrument accessories
10525-80012 Tip Kit: the 10525-60012 Tip Kit gives added nexibility to users of the Logic Probes, Logic Pulser and both Logic Troubleshooling Kils. The Tip Kit facilitates connection of the parent instrument to signal lines in digital circuits. Included are: hook lip, spare straight lip, banans lip, and Iwa adapters for connecting to backplanes and IC pin-extender elips. In addition a BNC to banana adapier is included which will interface the BNC power input connecter on the Probes and Pulser to standard binding posts
10526-60002 Multi-pin stimulus kit: the 10526-60002 Mulci-pin Simulus Kis consists of a eable assembly that allaches the Pulstr output to up to four pins of the teat IC. Thus four pins in the same state may be simultaneously pulsed, a useful feature for testing multi-inpui gotes and other circuits. The $10526-60002$ Multi-pin Slimulus Kil may be ordered with the Logie Pulser or either Logic Troubleshooting Kit.

10541A Twenty additlonal blank relerence boards:

 these boards are idenlical to the 10 boards provided with the Logic Comparator: they allow additional IC's 10 be programmed for Comparalor cesling. The handy package provides easy access for inserting into the Comparator. The 1054IA blank releronce board sel miy be ordered with the Logic Comparator or the SOIIT Logic Troubleshooling Kil.K01-10541A Twenty preprogrammed reference boards: this package provides 20 of the most common TTL IC's already programmed and ready for use with the Logic Comparator or 5011T Logic Troubleshonting Kil. When ordered with KOI-10541A, the Comparator is ready for immediate action upon receipt. The loaded reference boards are packaged in a convenient storage container which allows access to the individual boards needed. The KOI-1054)A inctudes the following IC's: 7400 Quad 2-inpul NAND: 7402 Quad 2 -inpul NOR: 7404 Hex invericr: 7408 Quad 2-input AND; 7410 Triple 3 -imput NAND: 7420 Dual 4 -input NAND; 74308 -input NAND; 7440 Dual 4 -input NAND buffer; 7451 Dual 2-wide, 2-mpui AND-OR-INVERT; 7454 4-wide, 2 -input AND-OR-INVERT; 7473 Dual J. K master-slave Ilip-flop: 7474 Dual D Nip-flop: 7475 Quad bistable D lateh: 7476 Dual J-K nip-flop with presel and elear: 74834 -bil binary full adder, 7486 Quad 2input exclusive-OR; 7490 Decade counter; 7493 4-bit binary counter; 24121 Monostable multívibrator: 9601 Monostable multivibrator, retriggerable.

5015 Logic troubleshooting mini kit
The HP S015T Logic Troubleshooting Mini Kit combines the unique logic snalysis capability of the I0525T Logic Probe, the IOS26T Logic Pulser, and the 10528A Logic Clip into a single, handy k1t. These three instruments provide slimulus/response capability for dynamic and static esting of in-circuit integrated circuits. The 10525T Logic Probe provides an indication of logic state at your Iingerlips. Not only are TTL and DTL highs and lows displayed but also open circuits and bad levels are clearly shown. Dynamically, pulse irains to 50 MH 2 may be monitored and single pulses as narrow as 10 nanosec onds are deteesed. Thus the Logic Probe may be used to quickly check For the presence of key signals such as clock, reset, start, shifi, iransfer, etc.

The 10526T Logic Pulser brings you a new concept in digital uroubleshooling: injecting a pulse between logic gates. With high current sinking and sourcing capabihty, the Pulser, once its pulse bulton is pessed, can drive low nodes high and high nodes low for 300 nanoseconds before refurining to its high-impedance off state. The selection of a bigh pulse or low pulse is automatic-just press the button!

The Logic Pulser may be used with the Logic Probe in several ways. For example, if a node is found with the Probe to stay high or low, allempting 10 inject a pulse while monitoring the pin with the Probe will elearly indicate a shorl to ground or the power supply-even the powerful burst of energy from the Pulser will not override the supply voltages. Or. the Pulser may be used to injeed signals into gales while the oulput is checkod by the Logic Probe. The very high input impedances of both Pulser and Probe insure no circuit loading effects.

The 10528A Logic Clip's ability 10 monitor all the pins of TTL and DTL DIP's make it extremely useful for testing Пip-flops, counters. shift registers. decoders, etc. The Logic Pulser can inject clock and resel signals while the Clip allows you to see exactly how the device responds. Improper operation is immediately apparent.

This powerful combination of instruments is useful in the lab. production, ficld service, and in training applications or wherever lols of eapability al a low price is desired. The kit components listed below are described in detail on the pages devoled to the individual insiruments.

5015T Specifications

$5015 T$ Includes:

Model 105255 Logie Probo
Model I0526T Logic Pulser
Model IOS28A Logic Clip
Dimenslone: $28.6 \mathrm{~cm} \times 13.3 \mathrm{~cm} \times 6.4 \mathrm{~cm}(11.25 \mathrm{in} . \times 5.25 \mathrm{in} . \times 2.5$ in.).
Weight: nel. 0.63 kg (I lb 6 ox .). Shipping, 0.74 kg () lb 10 oz).
Accessorles avallable
Price
10526-60002: Multi-pin Stimulus Kil for Logic Pulser
$\$ 25$
10525-60012: Tip Kil for Logic Probe or Logic Pulser $\$ 25$
5015T Loglc troubleshooting mini kit

Moder 5035A
- Flexible circuit breadboard aid
- Use standard IC's, components, and interconnecting wires
- Removable breadboard for circuit expansion
- Completely self-contained

The 5035A Logic Lab hrings convenience, smplicity, and fexibility to the task of breadboarding new designs or trying out altemative circul configutations in R\&D, production engineering, and product support. Fully self-contained, this rugged design partner helps you check out ideas quickly without chasing after equipment or soldering cumpunents or connections. One of the Logic Lab's key features is the uniquely removable breadboard assembly which acts like a giant sockel allowing you to plug in componems of all varieties and types and interconnees them with slandard 24 -gauge hookup wire withoul soldering. Each component pin for, say, dual-inline 1 C packages has four common tie points for fan in and fan oul. Additional buses allow for signal routing or junctions. Since the breadboard holds up 1016 DIPs, a large circuit under design can be partitioned inta subsections and each one checked out individually. Sinee the breadboard is removable. the circuils do not need to be disassembled after check out. The l-amp capability of the Logic Lab mainframe could allow several breadboards to be powered simultaneously and interconnected by solderless hookup wire.
In eddition to the $\$$ volt-I amp laboratory power supply built in the Logic Lab mainframe. 6 data switches can be used 10 provide HIGH/LOW signals to the circuit under test. These switches are completely "debounced" so that each transition is a single edge. Thus various parts of your circuit may effectively have difterent "clocks" by using the data switches. Also they may be used as pulse sources since an up-down or down-up operation provides only a single pulse. Four LED indicators allow monitoring of various circuil points wilh HIGH/LOW indications. Two eencrators in the mainframe provide squarcwave 1 Hz and 100 kHz signals that can be routed to your ciscuit.
The Logic Lab mainframe also hats twa 5 voll output connectors on its rear panel for powering the los2s'T Logic Probe and the 10526 T Logic Pulser. Available separately, these powerful troubicshooting tools provide a valuable complement to the SO3SA Logic Lab For
years the Probe and Pulser have provided circuit designers and digital troubleshooters the in-circuil stimulus/response capability optimized for IC work. The 10528A Logic Clip alse is very handy to monitor all pins of 14-and 16 -pin DIP's simulancously. The 10528A clips directly to IC's mounted on the Logic Lab breadboard. Each of the three instruments is available individually or they may be obtained toguher as the 5015T Logic Kil.

5035A Specifications

Power supply: 5 volles $\pm 5 \%$, over 0.1 Amp range: 10 mV rms ripple maximum. Continuous short circuil prolection.
Data gwfitches: 6 bounceless slide switches for TTL high/low outputs.
LED Indleators: 4 high/low indicators.
Clocks: 2 independent; I Hz and 100 kHz (nominal, squarewave).
Breadbsard assambly (HP part number 1258-0121): removahle. Interconnectlons: all power supply, data switch. LED indicalor, and component contact points may be interconnected by standard 24. gauge hook-up wire.
Power requlrementa: $100 / 120 / 220 / 240 \mathrm{Vac}+5 .-100048-400 \mathrm{H} \%$ line Frequency: 30 walls max: $0^{\circ}-55^{\circ} \mathrm{C}$.
Dimenslons: mainfeame: 89×31) 267 mm ($121 / 4 \mathrm{in}$ wide, $31 / 2 \mathrm{in}$. high (max). $101 / 2$ in. deep).
Breadboard assembly: $165 \times 114 \times 13 \mathrm{~mm}(6 \%$ in. $\times 41 / \mathrm{in} . \times 1 / \mathrm{in}$. (hick).
Welght: net. $5.9 \mathrm{~kg}(13 \mathrm{lb})$. Shipping. 6.9 kg (15.13 lb).
Accessories Available: Price
1258-0121: Additional breadboard assembly $\$ 45$
1540-0258: Heavy duly. padded vinyl carrying case
05035-60006: Wire inlerconncel kil (285 prestripped. as-
sorted lengh and color. 24 -gauge hk-up wircs)
5035A Logic Lab

- Complete digital training program
- Digital text and laboratory workbook
- Digital test instrumentation
- All required components and interconnections

The 503ST Logic Lab is a combination of all the essential eicments needed for a successful insroductory course in practical digital elec. tronics. This unique program is structured to aid the digital irainee in the rapid understanding of theory and the practical aspects of digital circuits.
Each 3035 T Logic Lat includes: A completely self-contained mainframe with a renovable breadboard assembly, a cutorial text on digital elecironics cemplete with laboratory workbook, and all the components and interconnecting wires needed for the lahoratory experiments. Also included with the Logic Labare three industrially proven digital test instruments: the losest Logic Probe. the 10526T Logic Pulser, and the 10528A Logic Clip.

Mainframe

The 5035T Logic Lab maisframe icalures rugged industrial quality construction with a 3 roll one anspere shori-ciratit protected power supply. This feature allows the Logic Lab to withstand many years of rough student usige. Also 6 TTL compatible bounceless data switches, 2 independen signsl sources of 1 Hz and 100 kHz , and 4 LED logic state indicators make the Logic Lab an extremely versatile zraining and circuit breadboarding lool.

Removable breadboard assembly

One af the Logic Labs key features is the uniquely removable breadboard assembly which acts like a giam socket allowing insertion of all varieties and types of components. After insertion the busing structure of the breadboard permits circuit interconnections to be easily made withoul soldering using slandord 24 gauge wire. The unique strueture of the breadboard makes circuit build-up and modification both fast and easy saving hours of valuable assenhly time.
The removability of the breadboard allows several individuak 10 construct circuizs simuhaneously on separate breadboards, then test their circuits in a common mainframe. This reduces the ineremental cost-per-student and allows individual training to proceed al a pace consistent with ability.
When sysecm expansion becomes necessary several breadboard as. semblies may be built and checked independently for correct circuit operation then combined and operated simultancously from a single mainframe.

Tert and laboratory workbook

The lext and laboratory work book combinc to form the heart of the Logic Lab digial training progran. The practical concise fext provides the necessary backeround, while circuil skill and practical hands-on experience are developed by the 26 experiments in the functional laboratory workbook. The program is arranged in modules of complexity so that learning can be tailored to the student's background and end olsjectives. In addition, its modular nature allows the use of self-paced and individualized sludy techniques. The iext and workbook sections are writen to inerease the student's knowledge of digital electronics, to provide practical experience with actual circuit etements and to provide some exposure to the basies of digital circuit design.

Components supplied

Each 5035T Logic Lab includes thirty-two state-of-the-ant TTL. SSI, and MSI integrated circuits, including gates, תlip-flops. counters. decoders, and an arithmetic logic unic (A.L.U.). Also included are four LED matrix digital displays with built-in BCD to decimal decoders and 285 prestripped, 24 gauge hookup wires of various lengits and colors.

Digltal fest instrumentation

The increased use of digital incegrated circuits has brought new demands for a digital type of test instrumentation. Hewlet-Packard's incircuil digital troubleshooters, the L.ogic Probe. Logic Pulser, and Logie Clip have been used in industry for years by lechnicians and engineers alike. These industrial instruments also make ideal training tools because of their straightiorward indication and operation.

Logic probe

The 10525 T Logic Probe is a dynamic logic state indicalor. It identifies logic highs, lows, open circuits whth fingertip display (lit and extinguished band of light), detects single pulses as narrow as 10 nanoseconds and pulse trains to 50 M bis $/$ second. The Logic Probe will provide the student with a unique digital analysis capability unavailable using any other measurement (echnique.
Loglc pulser
The 10526T Logic Putser provides the sludent with the equivalent of a hand held digital pulse generator. It injects a pulse angwherr in-circuit: no disconncelions are nocessary. The Pulser overrider momentarily, the existing state of the node, and it selects the proper polarity pulse automatically! High nodes are pulsed low and lows pulied ligh with a single depression of the pulse buttom.
Logic clis
The 10528A Logic Clip is particularly useful in understunding the functional nature of IC gales. The Clip attaches directly to dual-intirit packages, and with no wircs or connection displays the logic stater al the IC pins simultaneously via 16 LED's-one per pin. An LED lit indicales a logic high and extinguished, a logic low.

5035T Specifications

Includes

Model 5035A Logic Lab; "Practical Digial Elctronics-An Introductory Course" Text and Workbook: Logic Probe: Logic Pulser: Logic Clip. Component and Wire Kit.
Ancessories available:
1258-0121: Additional Breadboard Assembly 545
10656A: Set of 10 "Practical Digital Heectronics-AnIntsoductory Course" Texi and Lab Workbook$\$ 159$
10657A: Addizional Component and Wire Rits $\$ 150$
5035T Logic Lab $\$ 750$

The oscilloscope-ihe mosi general purpose and basic tool of the electrical de-signer-has evolved into a very accurale and versatile measurement tool. With the rapid growith, in the past few years, of echnology in inegrated circuits, the measuring capabilities bave increased tremendously. Bandwidth has increased, sweep apeuds ire fastur and more linear. displays sre larger and brighter. and controls are easies to operate. In gencral, the mose versatile test inscrument has become even more accurale and more nexible.

Hewlell-Packard pionecred many of the measurement capabilities that are now taken for granted in oscilloscopes. A few of these are internal graticule CRT, beam linder, expansion mesh CRT, rigger holdoff, mixed sweep. general purpose sampling to 18 GHz , lime domain reflectomblry, and rugged variable persistence/slorage.

Selecting an oscilloscope

Today's selection of an oscilloscope is nol as casy is it was in previous years. The rocent technological changes have consideratly improved the price performance ratios ibat are
available. In addition, measurement requirements have atso changed and expanded.

To make the best selection, usc your immediate measurcment application as a starting point. Then look al your past and future requirements. Aner examining all of the possible measurement requirements, you will have an idea of the lype of oscilloscope needed in your application. In a somewhat broad sense oscilloscopes can be classified in two eategories, mainframes with plug-ins and nonplug-ins.

Plug-in oscilloscopes

The plug-in oscilloscope (figure 1) offers maximum flexibility by pernuting general purpose measurements as well as relaining the capability 10 make specially measuremenis. By carefully selecting a mainframe. you will be able to change the measurement capability by using different plug-ins rather than having another inifequently used special purpose oscilloscope on hand. Plug-in oscilloseopes are usually called General Purpose Laboratory instruments because of the broad measurement capabilıies.

General purpose lab scopes are used in basic circuil design for almost every electronis product and are most often config. ured as a 2 chanñel, wide band, delayed sweep instrument. As the general purpose measurement needs expand, the plug-in flexibility allows you to reconligure your instrumene to fil other applications.
In addition to general purpose dual channel plug-ins with bandwidiks from 3510250 MHz , many' specialty plug.ins are also available - high sensitiviey, differential/de offsel: four channels; standard, delayed, expanded, or mixed sweep operation: sampling bandwidths to 18 GHz ; time domain refleclomeiry: spectrum analysis 101500 MHz . swepl frequency testing from 100 MHz to 18 GHz , and digital state malysis. The Rexibility of the plug-in system is considerable - it makes one instrument do many jobs.

Nonplug-in oscilloscopes

Nonplug-in oscilloscopes (ligure 2) arc sometimes referred to as "dedicated" instruments because of their nonplug-in form. Aithough they are dedicaled in form they are truly general purpose in megsurement capa-

Figure 1. Representative plug-in oscilloscopes trom Hewlett-Packard's 180 series.
bility with full taboratory atcuracy and qualthy. These dseiloseopes are usually dual chan. nel, delayed sweep instruments with a wide variety of measerement capibilities. If the applications do not require plug-in fiexibility for changing requiremeriss, then the lower cost nomplug- in oseilloscope is a uscful choice for a general purpose laboratory insurument.

High speed

Hewleti-Packard has two 275 MHz oscilloscopes that are ideal for use in the design. manufacturing, and texing of high speed compuers and periplierals with last interface logic, high speed digial communicalions and instrumentation, as well as high frequency of applications. Model 1720A has conventional volts-versus-sime measurements and is particularly well suited for tim. ing measureniems with its delayed sweep and 1 ns/div sweep speeds.

Model 1722A with Dual-Delayed sweep and an micfoptocessor with LED display gives you direet readout of time inlerval, frequency, de valtage. instantaneous collage. and relative amplitude expressed in percent. In addition to providing digital readout of a mes. surement, the microprocessor gives considerably more repeatable measurements than previously possible in real time useilloscopes. Dual-delayed sweep improves accuracy of time interval measurements because the CRT is used as a nutling device which eliminates nonlinearity errors. The daal-delayed sweep measurement technique, developed by Hew-let-Packard, simplifies rise time, propagation delay, clock phasing and other highspeed timing measurements. Two separate markers are used to enabic the operator to see both start and slop points of the lime interval simultaneously. These two markers also reduce the possibility of setting a measurement to the wrong event. In the delayed sween mode, the start and stop mode are overlapped to obtain maximum accuracy with the improved resolution of optical null. ing.

For time interval measurenents at 200 MHz. Model 1712A includes Dual-Delayed siveep with a scaled do voltage output for direct readout on an external DVM. For traditional measurements in the 200 MHz range. Model I710B is available with sandard delayed sween.

100 MHz

Model 1740A is a 100 MHz oscilloscope with a third channel trigger view for accurale general purpose measurements. This oscilloseope with its large $8 \times 10 \mathrm{~cm}$ CRT offers delayed sweep measurements to 100 MHz at 5 $\mathrm{mV} / \mathrm{em}$ deflection faciors. A $\times 5$ magnifier incrcases sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ on both elaranets to 40 MHz without the need to caseade channels. As a further aid to measorement fexibility Option 101 to the 1740A (figure 3) provides rear panel inputs and swliching circuits for interfacing with the Mudel 1607A Logic State Analyzer. This option permits single pushbution switching between data domain table displays and lime domain measurements. The functional 16 bit wide displays provided by the 1607 A permit fast analysis of digital systems when you only need logic flow information. And, with the digital triggering capability of the 1607A coupled to the 1740A cxternal trigger you have the abifity 10 "window" the time domain display to the digital problem area for elecirical analysis.

35 MHz and 75 MHz

For applications in the 35 MHz and 75 MH 2 area, there are four scopes with battery, de, or ac line power capability for field and lat applications. Two of the 35 MHz oscilloscopes offer storage and variable persislence operation with rugged burn resistant CRT's which makes them ideal for general use.
The low power requirements of HewletrPackard poriable oscilloscopes has allowed very rugged instruments to be developed. These scopes. designated as 1700 B Opt 300 and 17078 Opi 300 mett the requirements of
the AN/USM 339 and AN/USM 338, In fact, a few modifications allowed the oscilloscope to surpass the dripproof esst and operate under water. Meeling these rugged requirements did not reduce the labaratory accuracy of these instruments and they incorporate the same basic proven circuits as the standard 1700 serics oscilloscopes.

15 MHz

In the de to 15 MHz range there are three models available, 1220A and 1222A dual channel and 122IA single channel, that are designed for industrial and educstional applications, and production lime testing. Logical front panel layout, large $8 \times 10 \mathrm{~cm}$ internal graticule, and autonatic triggering reduce familiarization time and assure maximum efficiency in production and sludent environments.

500 kHz

Low frequency scopes which have about 500 kHz bandwidth are used in educational, medicsl, system monitors, engineering. production. and in some eases field service. These seapes could be classified as the "workhorses" of the electronies industry since they are moss commonly found in systern applications. The 1200 series scopes easily fill these requirements with iheir $100 \mu \mathrm{~V}$ and 5 mV sensitivity, solid-state and lightweight construction, and reliable and stable operation. Also available are storage and variable persistence models which eliminate annoying flicker and retain single-shot traces that are common in bio-medical or clectro-mechanical applications.

Oscilloscope basics

Because the oscilloscope can display elecirical signals which vary with lime, it has become today's most widely ased electronic measuring instrument. It produces a visual display of ony physical quintity which can be represented as a vollage. This pernits precise measurement and analysis of the phenomenon represented by the voltage.

Figure 2. Representallve Hewlelt-Packard nonglug-in oscilloscopes.

Figure 3. Option 101 to 1740 A offers one button switching between Logic Siate Analysis and volts vs. time measurioments.

The cathode-ray tube

A CRT produces an electron beam whose movement is controlled by the vertical and horizontal amplifiers and by the power supplies which form, shape, and accelerate it. This electron beam strikes a phosphor screen and a visible glow resulis as the beam is moved.

Since the beam deflection can be calibrated against a grid (graticule) on the CRT face, amplitude and time measurements cais be made. All Hewlen-Packard graticules are internal and in the same planc as the fothosphor, climinating parallax.

Hewleti-Packard manufactures all its own CRT's-technological leadership has accompanied ithis.
An expansion mesh, used lirst by HewlettPackard in 1962, with a voltage on it produces an electrostatic field which bends the beam after its initial deflection at the elec tron gun structure. By coniroliing mesh radius. Hewletl-Packard CRT designers have produced increasingly larger display areas while simulaneously reducing the oucrall length of the lube.

Storage scopes are available with rugged variable persislence (the time it iakes for the trace to fade to 10% of jts original brightnesis). This is made possible by use of a storage mesh immediately behind the phosphor. Contral circuits then derermine the rate at which a display fades away after being stored as a charged patiern on the mosh.

Vertlcal deflection system

Since the CRT is limiled as so the range of deflection voltages which san be applied, a
vertical amplifier and atimuator are usco. These ore accurately calibrated to provide a deflection factor related to the graticule (e.g. $S \mathrm{mV} /$ division).

Horizontal deflection system

To deflect the ejectron beam horizontally. an amplifier and sweep generalor are used. A suwlooth wavelorm generator sweeps the beam al a selectable uniform rate. Wíh such a lincar rate of swecp. calibration to the graticule is possibic (c.g. I ms/division).

For meaningful displays, the horizontol deflection system mus! provide synchronizing circuits to start the swecp at a specific instant with respect to the measured waveform. Automatic triggering on Hewlell-Packard scopes makes starting of the sweep a quick. easy slep.

Power supplies

Scopes concain low and high vallage power supplies and determinc, with the CRT, the maximum capability of a scope, especially of a mainlrame.

Low voltage powcr supplies give operating power to scope circuizs such as the verical and horizonial amplifiers. The high voliagu power supply forms and conirols the CRT eleciron beam.

Hewleti-Packard has made coniributions in power supplies, too, and two examples will show their significance:
I. The 1700 Series portable scopes have an advanced design LVPS. It is highly efficient and has a newly designed de-to-de converter. The result is a scope which consumes approximately 25 watts and operalcs from ac líne, de line, or opional battery.

Figure 4. Power supply module can be operated ouside the mainirame to facilitale maintenance.

Flgure 5. Hewlett-Packard innovation uses thlek-film substrate in cam-operated attenuators, allowing selection of 50 or high Input impedance with low capscitance.
2. Mainframes in the 180 System have a reliable LVPS which, when repair may be required, can be removed from the instrument in a fully operating status; reler 10 figure 4. Repair or ealibration ume is greally reduced.

Input probes

Proper selection of well-designed probes will minimize circuil loading ellects and provide the most accurste and useful wiveform information. Improper matching of probe to circuil measurement point or of probe to scope will cause rise lime errors in pulse mea. surements and cause boih amplitude and phase errors in CW measurements.

The effecks of resistive louding have been recognized for some time. High inpul impedances have been used to reduce the voltage division between circuil and measurine device. This lechnique will cause minimal crror is medsurements are at low Irequencies and the circuil test point has a low impedance.

When these probing requirements are not mel, inaccuracies result for onc big reason: CAP^CITANCE. And the effects of capacieance in the probe or scope inpul change drastically bocause of frequency.

Hewletl-Packard has pioneered in helping solve the capacitance problem in high frequency measurements by providing selwetable input impedance - 50 ohms or a high Z winh law capseitunce. This meisurenent convenience is svailable because of HewleltPackard's innovalive design, illustrated in ligure 5, that usti ihick-film attenuators.

Samplling ofellloscopes

Sampling asellloscopes use a rectrique which is simbler in principle to ust of a stroboscope for study of periodic or varying motion.

Samples are taken on successive recurrences of a waveform. As each amplitude sample is laken later in lime on the waveform, the CRT beam is deflocted to the corresponding poinc where a visible dol is then displayed. The rate at which sampting occurs is very fast; thus the dots are displayed as a coherent-appearing waveform on the CRT.

Samples arc oblainto when a pulse "Iurns on" the sampling circuit for an extremely shon cime. During this interval the inpui waveform amplitude is measured, the samples are then effeclively "slrelched" in time, and amplified al relalively low bandwidths.

Thanks to fast-switching diodes deviloped by Hewlett-Packard-some even for use in orthes types of insirumentation-sampling scope bandwidths have progressed 10 ihc 18 GHz point.

Oscilloscope selection

1700 Series Oscilloscopes

Dual channel with stlection of 275 MHz . $200 \mathrm{MHz}, 100 \mathrm{MHz} .75 \mathrm{MHz}$ or 35 MHz .275 MHz or 200 MHz dual-delayed swecp for faboratory, production and field use in digital and high lrequency r' applications. 100 MHz with 3 rd chanael trigger view: and 35 MHz slorage with variable persistence. Sce page 98.

100 Systom high frequency plug-in

 scopeThe one plug-in instrument to solve nearly any general-purpose laboratory or production line measurement problem. Bandwidths of $500 \mathrm{kHz}, 35 \mathrm{MHz}, 50 \mathrm{MHz}, 75 \mathrm{MHz}, 100$ MHz or 250 MHz . Standard, storage/variable persistence. $>400 \mathrm{~cm} / \mu \mathrm{s}$ storage writing speed or big-screcn. Sampling to 18 GHz , TDR, spectrum analysis. swepl frequency analysis and digital state analysis. Sec Page 116.

1220 Serlas 15 MHz bandwidth

Single and dual channel ascilloseopes for production line certing, educational, and industrial applicalions. See Page 144.

1200 Serles low frequency scopes

Low frequency, nonplug-ín scopes of proven, all-solid-state circuit design. Many operating features normally found only on much wider bandwidth, more expensive scopes. 300 kHz bandwidths in stendard or storage/variable persistence. Deflection factors as low is $100 \mu \mathrm{~V} /$ div. See Page 146.
140 General-purpose plug-In scope
A valued performer for Hewletl-Packard customers around the world. Slandard and storage/variable persistence mainframes. 20 MHz bandwidth with standard or delayed time base and spectrum analyzer plug-ins. See Page 143.

Oscilloscape accessarles

Supporiling accejsorics to get the most out of your scope investmens. Cameras and adapters, lesimohiles, active and passive probes, and adaplers to meet mosi any need. See Page 150.

Figure E. Typlcal oscilloscope block dilagram.

1722A Description

The Model 1722A is a 275 Mliz bandwidth, 1 ns/div sweep ngeed dual channel oscilloscope with a builhin microprocessor for the most precise real time measurement capabilities available at this time. In addition to the conventional volts versus time CRT display, the microprocussor gives you direct readout of time interval. frequency, de voltage, instantancous voltage, and percent.

As well as incteased accuracy offered by the microprocessor, you get a digital readout of the answer to your problem in considerably less time than it takes in a conventional scope. You also get a substintial improvement in measurement repeatability which makes the 1722A exiremely useful in applications requiting comparison to a reference. For example, the 1722A's outstanding repeatability along with the 20 ps resolution makes it ideally suited for making clock phasing measurements in large computer timing applications.

Time interval measurements

The Time Interval Mode is ideal for making accurate measurements of rise time, pulse widih, and propagation delay.
Time interval measurements can be made between lwo events on Channel A, two events on Channel B, or when in altemate mode between an event beginning on Channel A and ending on Channel B. A DUAL DELAYED SWEEP technique displays the start and stop poinis of your lime interval as intensified markers. The technique is to select MAIN INTENSIFIED MODE and adjust marker width with the delay time/division control. Then set the first marker af 1 , with the DELAY dial, and set the 2nd marker at t_{3} with the DECREASE-IN. CREASE controls (coarse, medium, or fine). The $31 / 2$ digit LED display automatically and continuously reads the time interval between the two markers ($\mathrm{t}-1$,). Time ineerval measurements are always displayed in units of sec (exponent 0); ms (exponent -3); $\mu \mathrm{s}$ (exponent -6); or ns (exponent -9). For increased resolution, select DELAYED sweep mode. The two intensified porlions will be displayed alternately. Achieving the maximum accuracy of the 1722A is a sim1ple matter of overlapping the start and stop points using the DECINC switches! This new icchnique eliminates any measurement errors duc to vertical or horizontal dnft. It also enables you to compare two
waveforsns white comparing the time relationship between shem.
The microprocessor nol only keeps track of the distance between the two markers but antomatically expands the measurement resolution by a factor af 10 whenever the two markers are within 1 cm of each other. For example, when making measurements on the $2 \mathrm{~ms} / \mathrm{div}$ range a measurement of just over a division has a readout of 2.01 ms while a meavurement of just under a division has a readout of 1.998 ms . Accuracy in the time interval mode is basically 1%.
The microprocessor is not only used to calculate time interval but is also used to interrogitle the function switches to help prevent inaccurate measurements. For example. the time interval mode is only valid in either the main imensified mode, where the two markers can be secn, or in the delayed sweep mode, where resolution and accuracy can be improved by overlapping the two delayed sweeps. In other modes where errors might be made (such as in main, mixed, and X-Y). the microprocessor automatically sets the display to zero.

1/Time (trequency) measurements

The 1722A gives an automatic 3 or 4 digit display of the reciprocal of time. If a time interval measurement is the period of a waveform. then the $1 /$ Tine mode provides a direct reidoul of repetition rate or frequency. The microprocessor computes the reciprocal of whatever sime interval has been sel when in the Time mode. 1/T/me display units are in Hz (exponent 0), kHz (exponent 3). or MHz (exponent 6).

DC voltage measurements

When the 1722A is operated in the Inpul (de volis) mode you have a direet digital display of the average value of the waveform at the inpui 10 channel A. The display is $31 / 2$ digits with a sample rate of approximately $2 / \mathrm{s}$ and a response time of less than one sccond. The DVM is autoranging from 100 mV full scate to 50 V full scale in the XI range. In the $X 10$ range, which automatically compensaces for a $10: 1$ divider probe. full seale ranges are from I voli 10500 V .

Instantaneous voltage measurements

In the position mode you can measure the value of any point on a waveform which eliminates the need to count divisions from a baseline and multiply by the attenuator selling. A switch in the channel A input allows you to compensate for a $10: 1$ divider probe for a direer readout of volesge at the probe tip without any calculations.

Two Intensified markers are positioned to cover the siart and stop points of the desired interval. The LED resdoul sutomatically and continuously displays the ilme between the rwo markers (1.92 $\mu \mathrm{s}$).

For Increased accuracy. the scope is placed in the Delayed Sweep mode to display the two intensifled traces alternately. When the two traces are made to coincide using the DEC \longrightarrow INC controls. maximum accuracy is achleved ($1.962 \mu 8, \pm 0.63 \%$).

Percentage measurement
The Position Mode gives an automatic readout of percent when the vernier is out of CAL position. This measorement is made by establishing a 5 cm display becween the 0 and 100% points with the 0 , point positioned on a convenient gralicule and zeroed with the Reference Set pushbutton. The desired point en the waveform is positioned on the reference graticule line using the position control and the pereentage of that point witb respect to the 0 and $100^{\%}$ points is automatically and continuously displayed.

Models 1720A \& 1722A

The 1720A and 1722A are precision, high performanoc oscillo. scoper in the traditional verical, horizonisl, and riggering operaLion.

Verlical defloction fictors are $10 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div over the full 275 MHz bandwidth with 2 2 h attenuator accuracy. Full 275 MHz bandwidth is specified in both 50 ohm and I megohm inpul modes, and over the full $6 \times 10 \mathrm{~cm}$ display area. Furthermore, the 275 MHz bund width is maintained in calibrated modes as well as when the verniers are in use.

For maximum measusement flexibility, the I720A and I722A have switch-selectable 50 ohm or 1 megohm inputs. For general purpose probing with standard $X 10$ divider probes, the 1 megohm input is shunted by only II pF and offers minimum circuit loading. The 50 ohm inpul with internal compensation and low reflections provides. faithful pulse reproduction for accurate tansition lime measurenents in circuits where low eapacitive loading is necessary.
The CRT has a crisp. bright trace over the full $6 \times 10 \mathrm{~cm}$ display. For convenient vicwing and longer CRT life, beam intensity is automatically regulated. However, the automatic intensity timil circuit is designed so that maximum intensity is maintained for viewing low reprate, fast sise pulses. An automatic focus circuil reduces the need for focus readjusument with intensity level ehangen, yel a front pinel control mas be used for fine adjustments when desired. An internal faced gun uniformls illuminates the CRT phosphor to achieve high quality irace photos as well as an cye-pleasing trace-lo-background contrast.

Stable internal triggering to 300 MHz requires only 1 cm of vertical deflection (only 0.5 cm 1050 MHz). The imeraal trigger syne takeofl is immediately after the attenantor for a stable display regsideas of changes in position, vernier, or polarity controls.

Models 1720A \& 1722A (cont.)

1720A and 1722A Specifications

Vertical display modes

Channel A_{i} channel B i charnels A and B displayed altcrnatcly on successive sweeps (ALT); channels A and B displayed by swilching between channels at approx. I MHz rate with blanking during switching (CHOP), channel A plus channel B (algebraic addition): X-Y (chaone) A us. channel B).
Vertical amplifiers (2)
Bandwidth: (53 dB down from a 6 div reference signal.)
DC-coupled: de 10275 MHz in boch 50 ohm and high impedance
inpu1 modes.
AC-couplad: approx. 10 Hz to 275 MHz .
Bandwidth limit: limits upper bandwidth 10 approx. 20 MHz .
Rlse lime: ≤ 1.3 ns (mcasured foom 10% to 90% points of a 6 div input s(ep).
Dellaction factor
Ranges: $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}(9$ calibrated positions) in 1.2 .5 sequence. $\pm 2 \%$ allenuator accuracy.
Vernier. continuously variable between all ranges; extends maxi-
mum deflection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$. Front panel light indicates when vernier is not in CAL position.
Polarity: channel B may be inverted, front pancl pushbution.
SIgnal delay: input signats are delayed sufficiently to view leading edge of input pulse without external uigger.
input coupling: seleclable. AC or DC, 50 ohm (de), or ground. Ground position disconnects inpur connector and grounds amplifier inpui
Jnput RC (selectable)
AC and DC; I megohm $\pm 2 \%$ shunted by approx. II pF.
50 ohm: 50 ohms $\pm 2 \%$; SWR, ≤ 1.3 on 10,20 , and 50 mV ranges and ≤ 1.15 on all other ranges.
Maximum Input
AC and DC: $\pm 250 \mathrm{~V}$ (oc + peak ac) at 1 kHz or less.
50 ohm: 5 V rms or $\pm 250 \mathrm{~V}$ peak whichever is less.
A + B operation
Amplifier: bandwidth and denection factors are unchanged: channel B may be inverted for A-B operation.
Differentlal ($A-B$) common mode: CMRR is al leas 40 dB from de co 5 MHz decreasing to 26 dB at 50 MHz . Common mode signal amplitude equivalent to 12 cm with one vernier adjusted for oplimum rejection.

Trigger sourco

Selectable from channel A, channel B. or composite.
Channel A: all display modes ariggered by channel A signal,
Channel B: all display modes eriggercd by channel B signal.
Composite: all display modes (riggered by displayed signal.
Channel A input - dc volts (1722A)
Dlaplay: light emitting diodes (LED).
Number of diglta: $31 / 2$.
Dlsplay unite: 0 exponent indicates volts; -3 exponent indicates mitlivolis.
X1 range: 100 mV to So V full scale vertical deflection ($10 \mathrm{mV} / \mathrm{div}$ to S $\mathrm{V} /$ div).
X 10 range: I $\vee 10500 \mathrm{~V}$ full scale verlical deflection ($100 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$ with X10 probe).
Accuracy: $\pm 0.5 \%$ reading $\pm 0.5 \%$ full scale (full scale $=10 \mathrm{~cm}$), $20^{\circ} \mathrm{C}$ $1030^{\circ} \mathrm{C}$.
Stabllity: temperatuse coefficienh $< \pm 0.02 \% /{ }^{\circ} \mathrm{C}$.
Inpul impedance: XI range, I megohm shunted by approx. II pF: XIO range (with X 10 probe) 10 megohms shunted by approx, 10 pF . Sample rate: approx. 2/s.
Response ilme: sls.
Relerence set: meter may be zeroed perminting de voltage measurements with respect to any volzage within selected range. Drift may be eliminaled by the REF SET control.
Overrange: nashing display indicates overrange condition.
Channal A position - volte (channel A vernier in CAL detent) (1722A)

With the following exceptions, specifications are the same as Channel A Inpul - DC volts.

Measurement: de substútution method using channcl A position con(rol to determine voltage of any point on displayed waveform using any graliculc line as reference.
Bandwidih: de to 275 MHy ($\leq 3 \mathrm{~d} 8$ down from a 6 dív reference signal).
Dynamic range: $\pm 6 \mathrm{~cm}$ from ground refesenced 10 center sereen.
Reference set: meter may be zeroed, permits instantancous voltage measurements with respect to any voltage within sclecled range.
Accuracy. ± 1 禺 reading $\pm 0.5 \%$ of full scale (IOX the volis/div range) measured al de.

Channel A pobifion - \% (channel A vernier oul of CAL
delent) (t722A)
Measurement: de substitution method using channel A position conLrol to determine pereent of any waveform point with respect to user delincod 0 and 100% points.
Range: $010 \pm 140 \%$ (calibrated with vemier so that 100% cquals 5 div).

Accuracy: ± 19.
Zero reference: meter may be zeroed to permit percent measurements with respect to any waveform point.

Vertical oufpul

Amplltude: one division of verrical deflection produces approx. 100 mV oulput (de to 50 MHz).
Cascaded dellection factor: I mV/div with both vertical channels set $1010 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwidth: de 10 S MHz with bandwidih limil engaged. Source resisiance: approx. 100 ohms.
Source seleclion: trigger source scl to channel A selocts channel A outpul: trigger souroc: set 10 channel B sclects channel B oulput.
Horlzontal diaplay modes
Main, main intensified, mixed, delayed, X10, and X-Y.
Main time base
Sweep:
Ranges: $10 \mathrm{~ns} /$ div to $0.5 \mathrm{~s} /$ div (24 ranges) $1,2.5$ sequence.
Accuracy:

Hain sweep time/diy	Accuracy $\left(0^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$	
	K1	XIO
10 ns 1050 ns	$\pm 3 \%$	$\pm 5 \%$
100 ns 1020 ms	$\pm 2 \%$	$\pm 3 \%$
50 ms 100.5 s	$\pm 3 \%$	$\pm 3 \%$

Vernler: continuously variable between all sangen; extends slowest sweep speed to at leas! 1.25 s/div. Vernier uncalibrated laght indicales when vernier is nol in CAL position.
Magnifer: cxpands all sweeps by a factor of 10 : exiends fastest sweep to $1 \mathrm{~ns} / \mathrm{div}$.
Sweep mode
Normal: sweep is triggered by internal or external signal.
Automatle: bright baseline displayed in absence of inpul signal. Triggering is normal above 40 Hz .
Single: in Normal mode, sweep occurs once with same Iriggering us nomal, resel pushbutton arms sweep and lights indicator: in Auto mode. sweup occurs once each lime Resel pushbutton is pressed.
Triggering
Internal: de to 100 MHz on signals causing 0.5 division or more vertical deflection, increasing 10 I division of verlical deflection al 300 MHz in all display modes. Triggering on line frequency is also scleclable.
Extemal: de to 100 MHz on signals of $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more increasing to $100 \mathrm{mV} \mathrm{p}-\mathrm{p}$ at 300 MHz .
External Input RC: approx. I megohm shumed by approx. 15 pF .
Trigger level and alope
Internal: at any point on the vertical waveform displayed.
External: contínuously variable from +1.0 V to -1.0 V on either
slope of the trigger signal: $+10 \vee 10-10 \mathrm{~V}$ in divide by 10 mode $(\div 10)$.
Coupling: AC, DC, LF REJ. or HF REJ.
AC: gitenuates signals below approx. 10 Hz .

LF REJ: allenuales signals below approx. 7 kHz .
HF REJ: alleturates signals above approx. 7 kHz .
Trigger holdoft: time between sweeps continuously variable exceeding one full sweep from $10 \mathrm{~ns} / \mathrm{div}$ to $50 \mathrm{~ms} /$ div.

Maln Intensilied

Intensifies that part of main time base to be expanded to full screen in delayed time base mode. Delay control (1720A) and time interval controls (1722A) adjust position of intensiffed ponion of sweep. Rear panel interssity ratio control sets relative intensity or brightened segment.

Delayed time base
 Sweep

Ranges: $10 \mathrm{~ns} / \mathrm{div} 1020 \mathrm{~ms} / \mathrm{div}$ (20 ranges) in 1.2 .5 sequence.
Accuracy (0 to $55^{\circ} \mathrm{C}$): same as main time bsse.
Magnifier (0 to $55^{\circ} \mathrm{C}$): same as main líme base.
Triggering
Internal: same as main time base excepl there is no Line Frequency triggering.
Starts after delay: delayed sweep automatically starts at end of delay period.
Trigger: with delayed trigger level control out of detent (starts after delay) delayed sweep is triggerable at end of delay period.
External: de to 100 M Hz on signals of $50 \mathrm{~m} \nu$ p-p or more. increasing to $100 \mathrm{mV} p-\mathrm{p}$ at 300 MHz .
External input AC: approx. 1 megohm shunted by approx. 15 pF .
Trigger level and slope
Internal: at any point on the rertical waveform displayed when in triggered mode.
External: continuously variable from +1.0 V to -1.0 V on either slope of the erigger signal; +10 V to -10 V in divide by 10 mode $(+10)$.
Coupiling: AC, DC. LF REJ, or HF REJ.
AC: attenuates signals below appros. 10 Hz .
LF REJ: atrenuates siguals below approx. 7 kHz .
HF REJ: allenuate signals above approx. 7 kHz .
Delay time range: 0.5 to 10X Main Time/Div settings of 20 ns to 0.55 (minimum dclay, 50 ns).

Differential time measurement accuracy ($+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$):

Maln time base selting	Accuracy
$50 \mathrm{~ns} /$ div to $20 \mathrm{~ms} /$ div	$\pm(0.5 \%+0.1 \%$ of lull scale)
$20 \mathrm{~ns} /$ div and	
$50 \mathrm{~ms} /$ div to $0.5 \mathrm{~s} /$ div	$\pm(1 \%+0.2 \%$ of tull scale)

Delay fliter (1720A): <0.005\% (1 part in 20000) of max delay in each step.
Time interval (1722A)
Delay tlme: continuously variable from 10 ns to 5 s .
Delay fiter: refer to Time Interval Measurements, Slability.
Time interval measurements, 1722A (lime)
Function: measures time interval between (wo evens on channel a (channcl A display); between two events on channel B (channel B display): or between two events starting from an event on channel A and ending with an event on channel B (Alternate display).
Dleplay units: 0 (s): -3 (ms); -6 ($\mu \mathrm{s}$); or -9 (ns).
Accuracy:

Main line base setting	Accuracy ($+20^{\circ} \mathrm{C}$ to $\left.+30^{\circ} \mathrm{C}\right)$
$100 \mathrm{~ns} /$ div $1020 \mathrm{~ms} /$ div	$\pm 0.5 \%$ of measurement $\pm 0.02 \%$ ol Iull scale (101 measurements less than (cm). For measurements $>1 \mathrm{~cm} . \pm 0.5 \%$ of measuremeni ± 0.053 of Jull scale.
$50 \mathrm{~ns} / \mathrm{div}$	$\pm 0.5 \%$ of measurement $\pm 0.06 \%$ of tull scale.
$20 \mathrm{~ns} / \mathrm{Div}^{*}$ and $50 \mathrm{~ms} / \mathrm{div}$ lo $0.5 \mathrm{~s} / \mathrm{d} 4$.	$\pm 0.5 \%$ ol measurament $\pm 0.15 \%$ of full scale.

-Starting atter 60 ns al sweep.

Resolution: intervals $<1 \mathrm{~cm},>0.01 \%$ of full scale: intervals $>1 \mathrm{~cm}$. $>0.1 \%$ of full seale: maximum display resolution, 20 ps .
Stablity (0 to $+55^{\circ} \mathrm{C}$); shont lerm, $<0.01 \%$. Temperature. $\pm 0.03 \% /{ }^{\circ} \mathrm{C}$ deviation from calibration lemperature range.
Heciprocal ol lime interval meaburements, 1722A ($1 / 1 / \mathrm{me}$)
Function: calculates and displays the reciprocal of the measured time interval.
Displey units: 0 (Hz); 3 (kHz): 6 (MH2).
Aceuracy: same as Time Interval Measurements.
Resolution: same as Time Interval Measurements.
Stability: same as Time Interval Measurements.

Mlxed lime base

Dual time base in which the main time base drives the first portion of sweop and the delayed time base completes the sweep at the faster delayed sweep. Also operates in single sweep mode.

X-Y operation

Bandwidth

Y -axis (channel A): same as channcl A .
X-axle (chennel B): de to $>3 \mathrm{MHz}$.
Deffection lactor: $10 \mathrm{mV} /$ div to $\mathrm{V} / \mathrm{div}$ (9 calibrated positions) in I . 2. 5 sequence.

Phase difference between channele: $<3^{\circ}$. dc to 3 MHz .
Cathode-ray tube and controls
Type: posi accelcralor, approx. 20.5 kV accelcrating potential, aluminized P31 phosphor.
Gralicule: 6×10 div internal graticulc. 0.2 subdivision markings on major axes. 3 div $=1 \mathrm{~cm}$. Rear panel adjusiment aligns trace with graticule. Internal flood gun graticule illumination.
Beam finder: returns trace to CRT sercen regardess of setting of horizontal, vertical, or intensity' conirols.
Intenatty modulation: $+8 \mathrm{~V}, \geq 50$ ns width pulse blanks trace of any intensity, useable to 20 MHz for normal intensities. Inpot R, $1 \mathrm{k} \Omega$ $\pm 10 \%$. Maximum input, $+10 \vee(\mathrm{dc}+$ peak ac).
Auto-locus: automatically maintains beam focus with variations of inlensity.
Intensity almit: a atomatically linits CRT beam current to decrease possible CRT damage. Circuit response time ensures full writing speed for viewing low duty cyele, fass rise time pulses.
Rear panel conirola; astigmatism, pattern, main/delayed intensity ratio, and trace align.

General

Rear panel outputs: main snod delayed gates, -0.7 Y $10+1.3 \mathrm{~V}$ capable of supplying approx. 3 mA .
Calibrator: $1 \mathrm{kHz} \pm 10 \%$ square wave: $3 \mathrm{Vp-p} \pm 1 \%$; $<0.1 \mu \mathrm{~s}$ rise time.
Power: 100. $120,220,240 \mathrm{~V},-10 \%,+5 \%$: 48 10 440 Hz ; 110 VA max. Weight: (1722A) nel, 13.2 kg (29 lb); shipping, 18.1 kg (40 lb). (1720 A) nel. $12.9 \mathrm{~kg}(28.5 \mathrm{lb}$): shipping, 17.9 kg (39.5 Ib).
operating environment: temperature, $010+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 $+130^{\circ} \mathrm{F}$): humidily, 1095% relative humidity al $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right.$) altitude, 104.6 km (15000 ft): vibration, vibrated in three planes for 15 min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$) excursion, 101055 Hz .
Dimensions: 335 mm wide ($131 / \mathrm{ft}$ in.); 197 mm high ($7 \% / \mathrm{in}$.) : 570 mm length with handle (22% in .), 518 mm length without handle ($20 \% \mathrm{in}$.). Accessorles turnished: one Model 10115A blue light filler; one front panel cover: one vinyl storage pouch; one 2.3 m (7.5 (i) power cord; one Operating and Service Manual.

Recommended probes

Divider probes for 1 megohm inputs: models 10014A and 10016A.
Divider probe for 50 ohm Inputs: model IOO20A. resistive divider.
Active probes for 50 ohm inputs: models 1120^, and 1125A.

Oplions

Price
001: lixed line cord add $\$ 15$
003: probe power supply with iwo rear pancl jacks for
use with HP active probes. Provides power to operale
one 1120A, two 1124A. or two 1125A active probes
add $\$ 50$
011: PII phosphor in lieu of P31
N/C
Model number and name
1720A 275 MHz Oscilloscope
1722A 275 MHz Oscilloscope with Microprocessor

1710B, 1712A Specifications

Vertical display modes

Channel A; channel $B_{\text {; }}$ channels A and B displayed alternately on sucecssive sweeps (ALT): channek A and B displayed by swiching between channels at approx. I M Hz rate with blanking during switching (CHOP): chamel A plus channcl B (algebraic addition); X-Y (channel A vs. channel B).

Vertical amplifiers (2)

Bandwidth: (3 dB down from a 6 div reference signal,)
DC-coupled: de 10200 MHz in bath 50 ohan ind high intedance inpus modes $10 \mathrm{mV} / \mathrm{div} 105 \mathrm{~V} / \mathrm{div}$, 10150 MHz ut $5 \mathrm{mV} /$ div.
AC-coupled: lower limit is approx. 10 Hz .
Bandwidth limilt: limits upper bandwidth to approx. 20 MHz .
Rlae Hme: <1.75 ns $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$. < 2.3 ns a $5 \mathrm{mV} / \mathrm{div}$ (messured from 10% to 90% poinis of 6 div inpul slep).

Deflectlon lacior

Renges: $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ (10 calibrated positions) in I. 2, 5 sequence. $\pm 2 \%$ atrenuator accuracy.
Vernler: continuously variable between all range: extends maximum deflection factor 10 ut least 12.5 V /div. Front panel light indicates when vernier is not in cal position.
Polarity: channcl B may be inverted, front panel pushbutton.
Signal delay: input signals are delayed sufficiently to view leading edge of inpul pulse without advanced irigget.
Inpul coupling: selcelabic, $A C$ or $D C, 50$ ohms (de) or ground. Ground position disconnecls input conneclor and grounds amplifier inpul.
Inpul RC (selectable)
$A C$ and $D C: 1$ megohm ± 2 Tin shunted by approx. 11 pF .
50 ohm: 50 ohms $\pm 2 \%$: SWR <1. 3 on 5.10 .20 , und 50 mV ranges and <1.15 on all other ranges.
Maximum input
AC and DC: +250 V (dc + prak ac) al 1 kHz or less.
50 ohm: 5 V mos or $\pm 250 \vee$ peak whichever is less.
A + a operalion
Ampilifer: bandwidth and denlection factors are unchanged; channel B may be inverted for $\mathrm{A}-\mathrm{B}$ operation.
Difierential (A - B) common mode: CMRR is at least 40 dB from de to 5 MHz deereasing 1026 dB 3150 MHz . Common mode signal amplitude cquivalent to 12 cm with one vernicr adjusted for optimum rejuction.

Trigger source
Selectable fromi channcl A. channel B. or Compositc.
Channel A : all display modes trigered by channel A signal,
Channel B: all display modes triggered by channel B signal.
Composite: all display modes triggered by displayed signal.
Vertical output
Amplitude: onc division of vertical deflection produces approx. 100 mV oulput (de to 25 MHz).
Cascaded deflection factor: $1 \mathrm{mV} / \mathrm{div}$ with both vertical channels set to $10 \mathrm{mV} / \mathrm{div}$.
Cabcaded bandwldit: de to 5 MHz with bandwidth limit engaged.
Vertleal output resistance: approx. 100 ohms.
Vertical output selection: irigger source set to channel A selects channel A output, to channel B selects channel B output.
Horizontal display modes
Main, main intensified, delsyed, mixed. X-Y.

Main tlime base

Sweep

Aangas: $10 \mathrm{~ns} / \mathrm{div}$ to $0.5 \mathrm{~s} /$ div (2 d ranges) $1,2,5$ sequence.
Accuracy

Kain Sweep Time/Div	Accuracy	$0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}$
	$\times 1$	$\times 10$
	$\pm 3 \%$	$\pm 5 \%$
100 ns 1020 ms	$\pm 2 \%$	$\pm 3 \%$
50 ms 100.5 s	$\pm 3^{\circ}$	$\pm 3 \%$

Vernler: continuously variable between all ranges: extends slowest swecp to at least $\mathrm{f} 25 \mathrm{~s} / \mathrm{div}$. Vernier uncalibrated light indicales when vernier is not in CAL position.
Magnifler: expands al sweeps by a factor of 10 ; extends fastest sweep to I ns/div.
Swaep mode
Normal: sweep is triggered by internal or exsernal signal.
Aulomatic: bright baseline displayed in absence of input signal. Triggerng is same as normal above 40 Hz
Single: in Normal mode, sweep occurs once with same Iriggering as normal, resct pushbution arms sweep and lighs indicator: in Auro mode, sweep oceurs once each time Rescr pushbution is pressed.
Triggering
Internal: de to 100 MHz on signals causing 0.5 division or more
vertical daflection. Increasing 10 I division of vertical dencetion at 200 MHz in all display modes. Triggering on line frequency is also selectable.
External: de to 100 MHz on signals of $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more increas. ing to $100 \mathrm{mV} \mathrm{p}-\mathrm{pa}(200 \mathrm{MHz}$. Maximum inpul, $\pm 250 \mathrm{~V}$ (dc + peak ac) at I kHz or Jess.
External input RC: approx. I megohm shunted by approx. 15 pF
Trigger level and slope
Internal: at any point on the vertical waveform displayed.
External: contimuously variable from $+1.0 \vee$ to -1.0 V on cither slope of the trigger signal, +10 V to -10 V in divide by 10 mode $(\div 10)$.
Couplling: AC, DC, LF REJ, or HF REJ.
AC: attenuates signals below approx. 10 Hz .
LF REJ: athenuates signals below approx. 7 kHz .
HF REJ: attenuates signals abive approx. 7 kHz .
Trigger holdolt: time between sweeps continuously variable, execed. ing one full sweep from $10 \mathrm{~ns} /$ div to $50 \mathrm{~ms} /$ div.

Main intenalfied (17108)

Intensifics chat part of main time base to be expanded to full sereen in delayed lime base mode. Delay control adjusts position of intensified portion of sweep. Rear panel intensity ratio control sets relative inlensity of brightened segment.

Main Intensifled (1712A)

Intensifies two parts of main time base to be expanded to full screcen in delayed time base mode. "START" control positions the first intensified portion of the sweep; "STOP" control positions the second intensified portion of the sweep. Rear panel intensity control sets relative intensity of brightened segments.

Delayed tlme base

Sweep

Ranges: $10 \mathrm{~ns} /$ div to $20 \mathrm{~ms} / \mathrm{div}$ (20 ranges) in $1.2,5$ sequence.
Accuracy (0 to $55^{\circ} \mathrm{C}$): same as main time base.
Magntifer (0 to $55^{\circ} \mathrm{C}$): same as main time base.
Triggerlng
Internal: same as minin time base except there is no Line Frequency arigering.
Starte ather delay: delayed sweep automatically starts at end of delay period.
Trigger: with delayed trigger level control out of detent (starts after delay) delayed sweep is triggerable at end of delay period.
External: dc to 100 MHz , on signals of 50 mV p-p or more, increas-
ing 10100 mV p-p at 200 MHz . Meximum inpu1, $\pm 250 \mathrm{~V}$ (dc + pcak ac) al 1 kHz or less.
External input RC: apprax. I megohm shumted by approx. 15 pF .
Trigger level and alope
Internal: at any point on the verical waveform displayed when in triggered mode.
External: continuously variable from $+1.0 \vee$ to -1.0 V on eiltier
slope of the trigger signal, +10 V to -10 V in divide by 10 mode $(\div 10)$.
Coupling: AC, DC, LF REJ, or HF REJ.
AC: attenuates xignals below approx. 10 Hz .
LF REJ: attenuates signals below approx. 7 kHz .
HF REJ: uttenuases signals above approx. 7 kHz .
Delay time range: 0.5 to 10 X Main Time/Div setuings of 20 ns to 0.5 s (minimum delay 50 ns).

Difterential time messurement accuracy (17108)
$\left(+15^{\circ} \mathrm{C} 10+35^{\circ} \mathrm{C}\right)$

Maia lime base seting	Acturacy
$50 \mathrm{~ns} /$ olv to $20 \mathrm{~ms} / \mathrm{dlv}$	$\pm(0.5 \% \pm 0.1 \%$ of lull scate $)$
$20 \mathrm{~ns} /$ div and $50 \mathrm{~ms} /$ div 10	$\pm(1 \% \pm 0.2 \%$ ol lull scale $)$
$0.5 \mathrm{~s} / \mathrm{div}$	

Delay fitter (1710 B): <0.005\% (1 pari in 20000) of maximum delay in each step.

Mixed lime base

Dual time base in which the main time base drives the first portion of sweep and the delayed time base completes the sweep al she faster delayed sweep. Also operates in single sweep mode.

Time interval (1712A)

Function: measures time interval between iwo events on channel A (channel A display): between two events on channel B (channel B dis-
play): or between two events starting from an event on chansel A and ending with an event on channel B (alternate display).
Accuracy:

Main Time Base Seiting	Accuracy $\left(+20^{\circ} \mathrm{C}\right.$ to $\left.+30^{\circ} \mathrm{C}\right)$
$100 \mathrm{~ns} /$ div $1020 \mathrm{~ms} / \mathrm{dlv}$	$\pm 0.5 \%$ of measurement $\pm 0.05 \%$ of ts
$50 \mathrm{~ns} / \mathrm{div}$	$\pm 0.5 \%$ of measurement $\pm 0.1 \%$ of ts
$20 \mathrm{~ns} / \mathrm{div} .50 \mathrm{~ms} / \mathrm{div}$ lo	$\pm 0.5 \%$ of measurement $\pm 0.2 \%$ of $/ \mathrm{s}$
$0.5 \mathrm{~s} / \mathrm{div}$	

- Starting aftur 60 ns of sweep

Measurement accuracy is the Time interval docuracy plus the external DVM accuracy.
Slability (0 to $55^{\circ} \mathrm{C}$): shori-1erm 0.005%. Temperature, ± 0.03 电 C desation from calibration temperature range.
Time Interval outpui voltage: varies from 10 V to 20 mV full scale. Full scale output vollage can be determined by multiplying the number on the TIME/DIV dial by $10 \vee$ (e.g. $0.05 \mathrm{~s}, 0.05 \mathrm{~ms}$, or $0.05 \mu \mathrm{~s}$ per div gives 0.5 V outpui full-scale).

$X-Y$ operatlon

Bandwidth

X-axls (channel A): same as channel A.
X-bxis (Channel B): dc to $>1 \mathrm{MHz}$.
Deflectlon factor: 5 mV / div $\mathbf{0} 5 \mathrm{~V} / \mathrm{div}$ (10 calibrated positions) in 1 , 2. 3 sequence.

Phase dilference between channels: $<3^{\circ}$, de 101 MHz ,
Cathode-ray lube and controls
Type: posi accelerstor, approx, 20.5 kV acceleraing polentisl, aluminized P31 phosplor.
Graticuler 6×10 div inticnal graticule. 0.2 subdivision markings on major hörzontal and vertical axes. $1 \mathrm{dix}=1 \mathrm{~cm}$. Rear panel adjustment aligns race with graticule. Internal flood gun graticule illuminafioñ.
Beam finder: returns trace to CRT screen regardless of setting of horizonial, vertical, or intensity controls.
Intensity modulation \mathbf{Z}-axis: $+8 \mathrm{~V}, \geq 50$ ns width pulse blanks trace of any intensity. usable to 20 mHz for normal intensities. Inpul R, 1 $k \Omega \pm 10 \%$. Maximum inpul, $\pm 10 \mathrm{~V}$ (dc + peak ac).
Auto-focus: automatically maintains beain focus with variations of intensity.
Intenstiy limit: automatically limits bean curremt 10 decrease possible CRT damage. Circuir response time ensures full writing speed for viewing low duty cyelc. fast rise time pulses.
Rear panel controls: astigmatism, pattern, main/delayed intensity ratio, and trace align.

General

Reer penel outpule: main and delayed gates, -0.7 V to +1.3 V cap. able of supplying approx. 3 mA .
Callbrator: type, i kHz $\pm 10 \%$ square wave: $3 \mathrm{Vp}-\mathrm{p} \pm 1 \%$. $<0.1 \mu \mathrm{~s}$ rise time.
Power: $100,120,220,240,-10 \%+5 \%, 4810440 \mathrm{~Hz} ; 110 \mathrm{VA}$ max.
Welgh: Ner, 12.9 kg (28.5 lb). Shipping, 17.9 kg (39.5 lb).
Operating environment. tempersture, $010+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 $+130^{\circ} \mathrm{F}$): humidity. 1095% relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$; altitude, 104.6 km (15000 ft): vibration, vibrated in three planes for 15 min. each with 0.254 mm (0.010 in .) excarsion. 10 to 55 Hz .
Dimenslone: 335 mm wide ($133 / \mathrm{h}$ in.), 197 mm high ($71 / \mathrm{in}$), 570 mm length with handle ($22 / 18 \mathrm{in}$.), 518 mm length without handle ($20 \% \mathrm{in}$.). Accessories furnished: one Model 1015A blue light filter; one front panel cover; twa 10014A $10: 1$ divider probes: one $2.3 \mathrm{~m}(7.5 \mathrm{ft})$ power cord; one vinyl storage pouch: one Operating and Service Manual.
Options001: lixed line power cord
Priceadd $\$ 15$
003: probe power supply with two rear panel jacks foruse with HP active probes. Provides power to operateone 1120A. two 1124A, or two 1125A Active Probesndd $\$ 50$
011: PII phosphor in lieu of P31
N/C
Model number and name
1710 B 200 MHz Oscilloscope$\$ 2750$
$\$ 2950$

- Dual channel, 5 mV /div to 100 MHz
 - Selectable input impedance
 - Jrd Channel trigger view
 - $8 \times 10 \mathrm{~cm}$ CRT

1740A Description

Introduction

The new Hewlet-Packard Model $1740 \mathrm{~A} 100 \mathrm{MHz}_{3} 5 \mathrm{mV} /$ div, dualchannel oscilloscope offers the high performance necessary to meet the demanding requirements of both laborstory and fietd applications. The J740A has the performance and features 10 make accurate measuremeris with case. The carefully designed fronl panel includes a large. high-resolution CRT with logically arranged conirols which reduce operator learning time and maxes repelitious measurements easier. Several features that make this oscilloscope more versatile than the average 100 MHz poriable oscilloscope include a third channel trigger view for viewing the external trigger signal with both vertical channe)s: a X 5 vertical magnifice for $1 \mathrm{mV} / \mathrm{div}$ deflection factors on both channeds; selectable input impedance ($1 \mathrm{mR} / 50 \mathrm{n}$) for general purpose probing and precise rise ume measurements: and a Logic Siate Display opton for convenient switching between logic state and electrical analysis.

$8 \times 10 \mathrm{~cm}$ CRT

The CRT has a crisp. bright trace over the fully specifice $8 \times 10 \mathrm{~cm}$ display area. An acceleraling polential of 15 KV makes the display compatible with the $5 \mathrm{~ns} / \mathrm{cm}$ sweer snceds for exsiter viewing of low rep-rate, fast transition time signals. The small spol-wi/e of the lab quality CRT along with the no parallax internal graticule makes critical and diflicule timing measurements easier to perform. An enternal noodgun uniformly illuminates the CRT phowher for ligh quality trace photos with a sharp well delined internal genicule.

3nd channel trigger vlew

In many applications, including digital circuits and equipment, it is often necessary to use external trigger sources to maintain proper liming relationships. It is also imponant to know the uime relationship of the trigger signal to the displayed events. By pressing the Trigger Vicw pushbulton whilk in alternate or chop mode. the external trigger sig. nal is displayed as a third channel with the trigger threshold at center screen. By adjusting the erigger level control. you can see which portion of the trigger signal is initiating the sweep. A deflection factor of $100 \mathrm{mV} / \mathrm{div}$ is compatible with ECL levels and in divide by $10(\div 10)$ the I $\mathrm{V} / \mathrm{div}$ is compatible with TTL levels.

Third channel trigger view of the external trigger signal offers measurement convenience with the center screen threshold.

Stable flexlble triggering

Stable internal thiggering to greater than 100 MHz requires only : cm of vertical deflection. The internal trigger sync take-off is innediately after the atenuatior which maintains a stable display regardless of changes in position, vernier, or polarity controls. A full complement of easy-so-use pushbution trigger conirols assures you of the desited trigger signal conditioning for yous measurement. In the external mode. triggering to 100 MHz anly requires 100 mV ; 50 mV 10 50 MHz .

Selectable input impedance

For maximum measurement fexibility, these scopes have switch-selectable 1 megohm or 50 ohm inputs. The internal 50 ohm permits convenient, high fidelity reproduction of pulses from high-speed, low impedance circuits.

Vertical ampllfiers

Vertical deflection factors are $5 \mathrm{mV} /$ div to 20 V /div over the full 100 MHz bandwidth and over the full $8 \times 10 \mathrm{~cm}$ display area with $3 \% \mathrm{ac}$ curacy. A X5 vertical magnifier provides I miv/div on both channels 1040 MHz which eliminates the need for cascading. This low level capability permits measurements on tupe and dise heads or power supply ripple with a convenienit front panes pushbutton. The $20 \mathrm{~V} / \mathrm{div}$ setling is provided for convenient large signal measurements withou special purpose probes.

Serviceability

Access to the uncluttered interior for calibration and servicing is casy with the convenient lift-off eovers. Innovations in circuit design along with custom integrated hybrid circuits reduce calibration time with the low number of adjustments (44). Wire harnesses and interconnection cables between boards are reduced with an inierface board which connects the three main boards togeiher. This board aiso reduces service time and reassembly errors normally encountered with instruments containing many cables.

Triggering abilily on two signals widely separated in Irequency is clearly shown with these stgnals which have a ratio of 1000 to 1 while triggering in the composite mode.

Service and callbration time is reduced with the low number of adjustments and an intertace board which reduces interconnecting cables.

1740A/1607A digital circuit analysis

With the increasing use and complexity of digital circuits in now producls. the debugging and rosubleshooting of a digital system can be very dilficult. The Hewletf-Packard 1740S, consisting of a 1740A Option 101 and a 1607 A Logic State Analyzer, offers a solution to digital troubleshooting with the combination of logic state and electrical analysis. The 1740 A L.ogic State Display option adds rear-panel inputs with internal switching circuits for single pushbutton switching between the standard from panel inputs and the rear pancl siate display inpuls without changing eables. This single pushbution sivitching capability is very usefal when digital word flow errors require analysis of electrical parametors 10 determine corrective muasures.

Logle state analyzer

The 1607 A Logic State Analyzer is a Dala Domain instrument specifcally designed for debugging, testing. and troubleshooting digital machines. Data is caplured and displayed, on the oscilloscope, as it oceurs in systems operating to 20 MHz . The information display is presented in a machine language data-sequence lable. The I's und 0 's format does not require interpretation from voleage levels $t o$ state or table format. To sclect the deta to be displayed, the Analyzer triggers on a specific duta word sclected with front pancl erigeger word switches.

Electrical and digital megsurements

Finding where and why a digital machine suddenly goes off in a loop or simply stops during its progran can be a long and tedious task with the eumber of nodes that must be checked. Since the data siream is composed of many bits of information with every bit looking like every other biL it becomes a nearly insurmountable problem for the oscilloscope by itself. However, with the 1607A's ability to trigger on a 16 bil parallel word the analyzer/seope combination can display digital data as well as window the scope display for electrical analysis.
Digital Delay makes it possible to page through digital data while maintaining a defined irigger point which allows you to follow the machine algorithm along will active data to locale problems. After locating the problem area, the Analyzer trigger word may be resel to rieger near the fault and the activity on the bus and control lines may be monitured. Comparison of the maehine algorithm with the lable display shows at a glance the existence of false states.
Swithing to the electrical analysis mode permits probing of the eireuit nodes to delermine if an electrieal problem exists that could be cousing the machine to improperly execete an instruction. This internal swithing between state and eleetrical analysis requires no reseltine of conirols or changine of cables.
Anorher useful mode for examining data in the State Display mode is End Display coupled with Digital Delay which allows you to monitor the events that lead up to a fault. By again comparing the algorithm with the data display. erroneous date is quickly identified and the effer of that error is displayed afer the trigger point.
Further electrical analysis in the problem area is possible with the Analyzer's Patlern Trigger Oulpul signal. By using this trigger signal as an external iriger, the uscilloscope display can be precisely windowed to any area of the program allowing false states, race condicions, and transient signals to be identified. The 3rd channel trigger view again maintains a time relationship that you can see while analyzing the eloctrical wavcforms.

Model 1740A Option 10) otters convenient one button swhtching belween logic slate and electrical analysis whoul changing probe or cable connections.

Word triggering with the Anatyzer's digital memory and digital delay permits viewing events leading up to and following the triger word for laster troubleshooting.

Analog display of digital data shows race condition pulse (top trece) which is defined in time by the 3rd channel trigger vlew. With the rigger signal delined by a 16 bll word you know when the problem occurs to reduce troubleshooting time.

1740A Specifications

Vertical display modos

Channel A; channel B; channcls A and B displayed alternately on successive sweeps (ALT); channels A and B displayed by switching between channels al an approximate 250 kHz ratc with blanking during switching (CHOP): channel A plus channel B (algebraic addition): and trigger view.

Vertical amplifiers (2)
Bandwidth aind Rise Time at bill dellection factors frum $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Bandwidith: 3 dB down from 8 div reference signal.
DC-coupled: de io 100 MHz in both 508 and I M Ω inpul modes.
AC-coupled: gpprox. I0 Hz to $100 \mathrm{MH} \%$. I Hz with $10: 1$ divider probes.
Bandwidth limil: limits upper bandwidth to appror. 20 MHz .
RIse TIme: ≤ 3.5 ns measured from $10 \% 1090 \%$ points of a 6 div input slop.

Deflection facior

Ranges: 5 mV div $1020 \mathrm{~V} / \mathrm{div}$ (12 calibrated positions) in $1,2.5 \mathrm{se}$ quence, accurate within 3%.
Vernier: continuously variable between all ranges, extends maximum deflection factor to at least $50 \mathrm{~V} / \mathrm{div}$. UNCAL light indicates when vernier is not in the CAL position.
Polarity, channel B may be inverted, front panel pushbutton.
Delay Ilne: input signals are delayed sufficiently to view leading edge of Input pulse without advanced rigger.
Inpul coupling: selectable AC or DC. 50 (dc) or ground. Ground position disconnects input connector and grounds amplifier input.

Inpul RC (selectable)

AC or $\mathrm{DC}: 1 \mathrm{M} \mathrm{\Omega} \pm 2 \%$ shamed by approx. 20 pF .
$50 \mathrm{ohm}: 50 \mathrm{n} \pm 3 \%$: SWR ≤ 1.4 at 100 MHz on all ranges.

Maximum Input

AC or DC: 250 V (dc + peak ac) or $500 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$ al I kHz or less. 50 ohme: $5 V$ rms.

$A+B$ operation

Amplifier: bandwidth and deffection factors are unchanged. channel B may be inverted for A-B operation.
Differential ($\mathbf{A}-\mathbf{B}$) common mode: $C M R R$ is al letas 20 dB frum de to 20 MHz . Common mode signal amplitude equivalent to $s d_{2}$. visions with one vernier adjusted for optimuin rejection.

Vertical magnificalion ($\times 5$)

Bandwldit: 3 dB down from 8 div reference signal.
DC-coupled: dc to approx. 40 MHz .
AC-coupled: approx. 10 Hz to 40 MHz .
Rles tlme: ≤ 9 ns (measured from 10% to 90% points of \searrow div jnput step).
Deflection factor: increases sensitivity or each deflection factor setting by a factor of 5 with a maximum sensitivity of \| mV on channels A and B.

Trigger source

Selectabie from channel A, channel B, composire, of line frequeney.
Channel A: all display modes uriggered by channel A signal.
Channel B: all display modes trigeered by channel B signal.
Composhe: all display modes triggered by displayed signal except in Chop. In Chop mode trigger signal is derived from channel A . Line frequency, trigger signal is derived from power line frequency.

Trigger view

Displays internal or extemal trigger signal. In Alternate or Chop mode, channel A. channel B, and the trigger signals are displayed. In channel A or B mode, Trigger View overrides that channei. Internal trigger signal amplitude approximates vertical signal amplitude. Ext rigger signal deflection factor is approx. $100 \mathrm{mV} / \mathrm{div}$ or $1 \mathrm{~V} / \mathrm{div}$ in $E X T+10$ Triggering point is approx. center screen. With identically timed signals to a vertical input and the Ext trigger input, trigger signul delay is $2.5 \mathrm{~ns} \pm 1 \mathrm{~ns}$.

Horizontal display modes
Main，main intensified．mixed，delayed．mag X 10 ．and A vs．B．

Maln and delayed time bases
 Aanges

Maln： $50 \mathrm{~ns} / \mathrm{djv}$ to $2 \mathrm{~s} / \mathrm{div}$（ 24 ranges）in 1.2 .5 sequence．
Delayed： $50 \mathrm{~ns} /$ div $1020 \mathrm{~ms} / \mathrm{div}$（ 18 rangrs）in $\mathrm{I}, 2,5$ sequence．
Accuracy：

Sweep Yime／Dir	－Accuracy		Temp Sante
	X1	X10	
50 ns 1020 ms	$\pm 3 \%$	$\pm 4 \%$	$0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$
	$\pm 2 \%$	± 3 喏	$+15^{\circ} \mathrm{C} 10+35^{\circ} \mathrm{C}$
	$\pm 3 \%$	$\pm 4 \%$	$35^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$

＊Add 1 娄 for 50 mesto $2 \times$ anges
Main sweep vernler：continuously variable between all ranges，ex－ tends slowest sweep to at least sidiv．UNCAL light indicates when vernier is nor in CAL position．
Magnifler（X10）：expands all sweeps by a factor of 10 ，exiends fast－ Lst siveep $105 \mathrm{~ns} / \mathrm{div}$ ．

Callbrated sweep delay

Delay time range： 0.5 to $10 \times$ Main Time／Div seldings of 100 ns to 2 s （minimum dèlay 150 ns ）．
Differential lime measurement accuracy

Main Time Base Setting	Accuracy $\left(+15^{\circ} \mathrm{C} 10+35^{\circ} \mathrm{C}\right)$
$100 \mathrm{~ns} /$ div to $20 \mathrm{~ms} /$ div	$\pm(0.5 \%+0.1 \%$ of full scale $)$
$50 \mathrm{~ms} /$ div to $2 \mathrm{~s} /$ div	$\pm\left(1 \%+0.1 \mathrm{c}_{\mathrm{e}}\right.$ ol lull scale $)$

－Ad 15 解 lemperalizes from $0^{\circ} \mathrm{C}$ fo $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Delay jilter： 0.002%（ 1 part in 50000 ）of maximum delay in each sticp from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ ．

Triggering

Maln sweep

Normal：sweep is triggered by inlernal or external signal．
Automatic：bright bascline displayed in absence of input signal． Triggering is same as Normal sbove 40 Hz ．
Single：sweep oceurs once with same inggering as Normal，resci pushbution arms sweep and lights indicaior．

Delayod awoep（sweep after delay）

Aulo：delayed sweep automatically staris at end of delay．
Trig：delayed siveep is armed and triggerable at end of delay period．
Internal：de to 25 MHz on signals causing 0.3 divisions or more ver－ lical deflection increasing to I division of vertical deflection at 100 MHz in all display modes（tequired signal level is increased by 2 when in Chop mode and by 5 when $X S$ vertical magnifier is used）．Trigger－ ing on Line frequency is also selectable．
Exiernal：de to 50 MHz on signals of $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more increasing to 100 mV p－p at 100 MHz （required signal level is increased by 2 when in Chop mode）．
External input RC：approx． 1 m is shumied by approx． 20 pF ．
Maximum external inpuli $250 \vee$（ $\mathrm{dc} \pm$ peak ac $)$ or 500 V p－p al $)$ kHz or less．
Level and slope
Internal：at any point on the positive or negative slope of the dis－ played waveform．
External：continuausly variable from +1.5 V to -1.5 V on cither stope of the trigger signal．+15 V to -15 V in divide by 10 mode $(\div 10)$ ．
Coupling：AC，DC．Main LF REJ，or Main HF REJ．
AC：atecnuates signals below approx． 20 Hz ．
LF Reject（Main Sweep）：attenuates signals below approx． 4 xHz ． HF Reject（Mals Sweep）：attenuates signals above approx． 4 kHz ．
Trigger holdoff（maln sweep）：increases sweep holdoff time in all ranges．

Calibrated mixed time base

Dual time base in which the main time base drives ule first portion of swecp and the delayed tima base completes the sweep at the faster de－
layed swecp．Also operates in single sweep mode．Accuracy，add 2% to main lime base accuracy．

A ve．B operation
 \section*{Bandwidth}

Channel A（ Y －axis）：same as channel A．
Channel B（X－axis）：dc 105 MHz ．
Deflection factor： $5 \mathrm{mV} / \mathrm{div} 1020 \mathrm{~V} /$ div（ 12 calibraced positions）in I． 2.5 sequence．
Phase dilference between channels：＜3 ${ }^{\circ}$ ．de to 100 kHz ．
Cathode－ray fube and controls
Type：Hewleti－Packard， 12.7 cm （s in．）rectangular CRT，post accel－ erator，approx． 15 kV accelerating polential．aluminized P3I phos－ phor．
Graticule： 8×10 div（ $1 \mathrm{div}=1 \mathrm{~cm}$ ）internal non－parallax graticulc． 0.2 subdivision markings on major horizon（a）and verlical axes and morkings for rise time measurements．Internal Ioodgun graticule illu－ mination．
Beam finder：returns trace to CRT screen regardless of selting of horizontal，vertical，or intensity controls．
\mathbf{Z}－exls input（intenslity modulation）：$+4 \mathrm{~V}, \geq 50$ ns width pulse blanks trace of any intensity，usable to $\leq 10 \mathrm{MHz}$ for normal inten－ sity．Input $R, 1 \mathrm{k} \Omega \pm 10 \mathrm{~m}$ ．Maximum input $\pm 20 \mathrm{~V}$（dc + peak ac）．
Rear panel controls：atigmatism and trace align．

General

Pear panal outputs：main and delayed gates， $0 \vee 10>+2.5 \mathrm{~V}$ capable of supplying approx． 5 mA ．

Amplliude callbrator $\left(0^{\circ} \mathrm{C}\right.$ to $+55^{\circ} \mathrm{C}$ ）

Output vollage	IV p－pinto >1 MO $0.1 \mathrm{VP} \cdot \mathrm{p}$ into 50 s	$\pm 1 \%$
Rise lime	≤ 0.1 us	
Frequency	1.4 kHz approx．	

Power：100．120，220， 240 V ac $\pm 10 \% ; 48$ 10 $440 \mathrm{~Hz} ; 100 \mathrm{VA}$ max．
Welght net， $12.8 \mathrm{~kg}(28.2 \mathrm{ib})$ ．Shipping． $15.7 \mathrm{~kg}(35.6 \mathrm{lb}$.$) ．$
Operating environment：emperature $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ：humidity to 95% relative humidity at $+40^{\circ} \mathrm{C}$ ；altitude， $104600 \mathrm{~m}(15000 \mathrm{ft})$ ：vibra－ tion，vibrated in three planes for 15 min ．each with 0.254 mm （ 0.010 in．）excursion， 10 to 55 Hz ．
Dimenslons： 335 mm （ $131 / 16$ in．）wide． 197 mm （ $77 / \mathrm{in}$ ．）high． 597 mm （ $231 / 2 \mathrm{in}$ ．）long with handle， 492 mm （ $191 / 8 \mathrm{in}$ ．）long without handle．
Accessorles turnished：onc blue light filter HP P／N 01740－02701； one fromi panel cover，one $2.3 \mathrm{~m}(7.5 \mathrm{fi})$ power cord，one vinyl acoes－ sory slorage pouch，one Operalors Guide and one Service Menual， two Model 10006 D 10：1 divider probes approx． $1.8 \mathrm{~m}(6 \mathrm{ft}$ ）long．

Options

Price
001：lixed power cord in lieu of delachable power cord
add $\$ 15$
101：Logic State Display single pushbution（Gold But－ （on）imerface Option for operation with the HP Model 1607A Logic Scate Anolyzer．Permits single pushbution switching between functional 16 channel logic state analysis and electrical analysis of digital data．Option 101 removes the A vs．B mode ond replaces it with the State Display pushbutton and adds interface circuits for switching between front patel inputs and rear panel logic state inputs．
Logic state analysls equipment required for Option 101
Model 1607A：Model 1607A 16－Bit Logic State Ana－ lyzer includes three data probes and one clock probe．
Four Model 10502A： 23 cm （ 9 in．）cables，Three for X ． Y ．and Z interconnections and one for pattern trigger－ ing connection to the oscilloscope．
\＄15 ea．
1740S：Model 1740S includes 1740 A 100 MHz oscillo－ scope with Oplion 101．Model 1607A Logic State Ana－ lyzer，four 10502 A 23 cm （ 9 in ．）BNC interconnecting cables with a bracket and strap（HP P／N 5061 －1213）for combining into a single package．

1700B and 1707B Specifications

Moder of operation

Channcl $A_{\text {; }}$ channel B; channels A and B displayed alternatity on succossive sweeps (ALT): channels A and B displayed by switeling loiwecn channels al approx. 400 kHz rate with blanking during switching (CHOr^{\prime}); channel A plus channel B (algebraic addition).

Eacts channel (2)
Bandwldth: (direct or with Model 10006 D probe, 3 dB down from 50 kH2, 6 div reference signal from a terminated 50 ohm source.)

DC-coupled: de 1035 M Hz in 1700 B , de to 75 MHz in 17078.
AC-coupled: lower limit is approx. 10 Hz .
Rlse time: <10 ns in 1700B. <4.7 ns in 17078. Dircel or with Model 10006 D probe. $10^{6 \pi}$ to 90% points with 6 div input step from a (erni). nated 50 ohm source.

Deflection factor

Ranges: $10 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$ (9 ranges) in 1.2 .5 sequence. $\pm 1 \%$ atenuator accuracy with vernier in cal pusition.
Vernier: continuously variable between all raluges, extends max de-
Ilection factor to at leasi $12.5 \mathrm{~V} /$ div. Vernier untul light indicates when vernier is not in cal position.
Polarlty: NORM or INV. selectable on channel B.
Signal delay: input signals are delened sufficiennly 10 view leading cdge of input signaks without adyanced exlernal tregetr.

Inpul RC: I megohm ± 1 \%: shunted by approx. 27 pF in 1700 B , арprox. 24 pF in 1707 B .
inpul coupling: $A C$. $D C$. or Ground. Ground position disconnects sienal input and grounds amplifier input.

Maximum input

AC-coupled: $\pm 600 \mathrm{~V}$ (dc + peak alcis rms ac $<350 \mathrm{~V} .5 \mathrm{~V} /$ div to $20 \mathrm{mV} / \mathrm{div}$, <150 V at $10 \mathrm{mV} / \mathrm{div}$ ($10 \mathrm{kH} /$ or lcss).
DC-coupled: $<350 \mathrm{~V}(\mathrm{mms})$ S $\mathrm{V} / \mathrm{div}$ to $20 \mathrm{mV} / \mathrm{div},<150 \mathrm{~V}$ al 10 $m \mathrm{~V} / \operatorname{div}(10 \mathrm{kHz}$ or less).

A + B operatlon

Amplifler: bandwidah and deflection faclors are unchanged: channel B may be invered for A - B operation.
Common mode ($\mathrm{A}-\mathrm{B}$): irequency. de 10 I MHz ; rejection ratio, al kuss 40 dB on $10 \mathrm{mV} / \mathrm{div}$, al leas 20 dB on all other sanges with verniers set for oplimum rejeclion. Common mode signal amplirude cyurvalent to 30 div .

Trigger source

Applies for :all five modes of operation,
Norm: uli displayed signal.
A only: on signal from channel A.

Maln time base

Sweep

Ranges: $\operatorname{from} 0.1 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mathrm{~s} / \mathrm{div}$ (23 ranges) in 1.2 .5 sequence. $\pm 3{ }^{6}$ aceuracy wílh vernice in cal pasitum.

Vernter：continuously variable between all ranges，extends slowest sweep to at least S s／div．Vermier uncal light indicates when vernier is nol in cal position．
Magnifier expands all sweeps by a factor of 10 and extends fastest sweep $1010 \mathrm{~ns} /$ div．Accurney $\pm 5 \%$（including 3% accuracy of time base）．

Sweep mode

Normal；sweep iriggered by an int or ext signal．
Automalie：bright baseline displayed in absence of input signal． Triggering is same as normal above 40 Hz ．
Slngles in Normal mode，sweep occurs once with same triggering as normal；reset petbhuton arms sweep and lights indicator；in Auto mode，sweep aceurs once each lime resel pushbuton is pressed．
Triggering
Internal：de to 35 MHz on signals causing 0.5 div or mure verical deflection increasing 40.1 div al 75 MHz for 1707 B in all display modes except chop；de to 400 kHz in chop mode．Triggering on line irequency is also selectable．
External：de to 35 MHz on signals $50 \mathrm{mV} / \mathrm{p}-\mathrm{p}$ or more，inereasing $10100 \mathrm{mV} / \mathrm{p}-\mathrm{p}$ at 75 MHz in the 1707 B ．
External input RG：approx．I megohm shunied by approx． 27 pF．
Level and slope：intermal，at any point on the vertical waveform displaycd；external，continuously variable from +1.2 V to -1.2 V on eilher siope of the trigeer signai．Max input，$\pm 100 \mathrm{~V}$ ．In Model $1700 \mathrm{~B}, \div 10$ extends external arigger inpul range to +12 V to -12 V ， Coupling：AC，DC，LF REJ，or HF REJ；AC，attenuates signals below approx． 20 Hz ；LF REJ，attenuates signals below approx． 15
$\mathrm{kHz}, \mathrm{HF}$ REI，atrenuates signals above approx． 30 kHz ．
Trigger holdoff：time between sweeps continuously variable．

Dolayed time base（1707E）

Trace Intenglfication：intensifues that part of main time bunc 10 be expinded 10 Jull screen in delayed lime base mode．Rotaling lime base swith from OFF position activates intensified mode．

Swoep

Ranges： $0.1 \mu \mathrm{~s} /$ div to $0.2 \mathrm{~s} / \mathrm{div}$（20 ranges）in 1.2 .5 scqutnce．$\pm 3 \%$ with vermier in calibrated poxition．
Vernler：continuously variable between all ranges．extendi slowest sweep $100.5 \mathrm{~s} / \mathrm{div}$ ．
Magnifler：expands all sweeps by a factor of 10 and exiends fastest sweep to $10 \mathrm{~ns} / \mathrm{div}$ ．Aceuracy is ± 5 管（including 35 accuracy of $1 . \mathrm{m}$ ： base）．
Sweep mode
Trigger：delayed sweep is ummed at end or delay period．
Auto：delayed sweep is automalically triggered al end of delay pe－ riod．
Triggering
Internal：same as main time base．
External：same as main time base．Input RC is upprox．I megohm shumled by approx． 27 pF ．
Level and slope：same as main sime base．
Coupling：selectable，$A C$ or $D C$ ．$A C$ atucnuates signals below ap－ prox． 20 Hz ．
Delay（before start ol delayed sweep．）
Time：continuously variable from $0.4 \mu \mathrm{~s} 102 \mathrm{~s}$ ．
Time jitter：$<0.005 \%$（ 1 part in 20000 ）of max delay in cuch sweep speed．
Callbrated delay accuracy；\pm 人；linearity，$\pm 0.2 \%$ ．

Mlyed sweop（1707日）

Combines main and delayod sweeps imto one display．Siverp in suaried by the main lime base and is completed by the fister delayed tine base．Also operates in single sweeps mode．

External horlzontal input

Bandwldih：de to I MHz when driven directly from a terminaled 50 ohm source．DC coupled．

Datlection factor（with beam positioned al left edge of CRT）：XI． $1 \mathrm{~V} / \mathrm{div} \mathrm{X} 10,0.1 \mathrm{~V} / \mathrm{div}$ ．
Vernier： $10: 1$ vermier extends deflection factor 10 at leasi $10 \mathrm{~V} / \mathrm{div}$ （XI）or ）V／div（K10）．
Dynamic range：beam may be positioned al left edge of CRT with 0 V $10-5 \mathrm{~V}$ inpul．
Maximum inpuli $\pm 100 \mathrm{~V}$ ．
Input RC：approx． 1 megrohtn shunted by approx． 10 pF ．

Cathode－ray tube and controls

Type：post－accelerator，apprax． 22 kV accelerating polential，alumi－ nized P3I phosphor．
Gralleule； 6×10 div internal graticule； 0.2 subdivisions on major horizontal and vertical axes，i div $=1 \mathrm{~cm}$ ．Front panel adjustments for trace alignment and astigmatism．
Beam finder：retums trace to CRT screen regardless of setting of horizontul，vertical，or intensity controls．
Imlenslty modulation：$>+4 \mathrm{~V}$ ，dc to 1 MHz blanks trace of any in－ lensity．Inpur R， 1000 ohms $\pm 10 \%$ ．Max input，$\pm 10 \mathrm{~V}$（de＋peak ac）．

General

Gallbrator： $1 \mathrm{kHz} . \pm 10 \%$ square wave：I Vp－p．$\pm 1 \mathrm{~m}^{2}$ ．
Operating environment：temperature， 0 to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{C} 10130^{\circ} \mathrm{F}\right)$ ： humidity，in 95% relative humidity at $40^{\circ} \mathrm{C}\left(104^{2} \mathrm{~F}\right.$ ：alliude，to 4.6 km （ 15000 f ）：vibeation，vibrated in three planes for 15 min ．each with 0.254 mm （ 0.010 mm ）excursion， 10 to 55 Hz ．
Dimensions： 325 mm wide（ $12^{23 / 18} \mathrm{in}$ ．）， 198 mim high（ $71 / 4 \mathrm{in}$ ．）， 530 mm long with hundle（ 20 ）$/ 2$ in．）， 400 mm long withoue handle（ $15 / 3 / \mathrm{in}$ ．）． Weight

Whout panel cover：nct， $11 \mathrm{~kg}(24 \mathrm{tb})$ ．
Whit panel cover and aeceseries：nct， 12.3 kg （ 27 lb ）．Ship－ ping． 17.2 kg （ 38 lb ）．
With panel cover，accassorles，and battery pack：nel， 16 kg（35
lb）．Shipping． 20.9 kg （ 46 lb ）．

Pawer

AC Ilne： 115 or $230 \mathrm{~V} \pm 20 \%, 48$ to 440 H Li 40 VA max．
DC line：II． 5 to 36 V ； 40 VA max．
Battery（optonal）：operating time．up to 6 hours in 1700B，up to 4.5 hours in 1707 B ；recharge time． 14 hour maximom，with pesver switch off．if not operated after power indicator tlashes：low battery indicator，power light mashes to indicate that hatteries are dis－ charged and further operation may dantage buttery：recharging． batteries are recharging whencver power mode switch is set to AC with power applied．With power switch off，fall charge is applied． With power swith on，trickle charge is applied．
Accessorles supplied：one Model 1011SA blue light filker；onc panel cover：two Model 10006D，10：1 divider probes， 1.8 m （6 ft） long；one $2.3 \mathrm{~m}(7.5 \mathrm{f})$ power cord with right angle plug（HP P／N 8120－1521）：three ruses，one 2 A（HP P／N 2100－0002），one 0.5 A slow blow（HP P／N 2110－0008），one 0.25 A slow blow（HP P／N 2110－0018）；and one Operaling and Service Manual．

1707 opllon 015 specificatlons

Channel A output

Amplitude：open eircuit autpul voltage approx． 100 mV per div of display．
Cascaded deflection factor： $1 \mathrm{mv} / \mathrm{div}$ with bolh vertical than－ nels sel to $10 \mathrm{mV} / \mathrm{div}$ ．
Cascaded bandwidits：dc 103 MHz （use HP Model 10121 A 20 cm．8－inch，BNC eable to conneet channel A output to channel B）． Coupling：dc．
DC level：approx．OV．
Source reslstance：upprox． 200 ohms

Options	Price
Oplion 012：Model 10103B Hatuery Pack installed	add $\$ 300$
Optlon 015（1707B）：adds channel A output	add $\$ 50$
Model number and name	
Model 17008 35 MHz Oscillascope	$\$ 1920$
Option 012．Model 10101B Battery Pack installed	add $\$ 300$
Model 1707B 75 MH2 Delaycd Sweep Oscilloscope	$\$ 1995$

1702A and 1703A Specifications

Modes of operation
Channel A: channel B: channels A and B displayed aliernately on successive sweeps (ALT): channels A and B displayed by switching between channels at approx. 400 kHz , rate with blanking duriog switching (CHOP); chsnnel A plus channel 8 (algebraic addition).

Each channel (2)

Bandwidth: (direct or wish Model 10006B probe. 3 dB down from 50 $\mathrm{kHz}, 6$ div referenoc signal from a lerminated 50 ohm source.)
DC-coupled: de to 35 MHz .
AC-coupled: lower limit is approx. 10 Hz .
Rlse itme: < 10 ns . Dircet or with Model 10006D probe. 10% to 90% points with 6 div input step from a terminated 50 ohm source.

Deflection factor

Ranges: $10 \mathrm{mV} /$ div $105 \mathrm{~V} / \mathrm{div}$ (9 ranges) in $1,2.5$ sequence. $\pm 3 \%$ ateenuator aceuracy with vernier in calibrated position.
Vernler: conlinuously variable belween all ranges. extends max de-
fection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$. Vernier uncal light indicales when vernier is not in cal posituon.
Polarlty: NORM or INV. selectable on channel B.
Slgnal delay: inpul signals are delayed sufficiently to view leading edge of input signals wilhout advanced external trigger.
Inpur RC: I megohm $\pm 1 \%$, shunted by approx. 27 pF.
Input coupling: AC, DC. or Ground. Ground position disconnects signal input and grounds amplifier input.

Maximum input

AC-coupled: $\pm 600 \mathrm{~V}$ (de + pcak ac); (ms ac <350 V. $5 \mathrm{~V} / \mathrm{div} 10$ $20 \mathrm{mV} / \mathrm{div}$. < 150 V at $10 \mathrm{mV} / \mathrm{div}$ (10 kHz or less).
DC-coupled: <350 V (rms) $5 \mathrm{~V} /$ div $1020 \mathrm{mV} / \mathrm{div}$, < 150 V at 10 $\mathrm{mV} / \mathrm{div}$ (10 kHz or less)

A + B operation

Amplifier: bandwidit and deflection factors are unchanged; channel B may be inverted for $\mathrm{A}-\mathrm{B}$ operation.
Common mode (A - B): frequency, dc io 1 MHz ; rejection ratio.
al icast 40 dB on $10 \mathrm{mV} / \mathrm{div}$, al least 20 dB on all orher ranges with vernicrs scl for oplimum rejection. Common mode signal amplilude equivalent to 30 div.

Trigger source

Applies for all five modes of operation.
Norm: on displayed sigral
A only: on signal from channel A.

Channel A outpul

Amplitude: open circuit oulput voltage approx. 100 mV per div of display.
Cascaded deflecflon factor; $1 \mathrm{mV} / \mathrm{div}$ with both vertical channels sel $1010 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwldth; de 103 MHz (using HP Model 10121A 20
cm. 8 -inch. BNC cable to connect channel A output to channel B).

Coupling: dc.
DC level: approx. 0 V .
Source resislance: approx. 200 ohms.

Main time base

Swerp

Ranges: from $0.1 \mu \mathrm{~s} /$ div $102 \mathrm{~s} / \mathrm{div}$ (23 ranges) in $1.2,5$ sequence. $\pm 3 \%$ accuracy with vernier in cal position.
Vernier: continuously variable belwcen all ranges, extends slowest sweep to at least 5 s/div. Vernicr uncal light indicates when vernier is not in cal position.
Megniffer: expands all swceps by a fuctor of 10 and extends fastest swerp to $10 \mathrm{~ns} /$ div. Accuracy $\pm 5 \%$ (including 3% accuracy of time base).

Sweep mode

Normal: sweep triggered by an int or exi signal.
Automatle: bright baseline displayed in absence of inpul signal.
Triggering is same as normal above 40 Hz .
Slngle: in Normal mode sweep occurs once with same miggering as normal: resel pushbulton ams swocp and lights indicator: in Auto mode, sweep occurs once each tume reser pushbution is pressed.

Triggering
Internal: dc to 35 MHz on signals causing 0.5 div or mare vertical deflection in all display modes except chop; de 10400 kHz in chop mode. Triggering on line frequency is also selectable.
Exiernal: de to 35 MHz on signals $50 \mathrm{mV} / \mathrm{p}-\mathrm{p}$. or more.
External Input RC: approx. I megohm shunted by approx. 27 pF ,
Level and alope: internal, at any point on the vertical waveform displayed: external, continuously variable from +1.2 V to -1.2 V on either slope of the rrigger signal. Max inpul, $\pm 100 \mathrm{~V}$. In Model 1702A. $\div 10$ extends external trigger input range to +12 V to -12 V .
Coupling: AC, DC, LF RE, or HF REJ; AC, allenuates signals below approx. 20 Hz ; LF REJ, attenustes signals below approx 15 kHz : HFREJ, attenuates signals above approx. 30 kHz .
Trigger holdott: time belween swceps continuously variable.
Delayed time base (1703A)
Trace intenstication: iniensifies that part of main time base to be expanded to full sereen in delayed time base mode. Rolating time base switch from OFF position activates intensified mode.

Sweep

Ranges: $0.1 \mu \mathrm{~s} /$ div to $0.2 \mathrm{~s} / \mathrm{div}$ (20 ranges) in 1, 2.5 sequence. $\pm 3 \%$
accuracy with vernier in calibrased position.
Vernier: continuously variable between all ranges, extends slowest sweep $100.5 \mathrm{~s} / \mathrm{div}$.
Magniffer: expands all sweeps by a factor of 10 and extends fastest swecp to $10 \mathrm{~ns} /$ div. Accuracy is $\pm 5 \%$ (including 3% accuracy of lime base).

Sweep mode

Trigger: delayed sweep is armed at end or delay period.
Auto: delayed sweep is automatically triggered at end or delay period,
Triggering
Internal: same as main time base.
External: same as misin time base. Input RC is approx. I megohm shunled by approx. 27 pF .
Level and elope: same as main time base.
Coupilng: selectable, AC or DC. AC stenuates signals below approx. 20 Hz .
Delay (Betore btart of delayed sweep.)
Time: continuously variable from $0.1 \mu \mathrm{~s} 102 \mathrm{~s}$.
Time fitter: < 0.005 多 (I part in 20000) of max delay in cach sweed speed.
Calibrated delay accuracy: $\pm 1 \%$: linearity, $\pm 0.2 \%$.
Mixed sweep (1703A)
Combines main and delayed sweeps into one display. Sweep is started by the main time base and is completed by the faster dclayed time base. Also operates in single sweep mode.

External horlzontal inpup

Bandwidth: dc to 1 MHz when driven directly from a terminaled 50 ohm source. DC coupled.
Dellection factor (whh bearn poaltioned at left edge of CRT): XI, $1 \mathrm{~V} / \mathrm{div}: \times 10,0.1 \mathrm{~V} / \mathrm{div}$.
Vermier $10: 1$ vernjer extends deflection factor to at least 10 V /div (XI) or $1 \mathrm{~V} / \mathrm{div}$ (X 10).

Dymamic fange: beam may be positioned al left edge of CRT with 0 $\checkmark 10-5 V$ input.
Meximum Inpul: $\pm 100 \mathrm{~V}$.
Input RC: approx. I megotm shunted by approx. 10 pF .

Cathode-ray tube and controls
Type: post-accelerator, approx. 8.3 kV accelerating potential: alunninized P31 phosphor.
Graticule: 6×10 div internal graticute: 0.2 subdivisions on major horizontal and vertical axes. 1 div $=0.85 \mathrm{~cm}$. Rear pancl adjustmenrs for trace alignment and astignatism.
Beam finder returns trate to CRT screen regardless of setting of horizontal or vertical controls.
Intensity modulation: $>+4 \mathrm{~V}$, de to 1 MHz blanks irace of any insensity. lapul $\mathrm{R}, 1000$ ohms $\pm 10 \%$ Max input, $\pm 10 \mathrm{~V}$ (dc + peak ac).

Perslatence

Normal: natoral persistonce of P31 phosphor (approx. $40 \mu \mathrm{~s}$).
Variable: from $<0.2 \mathrm{~s}$ to $>1 \mathrm{~min}$ (standard mode).

storage writing epeed

Standard mode: >20 div/mis over central 5×9 divisions.
Feat write mode: >1000 div/ms over central 5×9 divisions.
Brightnees: approx. $340 \mathrm{~cd} / \mathrm{m}^{\prime}$ (100 fl).
Storege lime: from standard to Store, lraces gay be slored with STORE TIME fall ew for $>1 \mathrm{hr}$. With STORE TIME full cow, Iraces may be viewed at normal intensity for >1 min. From Fast mode to Slore, iraces may be slored with STORE TIME full aw for >5 min. With STORE TIME full cow, traces may be victved ut normal intensity for $>15 \mathrm{~s}$.
Erase: manual, pusbbution erasure takes approx. 500 ms .

General

Cailbrator: $1 \mathrm{kHz} \pm 10 \%$ square wave: $1 \mathrm{Vp}-\mathrm{p}, \pm 1 \%$.
Operating environment: Iemperalure, $01055^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{C}\right.$ to $\left.130^{\circ} \mathrm{F}\right)$: humidity. 1095% relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$: aluirude. 104.6 km (15000 n): vibration, vibrated in three planes for 15 min . each with 0.254 mm (0.010 in .) excursion, 10 to 55 Hz .
Dimensions: 325 mm wide ($121 / 1 / 1 \mathrm{in}$), 195 mm high ($71 / \mathrm{in}$.), 578 mm length with handle ($221 / 4 \mathrm{in}$.), 448 mm length without handle ($171 / \mathrm{in}$.).

Woight

Without panel cover: nel, 11 kg (34 lb).
Wh panel cover and accassories: nel, 12.3 kg ($27 \mathrm{3b}$). Shipping. $17.2 \mathrm{~kg}(38 \mathrm{lb})$.
With panel cover, accessorles, and battery pack: net, 16 kg (35
lb). Shipping. 20.9 kg ($\$ 6 \mathrm{lb}$).

Power

AC Inne: 115 or $230 \mathrm{~V} \pm 20 \%$, 48 to $440 \mathrm{~Hz}, 40 \mathrm{VA}$ max.
DC line: 11.5 to $36 \mathrm{~V}, 40 \mathrm{VA}$ max.
Battery (optional): opcrating time, up to 4 hours: recbafge time, 14 houss max, with power switch off, if not operated after power indicator flashes: Iow battery indicator, power light flashes to indicate that balteries are discharged and further operation may damage battery: recharging, batteries are recharging whenever power mode switch is set 10 AC with power applied. With power switch off, full charge is applied. With power switch on. trickie charge is applied.
Accessorlas aupplled: one Model 10115 A blue light filter: one panel cover: two Model 10006 D . 10.1 divider probes, $1.8 \mathrm{~m}(6 \mathrm{ft})$ long; one $2.3 \mathrm{~m}(7.5 \mathrm{f})$ power cord with right angle plug (HP P/N 8120-1521); thres fuses, one 2 A (HP P/N 2110-0002). one 0.5 A slow blow (HP P/N $2110-0008$), one 0.25 A slow blow (HP P/N 2110-0018): and one Operating and Service manual.
Oplion 012: Model 10103B Battery Pack installed add $\$ 300$

Model number and name

Price
1702 A 35 MHz Storage Oscilloscope
$\$ 3000$
1703A 35 MHz Delayed Sweep Siorage Oscilloscope $\quad \$ 3150$

Ruggedized portabie, 35 MHz and 50 MHz dual channel Models 17008 Opt $300 \& 1707 \mathrm{BOpt} 300$

1700B/1707B Opt 300 specifications

Modes of operaflon

Channel A; channel B; channels A and B displayed alletnately on succossive sweeps (ALT): channels A and B displayed by switehing beween channels at approx. 100 kHz rale with blanking during switching (CHOP): channel $\wedge+$ channel B (algebraic addition).

Vertical ampliflers (2)

Bandwldit: (massured with or withaul a Model 10006D probe, 3 dB down from a 50 kHz 6 div reference signal from a terminated 50 ohm source.)

DC-coupled: 1700 B , de to 35 MHz : 1707B, dc to 50 MHz
AC-coupled: lower limil 17008 approx. $10 \mathrm{~Hz}, 1707 \mathrm{~B}$ approx. 2 $\mathrm{H} x$.
Rise time: $1700 \mathrm{~B}<10 \mathrm{~ns}, 1707 \mathrm{~B}<7 \mathrm{~ns}$. Direct or with 10006 D probe. 10\% to 90% of 6 div input sicp from a iermidated 50 ohm source.

Deflection factor

Ranges; $1700 \mathrm{~B} .10 \mathrm{mV} /$ div $1020 \mathrm{~V} / \mathrm{div}$ (1) ranges): 1707 B .5 $\mathrm{mV} /$ div to $20 \mathrm{~V} /$ div (12 ranges); in $1,2,5$ sequence.
Atenualor accuracy: $\pm 3 \%$ with vernier in CAL posilion.
Vernier: contiruously variable between all ranges, extends maximum deflection factor to at least $50 \mathrm{~V} / \mathrm{dix}$. Front pancl light indj-
cates when vernier is oul of VERN CAL position.
Polarity: NORM or [NVT, selectable on channel B.
Signal delay: input signals are delayed sufficiently to view leading odge of input signals without advanced excernal urigeser.
Input RC: 1 megohm $\pm 2 \%$ shunted by approx. 30 pF .

Input coupling: AC, DC. or GND selectable Ground position disconnects signal inpul and grounds amplifier input.
Maxlmum Inpul
AC-couplad: $\pm 600 \mathrm{~V}(\mathrm{dc}+$ paik ac); rms ac $<350 \mathrm{~V} .20 \mathrm{~V} / \mathrm{div} t 0$ $20 \mathrm{mV} / \mathrm{div}$: $<150 \mathrm{~V}$ al $10 \mathrm{mV} /$ div and $5 \mathrm{mV} / \mathrm{div}$ in 1707 B (10 kHz or less).
DC-coupled: rms ac < $350 \mathrm{~V}, 20 \mathrm{~V} / \mathrm{div} 1020 \mathrm{mV} / \mathrm{div} ;<150 \mathrm{~V}$ al 10 $\mathrm{m} \mathrm{V} / \mathrm{div}$ and $5 \mathrm{mV} /$ div in $1707 \mathrm{~B}(10 \mathrm{kHz}$ or less).
$A+B$ operation
Ampllfier: bandwidth and deflection faciors are unchanged. channel B may be inverled for $A-B$ operation.
Common mode (A - B); 「requency,) 700 B de 10 I MHz ; 1707 B de 103 MHz . Rejection ratio, 1700 B al least 40 dB on $10 \mathrm{mV} / \mathrm{div}$ and at leasi 20 dB on all other janges, 1707 B at least 26 dB on all ranges with verniers set for oplimun rejection.
Trigger source (applles for all five modes of operalion)
Composite trigger: on displayed signal.
A frigger: on signal from channel Λ.
Channel A oulput (1707B)
Amplltude: one division of displayed signal in channel A provides approx. 50 mV output.
Cascaded dellection factor: $0.5 \mathrm{mV} /$ div with both verlical channels sel $105 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwidth: de 105 MHz (use $20 \mathrm{~cm}, 8$ inch. BNC cablc). DC coupled.
Outpur DC level: approx. 0 V
Outpul resirtance: approx. I megohm.

Time base
 Sweep

Ranges: $0.1 \mu s /$ div 1023 div (23 ranges) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with verner in CAL position.
Vernier: continuously variable between all ranges, extends slowest sweep to at least $5 \mathrm{~s} / \mathrm{div}$. Vernier uncalibrated light indicstes when verrier is not in CAL position.
Magnlfier: expands all sweeps by a factor of 10 and extends fastest sweep speed to $10 \mathrm{~ns} /$ div. Accuracy $\pm 5 \%$ (ineluding 3% accuracy of lime base). Magnifiur light indieates the X 10 mode.
8woep mode
Normal: sweep is triggered by an internal, external, or power line signal.
Aulomatle: bright baseline displayed in absence of input signal. Triggering is same as normal above 25 Hz .
Single: in NORM mode, sweep occurs once with same triggering as normat; reset pushbutton arms sweep and lights indicator; in AUTO made. sweep occurs once each time reset pushbuton is pressed.
Triggerlng
Internal: de to 35 MHz (1700B) 50 MHz (17078) on signals causing 0.5 div or more vertical deflection in all display modes except Chop; de to 100 klz in Chop node. Triggering on line frequency is also selectable.
Exiernal: 1700 B , de to 35 MH on signals of 50 mV p-p or more. 1707B. de to 35 MHz on signats of 100 mV p-p or more increasing to 200 mV p-p al 50 MHz .
Line: power line freqpuency signal (Main only).
External trigger input RC: approx. I megohm shunted by ap prox. 27 pF .
Level and slope: internat, at any point on the vertical waveform displayed; external, conlinuously variable from +3 V to $-3 \mathrm{~V}(+30$ $\mathrm{V}_{\text {in }}-30 \mathrm{~V}$ in $\div 10$) on either slope of the trigger signal. Maximum inpul $\pm 100 V$.
Coupling: AC, DC. LFAC, or HFAC: AC, uttenustes signals below approx. 50 Hz : LFAC, uttenuates signals above approx. 30 kHz , HFAC. attenuates signals below approx. 5 kHz .
Trigger holdoff: lime belween sweeps continuously viriable.
Delayed time base (1707B)
Trace intensifleation: intensifies that part of main lime base to be expanded to full sireen in delayed time base mode. Rotating time base switch from OFF position activules intensified mode.
Swoep
Fanges: $0.1 \mu \mathrm{~s} /$ div $100.2 \mathrm{~s} / \mathrm{div}$ (20 ranges) in $1,2.5$ sequence. $\pm 3 \%$ wílh vernier in calibrated position.
Vernler: continuously variable between all ranges, cxtends slowest sweep to $0.5 \mathrm{~s} / \mathrm{div}$.
Magnillier: expands all swecps by a factor of 10 and extends fastisi sweep $1010 \mathrm{~ns} / \mathrm{div}$. Acuoracy, $\pm 5 \%$ (including 3% accuracy of 1 mme base).

Swoep mode

Trigger: delayed sweop is armed at end of delay period.
Auto: delayed sweep is automatically triggered at the end of delay period.
Triggering: same as internal main time base.
Delay (before start of delayed sweep)
Tlme: continuously vatiable from 0.$\}$ ps 1020 s .
Time jitter: 0.005% (1 part in 20000) of max delay in each swoep.
Calibraled delay eccuracy: ± 18; linearity, $\pm 0.2 \%$.
External horizontal Inpul
Bandwidth: 1700 B de $101 \mathrm{MHz}, 1707 \mathrm{~B}$ de to 2 MHz .
Coupling: de.
Deflectlon tactor (with beam posiltioned at lelt edge of CRT): XI, $1 \mathrm{~V} /$ div: X10, $0.1 \mathrm{~V} / \mathrm{div}$.
Vernier: $10: 1$ vernier extends deflection factor to al leas1 $10 \mathrm{~V} / \mathrm{div}$ (XI) or IV/div (X10).

Maximum input $\pm 100 \mathrm{~V}$.
Input RC: I megohm ± 25 shunled by spprox, 30 pF in $1700 \mathrm{~B}, 10 \mathrm{pF}$ in l707B.

Cathode-ray tube and controls
Type: posi-accelerator, approx. 15 kV accelerating potential; aluminized P3I phosphor.
Gratlcule: 6×10 div ($1 \mathrm{div}=1 \mathrm{~cm}$) internal graticale. 0.2 subdivision markings on major horizontal and vertical axes,
Trace align: front panel adjustment aligns trace with graticule.
Focie: front panel adjusimént of spot for minimum size.
Astigmatiam: front pancl control allows circolar adjustment of spot.
Beam Inder: relurns trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Z-sxis input (1707B): allows intensity modulation $>+5 \mathrm{~V}$, dc to 15 $\mathrm{MH} z$ blanks trace of any intensity. Input $\mathrm{R},>5000$ ohms. Maximum inpul, $\pm 200 \mathrm{Vdc}$ (de + peak ac).

General

Outpuls (1707B): two front panel outpuls for MAIN and DF. LAYED GATES. Each outpul provides a pulse of al leasi \bar{S} volus with a duration equal to or ereater than the sweep length.
Callbralor: type. $1 \mathrm{kHz}, \pm 10^{\circ} \mathrm{F}$ square wave; volrage, $1 \mathrm{~V} \mathrm{p}-\mathrm{p}, \pm 1$ 究.
Power requirements: ac line, 115 or $230 \mathrm{~V} \pm 205_{5}^{\circ}, 48$ to $440 \mathrm{~Hz}, 30$
VA max (1700B), 50 VA max (1707 B); de line. 11.5 to $36 \mathrm{~V}, 30 \mathrm{VA}$ max
(1700B) 50 VA max (17078).
Welght
Whout panel cover: net, $12.3 \mathrm{~kg}(27 \mathrm{lb})$.
Whit panel cover and accessories: nct, 16 kg (35 tb). Shipping. 20 kg (44 Ib).
Dimencions: 330.2 mm wide (13 in). 260.4 nm high ($101 / \mathrm{in}$). 501.7 mm lenget ($193 / 4 \mathrm{in}$)
Accessorles furnishad: Model 10163A Opt 030 Panel Caver with scecssories (probes, connectars, adapters, fuses).

Environmental specifications

Model 1700B Opl 300 meets all environmental requirements isf AN/USM-339 described in MIL-0-83226 (USAF). Model 1707B Opt 300 meets all environmental requirements of the AN/USM-338 described in MIL-O-83225 (USAF).
Temperature end alfliude: non-operating. $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ to $15.24 \mathrm{~km}\left(50000 \mathrm{ft}\right.$): operating, $-40^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}, 20 \mathrm{~min}$ al $71^{\circ} \mathrm{C}, 10$ $3.1 \mathrm{~km}(10000 \mathrm{f})$.
Humidity: non-operating, $+28^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ at 95% relative humidity, rem 24 hour cycles for total of 240 hours.
Vibration: non-operating, 5 to $15 \mathrm{~Hz}, 1,5 \mathrm{~mm}(0.06 \mathrm{in}$) ; 15 to 25 Hz . 1.0 mm (0.04 in .): 25 to $55 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ (0.02 in .).

Shock: total of 18 shocks, in 3 planes, of $15 \mathrm{~g}^{\prime}$ s from an $11 \pm 1 \mathrm{~ms}$ sawiooth.
Salt Iog: not-operating, per method 509 , procedure 1 of MILSTD810.

Exploelve aimosphere: per method 511, procedure 1 of MIL-STD810.

Dust: non-operating. per method 510. procedure I of MIL-STD-810.
Drtpproot: per MIL-STD-108, exoept the front panel cover shall the removed.
Drop test and water tightnese: per M1L-T-21200.
Electromagnetle interference: per MIL-STD-462 performed by MIL-STD-461 as follows:

Requiremed	Limit Modificalion
CE03	relax 10 dB
CSOL, CSO2	none
CS05	none
RE02	relax 10 dB. upper frequency 1 GHz
RS02. RS04	none

Reliablity: $1700 \mathrm{~B}, 4550$ hour MTBF: 1707B, 2850 hour MTBF. As verified by MIL-STD-78/B. Test Plan II. Test Level B.

[^4]

Introduction

The 180 plug-in oseilloscope combines high performance, plug-in versatility, and operating ease to give you a nexible operating system with taboratory quality throughoul. Wheiher you require four chamnel real time measurements to 100 MHz , sampling to $18 \mathrm{GHz}, 170$ ps rise time Time Domain Reflectometry, Logic State Analysis, High Resolution Spectrum Analysis, or precision Swept Frequency testing. each of these and more are available in a compact pack age with a large CRT display.
The focal point for periormance is the mainframe with a high quality CRT for accurate measurements. Four mainframes are avaibisle, three in cabinet or rack conliguration and a large screen mainframe in a cabinet configuration. A selection of plug-ins for these mainframes allows you to conigure an oscilloscope for general purpase usc through $100 \mathrm{MHz}, 18 \mathrm{GHz}$ sampling. Time Domain Reflectumetry. Spectrum Analysis, Network Analysis, and Logic State Analysis. You can meel your present measurement needs, selecting only those plug. ins to meet present requicments al minimum cost. yel keep the full capability of the mainframe for future requirements.

Models 180C. 1800 and 182 C mainframes have bright, casy to see displays for maximum resolution and measurement accuracy. Models 180 C and 180 D eacly have a CRT display with a full $8 \times 10 \mathrm{~cm}$ inter. nal graticule and a writing speed of $1500 \mathrm{~cm} / \mu \mathrm{s}$. For mulli-trace viciw-
ing and casy-to-see displays, the 182 C CRT display has a large 8×10 division (one division equals 1.29 cm) internal graticule.
Storage/variable persistence mainframes give you the widest selection of gencral puppose and high speed storage applications. Advances in processing and target material have resulted in a very rug. ged storage surface as well as exiremely high writing speeds. This storage surfuce is so burn resistant that special operating procedures are nol required, extending the versatility of storage measurements to general purpowe applications.
Storige writing speeds of $100 \mathrm{~cm} / \mu \mathrm{s}$ or $400 \mathrm{~cm} / \mu \mathrm{s}$ are available in the 184 and 184 Option 005 , which allows yout to capture those elusive transients that were too fast for other storage scopes to record. With these fast writing specds you can easily make pulse fiming adjustments, locate noise pulses and missines bits from low duy-cycle digital signals. Low dury-cycle pulse trains from disc. lape. or drum periphcral unils call also be vicwed through repetitive sweeps by using variable persistence to build up the intensity of dime (races.

For medium speob storite and variable persistenee applications. Models I81A/AR mainfrimes are available, Vansible persistence mode, in both models, allows you to adjust display relention time to match ilie speed of slowly changing signals for maximum viewing cuse. This allows dirett viewing of comptete waveforms without cluter in electromechanical. biomedical. chemical. geological. oceanographical, and many other arcas with slowly changing xignals.

Real time measurements

A selection of eight, high performance, vertical real cime plug-ins assures the right plug-in for almost eny measurement application. Real time, dual channel plug-ins are available in 500 kHz .35 MHz 50 MHz 75 MHz and 100 MHz bandwidths with deflection factors of $100 \mu \mathrm{~V}, 10 \mathrm{mV}$, and 5 mV . Additional measurement capability is pro-
vided by four channel 100 MHz and 50 MHz plug-sns and a differensial/de offsel plug-in with 40 Mliz bandwidh. For measurement requirements above 100 MHz , refer to the 183 serics data sheets.

A selection of time hase plag-ins gives you a choice of single, expanded, and delayed sweeps with magnificed sweep speeds to 5 us/div in 180 mainframes. Models 1820C, 1824A, and 1825 A have triggerity capabilities 10150 MHz and the 1821A triggers in excess of 50 MHz . Models 1821A and 1825A have calibrated delayed and mixed sweeps for accurate timing measurements and delailed examination of selected portions of waveforms. For applicutions that only require sweep expansion, the 1824A provides expansions to loo limes with ± 3 解 2 C curacy in the expanded ranges.

Sampiling

Models 1810A and 1813 A sampling plug-ins provide the easitst and fastest low level, high Irequency measuremenis prosently aviaiable. The 1810A looks and uperates like a real time plug-in which reduces famillarization (ime for accurate, low-level mestsurenents to $1 \mathrm{GH}_{2}$ Measurements 104 GH and 18 GHz are aviailable with the 1811 A and either of two remote fecdthrough sampling heads. The remote sampling heads. 1432A for 4 GHz and 1430 C for $\mathrm{IS} \mathrm{GH} \%$, reduce merisurement errors at these high frequencies by eliminating long high frequency interconnocling cables. The feedthrough method of metisurement in these sampling heads incresses aceuracy by allowing measurements io be made while the system is operating with its own loads.

Time domain reflectometry

Time Domain Reflectomerry is a rast, convenient lechnique for measuring the electrical characteristics of transmission systems. This measuremenc lechnique provides a display of the impedance profile of a system showing magnilude, nature. and distance of discontinutisies. Model 1818A is an casy-10-use 170 ps rise time TDR plug-in for design and instalation evaluation of transmission or interconneding systems. For critical denign work or system installations, the 1815A/B with its remore sampling heads will display discominuities as close as 6.4 mm (0.25 inch) with a system rise time of 35 ps .

Logle slate analysis

Two Logic State Analyzers are available for use with the 180 system to provide fast functional analysis of complex digital systems. The 1601A 12-bil Logic State Analyzer plug-in may be used with the 180. 182. or 183 mainframes and is available as the 16011 with the 192C mainframe. The 16 -bit 1607 A is a separate instrument with analog outpuls for display on 180, 182, or 183 oscilloscopes.

Spectrum analysis

The 8557A (350 MHz) and 85588 (1500 MHz) Spectrum Analyzer plug-ins display the absolute amplitude of the frequency componenss of an input signal. Applications include: distortion and modulation measurements, mixer characlerization, filter measurements and absolute power measurements.

Operation ar both analyzers is extremely simple; only three controls are needed for most measurements. Two controls set the frequency seale, and one is used for the smplitude scale. Measurements can be made from +30 dBm (7 volts) to -117 dBm (320 nV) on a 70 dB distortion-free display. The 8557A features a full span of 350 MHz : the 8558 B as wide as 1000 MHz , and for more detailed analysis, both can scan a range as narrow as 50 kHz .

Swept frequency testing

Hewlet1-Packard's Model 875s series Frequency Reuponse Test Sets are precision delection and display systems for making the basic microwave measurements of insirtion gain/loss and return loss (SWR) from 15 MHz 1018 GHz . The 3755 L is cabinct moudted whith a large screen display for bench applications: the 8755M occupies a minimum of space when rack mounted.
The 8759 system has been specifically designed to achieve a full 60 dB dynamic range when used with solid state sweepers (HP 8620 series) which typically have un nutpul level in excess of +10 dBm . The 60 dB dynamic range from +10 co- 50 dBm means it is possible to view a full 40 dB of return loss with couplers having a 20 dB auxiliary arm coupling factor.

General purpose plug-in scopes, to 18 GHz

180 SYSTEM SELICTION CHARTS		
MAINFRAMES		
Madol No.	Dascription	Pape
180C/0	High speed. $8 \times 10 \mathrm{~cm}$ internal graticule (1800 rack style)	123
181//AR	$5 \mathrm{~cm} / \mu 5$ storage wnling sperd/variable persistence (18)AR rach slyit)	119
182C	Large screen. 8×10 div interral gralicule ($10.3 \times 12.9 \mathrm{~cm}$)	122
183A/日	$4 \mathrm{~cm} / \mathrm{hs} \mathrm{writiong} \mathrm{speed} \mathrm{(183B} \mathrm{rack} \mathrm{siple)}$	142
183D	Selectable scan, 4 or $8 \mathrm{~cm} / \mathrm{ns}$ writing speed, rack style.	142
184//8	$100 \mathrm{~cm} / \mathrm{\mu s} \mathrm{storage} \mathrm{wriling} \mathrm{speed/variable} \mathrm{persistence} \mathrm{(1848} \mathrm{rack} \mathrm{style)}$	120
1884/8 0 010 005	$400 \mathrm{~cm} / \mu \mathrm{s}$ storage wriling speed/variable persistence (184B 0pl 005 rack slyse)	120

VERIICAL PLUG-INS												sampling (Verilcal Section)			$\begin{aligned} & \text { LOGIC } \\ & \text { SIAFE } \\ & \text { RMAL } \end{aligned}$
Model No.	1801A	1803A	18042	1805A	1806A	1807A	1808A	18094	118302	12834A	${ }^{1} 18354$	${ }^{18104}$	2.18815/8	2.1811/	${ }^{2} 16011$
Eandwidth MH2	50	$\begin{gathered} 40 \\ (30) \\ \hline \end{gathered}$	50	100	0.5	35	75	100	250	200	200	1 GHz	$\begin{gathered} 4 \mathrm{or} \\ 12.4 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 401 \\ 18 \mathrm{CHz} \\ \hline \end{gathered}$	Funcrional
MIn deflaction iactor/div	$\begin{array}{\|c\|} \hline 5 \mathrm{mV}(500 \\ \mu V 0 p \mathrm{O} 001 \\ \text { cascaded }) \end{array}$	$\begin{gathered} 10 \mathrm{aV} \\ (1 \mathrm{mV} \\ \operatorname{coscaded}) \end{gathered}$	20 mV	5 mV	$100 \mu \mathrm{~V}$	10 mV	5 mV	10 mV	10 mV	10 mV	10 mV	2 mV	5 mV	2 mV	display (ones, zesos format) of bit data
Channels	$\begin{array}{\|c\|} \hline 2(0,01 \\ 001,1 \\ \text { coscaded }) \end{array}$	1 difl	4	$\begin{array}{\|c\|} \hline 2(1 \\ \text { cascaded }) \end{array}$	$\stackrel{2}{2}^{2}$	2	2	4	2	4	2	2	1	2	bit data 5v 解 brip paral
Input RC	$\begin{aligned} & 1 \mathrm{MN/} \\ & 25 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 1 \mathrm{MN/} / \\ & 27 \mathrm{pF} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \mathrm{M} \Omega / \\ 25 \mathrm{pr} \end{array}$	$\begin{aligned} & \text { iMg } \\ & 13 \mathrm{pF} \\ & \text { or } 50 \mathrm{n} \end{aligned}$	$\begin{aligned} & 1 \mathrm{MN/f} \\ & 45 \mathrm{pr} \end{aligned}$	$\begin{aligned} & 1 \mathrm{MR/} \\ & 27 \mathrm{pf} \end{aligned}$	$\begin{aligned} & 1 \mathrm{HON/} \\ & 12 \mathrm{pF} \\ & \text { or } 50 \mathrm{D} \end{aligned}$	$\begin{aligned} & 1 \mathrm{Mng} \\ & 12 \mathrm{pF} \\ & 0 \mathrm{~s} 5 \mathrm{n} \end{aligned}$	509	$\begin{aligned} & 1 \mathrm{MR} / 1 \\ & 12 \mathrm{of} \\ & 0150 \mathrm{l} \end{aligned}$	$\begin{aligned} & 1 \mathrm{MN/} / \\ & 12 \mathrm{pf} \\ & \text { or } 50 \Omega \end{aligned}$	50Ω	500	50Ω	
Differenlial input	yes	$\begin{array}{\|l\|} \hline \text { yes (wilh } \\ \text { de oflset) } \end{array}$	no	yes	no	yes									
Paga	126	130	128	128	126	126	125	128	142	142	142	136	138	134	82

TIME BASE PLUG.INS							SAMPLING(Time Base Secilon)			TDR		$\begin{aligned} & \hline \text { FREQUERCYDOMAIN } \\ & \text { PLUG-IWS } \end{aligned}$		
Madel No.	1820C		1824A	1825A	${ }^{1} 1840 \mathrm{~A}$	[18414	${ }^{1} 1810 \mathrm{~A}$	2.31815//B	1.18114	${ }^{2} 1818$ A	${ }^{2,1,11815 / 4 / B}$	8557h	85588	8755A'
$\begin{aligned} & \text { Er Mig } \\ & \text { Freq (WHz) } \end{aligned}$	150	100	150	150	>500	>500	$>1 \mathrm{GHz}$	18 GHz w: $!$ n ligger counldown	18 GHz wilh trigger counldown	$\begin{gathered} <170 \text { ps } \\ \text { rise time } \\ \text { TOR system } \end{gathered}$	$\begin{aligned} & <35 \text { ps } \\ & \text { rise lime } \end{aligned}$ IOR	$\begin{aligned} & \text { Spectinm } \\ & \text { Analyzer } \\ & 0.1-350 \end{aligned}$	Spectrum Analyzer plus in,	Sweol Ampliade Analyzes
Int Trig Frea.	Delerm	Ined by V	ertical Amp	plifier P	lug-in.		1 GHz					Measuremenis	M Hz .	measures
Sweep Speods/dv${ }^{s}$	$\begin{aligned} & 5 n s \\ & 1 \mathrm{~s} \end{aligned}$	$\begin{gathered} 10 \mathrm{~ns} \\ 1 \mathrm{~s} \end{gathered}$	$\begin{aligned} & \hline 5 \text { ns } \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~ns} \\ & 15 \end{aligned}$	$\left[\begin{array}{l} 1 \mathrm{~ns} \\ 0.1 \mathrm{~s} \end{array}\right.$	$\begin{aligned} & 1 \mathrm{n} 5 \\ & 0.15 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 100 \mathrm{ps} \\ \text { (expand } \\ -50 \mu \mathrm{c}) \\ -50 \end{array} \right\rvert\,$	$\begin{gathered} 10 \mathrm{ps} \\ -1 \mu 5 \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 10 \mathrm{ps} \\ (\operatorname{expanded}) \\ -1 \mu \mathrm{u} \end{array} \right\rvert\,$	Caltraled in feet and meters	1815A calibraled in feat	$\begin{aligned} & -117 \mathrm{dBm} \\ & 10+20 \mathrm{dBm} . \end{aligned}$		gain/loas and relum loss lrom
Delayed and mired sweep	No	$Y_{\text {es }}$	$\begin{gathered} \text { Expanded } \\ \times 100 \end{gathered}$	Yes	No	Delayed	No	No	No		18158 calibraled in meters			18 CHz
Page	131	131	132	132	142	142	136	138	134	137	138	(4)	141	402

181A/AR Specifications

Cathode-ray lube and controls

Type: post-accelerator storage: appfox. 8.5 kV accelerating poiential: aluninized P31 phosphor.
Graticule: 8×10 div internal graticulc, 0.2 subdivision markings on major horizontal and vertical axes. 1 div $=0.95 \mathrm{~cm}$. Fronl panel adjustment aligns trace with graticule.
Beam finder: returns trace to CRT screen regardicss of horizontal or vertical zontrol scting.
Intensity modulation (external lnput)
Input: approx. $+2 \mathrm{~V}, \geq 50 \mathrm{~ns}$ pulse widih ($\leq 10 \mathrm{MHz}$. sine wave) will
blank race of normal intensity.
Inpul A : approx. $5 \mathrm{k} \Omega$.
Maximum input: $\pm 20 \mathrm{~V}$ (dc + peak ac).

Persistence

Normal: natural persistence of P3I phosphor (approx. $40 \mu \mathrm{~s}$).
Variable: from $<0.2 \mathrm{~s} 10>1 \mathrm{~min}$.

Storage Writing Speed

Wilte mode: $>20 \mathrm{~cm} / \mathrm{ms}$.
Max write mode: $>5 \mathrm{~cm} / \mathrm{ss}$.
Erightnese: $>342.6 \mathrm{~cd} / \mathrm{m}^{2}$ (100 fl).
Storage lime: from Write mode to Store, trace may be stored at reduced intensity for $>$ I hour; to View mode, traces may be viewed at normal intensity for >1 minute. From Max Write mode to Store, traces may be stored at reduced intensity for >5 minutes; to View mode, traces may be viewed at normal intensity for >15 seconds.
Erase: manual, puslibutton crasure takes approx. 300 ms .

Horizontal amplifier
 \section*{External Input}

Bandwldth: de-coupled, de to 5 MHz ; ac-coupled, 5 Hz to 5 MHz .
Daflectlon Factor: $1 \mathrm{~V} / \mathrm{div}$ in $\mathrm{XI}: 0.2 \mathrm{~V} / \mathrm{div}$ in $\mathrm{X} 5 ; 0.1 \mathrm{~V} / \mathrm{div}$ in
$\times 10$.
Vemien: prowides continuous adjusiment between ranges.
Dyamic range: $\pm 20 \mathrm{~V}$.
Maximum input: 600 Vdc (ac-coupled input).
Input RC: approx. I megohm shumted by approx. 30 pF .
Sweep magnifier: XS, X10; accuracy, $\pm 5 \%$ with 35 accuracy time base.

Outputs

Four rear panel emitter follower outputs for main and dekayed gates, main and delayed sweeps or vertical and horizontal outputs when used with TDR/sampling plug-ins. Will drive impedances ≥ 1000 ohms without distorlion.

General

Callbrator: approx 1 kHz square wave, $3 \mu \mathrm{~h}$ rise time; 10 V p -p into ≥ 1 megohm: accursey, $\pm 1 \%$.
Operating environment: temperature, 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$): humidity, to 95° : relative humidity at $40^{\circ} \mathrm{C}$ ($1044^{\circ} \mathrm{F}$); altitude. to 4.6 km (15000 fi), vibration, vibrated in three planes for 15 min. each with 0.254 mm (0.010 in) excursion, 10 to 55 Hz .

Dimenslons

Ceblnel Model, 181A: 200 mm wide. 289 nm high, 540 mm deep behind panel ($71 / \mathrm{k}, 11 / \mathrm{k}, 21 \mathrm{M} / \mathrm{inches}$).
Rack Model, 181AR: 425 mm wide, 132.6 mm high, 543 mm decp overall ($16 \frac{1}{3} .3 \% 2,21 / / \mathrm{inches}$): 493 mm ($191 / 1 \mathrm{in}$.) deep behind rack mount labs.
Weight (without plug-ins)
Model 181A (cablnet): nel, 10.9 kg (24 lb). Shipping, 15.4 kg (34 lb).
Model 181AR (reck): nel, 11.8 kg (26 lb). Shipping, 17.2 kg (38 lb).
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to 440 Hz , 115 wants at nomal line with plug-ins: max mainframe power, 225 VA .
Accessorles aupplied: $2.3 \mathrm{~m}(71 / 2 \mathrm{ft})$ power cord. Model 10178 A mesh contrast filter. blue plastic light filter (HP P/N 5060-0548), 230 V fusc package (HP P/N 5080-9672), one Operating and Service Manual. A rack mount kit (HP P/N 5060 -0552) and 2 clip-on probe holders (HP P/N 5040-0464) are supplied with the 181AR rack model.

181T/TR

181 Teabinct and I8ITR rack model mainframes are related to 8557 A . 8558B, and 8755A plug-ins; with non-buffered rear panel auxiliary outputs. For deaziled information refer to an 8557A, 8558B or 8755 A data sheel.
Options
Price
H49: Model 181A with remote programming capability for Write. Max Writc. Normal, Store, View, and Erase functions. Programming is accomplished with contae closure, DTL, or TTL logic sources.
Option H49 Programming (18|A)

Model number and name

Model I8IA Storage Oscilloscope. Cabinet Style

184A/B Mainframes Description

The Model $184 \wedge$ cabinct stylc and $184 \mathrm{~B} 132.6 \mathrm{~mm}(51 / \mathrm{y}$ in.) high rack style variable persistence and storage mainframes provide writing speeds of 100 or $400 \mathrm{~cm} / \mathrm{us}$. These writing speeds are fast enough that traces you previously had to photugraple to see can now be vicived directly in normal ambient lighe. A FAST mode optimizes writing speed by switching the CRT display to reduced scan while maintaining galibration and resolution. A second graticule, for the FAST mode, is superimposed in the center of the screen and a front pancl light indicates when the scope is in the FAST mode.

The 184 Option 005 olfers an excellent FAST writing speed of 400 $\mathrm{cm} / \mu \mathrm{s}$ and the standard 184 provides $100 \mathrm{~cm} / \mu \mathrm{s}$, both measured in the reduced scan area. The fast slored wriling speed of $400 \mathrm{~cm} / \mu \mathrm{s}$ is fully compatible with a single-shot. 5 gs fise time transient with an amplitude of greater than 5 divisions. Combining this superior single-shol writing speed with vasiable persistence also provides bright clear displays of low repention rate digital waveforms.

Advances in targel material and processing provide extremely high writing speed as well as a very ruged storage surface. This highly burn resistant. high-speed storage surface does nol requiru special opera. ting procedures.
The fast storage writing speed of the 184 storage CRT is extremely useful for single sweep displays of low repctition rate signals with fast rise times. This capability allows jou to study a waveform or 10 pho. lograph the trace with a gencral purpose scope camera as in figure I

The digital word from TTL logic in ligure 1 is accurring at a I $H x$ ratc and is integrated, using variable persistence, 10 a brig̣h dear display which is easily viewed in normal ambient light. The high wriling speed allows storage and display of fandom noise pukes (higure 1) or singleshol transicists (ligure 2) For general purpose use where maxinum wriling specd is nol of prime concern. a STD mode provides maximum brighoness, high contrası ratio, and largest display arcia (see liguse 3).

A storage lione control allows a Irade-off of viewing brightness for slorage lime which makes it possible 10 retain a display for greater than 10 minules in STD mode and greater than 30 seconds in FAST mode. Another useful mode is the combination of FAST of STD and store node coupled with the time base sel for single-sweep operation. In this mode the 184 will remsin prepared to store a signal for over 10 minutes in STD mode and more than 30 seconds in FAST mode.

This high speed storage tube also provides the same high contrasl as a conventional CRT and with a brighe display of $342.6 \mathrm{~cd} / \mathrm{m}^{\text {; }}$ (10001) in the STD mode and $173.3 \mathrm{ad} / \mathrm{m}^{2}(50 \mathrm{n})$ in the FAST mode. Also, by modulating the Z-aris, you can ewsily distinguish betneen several irace intensilies.

Fast, ealsy setup is provided by the HP developed beamfinder. Pressing the Find Beilin pushbutton relurns the beam to the CRT regard. less of the selling of verical or horizontal position, sweep, or trigges conirals.

All solid-statc circuits reduce service and mainlenance requirements with the proven reliability of these solid-state companents. Solid-state circuits also provide compact. lightweight insiruments with minimum warm-up lime for slable reliable measurements withoul frequent reculibration.

The horizontal amplifier increases mainframe muasurement flexibility. The external horizoneal inpui may be used to inject external sweep sightals or for ph:ese measurements. When used for plase measurements, accurate measurements may be made up to 100 kHz . A convenicnl phase switch on the horizontal amplifier provides horizontal signal delay in the plase position, so that vertical and horizonial amplifiers are phase-matched.

184A/B Specifications

Cathode-ray fube and controla

Type: post-accelcrator storage Iube: aluminized P3I phosphor.
Grallcule: 8×10 div internal gralicule, 0.2 div subdivisions on major axes. 1 div $=0.95 \mathrm{~cm} .8 \times 10$ div internal graticule superimposed in center or normal scope graticulc (for last writing speed mode). I div = 0.475 cm . Front panel adjustment aligns trace with graticule.

Beam Ilnder: relurns trace to CRT screen regardless of selting of horizontal or verlical control selting.
Intensity modulalion (external Inpul)
Input: approx. $+2 \mathrm{~V}, \geq \leq 0 \mathrm{~ns}$ pulse widh ($\leq 10 \mathrm{MHz}$ sinc wave) will blank trixc of normal intensity,
Input R: approx. $5 \mathrm{k} \Omega$.
Maxlmum input: $\pm 20 \mathrm{~V}$ (de \div peak ac).
Writing modes: conventional (non-siorage), standard, and fast (variable pcrsistence and storage). Pressing STORE and either STD or FAST prevides maximum persistence with floodguns off for a ready-to-write state. The CRT will remain primed and ready-lo-write for the storage time of $>10 \mathrm{~min}$. in STD/STORE and $>305 \mathrm{mi}$ FAST/ STORE.

Persistence

Gonventlonal: natural persistence of P3) phosphor (approx. 40 $\mu \mathrm{s}$).
Variabla: from $<50 \mathrm{~ms}$ to $>1 \mathrm{~min}$.
Storage writing speod

Mode! No.	Standard *	Fast $^{\circ \circ}$
$189 \mathrm{~A} / \mathrm{B}$	$>0.2 \mathrm{cmi} / \mu \mathrm{s}$	$>100 \mathrm{~cm} / \mu \mathrm{s}$
$184 \mathrm{~A} / 8001005$	$>0.2 \mathrm{~cm} / \mu \mathrm{s}$	$>400 \mathrm{~cm} / \mu \mathrm{s}$

[^5]

Flgure 1. 16 ble word trom TTL loglo repeated 16 times at a 1 Hz rate. The 10 ns duratlon nolse pulse occurs only once in 16 wards.

Figure 2. Single-sweep dlsplay at $100 \mathrm{~ns} /$ dlv.

Brlghiness

Standard: $>342.6 \mathrm{~cd} / \mathrm{m}^{2}(100 \mathrm{n})$.
Fast: $>173.3 \mathrm{~cd} / \mathrm{m}^{1}(50 \mathrm{fI})$.

Storage tlme

Standard wriling apeed; variable from >1 min. al normal intensity to $>10 \mathrm{~min}$. al reduced brigheness.
Fasi writing speed: variable from $>10 \mathrm{~s}$ (8 s for Opl 00S) al nomiol intensily $10>30 \mathrm{~s}$ at reduced brightness. Sturage time may vary with wide temperalure changes, specifications are for normal soom temperalure ($+22^{\circ} \mathrm{C}$).
Erase: manual, pushbulton erasure takes approx. 300 ms .

Horlzontal amplifier

Extemal input
Bandwidth: dc-coupled, de to 5 MHz , ac-coupled, 5 Hz to 5 MHz . Deflection factor: $1 \mathrm{~V} / \mathrm{div}$ in XI; $0.2 \mathrm{~V} / \mathrm{div}$ in $\mathrm{X} 5 ; 0.1 \mathrm{~V} / \mathrm{div}$ in X 10 ; accuracy. $\pm 5 \%$. Vernier provides continuous adjustment bo ivoen ranges.

Figure 3. Digital word at $\overline{2} \overline{\overline{0}} \mathrm{~Hz}$ cep rate integrated to a bright clear display in STD mode using variable persisience.

Dynamle range: $\pm 20 \mathrm{~V}$.
Maximum input: 600 V de (ao coupled inpui).
Inpul RC: approx. 1 megohm slounted by approx, 30 pF .
Sweep magnifler: X $5, \times 10$; accuracy, $\pm 5 \%$ (with 3% accuracy time basc).

Caliberstor

Type: approx. I kHz square wave, 3μ rise lime.
Vollage: $10 \mathrm{Vp-p}$ into ≥ 1 megohm; accuracy, $\pm 1 \%$.

Outputs

Four rear panel emitter follower outputs for main and delayed gates, main and delayed sweeps, or vertical snd horizontal ouiputs when used with TDR/Sampling plug-ins. Maximum eurrent available, $\pm 3 \mathrm{~mA}$. Will drive impedancess ≥ 1000 obnas wishoul distortion.

General

Operaling envlronment: cmperature, 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 $\left.+130^{\circ} \mathrm{F}\right)$; humidity, io 95% relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$; altiude. 104.6 km (15000 ft): vibration, vibrated in taree planes for 15 min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 10 to 55 Hz

Dimenslons

Cablnet Model, 184A: 200 mm uidc. 289 mm high. 540 mm decp behind pancl ($71 / 8,111 / 4,211 / 4$ inches).
Rack Model, 1848: 425 nm wide, 122.6 mm high, 543 mmm decp overall ($161 / 2,51 / 32,21 / / 8$ inches): 493 mm ($191 / 2 \mathrm{in}$. deep behind rack mount labs).
Welght (without plug-ins)
Model 104A (Cabinel): net, 10.9 kg (24 lb). Shipping. $15 \mathrm{~kg}(33$ $\mathrm{lb})$.
Model 184 B (Rack): nel, $11.8 \mathrm{~kg}(26 \mathrm{lb})$. Shipping, 17.2 kg (38 Jb).
Power. 115 or $230 \mathrm{~V} \pm 10 \mathrm{~F}, 48$ to 440 Hz .115 walts al normal line with plug-ins. Max mainframe power. 225 VA .
Accessorles supplled: 2.3 m ($71 / \mathrm{fl}$) power cord. Model 10178 A mesh contrast filter, blue plastic light filter (HP P/N $5060-0548$), 250 \checkmark fuse package (HP P/N 5080-968I), one Opernting and Service Manval. A rack mount kit (HP P/N 5060-0552) and 2 clip-on probe holdurs (HPP/N 5040-0464) are supplied with the 184 B rack model.
Model number and name
Price
184A Cabinel Storage Mainframe
184A Option 005 Fast Storage CRT
184B Rack Style Storage Muinframe
$\$ 2500$
184B Option 005 Fasi Sioragc CRT
dd $\$ 500$

182C Description

Model 182 C mainframe provides large，easy－to－read displays on a 16.5 cm （ $61 /$ in．）CRT with 100 MHz capability．A parallax frec，inter－ nal graticule allows accurate readings from any angle or from a dis－ lance which is extemely useful in systems testing．The large display also improves measurement accuracy of displays such as 「our chan－ nel，differential／de offset．sampling，and time domain reПectomeler measurements．

The callode－ray tube has 21 kV accelerating polential for bright displays of low repetition rate signals．Particular atention to eioctron optics in the CRT assures that the large display size does nol cause degradation of the 1race．Internal flood guns provide graticule illumi－ nation which allows adjustment of backbround illumination for opi－ mum contrast of graticulc and Irace for casy－10－read three－shade pho－
tographs．A find beam control reduces sel－up time by returning the beam to the display area regardless of vertical，（ime basc，or intersity conitrol settings．

182C Specifications

Cathoderay tube and controls
Type：post accelcrator，2）kV accelerating polential；aluminized P31 phosphor．
Gratleute： 8×10 div internal graticulc． 0.2 div sub－divisions on mejor axes．I div $=1.29 \mathrm{~cm}$ ．Front panel adjustment aligns Irace with gralicule．Scale conirol illuminales CRT phosphor for viewing with hood or laking photographs．
Beam finder：relums（race to CRT screen regardless of selting of horizontal，vertical，or intensity conirols．
Intenslty modulalion（external Input）
Input：approx．$+2 \mathrm{~V}, \geq 50 \mathrm{n} s$ pulse widih（ $\leq 10 \mathrm{MHz} \operatorname{sinc}$ wave）will błank trace of normal intensity．lnpul R approx． $5 \mathrm{k} \Omega$ ．
Maximum input：$\pm 20 \mathrm{~V}$（ $\mathrm{dc}+$ peak ac）．

Horizontal amplifier
 External input

Bandwidth：dc－coupled，de to 5 MHz ：ac－coupled， 5 Hz to 5 MHz ．
Deflection factor： $1 \mathrm{~V} / \mathrm{div}, \mathrm{XI}: 0.1 \mathrm{~V} /$ div，XIO：accuracy，$\pm 5 \%$ ．
Vernier provides continuous adjusimenl belween ranges．
Dynamic range：$\pm 20 \mathrm{~V}$ ．
Maximum lnput：$\pm 300 \mathrm{~V}$（dc＋peak ac）．
input RC： 1 megohm slsunted by approx． 10 pF ．
Sweep magnifler：XIO；accusacy．$\pm 5 \%$（with 3% accuracy ims base）．
Callbrator：approx．I kHz square wave，$<3 \mu s$ rise lime： 250 mV p－p and $10 V_{p-p \text { inio }}^{2} 1$ megohm，$\pm 1 \%$ ．

Ouiputs

Four rear panel emilter follower outputs for main and delayed gates． main aod delayed swecpe or vertical and horizontal oulpuls wher used wht TDR／Sampling plug－ins．Maximum current available، $\pm 3 \mathrm{md}$ ． Will drive impedance ≥ 1000 ohms wilhout distomion．

General

Operaling environment：icmperalurc， 0 to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$ ）humidity，to 95\％relative humidity al $40^{\circ} \mathrm{C}$（ $104^{\circ} \mathrm{F}$ ）：alti－ lude． 104.6 km （ 15000 ft ）：vibration，vibrated in three planes for 15 min．each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$ ．）excursion， 101055 Hz ．
Dimenslons： 201.6 mm wide， 338.1 mm high， 498.5 mm deep overall （ $715 / 14,13 / 16.195 / 4$ inches）．
Weight：（withoul plug－ins）nel， 12.2 kg （27 lb）．Shipping． 15.4 kg （34 1b）．
Power：IIS or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz},<110$ walls with plug－ins al normal line．Max．mainfome power． 200 VA．
Accessorles buppliad： $2.3 \mathrm{~m}(71 / 2 \mathrm{ft})$ power cord，blue plastic light「iles（HP P／N 5060－0547）， $230 \vee$ fuse package（HP P／N 5080－9672）． one Operating and Service Manval．

182T

Cabinct model mainframe related to 8557A，8558日，and 8755A plug－ ins：non－buffered rear panel auxiliary outpuls；and P39 mediun－ persistence CRT phosphor．For detailed infarmation refer 10 an 8557A．8558B or 8755A dala sheel．

Options

Price
010：mainframe withoul rear panel main and delayed sweep and gate outputs

Model number and name
Model 182C Oscilloscope Mainframe
$\$ 1400$
Model 182C Option OlO Oscilloscope Mainframe
$\$ 1300$

180C/D Specifications

Cathode-ray lube and controls

Type: posi accelerator, approx. 15 kV accelerating potential; aluminlzed P31 phosphor (see Options for other available phosphors).
Graticule: $8 \times 10 \mathrm{div}$ incemal graticule, $1 \mathrm{div}=1 \mathrm{~cm}, 0.2 \mathrm{div}$ subdivisions on major axes. Front panel reccassed screwdriver adjustment aligns trave with graticule. Scale control illuminates CRT phosphor when viewing with hood or taking pholographs.
Beam finder: returns trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Iniensity modulation (external Input)
Input: approx. $+2 \mathrm{~V}, \geq 50$ as pulse widith ($\leq 10 \mathrm{MHz}$ sine wave) will
blank trace of normad intensity.
Input R: approx. 5 k .
Maxdmum input: $\pm 20 \mathrm{~V}(\mathrm{dc}+\mathrm{pma} \mathrm{ac})$.

Photographle writing speed: $1506 \mathrm{~cm} / \mu s$. Measured using P3I phosphor, 10000 ASA film without fitm fogging and HP Model 195A camera (1.3 lens, 1:0.5 object-to-image ratio). Writing speed may be increased substantially by using film fogging lechniques, PII phosphor, and faster camera lenses.

Horizontsl amplffer

External Input

Bandwidit: de to 5 MHz dc-coupled; 5 Hz to 5 MHz ac-coupled.
Deflection Faotor: $1 \mathrm{~V} / \mathrm{div}, \mathrm{Xl} ; 0.2 \mathrm{~V} / \mathrm{div}, \mathrm{X} 5: 0.1 \mathrm{~V} / \mathrm{div}, \mathrm{X} 10$; accuracy $\pm 5 \%$. Vernier provides continuous adjustinent between ranges.
Dynamic range: $\pm 20 \mathrm{~V}$.
Maximum Input: 600 V de (ac-coupled input).
Input RC: approx. I megohm shanted by approx, 30 pF .
Sweep magnifler: XS, XIO. accuracy $\pm 5 \%$ (with 3% accuracy time base).

Outputs

Four rear panel, emitior follower outpuls provide main and delayed sweeps. or vertical and horizontal outputs when used with TDR / Sampling plug-ins. Maximum current available. $\pm 3 \mathrm{~mA}$. Outpuls will drive impedances of ≥ 1000 ohms witholl distortion.

General

Callbrator: approx. 1 kHz square wave. $<3 \mu \mathrm{~s}$ rise time; 250 mV p-p and $10 \vee \mathrm{p}$ - p inio ≥ 1 megohm; accuracy, ± 1 急.
Operating environment: temperature, 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$): humidity, to 955° relaove humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$: allilude, 104.6 km (15000 ft) vibration, vibrated in three planes for 15 min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 10 to 55 Hz .

Dimensions

Cabinet model, 180C: 200 mm wide, 289 mm high. 540 mm deep behind pance (7) $/ \mathrm{k}, 11 \%$, 21//4 inches).
Rack model, 1800: 425 mm wide, 132.6 mm high, 543 mm deep
 mount tabs.
Weight (wlthout plug-Ins)
Model 180 C (cabinet): not, $10.4 \mathrm{~kg}(23 \mathrm{lb}$). Shipping, 15.4 kg (34 (b).

Model 1800 (rack): net, 11.8 kg (26 lt). Shipping, 17.2 kg (38 lb).
Power: 115 or $230 \mathrm{~V}, \pm 10 \% ; 48$ to 440 Hz ; nomally <110 watts with plug-itis at normal line. Max mainframe power, 200 VA .
Accessorles supplled: $2.3 \mathrm{~m}(71 / 2 \mathrm{f})$ power cord, blue plastic light Miter (HP P/N $5060-0548$), 230 V fuse package (HP P/N $508(1-9672$). one Operating and Service Manual. A rack mount kit (HP P/N 50600552) and 2 clip-on probe holders (HP P/N 5040-0464) are supplied with the 180 D rack model.

180TR

Rack model mainframe related to 8557A, 8558B, and 8755A plug-ins; non-buffered rear panel auxiliary ourputs; and P39 mediumpersistence CRT phosphor. For detsiled information refer to an 8557A, 8558 B or 8755A data sheet.

Optlons

Price
010: deletes rear panel outputs for main and delayed gates and main and delayed sivereps
less $\$ 100$
Model number and name
180C Cabinet Style Mainframe $\$ 1350$
180C Option 010 (sec Options) $\$ 1250$
180D Rack Siyle Mainframe
$\$ 1450$
I80D Oplion 010 (suc Options) \$1350

1805A Description

Model 1805 A . 100 MHz vertical amplifier provides accurate mezsurements for both digital and analog design and troubleshooting. A selectable high impedance input with low input capacitance or 50 ohm inpul provides aceurate pulse and CW meynuremente, Other fealures that give you accurate, convenient measurements are flexible triggering. $5 \mathrm{mV} / \mathrm{duv}$ to $5 \mathrm{~V} /$ div deflection factors from de to 100 MHz on all ranges, sclectable display polarity on each channel, and up to ± 200 divisions of offsel.
The de offsel capability of ± 200 divisions allows low-level, biased (non-symmerrical) logic pulses to be positioned on sereen for accurate measurements. This allows you to view biased logic, such as ECL. which is biased several volis from ground and Irequently operated with 0.5 volt swings, with a viewable ampliude and muintain deccoupled inlormation.

1805A Spectications

Modes ol operation

Channel A : channel B : channels A and B displayod alternately on successive sweeps (ALT); channel A and B displayed by switching between channcls at approx. 500 kHz rate (CHOP) with blanking during switching; channcl A plus channel B (algebraic addition).
Each channel (2)
Bandwidth; (measured with or without 10014A probe. 3 d8 down from 8 div reference signal from a zurminated 50 ohm source.)
DC-coupled: de 10100 MHz .
AC-coupled: approx. 10 Hz to 100 MHz (lower limit is approx. I Hz with 10014 A probe).
Rise time: < 3.5 ns (measured with or withoul 10014 A probes. 10% to $90^{\%}$ points of 6 div inpul sicp from a terminated 50 ohm source). Deflectlon lactor
Ranges: $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ (10 calibrated positions) in 1.2 .5 se quence. $\pm 2 \%$ allenuator accuracy.
Vernler; provides continuous adjusiment between denlection factor setings and extends maximum deflection factor to at least 12.5 V /div. Front panel light indicales when vernier is not in CAL position.
Polarity: + or - up. selectable.
Slignal delay: input signals are delayed sufficiently 10 view leading edge ol input pulse withour advanced rigger.
Inpul coupiling: AC, DC. 50 ohms (dc). or ground. Ground position
disconnects input connector and grounds amplifier input.

Inpul RC

AC and DC: I megohm $\pm!\%$ shunted by approx. 13 pF . Constant
on all ranges.
50 ohm: 50 ohms $\pm 2 \%$. VSWR <I. $2: 1$ al 100 MHz on all ranges.
Maximum input
AC and DC: $\pm 300 \mathrm{~V}(\mathrm{dc}+$ peak ac$)$ al l kHz or less. $\pm 150 \mathrm{~V}(\mathrm{dc}+$ peak ac) on $5 \mathrm{mV} /$ div range al 1 kHz or los.
$50 \mathrm{ohm}: 10 \mathrm{~V}$ rms.
Dynamle range: 6 div al 100 MHz increasing to 16 div al $\leq 15 \mathrm{MHz}$.

Positloning range: 16 div.

A + B operation

Amplhier; bandwidih and deflection factors are unchanged; either channel may be inverted for $\pm A \pm B$ operation.
Differential input ($\mathrm{A}-\mathrm{B}$) common mode: CMRR is at Ieast 40 de from de 101 MHz for common mode signals of 16 div or less. CMRR is al least 20 dB at 50 MHz for common mode signals of 6 div or less.

Trlggering

Source: selectable from channel A. channel B. or a compositc (Comp) signal from A and B in any display mode. Compositc is channels A and B signals switched for All ano Chop modes and added for A and B mode. Vernier and position controls do not affect A, B, or composite irigger signals. A and B signals are independent of polarity selection.
Frequenay

Ilme gase Plug.in	Irigpor fiequency*	Required Vertical Dafection
1820C. 1824A	dc - 50 MHz	仿 div
1825A, 1840A, 1841A	dc - 100 MHz	1 div
1820B. 1822A	$d \mathrm{C}-50 \mathrm{MHz}$	Y div
	$\mathrm{dc}-100 \mathrm{MHz}$	2 div
1820A. 1821A	$\mathrm{dc}-50 \mathrm{MHz}$	1 div

- all display modes excepl Chop. of to 100 KHz in Chop.

Offect

± 200 div of offset. Allows offset of de or ae signals up to the dynamic range and maximum input.
Vertical signal output (selected by trigger source switch)
Bandwidh: $>50 \mathrm{MHz}$ into 50 ohnes.
Amplltude: $>50 \mathrm{mV}$ for each division of display into 30 ohms with usable amplitudes up 10500 mV p-p.
Source Impedance: approx. 50 ohms.

General

Operating environment: same as $180 \mathrm{C} / \mathrm{D}$ mainirames.
Welght: nel, $2.3 \mathrm{~kg}(5 \mathrm{lb})$. Shipping, $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Accessories eupplied: iwo 10014A 10:1 volage divider probes approx. I.) $\mathrm{m}(31 / \mathrm{ff})$ long, one Operaling and Service Manual.
Recommended probes
$10014 \mathrm{~A}, 10016 \mathrm{~A}$ passive probes, 10020 A resistive divider probe kir, and the 1120 A and 1125 A aclive probes will mamtain full perlormance of the 1805A.
75 ohm input
A selectable 75 ohm/ 1 megohm input is available in place of the 50 ohm/1 megohm inpul. For furiher information. contact your HewlettPackard Field Engineer.
Option 003: Model 1805A withour probes
Model inumber and name
Price
1805A Dual Channel Vertical Amplifier
$\$ 1500$
1805A Option 003 (wilhoul probes)
$\$ 1380^{\circ}$

1808A Description

Model 1808A is an ideal vertical amplifier for designing or rroubleshooting logic circuits using ECL components. This plug-in provides low drifl and flexible triggering for accurate CW and timing measurements. Oiher convenience fealures are: $5 \mathrm{mV} / \mathrm{div}$ so $5 \mathrm{~V} / \mathrm{div}$; de 1075 MHz . baidwidth on all ranges: selectable display polarily on each chamel; and sefertable high Z or 50 ohm inputs.
General purpose probing is provided by the one megohm inpur with a very low 12 pF shunt capacitance 10 reduce phase shifi and signal loss in CW measurements.
A switchable. high quality, 50 ohm input is also provided, which allows matching 10 a 50 ohm source with minimum reflections due to the fow 1.2:1 VSWR. This 50 ohm inpul provides aceurate rise time measurements with virtually no reflections to degrade the inpul signal or introduce phase shift. Signal degradation so conmon with external 50 ohm feedithrough terminations on high impedance (high oapacity) inputs is climinated 'The 50 ohm input also allows active and passive probes with very low input eapacitance to be used which further reduces signal degradation.
The two channels may be operated singly. algebraically added, or in dual trace modes with alternate or chopped swilehing with a selectable trigger source. In chop and alternate modes, the trigger may be derived from channel A or B Jor liming measurements in relation to either channel. Composite triggering is alsis selectable in alternate and A + B modes for viewing asynchronous signals.

1808A Specifications

Modes of operstion

Channel A : channel B : channels A and B displayed alternately on succossive swoeps (ALT); channels A and B displayed by switching between channels al approx. 400 kHz rate (CHOP), with blanking during switching: and channel A plus channel B (algebraic addition).

Each channel (2)

Bandwldth (measured with or withoul 10014 A probe. 3 dB down from 8 div reference signal from a terminated 50 othm source.)
DC-coupled: de 1075 MHz .
AC-coupled: approx. 8 Hz to 75 MHz (lowir limit is approx. 0.8 Hz with 10014 A probes).
Rise lime: < 4.7 ns (measured from 10% to 90% points of 6 div inpul step from a terminated 50 ohm source).

Deflection fector

Ranges: $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ (10 calibrated positions) in $1.2,5 \mathrm{sc}$ quелсс.
Attenuator accuracy: $\pm 2 \%$,
Vernler: provides continuous adjustment between deflection fac$10 r$ settings and extends maximum deflection factor to at least 12.5 V/div. Front panel light indicates when vernier is nos in CAL position.
Polarity: + up or - up, selectable.
Signal delay: input signals are delayed sulficienty to view leading edge of input pulse without advanced triger.
Inpul coupiling: AC, DC, 50 ohms (dc), or Ground. Ground position disconnects input connector and grounds amplinier input.

Inpul RC

AC and DC: I megohm ± 19 shunted by approx. 12 pF . Constant on all ranges.
50 ohm: 50 ohms $\pm 2 \%$. VSWR, < $1.2: 1$ at 75 MHz on all ranges. Maximum Input

AC and DC: $\pm 300 \mathrm{~V}(\mathrm{dc}+$ peak ac) at 1 kHz or less; $\pm 150 \mathrm{~V}(\mathrm{dc}+$ peak ac) on $5_{\mathrm{mV}} \mathrm{f}$ range al I kHz or less.
$50 \mathrm{ohm:} 10 \mathrm{~V} \mathrm{rms}$ (dccoupled inpol).
Drlit: $<100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

A + B operation

Amplifier: bandwidth and deffection factors are unchanged; eíher channel may be inverted for $\pm A \pm B$ operation.
Differenilal Input (A - B) common mode: CMRR is at leass 40) dB on 5 mV /div and at least 20 dB on other ranges for frequencies between de and 2 MHz and common mode signal of 24 div or less.

Triggering

Source: A, B, or $A+B$ on the individual or composite signal displayed: chop mode selectable from A or B: alternate mede A. B. or composite ($A+B$ swithed).
Frequency: de to 75 MHz on signals causing 0.5 div p -p or more verlieal deflection in all display modes (1820A and 1821A require I div pp): excepl de to 100 xHz in chop mode.

General

Operating environment: temperature. 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 $\left.+130^{\circ} \mathrm{F}\right)$: humidity, 1095% relative humidizy at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$; allizude, 104.6 km (15000 f): vibration, vibraled in three plames for 15 min. each with 0.254 mm (0.010 in .) excursion. 10 to 55 Hz .
Weight; nel, $2.3 \mathrm{~kg}(5 \mathrm{lb})$. Shipping, $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Accossorles supplied; two Model 10014A 10:1 voltage divider probes and one Operating and Service Manoal.
Racommended probes: the 10014A, 10016 A passive divider probes, 10020A resistive divider probe kit, 1120A, 1124.A, and 1125 A active probes maintain full performance of the 1808A.
75 ohm input: a selectable $75 \mathrm{ohm} / 1$ megohm input is available in place of the 50 ohm/1 megohm inpul. For further information, contact your Hewlet1-Packard Field Enginoer.

Optlons	Price
003: Model 1808A without probes	less $\$ 120$
090: Two 10016A, 10:1 voliage divider probes substi-	N / C
(ulcd for iwo 10014A probes	
Model number and name	$\$ 1050$
1808A Dusl Channel Vertical Amplifier	$\$ 930$

1806A

Description

Model 1801 A dual channel amplifier has deflection factors from 5 mV/div to $20 \mathrm{~V} /$ div with constanl bandwidth of 50 MHz on all ranges. Selectable display polarity and input coupling assure that you oblain the display required for a particular measurement. FET ispuls are provided for low drift with a virtual absence of microphonics.

For additional low level measurement capability. a Model 1801A with Option 001 is available. Option 001 adds a $X 5$ muliplier and a channel B vertical outpul. The X5 made allows dual channcl, 1 $\mathrm{mV} / \mathrm{div}$ deflection factors to 20 MHZ . Channel B output can be cascaded with channel A for a single channel display with $500 \mu \mathrm{~V} / \mathrm{div}$ to 30 MHz .
Model 1807A is an cconomical dual channel plug-in Cor applications involving logic liming measurements in circuils using MOS and TL elements. The $10 \mathrm{mV} / \mathrm{div}$ deffection faclor and 35 MHz bandwidth give you a low cost answer to the design and testing problems of many of Ioday's digital ciscuits. A selection of standard, delayed, or expanded sweep time bases allows accurate timing measurements with sweep speed to $5 \mathrm{~ns} / \mathrm{d} v$.

Model I806A is a dual differential input amplifice for high sensifiv. ity, low frequency measurements. This plug-in features high stability. low noise and high common mode rejection with $100 \mathrm{~V} /$ div dellection factors and a 500 kHz bandwidth. It provides aceurate waveform measurentents and analysis in the subsonic, audio, ultrasonic and low radio frequency range.

Noise is a low $20 \mu \mathrm{~V}$, measured tangentially al full bandwidth. A bandividth limit switch (reduces bandwidth to approximately 50 kHz) ctiminates noise in the unused portion of the bandwidth for improved resolution of low level signals.

Input and output signals from a circuit under fest can be measured siniultaneously in either chop or alternate mode. Trigger source selection is also provided in chop or alternate modes to allow sweep-timing to be derived from cither channel.

Applications for the 1806 A include: audio system testing and dusign, biological research, power supply design, liming measurements, strain gauge and transducer monitoring. ulirasonic system tesling and educational insiruction.

1801A Specifications

Modes of operation

Channel A : channel B; channels A and B displayed altemately on sucessive swecps (ALT); channels A and B displayed by swicching beiween channcls at approx. 400 kHz rate (CHOP), with blanking during switching: channel A plus channel B (algebraic addition).

Each Channel (2)

Bandwidth: (measured with or withoul a Model 10004 D probc, 3 dB down from 8 div reference signal from a temmenated 50 ohm source.)

DC-coupled: do to 50 MHz .
AC-coupled: approx. 8 Hz to 50 MHz , Lower limit is approx. 0.8 Hz with 10004 D probe.

Rige Ilme: $<7 \mathrm{~ns}$ (measured with or withoul 10004 D probe. 10% \% 90% or 8 div input step from a terminated 50 ohm source).
Defection factor
Ranges: $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (12 positions) in 1.2 .5 sequence. $\pm 3 \%$ attenuztor accuricy.
Vernler: provides continuous adjustment between deflection factor sellings and extends maximum deflection factor to at leasi 50 V/div. Front pancl lizht indicales when vernicr is not in CAL position,
Polarlty: + ap or $-u p$, scluctable.
Slgnal delay: input signals are delayed sufficiently to view leading edge of inpul pulse without advanced extemal crigecie.
Input coupling: selectable, AC. DC. or Ground. Ground position disconnuets signal inpul and grounds amplifies inpul.
Input RC: I megohm shumied by spprox, 25 pF , constant on all ranges.
Marimum Input
DC-coupled: $\pm 350 \mathrm{~V}(\mathrm{dc}+$ peak ac) al 10 kHz or lass. $\pm 150 \mathrm{~V}$ (dc - peak ac) on 5 mV /div range al 10 kHz or less.

AC-coupled: $\pm 600 \mathrm{~V} \mathrm{dc}$.
A + B operation
Ampllifer: bandividth and deflection factors are unchanged; cither channel may be inverted for $\pm A \pm B$ operalion.
Diferenilial Inpu! (A - B) common mode: CMRR is al least 40 dB as $5 \mathrm{mV} / \mathrm{div}$ and al least 20 dB on other ranges for frequencics belween de and 1 MHz and for common mode signals of 24 div or less.

Triggering

Source: A. B, or $A+B$ modes on the signal displayed.
Chop mode: on channel A or chammel B signal.
Allernate mode: on channci A signal, channel B signal or succes. sively (Comp) from thi displayed signal on each channel.
Frequency: de 1050 MHz on signals causing 0.5 div or more verlical deflection in all display modes exoepi Chop: de 10100 kHz in Chop mode.

General

Operating environment: same as 180C/D mainframe.
Wolght: nci, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Accessories suppiled: two $10004 \mathrm{D}, 10: 1$ divider probes, approx. I.I m ($31 / 2 \mathrm{n}$), one Operating and Service manual.

Recommended probes

Models 10004 D . 10005D, and 10006 D 10:I divider probes maintain full performance of the 1801 A .

Options

001: Model IS01A with channel B vertical signal output and X5 magnilier $1 \mathrm{mV} / \mathrm{div}$ deflection factor.
003: Model 1801A withoul probes.
090: $1.8 \mathrm{~m}(6 \mathrm{~A})$ 10006D probes substiluted for 10004 D probes.
091: 3.0 m (10 ft) 10005 D probes substituted for 10004 D probes.

1807A Specifications

Modes of operation

Channel A; channel B; channels A and B displayed athernately on sucexsive sweep (ALT): channels A and B tisplayed by switching hetween clumels at approx. ($(X) \mathrm{kH} / \mathrm{La}$ rate (CHOP), with blanking during swilching: and channel A plus channel B (afeebrate addition).

Each channel (2)

Bandwhth: (measured with or vittroul 10004 D probe, 3 dB down from 8 div reference signal from in terminated 50 ohm source.)

DC-coupled: dc 1035 Mllz .
AC-coupled: approx. 8 Hz to 3.5 MHz l. ow er limit is approx. 0.8 Hz with 10004 D probe.
Rise tlme: < 10 ns (measurad with or without 10004 D probe, 10 (10 20\% of 8 div inpul from terminaled 50 ohni source).

Deflection factor

Ranges: $10 \mathrm{niV} / \mathrm{div}$ in $5 \mathrm{~V} / \mathrm{div}$ (9 positions) in $1,2.5 \mathrm{~s}$ sequence. $\pm 3 \%$ atenuator accuracy.
Vernler: provides continuous adjustment between deflection factor seltings and extends maximum defiection factor to $12.5 \mathrm{~V} / \mathrm{div}$. Front puncl iight indicutes when yerner is not in CAL position.
Polarlty: + up or - up, selectable on channel B.
Signal delay: inpus signals are delayed sulticienty to view leading edge ol inpul pulse witheut advancud lrigger.
Input RG: I megohm $\pm 2 \%$ shunted by approx. 27 pF . Constant on all ranges.
Input coupling: scloctable, AC, DC. or Ground. Ground position disconnects input connector and grounds amplifice input.

Maximum input

DC-coupled: $\pm 350 \mathrm{~V}$ ($\mathrm{dc}+$ peak 3 c) al 10 kHz or kexs; $\pm 150 \mathrm{~V}$ (dc + peak ic) on $10 \mathrm{mV} / \mathrm{div}$ al 10 kHz or less.
AC-coupled: $\pm 600 \mathrm{~V} \mathrm{de}$.

A+B operalion

Ampllifer: bandwidth and defleation factors are unchanged: channel 1 may be inverted for $+A \pm B$ operalion.
Differenilial Inpul (A - B) common moda: for frequencies from de to) MHz CMRR is at least 40 dB on $10 \mathrm{mV} /$ div and al leası 20 dB on other ranges for common mode signills or 24 div or kess.

Triggering

Source: on channet A for charnel A, Chop and All modes: on channel B for channel B mode; on composite signal dísplayed for A + B mode.
Frequency: de to 35 MHz on signals causing 0.5 diy p-p or more vertivill deflection in all display modes except de e 100 xHz in Chop mode.

General

Operaling environment: same as (80C/D mainframe.
Welght: net, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, $3.5 \mathrm{Eg}(8 \mathrm{lb})$.
Accessorles aupplied: one Opurating and Scrvice Manual.
Recommended probes: the 10004 D . 10005 D and 10006 D passive divider probes maintain full performance of the 1807A.

1806A Specifications

Modes of operation

Chimusl A dione: channel B alone; channels A and B displayed allernatuly on successive sweeps (ALT): channels A and B displayed by
switching betwen channels at approx. 100 kHz rate (CHOP) with blanking during switching.

Each channel (2)

Bandwldth: (meastred with or wilhoul IMOIIA/B probe. $\{\mathrm{dB}$ down from an 8 div reference signal from at aerminated 50 ohm source.) DC-coupled: de to 500 kHz .
AC-coupled: approx. 2 Hz to 500 kHz . Lower limitit is approx. 0.2 Hz with $10001 \mathrm{~A} / \mathrm{B}$ probe.
Bandwldth Ilmil switch: limits bandwidh to approx. 50 kHz .

Deflection tactor

Ranges: 100 mV /div so $20 \mathrm{~V} / \mathrm{div}$ (17 positiuns) in I. 2. 5 sequence. $\pm 3 \%$ altenuitor accuracy.
Vernler: provides continuous adjustment between deflection factor seltings and extends inaximum defection factor to al least 50
\checkmark /div. Front panel light indicates when vernier is out of CAL posiiton.
Input: differential or single-ended on all ranges, selectable
Inpul coupling: selectable AC. DC, or OFF for both + and - inpuls. OIT position disconncets signal input and grounds amplifier inpul for reference.
Inpul RC: 1 megohm shunted by approx. 45 pF . constant on all ranges.
Maximum Input: $\pm 400 \mathrm{~V}$ (dc + peok ac).
Input Isolation: $\geq 80 \mathrm{~dB}$ between channels at 500 kHz with shielded conneciors.
Nolse: $<20 \mu \mathrm{~V}$. mensured tangentially at full bandwidth.

Common mode

Frequency: dc 1010 kHz ou all ranges.
Rejectlon rallo: $\geq 100 \mathrm{div}$ (100000 to l) with de-coupled input on $100 \mu \mathrm{~V} / \mathrm{div}$ range, decreasing 20 dB per decade or dellection factor $10 \geq 40 \mathrm{~dB}$ on the $200 \mathrm{mV} / \mathrm{div}$ range; CM.RR is $\geq 30 \mathrm{~dB}$ on the 500 $\mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ ranges.
Maximum signal: $\pm 10 \mathrm{~V}$ (de + peak ac) on $100 \mu \mathrm{~V} / \mathrm{div}$ to 200 $\mathrm{mV} /$ div ranges; $\pm 400 \mathrm{~V}$ (de + peak ac) on all other ranges.

Triggering

Sourea: for chansel A and B on the signal displayed. Chop is selectable liom channel A or B. All is selectable from channel A, B. or Comp (chanmels A and B swtehed).
Frequency: de to $>500 \mathrm{kHz}$ on signals causing 0.5 div or more vertical defleetion in all display mosdes excep Chop. DC. 10100 kHz in Chop.

General

Operating environment: same as 180C/D mainirame.
Weight: net. $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Accessories supplled: wo BNC to dual binima plug binding post adapters (HP ${ }^{2} / \mathrm{N}$ 1250-12(4). one Operiting and Service Manual. Recommended probes: Models 1000iA/B. IOK02A/B, 10003A passive divider prubes maintain full perfurmance of the 1806A.

Model number and name

Price
1801A Dual Channel Vertical Amplifier
Option 001: channel Boutput and XS magnifier Option 003: less probes $\$ 850$ add \$155

Option 090: 10006D probes in licu of 100040
Option 091: 10005D probes in lias of 100 kND
N/C
1807A Dual Channej Vertical Amplifice
N/C
1806A Dual Channel Verical Amplifier
$\$ 700$
$\$ 810$

1809A

1804A

Four channel display shows ease of making timing measurements of the Q outputs on a TTL decade divloer.

 sient state (race condition) occurring al count 8 of a TTL decade divider between both Q1 and Q2 (upper trace) and Q2 and Q3 (lower trace).

Description

Model 1809A. 100 MHz four channel vertical amplifier plug-in provides accurate multi-trace, $10 \mathrm{mV} /$ dis measurements in bolh digital and analog applications. Its wide bandwidth coupled with $5 \mathrm{~ns} / \mathrm{div}$ sweep specds allows high resolution ciming measurements in digital circuits. Multi-channel (iming measurements are also aided with the ability to select the altermate sweep mode or a fast chop mode with a I MHz chop rate for 2 channels or 500 kHz rate for all four channels.
A thick iilm. planac attenuator with selectable 1 megohm or 50 ohms input impedance precedes an MSI integrated circuit amplifier to attain 100 MHz bandwidth at $10 \mathrm{mV} /$ div deflection ractors. The megohm (ac or dc) inpul has only 12 pF shunt capacilance for minimal losding in probing applications. For accurate 50 ohm mensurements, a precision, docouplod, internal 50 ohminput termination may be selected with a front panel switch. The 50 obm termination maintain. low VSWR and pulse fidelity by compensaling for normal inpul capacitance which is not possible with external terminations.

The flexible erigger source selection allows timing measurements relerenced from channel A, B, C. or D or each channel urigered independently in composite mode. Any channel may be used as the rigger source whether it is displayed or nol.
Any of the four channcls may be inverted with a convenient front pancl switch. In addition, the ADD mode gives you the capability of looking at iwo pairs differentially ($\pm A \pm B$), $(\pm C \pm D)$ or $(\pm A \pm B)$, $\pm C . \pm D$ which makes measurements in balanced or differential lines easy.
Model 1804A provides four channel measurement eapability to 50 MHz with $20 \mathrm{mV} /$ div deflection factors and is paricularly useful in low speed logic applicasions. Deflection factors from $20 \mathrm{mV} / \mathrm{div} 1010$ V/div assure messurement compatibility with mosi logic levels. Trao: indentification is conveniently obtained with a pushbutton on each channel which moves the respoctive (race approximately $1 / 2$ division.

A wide selvection of trigger sources increases mtasurement versatility by allowing you to scleet the trigger mode to fit your particular application. In Chop or Altemate mode, you can trigger on any channal to sed the uime relationship with the olter threc channels. In the com-
posite mode, each channul triggers separately for direct comparison of signals in splte of time delays or for display of asynchronous signals.

1809A Specifications

Modes of operation

Channels A, B, C. or D or any combination displayed alternately on suecessive sweeps (ALT) or chopped (CHOP) with blanking during swithing; elthex channels A and B or C and D may bo algebracally added ($\pm A \pm B$) or ($\pm C \pm D$). Approximate chop rate for two channels displayed is $1 \mathrm{MHz}, 3$ channels is $667 \mathrm{kHz}, 4$ channels is 500 kHz .

Each channel (4)

Bandwidth (measured with or withoul 10014 A probe, 3 dB down from a terminated 50 ohm source.)

DC-coupled: do to 100 MHz .
AC-coupled: approx. 10 Hz to 100 MHz . Lower limil is apprax. 1 Hz with 10014 A probe.
Rise time: < 3.5 ns. Measured with or withoul 10014A probe, 10% to 90% of 6 div input step from a cerminated 50 ohm source.

Deflection factor

Ranges: from $0.01 \mathrm{~V} /$ div $105 \mathrm{~V} / \mathrm{div}$ (9 calibraled positions) in $\mathrm{I}, 2$. 5 sequencc.
Allenuator aceuracy; $\pm 2 \%$,
Vernier provides continuous adjustment between all deflection fretor ranges. Extonds maximum doflection factor to al leasi 12.5 $v /$ div.
Signal delay: inpul signals are delayed sufficiently to view leading edge of Input without advanced external trigger.
Input coupling: ac, dc, 50 ohms (dc). or ground. Ground position disconnects input connector and grounds amplifier input,

Input RC (selectable)

AC or DC: I megohm $\pm 1 \%$ shunted by approx. 12 pF .
50 ohm: 50 ohmis $\pm 2 \%$. VSWR, I. $3: 1$ at 100 MHz on all ranges.
Meximum Input
AC and DC: $\pm 300 \mathrm{~V}(\mathrm{dc}+$ peak ac) al I kHz or less: $\pm 150 \mathrm{~V}$ (dc + pesk ac) on $10 \mathrm{mV} /$ div range al $I \mathrm{kHz}$, or less.
50 ohm: 10 V rms (dc-coupled input).
Polarity: any channel may be inverted for $\pm A, \pm$ 日, $\pm C$, or $\pm D$ opcration.
Algobraic additlon $(A+B),(C+D)$
Amplifier. bandwidth and deflection factors are unchanged, uny chansel may be inveried for $(\pm A \pm B)$ or ($\pm C \pm D$) operation.
Differental Input ($A-B$) or ($C-D$) common mode: CMRR is at least 20 dB from de 1080 MHz on all ranges.

Triggering

Source: selectablc from channel A. B, C. D. or compositc (on displayed signals) in all display modes.
Frequency

Nine ease plugeir	Inluer Frequency*	Required Vertical Deflection
1820C, 1824A,	$\mathrm{dc}-50 \mathrm{MHz}$	3 div
1825A, 1840A, 1841A	de - 100 MHz	1 div
18208, 1872A	$\mathrm{dc}-50 \mathrm{Mhz}$	4is div
	dc - 100 Mhz	2 div
1820A, 1821A	Oc - 50 MHz	I div

"All display modes gacegt Chop, ilc in : ©
General
Welght: net. 3.2 kg (7 lb). Shipping, 4.5 kg (10 fb).

Operaling environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes. Acceseories aupplled: one Operating and Service Manual.

Recommended probes

Model 10014 A and 10016A will maintain 1809A bandwidth and rise lime in the high impedance (ac or dc) mode. Models 10020A and 1125A will maintain bandwidth and rise time in the 50 ohm inpul mode.

1804A Specifications

Modes ol operation

Channels A. B, C. or D or any combination displayed altermately on successive sweeps (ALT) or chopped (CHOP) with blanking during switebing. Approximate chop rate for two chatnels displayed is 500 kHz 3 channels ts 333 kHz , and 4 channels is 250 kHz .

Each channel (4)

Bandwldth: (Mcasured with or withoul 10004 D probe, 3 dB down from 8 div reference signal from a terminated 50 ohm source.)

DC-coupled: dc to 50 MHz
AC-coupled: approx. 10 Hz to 50 MHz (lower limit is approx. I Hz with 10004 D probe).
Rlse time: <7 ns (measured with or without 10004D probe, 10% so 90% of 8 div inpul step from a lerminated 50 ohm source).

Deflection factor

Ranges: from $0.02 \mathrm{~V} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$ (9 calibrated positions) in 1 . 2, 5 sequence.
Attenuator accurbcy: $\pm 3 \%$.
Vernler: provides continuous adjustment between denection factor seltings and extends muximum deflection factor to at least 25 V/div. Front pauel light indicates when vernier is out of CAL position.
Slgnal delay: input signals are delayed sufficiently to view leading edge of input pulse without advanced external trigger.
Input coupling: AC. DC. and Ground. Ground disconnects input signal und grounds amplifier input.
Inpul RC: I megohm shunted by approx. 25 pF, consiant on all ranges.
Maximum Input
DC-coupled; $\pm 350 \mathrm{~V}$ (dc + peak ac): $\pm 150 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) on 20 $\mathrm{mV} /$ div at 10 kHz or less.
AC-coupled: $\pm 400 \mathrm{Vdc}$.
Trace idenllfication: pushbution control displates respective 1 race approx. 0.5 div.

Trlggering

Source: selectable on signal from ony channel in cither Chop or Alt modi. or sutcessively from displayed signal on eath channel in Ait mode.
Frequency: de to 50 MHz on signals causing 0.5 div or more venical deflection in all display modes excep Chop. DC $10200 \mathrm{KH}_{4}$ in Chop mode.

General

Operaling environment temperaturc. $0 \quad 10 \quad 55^{\circ} \mathrm{C} \quad\left(+32^{\circ} \mathrm{F} \quad 10\right.$ $+130^{\circ} \mathrm{F}$); humidity. 1095% relative humidity at $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}^{\circ}$): athilude. 104.6 km (I 15000 fi), vibration, vibrated in threc plances for 15 min. each with 0.254 mm (0.080 in .) excursiun, 10 to 55 Hz
Weight: net. 2.3 kg (5 lb). Shipping, $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Accessorles supplied: onc Operaling and Service Manual.
Recommended probes
10004 D . 10005 D . and 10006 D passive probes maintain full performance of the 1804A.

Model number and name	Price
1809 A 100 MFz 4 Channel Amplifier	$\$ 2200$
1804 A 50 MHz 4 Channel Amplificr	$\$ 1300$

$\begin{array}{ll}\text { 1809A } 100 \mathrm{MRz} 4 \text { Channel Amplifier } & \$ 2200 \\ \text { I } 804 \text { A } 50 \mathrm{M} \mathrm{Hz} 4 \text { Channel Amplifier } & \$ 1300\end{array}$

1803A Description

Model 1803A Differentral/DC Offsel Amplifier provides many measurement capabilities in one versatile plug-in. The 1803A offers a bandwidth of 40 MHz . FET inputs for low noise and drifl. defleetion factors from $1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} /$ div, and calibrated offset for measurements with 0.5% accuracy. Conirols on this plug-in are easy to operate for quick familiarization. Interlocked defloction factor and offel sontrols prevent oflisct changes as delection factor is changed. Pushbution conirols for input coupling. ground reference offiset, and offset polarity speed measurements and reduce possible sel-up errors.
As a difierential amplifier, the common mode rejection ratio can be as high as 86 dB which assures a cicar presentation of your signal. Accurate measurements are also aided with positive and negative inpuls that provide similar load impedances to both sides of a balanced system. When used as a de offsel amplifite, the 1803A lels you expand a signal many times to see small perturbations riding on lop of the sig. nal or at any point on a large complex waveform. In the differential comparator mode of operation, de and pulse amplitude measurcments can be made with accuracies of 0.5% by using the stable, calibrated offset voltage gencrated in the 1803A.

1803A Specifications

Vertical daflection

Bendwidth: (measured with or without 10004D probe. 3 dB down from 8 div reference signal from a terminated 50 ohm source.)

DC-coupled: de to 40 MHz from $0.005 \mathrm{~V} /$ div $1020 \mathrm{~V} / \mathrm{div}$: dc 1030 MHz on $0.001 \mathrm{~V} / \mathrm{div}$ and $0.002 \mathrm{~V} /$ div or when using V_{a} range of 0 106 V or iwo most sensitive volts/div setlings for olher V_{w} ranges.
AC-coupled: lower bandwidth is approx. 2 Hz , upper bandwidth is the sume as dc-coupling. Lower bandwidih is approx. 0.2 Hz with 10004D probe.
Rlse fime: < 10 ns for deflection factors of $0.005 \mathrm{~V} /$ div to $20 \mathrm{~V} /$ div: $<12 \mathrm{~ns}$ on $0.001 \mathrm{~V} /$ div and $0.002 \mathrm{~V} /$ div, on V_{0} range of 0106 V and on the mast sensitive volts/div seltings for other V_{a} ranges. Measured with or withoul 10004 D probe; $10 \% 1090 \%$ of 8 div inpul step from terminated 50 ohm source.

Deflection lactor

Ranges: from $0.001 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (14 calibrated positions) in 1. 2,5 sequence.

Allenualor aceuracy: $\pm 3 \%$.
Vernier: provides continuous adjustment between deflection factor settings and extends maximum deflection factor to at least 50
$v /$ div. Front panel light indicates when vernier is not in CAL position.
Input coupling: AC, DC, Ground. or V_{0} for both + and - inputs. Ground disconnects signal inpul and grounds amplifier inpul.
Inpul RC: 1 megohm shunted by approx. 27 pF. constant on all ranges.

Maximum Input

V_{0} Range	Deflection Faclor	Maximum Inpul ($d c+$ poah ac)
0105 V	$0.001 \mathrm{~V} / \mathrm{div} 100.02 \mathrm{~V} / \mathrm{div}$	$\pm 15 \mathrm{~V}$
0 to 6 V	$0.05 \mathrm{~V} / \mathrm{div} 1002 \mathrm{~V} / \mathrm{div}$	$\pm 150 \mathrm{~V}$
0106 V	$0.5 \mathrm{~V} /$ div $1020 \mathrm{~V} / \mathrm{div}$	$\pm 600 \mathrm{~V}$
01060 V	$0.01 \mathrm{~V} / \mathrm{div} 100.2 \mathrm{~V} / \mathrm{div}$	$\pm 150 \mathrm{~V}$
01060 V	$0.5 \mathrm{~V} / \mathrm{div} 1020 \mathrm{~V} /$ div	$\pm 600 \mathrm{~V}$
010600 V	$0.1 \mathrm{~V} /$ div $100 \mathrm{~V} / \mathrm{div}$	$\pm 600 \mathrm{~V}$

Overload recovery

$\mathbf{6 V}$ overload: within $\pm 10 \mathrm{mV}$ of final signal value in $0.3 \mu 5$ or kss. within $\pm S \mathrm{mV}$ in $\mathrm{I} \mu \mathrm{s}$ or less, and within 1 mV in Ims or less. 60 V overload; within $\pm 100 \mathrm{mV}$ of inal signal value in $0.3 \mu \mathrm{~s}$ or Icss, withan $\pm 50 \mathrm{mV}$ in I $\mu \mathrm{s}$ or less, and within $\pm 10 \mathrm{mV}$ in I ms or less.
600 V overload: within $\pm \mathrm{I} \mathrm{V}$ of final signal value in $0.3 \mu \mathrm{~s}$ or leos, within $\pm 0.5 \mathrm{~V}$ in 1 us or less, and within $\pm 100 \mathrm{mV}$ in 1 ms or less.
Common mode rejection ratio: measured at a deflection factor or $0.001 \mathrm{~V} / \mathrm{div}$. (CMRR docreases with increasing defeetion settings.)

Frequency Range	CMRR	Common Mode input Sinewave (max $\rho \cdot \mathrm{D}$)
dc to $<100 \mathrm{MHz}$	$\geq 20000.1(\geq 85 \mathrm{~dB})$	10 V
$100 \mathrm{kHz} 10<1 \mathrm{MHz}$	$\geq 10000 \cdot 1(\geq 80 \mathrm{d8})$	10 V
I MHz to <10 MHz	$\geq \frac{5000.1}{F r e q \text { in } \mathrm{MHz}}$	$\frac{10 \mathrm{~V}}{\text { freq in } \mathrm{MHz}}$
20 MHz	$\geq 50: 1(\geq 30 \mathrm{~dB})$	1 V
60 Hz	220001 (266 dB$)^{*}$	10 V

*AC-cobiped (all olthers dc.coupled)
DC offsat

Ψ_{0} Range	Deflection Factor	Comparisar Accuracy
$010 \pm 6 \mathrm{~V}$	$0.001 \mathrm{~V} / \mathrm{div}$ to $0.02 \mathrm{~V} / \mathrm{div}$	$\pm(0.154+8 \mathrm{mV})$
	$0.05 \mathrm{~V} / \mathrm{div} 100.2 \mathrm{~V} / \mathrm{div}$	$\pm(0.75 \%+8 \mathrm{mV})$
	$0.5 \mathrm{~V} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$	± 18
	$5 \mathrm{Y} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{dov}$	土 3%
$010 \pm 60 \mathrm{~V}$	$0.01 \mathrm{~V} / \mathrm{div} 100.2 \mathrm{~V} / \mathrm{div}$	$\pm(0.4 \%$ + 8 mV$)$
	$0.5 \mathrm{~V} / \mathrm{div}$ lo $2 \mathrm{~V} / \mathrm{div}$	$\pm(0.75 \%+8$ пV)
	$5 \mathrm{~V} / \mathrm{div} 1020 \mathrm{~V} / \mathrm{div}$	土3\%
$040 \pm 600 \mathrm{~V}$	$0.1 \mathrm{~V} / \mathrm{div} 102 \mathrm{~V} / \mathrm{div}$	$\pm(0.65 \%+0.8 \mathrm{~V})$
	$5 \mathrm{~V} / \mathrm{div} 1020 \mathrm{~V} / \mathrm{div}$	$\pm 3 \%$

\mathbf{V}_{0} output. calibristed de offset voltage avallable at fromt pancl connector. continuously variable from 0 to $\pm 0.006 \mathrm{~V}, 0$ to $\pm 0.06 \mathrm{~V}, 0$ to $\pm 0.6 \mathrm{~V}$ or $010 \pm 6 \mathrm{~V}$. Accusacy of the 6 V range is $\pm 0.15 \mathrm{~S}_{\mathrm{H}}$ of reading $\pm 8 \mathrm{mV}$, when driving a resisiance of 10 mcgohms or higher.

Triggering

DC 1040 MHz on signals causing 0.5 div or more vertical denection.
General
Operating environment: same as 180C/D mainframe.
Wolght: net, 2.3 kg (5 lb). Shipping. 4.5 kg (10 lb).
Accessories aupplied: one Operating and Service Manual.
Recommended probese
Models 10004 D . 10005 D , and 10006 D passive probes maintain full performance of the 1803A.
1803A Differential OC Oftset Amplifier

1820C Specifications

Time base

Sweop

Ranges: $0.05 \mu \mathrm{~s} / \mathrm{div}$ so $1 \mathrm{~s} / \mathrm{div}$ (23 positions) in 1.2 .5 sequence. $\pm 3 \%$ accuracy with vernier in CAL position.
Vernier: continuously variable between ranges, extends slowest sweep to at Icast $2.5 \mathrm{~s} / \mathrm{div}$. Front panel light indicates when vernier is not in CAL position.
Magnifier: (mainframe) expands fastest sweep to $5 \mathrm{~ns} / \mathrm{div}$,

Sweep mode

Normal: triggered by an int, ext, or power line signal.
Aulomalic: bright haseline displayed in absence of trigper signal.
Triggering is same as Normal except low frequency limit is 40 Hz .
SIngle: in Normal, sweep occurs once with same zriggering as Normal (resel pushbution arms and lights indicator); in Auto, sweep occurs once cach time resel pushbutton is pressed.

Triggaring

Internal: refer to vertical plug-in specifications.
External: de to 50 MHz on signals 50 mV p -p or more increasing to 100 mV at 100 MHz and 150 mV at 150 MHz .
Line: power line frequency signal.
Level
Internal: al any point on the vertical waveform displayed.
External: continuously variable from +2 V to -2 V on either slope of eriger signal, from +20 V to -20 V in $\div 10$ selting-
Slope: pushbutton selection of + or - slope of trigger signal.
Coupling: front panel selection of AC. DC. HF Reject or LF Reject. AC attenuates signals below approx. 20 Hz . LF reject attenuates signals below approx. 15 kHz . HF reject attenuales signals above approx. 15 kHz .
Trigger holdoff: time between sweeps continuously variable, exceeding one full sweep on all ranges.

General

Operating onvironment: same as 180C/D mainframe.
Weight net, $1.4 \mathrm{~kg}(3 \mathrm{lb})$. Shipping. $3.2 \mathrm{~kg}(7 \mathrm{lb})$.

1821A Specifications

Main time base

Sweep

Asnges: from $0.1 \mu \mathrm{~s} /$ div to $1 \mathrm{~s} /$ div (22 positions) in $\mathrm{J}, 2.5$ sequence. $\pm 3 \%$ accuracy with vernier in cal position.
Vernler: continuously variable between all ranges; extends slowest sweep to at least $2,5 \mathrm{~s} / \mathrm{div}$.
Magnifiar: (mainframe) expands fastest sweep to 10 ns /div.

Swoep mode

Normal: riggerod by an int, ext, or power line signal.

Aulomalic: bright baseline displayed in absence of input signal. Triggering same as normal except low frequency limit is 40 Hz for iniesnal or exiernal modes.
Single: sweep occurs once with samc lriggering as normal; resel pushbution with indicator light.

Delayed time base

Delayed time base sweeps after a time delay sel by Main úme base and Delay controls.

Sweep

Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$ (18 positions) in $1.2,5 \mathrm{sc}$ quence. $\pm 3 \%$ accuracy with Vernier in cal position.
Vernler: continuously variable between all ranges, extends slowest sweep to al least 125 ms , dis.
Magnifier: (mainframe) expands fastesi sweep to 10) ns/div.

Triggering

Main and delayed time bese

Internal: refer to vertical plag-in specifications.
External: from de to 50 MHz on signals 0.5 V p -p or more, increasing 10100 MHz on signals I V p-p or more.
Line: power line frequency signal.
Level and slope: internal, at any point on the vertical waveform displayed: excernal, contúnuously variable from $+3 \vee$ to -3 V on either slope of the sync signal, from $+30 \vee 10-30 \mathrm{~V}$ in $\div 10$.
Aulomatic (delayed only): triggered at end of set time delay.
Coupling: front panel selection of AC, DC, ACF, or ACS. AC altenuates signals below approx. 20 Hz . ACF (ac-fast) aumuates signals below approx. 15 kHz . ACS (ac-slow) allenuates signals above approx. 30 kHz .
Trace intenoffication: intensifies thal part of Main time base to be expanded to full screen on Delayed time base. Rolating Delayed time base swetp switch frant Off position activates intensified mode. Front panel serewdriver adjust sels relative intensity of brightened segment.

Delay (before fiart of Delayed sweep)

Time: continuously variable from $0.1 \mu \mathrm{~s}$ to 10 s .
Accuracy: $\pm 1 \%$. Linearity, $\pm 0.2 \%$. Time jitere is $<0.005 \%$ (1 part in 20000) of maximum delay of each sep.
Trigger output: (at end of Delay time) approx. I.5 V with <50 as rise time from 1000 obm source resistance.
Mixed time baee: dual lime base in which Main time base drives frst portion of sweep and delayed time base completes sweep at up 101000 times faster, Atso operdtes in single sweep mode.

General

Operating environment: same as $180 \mathrm{C} / \mathrm{D}$ malnframes.
Wolght, ael, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. 3.6 kg (8 (b).
Model number and name Price
1821A Time Base and Delay Generator $\$ 850$
1820C Time Base \$510

1824A Description

The Model 1824A time base and sweep expander is designed for use in 180 system mainframes and provides sweep expansion up 10100 times, 5 ns sweep speeds, and ariggering to 150 MHz .

The expanded sweep feature allows deniled examination of selected portions of a display. Expansions as greal as 100 times ure available with dircel read-oul on the lime/div switch. Convenient selup is provided by a rrace intensification fealure which seloces a segment of the swece that will be expanded to full screen. The position of the expanded sweep is continuously variable over 9 divisions of the basic displayed sweep.

Operation is casy with the pushbutton controls and the automatic sweep mode which displays a bascline in absence of a trigger input signal. A trigger hold off control allows stable iriggering on complex waveforms or allows trigecring on a particular pulse in a digital word. The external trigger input impedance of I megohm allows stondard probes to be used which reduces circuit loading at trigger pick-off points. The high extemal triger inpul sensitivity of 50 mV allows 10:1 probes to be used cven with 0.5 V logic círcuits.

1825A Description

Model 1825A (ime bave and delay generalor provides sivecep speeds ranging from $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $1 \mathrm{~s} / \mathrm{div}$ in 23 positions. Delay limes are coninuously variable from 50 ns to 10 s and are accucate to $0.75 \varphi_{0}$ with exiremely low jilter of 1 pari in 50000 . Also, a calibrated mixed
swecp mode is provided. A mainframe $X 10$ magnifier increases sweepspecd capability to $5 \mathrm{~ns} /$ div with 5% accuracy.
One knob conrol makes triggering easy in main, delayed, and mixed modes. Stable, necurale lime displays are provided in maín. delayed, and mixcd modes with the highly sensitive 50 mV external trigger capuhility at 50 MHz which incteases to only 150 mV at 150 MHz . Trigger sunchronizalion is maintained when swiuching belween main, delayed, ind mixed mudes, further simplifying use.
Front panel controls are logieatly arranged for quick familiarization and easy use. Pushbutons elimmate front pancl clutter and peduce the passubility of errors. Easy-to-operatc pushbuttons establish main. delayed, and mixed modes of operation.
Trigger level controls on main and delaycd sweeps allow seleetion of the Iriggering point on the desired portion or the signal for almost every mocasurement application. Also. the $\div 10$ function provides a wide dynamic range of triggering in both external and internal modes of operation.

External trigger sensitivity of 50 mV on both main and delayed sweeps allows a $10: 1$ divider probe to be used io reduce circuir loading at frigger pick-off points and reduces the possibility of circuit matfunction caused by the measuring instrument.

Double exposure shows 1824A intensifled main sweep with locatlon ol intensifled portion (top trace). Botiom (race shows expanded sweep.

Multiple exposure shows four modes of operetion lor 1825A, whith time relationship maintained in all modes.

1824A Specifications

Time basa

Sweep

Ranges: $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $\mathrm{I} / \mathrm{div}$ (23 callibrated positions) in 1.2 .5 scquence $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernler: continuously variable between ranges, extends slowes! sweep to at least $2.5 \mathrm{~s} /$ div. Front panel light indicates when vernier is not in CA.L position.
Magniller: (on mainframe) expands fastest sweep to $5 \mathrm{~ns} / \mathrm{div}$ with 5% accuracy (includes $\pm 3 \%$ accuracy of lime base).
Expanded sweep
Expander, direct reading expander conirol provides up to 100 times sweep expansion, accuracy $\pm 3 \%$. Expand position control selects pan of basic time scale to be expanded, continuously variable from <0.5 div of sweep start to >8.5 div of basic time scalc.
Trace intensification: front panel switch selects intensified mode for use in establishing start of expanded display. A front panel adjustment sets relative intensity of brightened segment.

Sweep mode

Normal: sweep is (riggered by an internal, externa), or power line signal.
Automatic: bright baseline displayed in absence of inpui signal. Triggering is same as Normal except low frequency limit is 40 Hz .
Single: in Normal, sweep occurs with same triggering as Normal: reset pushbutton arms sweep and lights indicator: in Auto, sweep occurs once each time reset pushbution is pressed.

Triggering

Internal: refer to vertical amplifier plug-in specifications.
External: de to 50 MHz on signals of $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more, increasing to 100 mV p-p at 100 MHz and 150 mV at 150 MHz .
Llne: power line frequency signal.
Level
Inlernal: at any point on the vertical waveform displayed.
External: continuously variable from +2 V to -2 V on either slope of trigger signal, from +20 V to -20 V in $\div 10$ setting.
Slope: pushbutton selection of either positive or negative slope of trigger signal.
Goupling: front panel selection of AC, DC. HF Reject, or LF Reject.
AC: allenuates signals below approx. 20 Hz .
LF relect: attenuates signals below approx. 15 kHz .
HF reject attenuates signals above approx. 15 kHz .
Trigger holdoft: time between sweeps continuously variable. Exceeds one full sweep on all ranges.

General

Operating environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Wolght net, $1.4 \mathrm{~kg}(3 \mathrm{lb})$. Shipping, $2.7 \mathrm{~kg}(6 \mathrm{lb})$.
Accessories supplied: one Operaling and Service Manual.

1825A Specifications

Main time base
Sweep
Ranger: $0.0 \leqq \mu \mathrm{~s} / \mathrm{div} 101 \mathrm{~s} / \mathrm{div}$ (23 positions) in 1, 2,5 sequence. $\pm 3^{3}$ nacuracy with vernier in calibrated position.
Vernier: continteusly variable between ranges, extends slowest sweep to at least $2.5 \mathrm{~s} /$ div. Froni panel light indicates when vernier is not in CAL position.
Magnifier: (on mainfrome) expands fastem sweep to $5 \mathrm{~ns} / \mathrm{div}$, accuracy $\pm 5^{\circ} \mathrm{m}$.

Sweep mode

Normal: sweep is irlggered by an internal, external, or power line signal.
Aulomatle; bright baseline displayed in absence of trigger signal. Triggering is same as Normal except low frequency limit is 40 Hz .
Single: in Normal, sweep occurs once with same triggering as Nor-
mal; resel pushbution arms sweep and lights indicator; in Auto. sweep occurs once each time resel pushbutton is pressed.

Delayed time base

Delayed time base sweeps after a time delay set by Main time base and Delay controls. Delayed time base is triggered on first trigger pulse atter set delay or automatically triggers after set delay when delayed level control is in detent position.

Sweep

Ranges: $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{div}$ (18 positions') in $1,2,5 \mathrm{se}$ quence. $\pm 3 \%$ accuracy.
Magnilier: (on mainframe) expands fastest sweep $105 \mathrm{~ns} / \mathrm{div}$, accuracy $\pm 5 \%$.
Triggering
Internal: refer to vertical amplifier plug-in specifications.
External: de to 50 MHz on signals $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more increasing to $100 \mathrm{miV} \mathrm{p}-\mathrm{p}$ at 100 MHz and 150 mV p-p at 150 MHz .
Line: power line frequency signuil. (Main oniy.)
Level
Internat: at any point on the vertical waveform displayed.
External: continuously variable from +2 V to -2 V on either slope of triger signal, from +20 V to -20 V in $\div 10$ setting.
Slope: pushbutton selects either positive or negative slope of trigger signal.
Coupling: from panel selection of AC, DC, HF Reject, or LF Reject.

AC: attentates signals below approx. 20 Hz .
LF reject attenuates signals below approx. 15 kHz .
HF reject: attenuates signals above approx. is kHz
Trigger holdoft: time between sweeps continuously variable, exceeding one full sweep on all ranges. (Main only.)
Delay (berore start of delayed sweep)
Time: continuously variable from 50 ns to 10 s .
Accuracy: $\pm 0.75 \%$ of differential delay ± 2 minor divisions of delay dial.
Time fitier: 0.002\% () part in 50000) of maximum delay on esch range.
Trace intensification
In Main sweep mode, intensifies that parn of main time base to be expanded to full screen in delayed time base mode. Rotating lime base switch from OFF position activates intensified mode.

Calibrated mixed sweep

Combines Main and Delayed sweeps into one display. Sweep is started by the Main time base and is completed by the faster Delayed time base. Delayed sweep start is aligned with start of intensified marker.
General
Operating enviromment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Welght: nel, $1.8 \mathrm{~kg}\{4 \mathrm{lb}$). Shipping. $2.7 \mathrm{~kg}(6 \mathrm{lb})$.
Accescories supplied: one Operating and Service Manual.

Model number and name

Price
1824A Time Base and Sweep Expander $\$ 730$
1825A Time Base and Delay Generator
$\$ 850$

1430 C

1432A

1811A Description

Model I8IIA Sampling plug.in offers 4 or 18 GHz dual-channed, foedthrough sampling measurements. The logical afrangentent of fromt pancl controls reducer familiarization time and measurenent errors: and measurements in operating systems are possible with the fieedhrough remote sampling heads. This double-size plug-in operates in all 180 series mainframes with a selection of scandard CRT's $(12.7 \mathrm{~cm}, 5 \mathrm{in}$.$) . large screen. and variable persistence and storage.$ With the two remote sampling heads, you match a simpling sysiem to your measurement problem as minimum cosi.

The bridged method of extracling a signal is used which exiracts only a small amounl of the wavelorm rather than terminating the sigand in the measuring system. By using remote sampling heads conneeted in series with the system under test, the signal displayed is the signal that is passed through the sampler to the nexi stage of a system. Any problems are then displayed as they exis? in the system. Terminated measurements can also be made with the supplied 50 ohm loads.

The two sampling heads avaibable are the Model I432A with 90 ps rise time (4 GHz) and the 1430 C with a 20 ps rise ime (18 GHz). These remote samplers are connected to the seope by a 1.5 m (5 ft.) cable which allows the head to be placed at the measurement point, eliminating high irequency losses due io interconnecting cables.

18 GHz criggering with a displayed jiter of 10 ps or less is provided by a 1104A trigger countdown, I 106B (unnel diode, and 11098 high. pass lilter. For viewing a sienal wirhout using a delay line, a prestrigger ourpul is available as a signal source which starts the sweep prior to display of the vertical signal.

1811A Specifications

Modes of operation

Channel A: channel B; channels A and B displayed on alternate samples (ALT): channel A plus channel B (algebraic addition); and channel A versus channel B.

Vertical channels

Dellectlon faclor

Ranges: $2 \mathrm{mV} /$ div to $200 \mathrm{mV} / \mathrm{div}$ (6 calibratcd posstions) in 1.2 .5 sequence.
Accuracy: $\pm 3 \%$.
Vernler: provides continuous adjustment between all defluction factor ranges; extends minimum deflection factor to $<1 \mathrm{mV} / \mathrm{div}$.
Front panel light indicates when vermicr is not in CAL position.
Polarlty: + up or - up.
Posillonling range: $> \pm i v$ on all deflecition factors.
A + B operatlon: bandwidth and delection faclors arte unchanged: either channel may be invertad for $\pm A \pm B$ operation.

Time base

Panges

Normal: I ns/div to $5 \mu \mathrm{~s} / \mathrm{div}$ (12 calibrated positions) in a $1,2,5$ se queno: ± 38 accuracy with vernier in calibrated position.
Expanded: direct resding expansion up 10×100 in seven calibrated steps on all normal time scales, extends the range to 10 $\mathrm{ps} /$ div. Accuracy is $\pm 4 \%$ ($1 \mathrm{ps} / \mathrm{div} . \pm 10 \%$ using the mainframc magnifier).
Vernier: continuously variable beiween ranges; increases rastest siveep to <4 ps/div.

Trlggering

Auto: riggers automaticaliy on most signals whith a minimum of level control adjusiment. A baseline is displayed in the absence of an input signal.
Normal: trigger level control may be adjusted to trigger on a wide variety of signals
CW: 80 mV p-p for sine wave signals from I kHz to I GHz for jitter of <10 ps plus I筐 of 1 period of trigger signal. Uscíul displays can be obtained with trigger signals as low as 5 mV . Triggering may be extunded to 18 GHz with HP Model I l04A/il06B irigger countdown.
\pm Slope: iruggers on $50 \mathrm{mV} / \mathrm{peak}, 3 \mathrm{~ns}$ wide pulses. for <30 ps jitter. Level and slope: continuously variable from $+800 \mathrm{mV} 10-800 \mathrm{mV}$ on cither slope of sync signal.
Coupling: ac coupling atenuates signals below approx. 1 kHz
Variable holdott variable over at leasi a $3: 1$ range in all swecp modes.
Marker posiflon: iniensificd marker segment indicates point about which the swoop is to be expanded (automavically dimmed with increasing persistence in 181 and 184 variable persistence/slorage main-

frames).

Scan

Inlernal: dot density, continuously variable from <100 to >1000 dots full screven or from approx $500^{\circ} 10>2000$ dols in filtered made.
Manual: scan is positioned manually by front panel conirol.
Trlgger output: I ns. 1.5 V into 50 ohms .

General

Probe power: supplies power to operate Hewletr-Packard active probe.

Recorder oulputs

Vertical: an uncalibrace I V vertical output signal from each charinel is provided al the rear panel of 180 series mainframes.
Horlzontal; an uncalibrated 0.75 V amplitude signal is provided at the rear penel of $180,181,182$. or 184 mainframes.
Oparating environment: temperaturt, 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} 10\right.$ $\left.+120^{\circ} \mathrm{F}\right)$; humidity, to 95% relative humidity a1 $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$; altitude, to 4.6 km (15000 n): vibration, vibrated in three planes for 15 min. each with 0.254 mm (0.010 in .) excursion, 10 to 55 Hz .
Welght: net, 2.3 kg (5 lb). Shipping, 5 kg (1 I l).
Accessories suppled: one Operaling and Scrvice Manual.

1430C Specifications

Sampling head
Rise time: approx. 20 ps (<28 ps observed with II05A/1105B puise
generator and 909A. Option 012, 50 ohm load).
Bandwidth: de to $>18 \mathrm{GHz}$.
Overahoot: <7.5\%.
Nolse: approx. 10 mV observed noise on CRT exeluding 10% ol randon dots. Noise docreases 10 approx. 2.5 mV on the automatically fillered $2 \mathrm{mV} /$ div and $5 \mathrm{mV} /$ div ranges and all other ranges when display switch (on I8IIA) is set to fillerted position.
Dynamic range: I $\vee \mathrm{p}-\mathrm{p}$.
Low frequency dlatorlion: < $\pm 5 \%$.
Maximum safe input: ± 3 volts.
Input characteristica
Mechanical: type N fernale connectors on input and output ports.
Elecirical: 50 ohm feedthrough, de-coupled. Reflection from sampler is approx. 10%, measured with a 40 ps TDR system. Pulses emitued from sumpler input are approx. 10 mV amplitude and 5 ns duration.
Time diMerence between channels: <5 ps.
Isolatlon between channels: $\geq 40 \mathrm{~dB}$ over sampler bandwidth.
Connecting cable length: $1.5 \mathrm{~m}(5 \mathrm{ft})$.
General
Weight: ncl. 1.8 kg (4 lb). Shipping. $4.1 \mathrm{~kg}(9 \mathrm{lb})$,
Accessories supplied; two 50 ohm loads with lype N male conncetors (HP Mode) 909A Option 012), one 1.5 m (5 N) sampling head co 1811/ inicrconnecting cable (HP P/N 5060-0540), and one Operating and Service Manual.

1432A Specifications

Sampling head
Rise ilme: <90 ps.
Bandwldth: de is 4 GHz .

Overshoot: $< \pm \$ \%$.

Nolee: approx. 8 mV observed noise on CRT exeluding 10% of random dots. Noise decreases to approx. 2 mV on the automatically filtered $2 \mathrm{mV} / \mathrm{div}$ and $5 \mathrm{mV} /$ div ranges and all olher ranges when display switch (on 1811A) is set 10 filtered position.
Dynamic range: i V p-p.
Low frequency dietortion: < 3%.
Maximum aríe lnpul: $\pm 5 \mathrm{~V}$.
Input characteristics
Mechanical: GR Type 874 connectors on inpul and output ports.
Electrlcal: 50 ohm feedthrough. dc-coupled. Reflection from sampler is approx. 15\% measured with a 90 ps TDR system. Pulses emitted irom sampler input are approx. 50 mV in amplitude and 10 ns wide.
Time difference between channels: <25 ps.
Isolation between ehannele: $\geq 40 \mathrm{~dB}$ over sampler bandwidih.
Connecting cable lengits: 1.5 m (5 ft).
General
Welght: rut, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. $4.5 \mathrm{~kg}(10 \mathrm{lb})$.
Accessoribs supplled: two 50 ohm louds with GR Type 874 con. neclors (HP P/N 0950-0090), one 1.5 m (5 R) sumpling head to 1811A interconnecting cable (HP P/N 5060-0540), and one Operating and Service Manual.

1104A/1106B/1108A Specifications

1104A/1106B 18 GHz trigger countdown
1104A/1108A 10 GHz trigger countdown
Input
Frequency range: (1106 B) 1 GHz to 18 GHz (1108 A) 1 GHz to 10 GHz .
Sensluvity: (IIO6B) signals 100 mV or larger up to 12.4 GHz , produce $<20 \mathrm{ps}$ of jitter (200 mV required to 18 GHz). (1108 A) signals up 1050 mV or larger up to 10 GHz produce $<20 \mathrm{ps}$ jitier.
Maximum eale Inpul: $\pm 1 \mathrm{~V}$.
Inpul impedance: dc resistance approx 50 ohms. Reflecion from
inpul connector is $<10 \%$ using a 40 ps TDR system.
Slgnal appearing at input connector: approx. 250 mV .
Output
Center frequency: gpprox. 100 MHz
Amplltude: typically 150 mV .

Connectors

1104A: input, lype N male; trigger output, BNC female.
1106B: input, type N male; oulput, type N fenale.
1106B Opt 001: input, APC-7, output, type N remale.
1108A: input. GR Type 874: output Iype N female.
Welght
1104A: net, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping, 1.8 kg (4 lb).
1108 B or 1108 A : net, $0.5 \mathrm{~kg}(1 \mathrm{lb})$. Shipping. $0.9 \mathrm{~kg}(2 \mathrm{lb})$.
-Components required for sampling systems

1811/ Sampling Plug-In	
18 GHz Sampling 1430 Campling Head (Tyge H Feimale inpul/outpul connectors)	4 GHz Sampling 1432A Sampling Head (GR Tyge 874 input/oulput connectors)
Trieger Accessorics $<1 \mathrm{GHz}$ Cable 11500 A Type N Male to Type N Mare 1.8 m (6 ft), Adapter 1250-0077 Type N Fernale to BNC Male 1 GHz to SO GHz 1104A Triger Counidown. 1108 A Iunnel Diede. Adapter 1250.0847 GR Type 874 to Type N Male. llo98 High Pass Filler. 10503A Mato BNC lo Male BNC Trigger Cable 1.2 m (4 f$)$. 1 GHz to 18 GHz 1104A Tigger Counidown. 11068 Tunnel Divde. 11098 High Pass Filler. 10503A Male BNC to Male BNC Trigger Cable 1.2 m (4 fi).	Trizgar Accessories <1 GHz. Adapter $1250 \cdot 1211$ GR Tyde 87410 Tyde N Female. Cable 11500A Yyoe N Male to Type N Male 1.8 m (6 fl), Adapter 1250-0077 Iype N Female to BNC Male. 16 Hz to 30 GHz 1104A Trigser Countdown. 1108A Tunmel Diode. Adapter 1250.0847 GR Type 874 to Iype N Male. 11098 High Pass Filler. Adapter 1250.0240 GR Tyde 874 io rype N female. 10503A Male BNC to Male BNC Trigger Cable
TDR with 1430C Sampling Head $1105 A$ Pulse Generstor. llosb Tunnel Diode 20 ps I, 10503A Male BNC to Male BNC Triger Cable 12 m (4it).	TDA with 1432A Sampling Head 1105A Pulse Ceneralos. 1108A Tunnel Diode 60 ps 1 . 10503 A .2 m (4 fit) Male SNC to Male BNC Trigger Cable.
1105 A Pulse Generator. H08A Tunnel Diade 60 os I , Adaplef 1250-0847 GR fype 874 to Type N Male. 10503 A 1.2 m (4 fit) Male BNC to Male ONC Trigree Cable.	

- Use any 1 IP0 series maintrame.

Model number and name Price
1811A Sampler $\$ 2080$
1430C Sampling Head. 18 GHz $\$ 3250$
1432A Sampling Head. 4 GHz $\$ 1400$
1104A Triger Counidown
. $\$ 270$
11068 (Type N (
$\$ 650$
I 1068 OpL. 0:0. (APC-7 connector) $\$ 700$
1108A (GR-874 Connector)
$\$ 270$
Recommended Accessory: HP Model I I09B High Pass
Filer

1810A Description

The Model I810A 1 GHz Sampline plug-in is a dual-channel, dou-ble-size plag-in that gives you the casicst sampling nieasurements available today. Simplified controls look and behave like those on a real tirne ancilloscope and also give you $2 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{mV} / \mathrm{div}$ defloction factors, frequency response to 1 GHz , internal triggering to 1 GH 2 , and sweep times from $50 \mu \mathrm{~s} /$ div $100.1 \mathrm{~ns} / \mathrm{div}$ (with sweep expansion). This sampling plug-in now allows you to muke nanosecond rise time measurements of repetilive signals with minimum Tamiliarization time.

1810A Speclfications

Modes of operation
Channel A.; channel B; channcls A and B displayed on alternate samples: (ALT): channcl A plus channel B (algebraic aưdition): and channel A versus channel B

Vertical channels

Bandwldth: de 10) GHz .
Rlse time: < 350 ps .
Pulse response: $\leq \pm 5 c_{c}$ or 3 mV p-p (overshoot and perlurbations)
in normal display mode.

Daflection tactor

Ranges: 2 inv /div to $200 \mathrm{mV} / \mathrm{div}$ (7 calibrated positions) in 1, 2. 5 seguence. $\pm 3 \%$ accuracy.
Vernier: provides continuous adjustment belween all deflection
factor ranges; extends minimum deflection factor to <1 mV/div.
Front panal light indicates when vernier is nol in CAL position.
Potarlty: + up or - up.
Dynamic range: $>1.6 \mathrm{~V}$.
Positioning range: $>+\mathrm{I} V$ on all deflection factori:
Input R: 50 ohms. $\pm 2 \%$.
Maximum Input: $\pm 5 \mathrm{~V}$ ($\ddagger \varepsilon+$ peak ac).
SWR: <l. 10300 MHz , increasing in <l 1.5 al 1 GHz .
Reflectlon coetflcient: $<6 \%$, measured with HP Model IUISA TDR.

Random nolse

Normal: <2 mV observed fron center 80\% of dots.
Filtered: reduces roise at least 210 l .
fglation between channels: $\geq 40 \mathrm{~dB}$ with 350 ps rise lime input.
Time alfference between channels: $<100 \mathrm{ps}$.
A + B operation: bandwidth and deflection factors are unchanged; cibher channel may be inverted for $\pm A \pm B$ operation.

Time base

Ranges

Normal: $10 \mathrm{nis} /$ div to $50 \mu \mathrm{~s} / \mathrm{div}$ (12 ealibrated posifions) in a 1.2 .5 sequence. $\pm 3^{\text {e, }}$ accuracy with vernior in calibrated position.
Expandad: direct reading expansion up 10 X 100 in seven cali. brated steps on all normal time scides. extends the range 10100 $\mathrm{ps} / \mathrm{din}$. Accuracy is $\pm 4 \%$ ($10 \mathrm{ps} / \mathrm{div}, \pm 10 \%$ using the mainframe magnifier).
Vernler: conlinuously variable between ranges: increases fastest sweep to $<40 \mathrm{ps}$ jdiv. Front panel light indicater when vernier is nol in CAL position.

Triggering

Mode

Normal: trigger level contral can be adjusted to trigger on a wide variety of signals.
Automatle: trigeers automatically on most signals with a minimum of adjusiment of the level central. \wedge bascline is displayed in the absence of an input signal.
internal
Source: selectable; channe) A (rigeters channel A or aliemate: channel 8 triggers channel B, alternate, $A+B$, or A vs B.
SIne wave: 30 mV p.p for signals from $1 \mathrm{kH} \angle 10200 \mathrm{MHz}, 100 \mathrm{mV}$ p-p for signals from 200 MHz io $1 \mathrm{GH} z$ for jutuce of $<30 \mathrm{ps}$ plus 1% of 1 period. Useful triggering can be obtained with 5 mV signals.
Pulge: 30 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter. Useful iriggering can be oblained with 5 mV signals.

Exlernal

SIne wave: 30 mV p-p for signals from 1 kHz to CH f for jiticr of <30 ps plus 1 te of 1 persod. Useful triggering can be oblained with 5 mV signals.
Pulse: 30 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter. Uscful triggering can be obtained wilh 5 mV signals
Either internal or external
Auto: 50 mV p-p for CW signals from 10 kHz to 200 MHz for <30 ps jitter plus 2\% of I period (may be used to 1 GHz with increased jilter). Pulse triggering requires 50 mV pcak, 3 ns wide pulnce for <30 ps jiticr.
Level and slope: level control minimizes jitter and is variable over 4800 mV range on cilher slope of sync signall.
Coupling: uc coupling attenuates signals tetow approx. I kHz .
Varlable holdoft: variable over all lasi á 3:1 range in all kivocp modes.
Marker postlon: intensified marker segment indicates point about which the sweep is to be expanded (autonatically dimmed with increasing persistence in 181 and 184 mainframes).

Scan

Internal: dol densicy. continuously vartable from <100 to >1000 dots full scecen or from approx. 500 to 2010 dats in filtered mode.
Manual: scan is positioned manually by front pancl control.

General

Probe power: supplies power 10 operate two HP active probes.
Recorder outputs
Verlical: an unculibrated I V verlical oulpul from each channel is provided at the rear pancl of 180 system mainframes.
Horlzontal: an uncalibrated 0.75 V amplitude signal is provided at the rear panel of $180,181,182$. and 184 mainirames.
Operaling environment: same as $180 \mathrm{C} / 0$ mainframes.
Walght: nel, 3.2 kg (7 lb). Shipping, 5 kg (II Ib).
Accessorles suppliad: one Operating and Service Manual.
Model 1810A 1 GHz Sampling

1818A Description

The I81SA Time Domain Reflectometer plug-in with a 180 series mainframe gives you a completely integrated wide band sysiem for testing of transmission lines, strip línes, cables, conncelors. and many olher devices in high frequeicy systems. The easy-io-use controls provide accurate direct distance calibrated displays of up tu 300 meters or 1000 feer with diefectric materials from $e=1.0$ (air) $10<=4.0$. This allows you to quickly determine the magnitude and nature of each resistive or reactive discontinuity in coaxial components such as allenuators, cables. connectors, and dehay tínes in microwave or pulse circuits. You can also locate and identily faults such as shors, opens. bose connectors, defective tap offs, splices, and mismarches with measurement resolution as close as 2.54 cm .

A convenient Time/Distance switch allows you to select direct reading of neec/div, fi/div, or meter/div. The Time mode provides a re-

The 1818A provides a system protile which includes quantitative and qualitative Informatlon about a transmission cable's Impedance loss. rise time, electrical lengit, and location al discontinulties in a singla messurement.

Mection coufficient ρ versus hanoseconds operation which gives a reading of the time a step takes to reach a diseontinuity and return to the sampler. In the meters or feet per division mode, a display of ρ versus distance is provided with round trip time automatically taken into accoum for derect reading of distance. The accuracy in the distance mode can be set by selecting Air or Var and adjusting the variable dielectric for proper display calibration.

Model 1818A maty alsu be used in a ransmission mode to uetermine the transmission quality of a passive element. In this mode of opcration, the 30 ps step generator signal source is applied tis the device under text and the output is detected by the plug-in sampling sections This allows a waveform to be eximined for rise time, delay, and pulse top aberrations introduced by the circuit under test.

1818A Specifications

System (In reflectometer coniiguration)
Alse time: < 170 ps .
Overshoot: $\leq 5 \%$ overshoot and ringing (down $101 / 2 \%$ in 3 ns).
Internal reflections: < 10% (dues not limit resolution).
Refloctometer eensltivity: rellection cocflicients as small as 0.001 can be observed.
Signal chennel
Rise time: approx. ISO ps.
Relection coefficient: $0.5 / \mathrm{div}$ to $0.005 /$ div in a 1.2 , 5 sequence.
Inpul: 50 ohms, feedibrough Iype.
Noise and Internal plekup, peak: 0.1% of step (lerminated in 50 ohms).
Dynamic range: ± 0.5 volt.
External signal level: up to IV peak may be safely applied to the Sampler oulpul connector.
Attenuator accuracy: $\pm 3 \%$,
Step generator
Amplituds: approx. 0.25 V into 50 olims (0.5 V into open circuri).
Rise time: appiox. 50 ps .
Output Impedance: 50 ohms ± 1 ohm (dc-coupled).
Droop: < 1% in I $\mu \mathrm{s}$.

Distance/time

Disfance scalo: 3 meiers/div and 30 melers/div; $10 \mathrm{ll} / \mathrm{div}$ and 100 R/div. Accuracy, $\pm 3 \%$.
Variable delectric: $\epsilon=1$ to $\varepsilon=4$.
Tlme acale: $10 \mathrm{~ns} /$ div and $100 \mathrm{~ns} /$ div. Accuracy. $\pm 3 \mathrm{~m}$.
Magntficallon: XI 10×100 in a $1,2,5$ sequence provides time seales down $100.1 \mathrm{~m} 5 / \mathrm{div}$ and distance scales 100.03 melers/div or 0.1 fi div. Accuracy of the basic sweep is maintained at all magnifier settings.
Delay control: 0 to 10 div of unmagnificd sweep. Accuracy. ± 35.
Jiftar: < 20 ps .

General

Recorder outputs
Vertical: approx. I V verlical oulput signal is provided al the rear panel of 180 series mainframes.
Horizontal: approx. 1 Vhorizombal output signal is providod al the rear panel of a $180,181,182$, or 184 mainframe.
Operating enviranment: temperature, $010+35^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$ with small increase in system rise time); lumidity, to 95% relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right.$): altitude, $104.6 \mathrm{~km}(15000 \mathrm{fl})$: vibration, vibrated in three planes for 15 atin. each with 0.254 mm (0.010 in .) excursion. 10 to 55 Hz .
Welght: net, 2.3 kg (5 lb). Shipping, 5 kg (1) lb).
Accessorles suppiled: type N connector assembly. One 30 ohm load with Type N male connector. One Operating and Service Manual.

1818A Time Domain Reflectometer

1815A

1817A

1816A

1815A/B Description

Models 1815 A and 1815 B provide calibraled 35 ps system rise lime. time domain rellectometry and 12.4 GHz (28 ps rise lime) sampling capability with remote fecdithough sampling heads for exiremcly accurate measurements. This TDR systeni can lucalle impedance discontinuitits in transmission systerns up to 10000 metcrs or feel fong and also allows measurement of discont n nuitics spaced only a few millimesers apart. As a single channel, general purpose sampling oscilloscope. you have deflection factors $102 \mathrm{mV} / \mathrm{div}$ and sucep times to 10 ps/div.

To kecp signal losses in the interconnecting cables as low as possible. the sampling head is separatc from the plug-sn so that it can be placed adjacent to the device or in the system beíng tested. Two sampling heads are available and both use fecdihrough sampling for best resolution and accuracy. Model 1817 A sampler has a risc lime of 28 ps. equivalent to a CW bandwidth of 12.4 GH . and 1816 A has a risie lime of 90 ps wilh a CW bandwidih of 4 GH .

Two tunnel diode pulse generator mounts are available to match the remole nampling heads. The Model 1106 B Opl 001 generaror has a step rise time of 20 ps which when used with the 1817A sampler gives a TDR system rise lime of 35 ps . The Model 1108 A generator's rise time is 60 ps for a lotal 110 ps system rise time with an 1816 A . The separate lunnel diode mounts also allow a device to be inserted between the pulse source and sampler when you require transmission measurements.

The 1815A or B plug-in is designed for operator convenienc: with easy-lo-use frome panel controls that do nol reduce measurement versatility. A FUNCTION switch allows seloction of a vertical display calibrated in uniss of p (seflection coefficient) for difect reading of reNeciion when used as a TDR, or in volts when used as a sampler. In. dicator lighes cearly show whether verlical calibention in $\rho /$ div or wolts/div is selected by the FUNCTION switch.

Applications

Analysis of connectors

Departures from 50 ohms in a connector or terminalion can cause a large reflection in a pulse system or high VSWR in a CW sysiem. TDR can rapidly show where mismatches are located, how had a rellection
is, and if the mismatches are capacitive. or inductive.

Cable impedance

TDR can also be used to delermine impedunce variations in long sections of coaxial cables. This allows a quick check of irregularities which resule from vibration in the braidine process of lightness of the insulating jackel. These impedance measurements are capable of detecling a variation of $1 / 2$ ohm which corresponds to a one-percent im. pedance check in 50 ahm cablc.

Cable testing

Faults in a high frequency transmission system can cause substantial loss of power, severely distort a Iramemilied signal, or in digital systems cause a complete loss of some informstion. The ime domain reflectometer will detect and display significiant changes in the charac. teristic impedance of a transmission system. Since dime can be ciasily; converted into distance, the exact location of the discontinuity will be displayed. This allows you 10 locate deleriorated dielociric break. downs. sections of cable or connectors saturaled with water, corroded conlacts, conductors with opens or shorts, cul or demaged cables, or even a moisture seal clamp that is too light.

1815A/B Specifications

Unless indicated otherwise. TDR and sampling performance speci $\sqrt{1}$ cations are the same. Where applicable, TDR specification is given firsi. followed by Sampler specification in parenthencs. Model 1815 A is calibrated in feet and Model I815B is calibrated in meters.

Verlical

Seale: reflection cocmicient ρ (volts) from $0.005 /$ div to $0.5 /$ div in 7 calibrated ranges: I. 2.5 sequence.
Accuracy: $\pm 340 ;$ TDR only. $\pm 5 \%$ on $0.01 / \mathrm{div}$ and $0.005 / \mathrm{div}$ in sig. nal average mode.
Vernler: provides continuous adjustment between ranges: extends scale to $>0.002 / \mathrm{div}$.
Slgnal everage: reduces noise and jilter approx. 2il.

Horizontal

Scale: provides up 10 a 10000 meter or fool display window with round-trip lime or disiance (time) in four calibrated decade ranges of I/div, $10 / \mathrm{div}$. $100 / \mathrm{div}$, and $1000 /$ div. Concentric expand conirol provides direce read-out in 28 calibraled sleps in 1.2 .5 sequence from $0.01 \mathrm{~ns} /$ div $101000 \mathrm{~ns} /$ div or írom 0.01 meter or fool/div 101000 mc lers or foel/div.
Accuracy: lirnc. $\pm 3 \%$: distance (TDR only) $\pm 3 \%$, \pm variătions in propagation velocity.
Marker poaltion: indicator. calibralted in divisions. provides direct read-oul of round-irip time or distance (lime), number of divisions x decade range in unals/div. Front panel light indicates when vernier is not in CAL position.
Marker zero: ten-turn control provides vapiable reference for marker posilion dial, allows direct read-out of round-(rip or dislance (time) belween two or more displayed events.
Zero finder: permils inslant location of marker reference.
Dielectric, TDR only: calibrated for air. $t=I$ and for polyethylene, $=2.25$. Also provides sellings for diclectric constants $e=110<=\mathrm{ap}-$ prox. 4.
Triggering, asmpling only
Pulses: < 50 mV for pulsus 5 ns or wider for jiller < 20 ps .
CW: signals from 500 kHz 10500 MHz require at leasi 80 mV for jitter $<2 \%$ of signal period plus 10 ps: usible to 1 GHz . CW iriggering may be exiended to 18 GHz with HP models I $104 \mathrm{~A} / \mathrm{I} 106 \mathrm{~B}$ irigger counidown.

Aecorder oulputs

Apprex． $100 \mathrm{mV} / \mathrm{div}$ ：verical and horizonual outpuis at BNC connex－ lors on rear pancl of mainframe．

Display modes

Repetitive scan，normal or detail：single sean：manual scan：record．

General

Operating environment temperature． 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+130^{\circ} \mathrm{F}\right)$ ：humidity，to 95% relative humidity al $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ ；ath－ tude．to 4.6 km （ 15000 ft ）：vibration，vibrated in three planes for 15 min．cach with 0.254 mm （ 0.010 in ．）excursion， 101055 Hz ．
Weight nel， 2.3 kg （ 5 lb ）．Shipping， 4.5 kg （ 10 lb ）．

1817A（28 ps Tr）／1816A（90 ps Tr）samplers specifications

Untesis indieated oherwise，Model 1817A and Model I8IGA specifi－ cations gre the same．Where applicable，Mode］IA17A specilication used with Madel 1106 Opt 001 lunnel diode mount is given first，fol－ lowed by Model 1816A apecificalion（in parentheses）used witit Model 1108A tunnel diode mounl
TOR syslem（requires 1106日 Opt 001 or 1108A）
System rise time：＜35 ps（110 ps）incident as measured with Model 1106B Op（ 001（Model I 108A）．
Overshoot：＜$\pm 5 \%$ ．
Interral relleclions：＜10\％with 45 ps（145 ps）TDR；usc refleced pulse from shorted outpul．
Jiter：＜ 15 ps；with signal averaging，typically 5 ps．Internal pickup：p ≤ 0.01 ．
Nolse：measured tangentially as a percentage of the incident pulse when terminated in 50 ohms and operated in signal averaging mode． $<1 \%(0.5 \%$ ）on $0.005 / \mathrm{div}$ 10 $0.02 / \mathrm{div}$ ； 3 m （ 1 公）on $0.05 / \mathrm{div}$ to $0.5 /$ div．
Low frequency distortion：$\leq \pm 3 \%$ ．

Maximum ssfe input：I vol？．

Tunnel dlode mount：dirocl connection of 1106日 Opt（0）1 to 1817A or 1108A to 1816A．
Sampler system
Rlee time：＜28 ps（90 ps）．
Input 50 ohm feedthrough．
Dynamic range：I V p－p．
Maximum eafe input： 3 volts $\{5$ volts\}
Low frequency dislorlion：$\leq \pm 3^{3 / 2}$ ．
Nolse
Normal：$<8 \mathrm{mV}(3 \mathrm{mV})$ langential noise on $0.01 \mathrm{~V} /$ div $100.5 \mathrm{~V} / \mathrm{div}$ ． Noise decreases autematically on $0.005 \mathrm{~V} /$ div range．
Signal average：reduces noise and jitler approx．2：1．

General
 Weight

1817A：net， 1.4 kg （3｜b）．Shipping． 5 kg （11 lb）．
1818A：nel． 1.4 kg （ 1 lb ）．Shipping， $4.5 \mathrm{~kg}(10 \mathrm{lb})$ ．
Accessories supplied
Cable，Plug－in to sampler：connoes sampler（1816A or 1817A）to plug－ins（1815A or B），HP P／N 5060－（1）4d I．
Cable，tunnal diode to sampler：connects unnel diode（IIO6B Opt 001 or IIOSA）to sampler，lype N male connectors on each end． HP P／N 01817－61603．

Recommended accessories
Trigger source：externsl trigger souroe is required for triggering above 500 MHz ． 10 GHz source is provided by the IIO4A Trigger Countdown with the 1108 A Tunnel Diode Mount． 18 GHz source is provided by the 1104A Trigger Counldown with the 1106 B Opl 001 Tunnel Diode Mount．

1106B 0pt 001 （20 ps Tr）／1108A（60 ps Tr）tunnel

diode mounts specifications

Tunuel diode is required for a TDR system．Reler 10 sampling head specifications for mounting requirements．
Amplifude（both）：$>200 \mathrm{mV}$ into 50 ohms．
Rise ilme：1106B Opl 001 approx． 20 ps ； $1108 \mathrm{~A}, ~<60 \mathrm{ps}$ ．
Oulput impedance： 50 ohmis，$\pm 2 \%$ ．
Source reflecllons： 1106 B Optien 00t，＜10rs with 45 ps TDR： $1108 \mathrm{~A} .<10 \%$ with 145 ps TDR．
Welghl（both）：nel， 0.5 kg （ 1 lb ）．Shipping． 1.4 kE （ 3 lb ）．
＊Components required for TDR／sampling systems

1815A／B TOA／Sampling Plug－in	
1817A Sampling Head （APC． 7 InpuV／Ouipul Connectors）	1816A Sampling Head （6R Type 874 Inpul／Outpul Conneclors）
TDR 35 ps tr 31068 Opl 001 Tunnel Oiode	10R 110 os ir 1108A Tunnel Dlade
Sampling ep lo 12.4 GHz Termination， 50 ohm Model 909A，APC． 7 conneclor． Trigeter Accessories ＜500 MHz Adapler， 1250.0750 APC． 7 lo Type N female． II500A Cable Iype N Male to Type N Male． 1.8 m（ 6 f1）． Adapler 1250.0077 Type N Female lo BNC Male． 500 MHz to 10 GHz 1104 Trigger Counldown． $1108 A$ Yunnel Diode． Adapter 1250.0847 GR Type 870 10 Type N Male． 11098 High Pass Filler． Adapler $1250-0750$ APG． 7 to Type N feinale． 10503A Mate BNC 10 Male BNC Trigger Cable 12 m （4 it）． 500 MHz to 18 GHz 1104A Trigget Countdown． 1106B Opl 001 Tunnel Drode． Adapler 1250.0749 APC－7 to Type N Male． 11098 High Pass Fifler． Adaplet 1250.0750 APC． 710 Tyoe N female． 10503 A Male BNC to Male BNC Trizger Cable 1.2 m（4 ft）．	Sampling 4 GHz Terminallon， 50 ohm with GR Type 874 connector．HP P／N 0950－0090． Irigger Accessories ＜500 MHz Adapler 1250－121） GR Type 874 to Type N Female，IIS00a Cable Type N Male lo Type N Male 1.8 m（6 f），Adapter 1250 ． 0077 Typo N Fermale to BNC Malé， 500 HHz to 10 GHz ll04A Trigger Counidown． 1108a Turnel Diode． Adapter 1250－0847 GR Type 874 to Type N Male． 11098 High Pass filter． Adapter 1250－0240 GR Iyde 874 to Type N Male． 10503A Male BNC to Male BNC Trigger Cable 1.2 m（4 th）．

－Use ent 180 enties itantrame．
Model number and name Price
18ISA TDR／Sampler（calibrated in feet）S1550
1815 B TDR／Sampler（collibrated in meters）$\$ 1550$
1817A 28 ps Rise Time Samolin Head
1816A 28 ps Rise Time Sampling Head
$\$ 1800$
1816 A 90 ps Rise Tíme Sampling Head
$\$ 1115$
1104 A Trigger Counidown
I 106 B Opt 00） 20 ps Tunnel Diode Mount
$\$ 700$
1108 A 60 ps Tunnel Diode Mount $\$ 270$

1105A/1106B/1108A Specifications

1105A/1106B/20 ps pulse generator
1105A/1108A/60 ps pulse generator
Oulpul
Riee time: approx. 20 ps with I 106 B . ($<60 \mathrm{ps}$ with II08A). <28 ps observed with HP Model I4IIA/I430C 28 ps Sampler and 50 ohm lermination HP Model 909A Option 012.
Overahoot: $\pm 7.5 \%$ as observed on lflla /I430C with 909A Oplion 012.
Droop: <3\% in first 100 ns .
Width: approx. $3 \mu \mathrm{~s}$.
Amplltude: $>+200 \mathrm{mV}$ inco 50 ohms.
Output characterlalics (1106日/1108A)
Mechanlcal: (IIO6B) Malc Type N input connecor, Fimale Typc
N oulpul connector: (ll08A) GR.874 inpul conneclor, Female
Type N output connector.
Electrlcal: de resisiance. 50 ohms $\pm 2 \%$. Source reflechon. $<10 \%$,
using a 40 pS TOR syslem. DC offsel V, appiox. 0.1 V .

Triggering

Amplitude: al least $\pm 0.5 \mathrm{~V}$ pcak required.
Rlse lime: <20 ns required. Jilter <lS ps when triggered by Ins rise time sync pulse.
Width: >2 ns.
Meximum safe Input: 10 volts.
Input Impedance: 200 ohms, ac-coupled through 20 pF .
Repeitlon rate: 010100 kHz lrec runs al 100 kHz .
Accessorles supplled (whh Model 1105A): one 1.8 m (6 n) 50 ohm cable wilh Type N Male connecters on each end. HP Model IOI32A.
Welght
1108 B or 1108 A : nel. 0.5 kg (1)b). Shipping. $0.9 \mathrm{~kg}(2 \mathrm{lb})$.
$1105 A:$ nct, $0.9 \mathrm{~kg}(2 \mathrm{Jb})$. Shipping. 1.4 kg (3 lb).

1109B High-pass filter

The II09B High-Pass Filler transmils only frequencies above 1 GHz. [I is uscful for blocking the 100 MHz "kickoul" encountercd when using a lunnel diode countdown to view high frequency signali; on a sampling oscilloscope. The IIO9B is designed for use with the Model I IO4A/I 106 B Trigger Countdown.

1109B Specifications

Lower bandwidih limit: 3 dB down at 3 GHz nominal.
Input characlerlatics
Mechanicel: mak lype N input connector; Female Type N oulput connccior.
Electrical (with oulput terminated in 50 ohms)
Reflection: < $10 \%_{0}$ using 40 ps TDR sysicm.
VSWR: sypically I.I:I up 1010 GHz ncreasing 102 I al 15 GHz .
DC Resistance: 50 ohms $\pm 2 \%$ shunicd across line.
Weight: net, $0.14 \mathrm{~kg}(5 \mathrm{oz})$. Shipping. 0.45 kg (2 lb).

Other sampling accessories

50 ohm loads: Models 908A with Type N male connector (4 GHz.) and 909A Oplion 012 with Type N male connector (18 G Hz). 50 ohm adapters: Model ils24A has Typ: N Feniale and APC-7 connectors: Model II525A has Type N Male and APC-7 connectors. Air líne extenslons: Model 11566 A .10 cm . APC- 7 conncctor. Model $11567 \mathrm{~A} .20 \mathrm{~cm}, \mathrm{APC} .7$ conneclor.

Model number and name	Price
1105A Pulse Generator	\$270
I 106B 20 ps Tunsel Diode Mounl	\$650
I 108A 60 ps Tunnel Diode Mounl	\$270
11098 High Pass Filier	\$230
908A 50 ohm Termination	\$50
909 A Opl 01250 ohm Termination	\$80
11524A 50 ohm Adapler	575
IIS2SA 50 ohm Adapler	\$75
I)S60A Air Linc Extension	\$135
11567A Air Line Extension	\$135

- Economic spectrum analysis 0.01 to 1500 MHz
- Simple, 3 knob operation
- Direct signal power display in dBm

8557A

8558B and new 8557A spectrum analyzer

The 8557A $/ 8558 \mathrm{~B}$ spectrum analyzers plug into any 180 scrics oscilloscope mainframe to provide low cost 0.01 to 350 MHz or 0.1 to 1500 MHz pufformance with high amplitude und frequency aecuracy. and they're casy 10 use.
Simple three knot operation
Fot most measurements only threc conirols are required; one for amplitude calibration and two for frequency calibration. The center or start frequency of the display is shown on a digital LED readoul, and the anslyzer automatieally selects the resolution bondwidth and proper scan time to provide calibrated measurements with any desired frequency sean.

Absolute amplitude calibration

Signal levels can be read directiy from the CRT display in dBm (or dBmV for option 002) without the usc of extermal standards or calculations. The signal tevel represented by the top CRT gralicule line is always indicated by the reference level control, and scale factors of $10 \mathrm{~dB} / \mathrm{div}, 1 \mathrm{~dB} / \mathrm{div}$, and linear can be seleetid.
Optional 75 ohm input impedance
Two options are available which allow measurements in 75 ohm sysrems: Option 001 has 75 ohin impedance and retains the dBm power calibration: Option 002 has 75 ohm impedance with the amplitude caiibrated in dBmV for measurements in systems such as CATV.

Companion tracking generator

The 8444A Option 058 racking generator provides a calibrated RF

- Resolution bandwidths from 1 kHz to 3 MHz
- Optional 75Ω input impedance:
- Companion tracking generator (for 8558B only)
signal matching exactly the 8558B analyzer tuned frequency. This makes swept frequency lests, such as insertion loss and return loss measurement, possible over 0.5 to 1300 MHz frequency range. The 8444 A Option 038 is specilied on page 452.
Suggested displays
The $8557 \mathrm{~A} / 8558 \mathrm{~B}$ spectrum analyeers will Iunction with any 180 -series display. However, the following are suggested: for low cost, large screen display, the Model 182 T is ideal; the Model 181 T offers variable persistence and storage; and the Model 180TR offers a rack mount configuration. Each of these displays provides a long persiitence P39 phosphor (except variable persistence displays) and four non-buffered rear panel autputs compatible with most X-Y recorders. 100 volt operation available as option 003.

8557A and 8558B Specifications

Frequency specifications
Frequency range: 10 kHz to 350 MHz (8557A), 100 kHz to 1500 $\mathrm{MH2}$ (8558B).
Frequency display spen (on a 10 -division CRT horizental axis):
8557A: F (full span. $0.01-350 \mathrm{MHz}$), 12 calibrated spans from 20 $\mathrm{MHz} /$ div $105 \mathrm{KHz} /$ dis in a 1.2 .5 sequence: 8558 B : 14 calibrated spans from $100 \mathrm{MHz} / \mathrm{div}$ to 5 KHz /div. In "O" both analyzers become fixed-uned receivers.
Dighal Irequency readout Indicates eenter frequency or stari frequency of the frequency display scan.

Stablity

Residual FM: Wess than I $\mathrm{xH} \times$ peak-lo-peak for time $\leq 0.1 \mathrm{sec}$.
Nolse sidebands; merc than $75 \mathrm{~dB}(8557 \mathrm{~A}), 65 \mathrm{~dB}(8558 \mathrm{~B})$ below CW signal. 50 kHz or more away from signal with a 1 kHz essolution bandwidth and fult video filter.

Aesolution

Bandwidth ranges: 3 8B resolution bandwidhs of 1 kHz to ? MHz in a $1,3,10$ sequence.
Aesolution bandwidth selectivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ resolution bandwidth rasio <15:I.
Vldeo filter: post-detection filter used to average displayed noise.
Amplitude specifications
Absolute amplltude calibration range
Log calibralion ranga: from $-117 \mathrm{dBm} 10+20 \mathrm{dBm}(8557 \mathrm{~N})$.
$+30 \mathrm{dBm}(8558 \mathrm{~B}$) in 10 dB sleps. Reference level vernier, $010-12$ dB continuously.
Log display ranges: $10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display, and $1 \mathrm{~dB} / \mathrm{div}$ on an 8 dB display.
Linear display: from 2.2 microvalts (-100 dBm) full scale to 2.24 volts (+20 dBm) 8557A, 7.1 yelts (+30 dBm) 8558B full-scale in 10 d8 sleps.

Dynamle ranga

Avarage nolse revel: $<-107 \mathrm{dBm}$ with 10 kHz resolution bandwidih (0 dB input attenuation).
Spurioua responses: For inpui signal level \leq Opumum Input Level sellíng, all image and out-of-band mixing responses, harmonic and ineermodulation distortion products are more than 70 dB below inpul signal level, 1 MHz to 350 MHz (8557 A). 5 MHz 10 $1500 \mathrm{MHz}(8558 \mathrm{~B}) ; 60 \mathrm{~dB}$ below, 20 kHz 10 I MHz (8557 A). 100 xHz to 5 MHz (8558 B).
Realdual reaponses (no signal present al input): $<-100 \mathrm{dBm}$ with 0 dB input attenuation.
Calibrator
Amplifude: $-30 \mathrm{dBm} \pm 1.0 \mathrm{~dB}$.
Frequency: 250 MHz (8557A). 280 MHz (8538B) $\pm 50 \mathrm{kHz}$. crystal controlled.
Input specifications
Input impedance: 50Ω nominal.
Typical reflection cotfficient <0.27 (1.74 SWR) 8557A, <0.20 (1.5 SWR) 8558B for all Optimum Input Level seltings except -40 dB in (0 dB Inpui Allenuation).
Input connector: BNC female (8557A), type N Fernale (8558B).
Input attenuator: 50 dB range (8557 A), 70 dB range (8558 B).
Price and further information: see pages 450 \& 452.

Mainframes

Models 183A cabinet stylc and 1838 rack style mainframes have high frequency response with operatigg ease and plug-jn versatility for wideband general purpose applications. The bright displays are ideal for vicwing iwo or four channel displays of low rep-rate digital words or groups of shorl duration. fast rise pulses in computers and high speed digital systems.

Bright visual displays and fast pholographic writing speeds are assured with the 20 KV cathode-ray tube acceleraling poleniial. Typical wriling spoeds of $4 \mathrm{~cm} / \mathrm{ns}$ can be achicued with Models 183 A and B using a 195A Camera, P31 phosphor, 10000 ASA film, $1: 0.5$ reduclion ralio, and pulsed flood gun fogging. Substanlially faster writing specds may be obtaised by using PII Phosphor. For added convenience in liming of single shot evenis. a sear pancl inpul allows remote time base single sweep reset when tuming is critical for recording test resulis.
Models 183B Op1 005 and 183D rack style mainframes provide real time. large signal, single-shot transient rexponse to greater than 600 MHz as well as $10 \mathrm{mV} / \mathrm{div}$ capability to 250 MHz .

Vertical amplifiers

Model $1834 \mathrm{~A}, 200 \mathrm{MHz}$ four channel verlical amplifier plug-in for 183 series oscilloscopes mainframes provides accurate measurements for both digital and analog design and iroubleshooling. Its wide bandwidih coupled with the ! $\pi s / d i v$ sweep speeds and low jitter available with the 1841 A delaying lime base allows accurate timing measure ments in ECL and TTL logic circuits.

The $10 \mathrm{mV} / \mathrm{div}$ denection factor al 200 MHz is provided by a thick film, planar altenuator which provides selectable I megohm or 50 ohms impedance positions. The I megohm (ac/dc) input has unly 12 pF shunt capactitunce for minimal loading which can be further reduced by using $10: 1$ divider or aclive probes. For accurate 50 ohm measurements, a precision internal 50 ohm input termination may be selected with a frone pancl switch. Aetive probes are also avalable to reduce circuil bading while reaining the 50 ohm input capability.

The fexible trigger source selection allows iming measurements referenced from channel A, B, C, or D or compositc. Single channel triggering allows you to trigger on any chanmel white retaining the lime relationship with the other threc channels. Composite triggering allows each channel to (rigger in an alternate or added display.

Enhanced 4 -channel viewing is possible if the 1834 A is used in conjunction with the optional $8 \times 10 \mathrm{div}(1 \mathrm{div}=0.875 \mathrm{~cm}$) graticule available in the $183 \mathrm{~A} / \mathrm{B}$ manframe. This combination requires the 1834A to be calibrated for proper operation with the optional CRT. Contace your HP Field Engineer for further information.

Model 1835A is a 200 MHz iwo channel vertical amplifier plug-in for 183 series oscilloscope mainframes with the same operating characleristics as the 1834a plug-in.

The 1830 ^ dual channel verlical amplifier plug-in offers 250 MHz bandwidth with a 50 ohm input impedance that terminales a 50 ohm system and keeps SWR to a minimum. This SO ohm system provides a constant load ímpedance, and allows direet probing of high froquency signals with minimum signal degradation from capacitive loading. If higher probe resistances are desired, passive resistive-divider probes with a slight capacitive incretse (0.7 pF) are available. Or, the $1: 1,500$ MHz bandwidih, active probe Model II20A. Iramsata the 50 ohm input impedance to $100 \mathrm{k} \Omega / \mathrm{p} F$ al the probe tip (1 pF at $\div 10$).

Time bases

The I840A Time Basc provides stable one knob miernal iriggering from an 1830 A to 250 MHz . External triggering to 250 MH is provided with 20 mV inpul and increases 10500 MH with 50 mV input signals. Trigger functions are controlled with convenient pushbuttons which simplify operation. A variable hold off control achitves a stable display of pulse groups by allowing inggering on a particular pulse in a group.

Sweep times are selectable from $10 \mathrm{~ns} / \mathrm{div}$ ta $0.1 \mathrm{sec} /$ diy and with the matnframe X 10 magnifier a sweep speed of 1 ns/div is available. The single sweep mode of operation in the 1840 A is fully compatible with the 183 pulsed flood gun mode or operation which increases photographic writing speed.

Option 001 for the 1840A is available for applications involving high ampliude extermal triggtr signals. This option provides sealectable trigger levels of ± 5 volis or ± 25 volts and will withsland peak input pulses of 100 volts wilh $10 \mu s$ duration.

Model 1841A Time Basc and Delay Generator provides 21 sweep limes ranging from $10 \mathrm{~ns} / \mathrm{div} 100.1 \mathrm{~s} / \mathrm{div}$. Delay times are selected by a calibrated 10 -turn conisol across the time range set by the sweep time switch. A mainframe $\times 10$ magnifier provides $1 \mathrm{~ns} / \mathrm{div}$ sweep times for both main and delayed sweeps to malch the CRT writing spoed.

One knob conlrol maker triggering on rf carriers and signals even bigher than the VHF range very easy. Both main and delayed sweep circuits trigger directly on 50 mV signals 10500 MHz without countdown procedurts. Trigeer synchronization is also maintained when switching from main to delayed or delayed to main sweeps.

Contact your HP Field Enginoer Tor complete specifications.
Model number and name Price
183A Mainframe $\$ 2500$
183B Muinframe
163D Mainframe
1830A 250 MHz Dual Channel Vertical
1834A 200 MHz Four Channel Vertical
1835A 200 MHz Dual Channel Vertical
1840A Time Base
1841A Time Base/Delay Gencrator
$\$ 2625$
$\$ 3300$
$\$ 1200$
$\$ 2550$
$\$ 1550$
$\$ 850$
$\$ 1350$

OSCILLOSCOPES
 20 MHz , plug-in oscilloscopes

- Rugged variable persistence/storage CRT
- Convenient beam finder
- $5 \mathrm{mV} / \mathrm{div}$ to 20 MHz
- Dual and four channel
- Automatic triggering
- Delayed and mixed sweep

141B Oscilloscope with 1402A Dual Trace Amplifler and 1421 A Time Base and Delay Generator.

Hewlett-Packard's 140 Series plug-in oscilloscopes give you proven performance for general purpose measurements in a variety of applications. Logieal arrangement of controls, a beam finder to lacale offseroen displays, and automatic triggering make these oscilloscopes easy to sel up and operale. They ure ideally suited for production line testing, systems applicitions, and classroom or laboratory instruclion.

140 Mainlrantes

The 140 Series mainframes coniain high qualíly post-accelerator CRTs which provide a bright clear display. Model laOB has a standard CRT with an $8 \times 10 \mathrm{~cm}$ internal graticule and Model 141 H has a variable persistence and storage CRT. You also get an accurate CRT display reading from diny angle with the no-parallax, inecrnal gray. culc. A convesient beam finder returns a trace to the display area for fast trouble-free set-up.

Variable persistence/storage

The 141B gives you CRT versatility that dllows you to match persistence to most any signal. This gives you the capability to use the instrument as is conventional scope. a variable persistence scope or as a storage scope. Variable persistence allows you to build up the brightness of dim traces from low repetition rate signals to an easily viewabic display, and to eliminate flicker caused by slow sweeps required on slowly changing waveforms. When used as a storage scope, you ean captare single shot events, such as noise related transients. or infrequently occursing events, such as random-bil drop-out.

140 plug-ins

For wideband real ilme performance the dual (race 1402 A yenical amplifier gives coverage from de to 20 MHz at $5 \mathrm{mV} / \mathrm{div}$. The 1402A

Seatures include algebraic addition, buill-in delay lime for viewing the leading edge of fast-rise pulses, full 6 div deflection and a wide dynamic range.

Four channcl measurements at $10 \mathrm{mV} /$ div to 15 Mtiz or $1 \mathrm{mV} / \mathrm{div}$ 1010 MHz are availatele in the Model 1404 A vertical amplifier. The 1404A Features include algebraic addision, buile-in dulay line for viewing the lading adges of fast rise pulses. and selectable or eomposite riggering for timing felationships or comparisuns.

For casy readability of complex waveforms and accurate time interval measurements. Model I42IA Time Base and Deliy Generator provides calibrated lime delizys from 10 sceonds to 0.5μ s, calibrated sweep speeds from $0.2 \mu \mathrm{~s} /$ div to $20 \mathrm{~ns} /$ div. The 1421 A also offers mixed sweep which displays the first portion of a trice al normal sweep speeds, and expands the Irailing portion of the Irace at a laster delayed sweep speed wallow step-by-step nagaified examination.

Model 1423A gives 20 MHz triggering with sweep speeds irom 0.2 s/div $105 \mathrm{~s} / \mathrm{djv}$. A lrigger hold-off control eliminattes double triggering on digital wavelormi of signals that have the desired trigger fevel and slope appearing more than once per sweep and maintains a fullscrecn. calibrated sweep.

A selocion of spectrum analyzeri with coverape from 20 Hz to 40 GHz furiher extends versalility of the 140 system. A 140 system dis play section (mainframe) is combined with a luning section and IF section to form a complete spectram analyzer, tailored to your needs. The luning seetion determines the frequency range end most of the major specifications: a choice in IF and display section allows you to select the systern for your application. Sec Signal Analyzers section for information about spectrum analyzers.

For complete 140 real tince system specifications. refer to the 140 Systern data shocl or contact your Hewlett-Packard Ficld Einginecr.

15 MHz dual/single channel, general purpose
NEW

1220A, 1221A, 1222A Description (new)

Hewlet1-Packard Models I220A/1222A (dual channel) and I221A (single chonnel) is MHz oscilloscopes are high quality instruments with features ordinarily found only in laboratory models. These oscilloseopes have the performance neeessary for a wide variety of applications. Features include a large 8×10 internal graticule for no-patallar measurements. 3\% vertical attenuator accuracy, 4\% horizontal accuracy. calibrated sweep times from $0.5 \mathrm{~s} /$ div $100.1 \mu \mathrm{~s} / \mathrm{div}$, dc coupling, automatic triggering. a sweep magnilier to expand the display up to ten times for detailed analysis, a pushbutton beam finder, X.Y display capability. TV sync separator, and in the 1222A $\delta \dot{d} l a y$ lines permit the leading edges of puties to be viewed.

Eagy operalion

The human engineered frout panel with functionally grouped concrols and coior-coded pushbultons makes measurements easier and faster. Inputs are protected to 400 V . reducing chances of accidental electrical damage. Automatic trigecring assures that a basc-line is present even in the absence of a signal or if the rigeer level control is set beyond the range of the trigger signal. And, although the dual channel Models 1220A and 1222A operate in either a chopped or alIcmate mode. the operator need not concem himself with making a choice since the Time/Div switch automatically selects the best display mode.
The basic stability of the solid-state circuits and components used throughout is such that internal adjustments have been reduced to a
minimum. This deureases calibration requirements and provides real savings over the oscilloscope's lifetime. Reculibration, when necessary. is simple and straightforward compared to most other uscillo. scopes.

Triggerlng

Even though the instrunsents are caty to opetate, these oseilloscopes have the flexibility for multi-purposis use. The operator can select the source of sweep irigger (internal, exiernal, ac line. TV) and he can seleet the trigger slope, adding to the oscilloscope"s vervatility by allowing Iriggering on cither the positive or negative going transilions of the signal. Further nexibility is added by the ability to preset the signal amplitude required to trigger the swecp, assurng that perturbations below the desired amplitude will not trigger the oscilloscope.
With automatically Iriggered sweep, displays are stable becuuse the observed signal itself determines when a sweep should start. Automatic triggering produces a free sunning trace in the absonce of a signal for fast set-up. It locks onto any input signal of the proper polarily and amplitude.

CRT

The internal $8 \times 10 \mathrm{~cm}$ CRT geaticule eliminates parallax errors that oceur when the graticule is external to the CRT. The 3% vertical accuracy combined with the no-parallax graticule enables the oscilloscope to be used as a voltmeter as well as for waveform display. CRT beam intensity can be modulated through a rear panel Z -axis input.

X-Y Inputs

Phase shift measurements through the vertical amplifiers in the 1222A permil maximum measurement fexibility with the wide selecion of deflection raciors. ln Models I220A and I221A, exiemal signals can be applied to the horizontal deflection amplificrs. This $X-Y$ capability permils X-Y plots or Lissajous figures with a phase shift of less than 3° to 100 kHz .

TV Sync

The buittin TV sync separator assures stable, automatic triggering on frame or line for convenient TV rroubleshooting. With the instruments times-ten magnifier, signals can be pulled out easily. The calibrated time base makes it easy to identify timing problems in verlical or horizontal TV circuits. The external horizontal input allows vector presenlations of color CRT drive signals. Dual channels make il easy 10 sel color demodulator circuits.

Rugged Ilghtweighl design

These oscilloscopes are, excepi for the CRT. enurely of solid-statc design, resuling in low power consumption. The constquent low heal has made possible a rupecd lightweight, closed cabinet with a vinylclad aluminum cover that is resistane to shock. dust, and moisture. A convenient sidepanel handle and stabilizing feec on the opposite side make handling easy. This allows these oscilloscopes to be used in areas where' ruggedness is a mecexsity. These areas include production lincs, numerically controlled marthincry, procuss control equipment, autoonotive, aireraft and marine tlectronics, and communjeations.

Optlonal accoseories

An optional front panel cover is available to prolect the instrument during iramsportation and gives storage space for probes and other acecssuries. General purposs probing is provided with the Model IOOI3A 10 to I divider probe with 10 megohms inpui shunted by only 13 pF . It extends input range to $100 \mathrm{~V} / \mathrm{cm}$ and multiplies input impedance withoul degrading frequency response. With a rack mount kit the ascilloscopes can be mounted 10 occupy only 22.2 cm (8% inches) of vertical sprice. Also available is the Model 10373A Camera Adopter for the Model 123A camera. Contacl your Hewlett-Packard Field Engineer for information concerning these accessories.

1220A/1221A/1222A Specifications

Modes of operatlon (1220A/1222A)

Channel A; channel B; channel B inveried (I222A); channel A \pm B (I222A); channets A and B displayed altemately on successive sweeps (Ale), Irigeering by A channel; channels A and B displayed by switching between channels al approx. 200 kHz rate with blanking during swiscbing (Chop); aulomatic selection of alterate or chop mode. Chop, al sweep speeds from $0.5 \mathrm{~s} / \mathrm{cm} 10 \mathrm{Ims} / \mathrm{cm}$: All, $0.5 \mathrm{~ms} / \mathrm{cm} 10$ $0.1 \mu \mathrm{~s} / \mathrm{cm}$.
Vertical amplifiers (2 In 1220A/1222A, 1 In 1221A)
Bandwidth: (3 dB down from 50 kHz 6 div reference signal from a terminated 50 ohm source.)

DC-coupled: de to 15 MHz .
AC-coupled: lower limis is approx. 2 Hz .
Rise time: approx. 23 ns.
Defiectlon factor
Ranges: from $2 \mathrm{mV} / \mathrm{cm} 1010 \mathrm{~V} / \mathrm{cm}$ (12 ranges) in 1.2 .5 sequence. $\pm 3 \%$ accuracy with vernier in calibraled position on $10 \mathrm{mV} / \mathrm{cm} 10$ $10 \mathrm{~V} / \mathrm{em}$ rangus, $\pm 5 \%$ 日ccuracy on $2 \mathrm{mV} / \mathrm{cm}$ and $5 \mathrm{mV} / \mathrm{cm}$ ranges.
Vernler: continuously variable between all ranges, extends maximum deflection factor to at least $25 \mathrm{~V} / \mathrm{cm}$.
Input RC: approx. I megohm shumted by approx. 30 pF .
Inpul coupling: AC, DC. or GND sclectable. GND position disconnoers signal input and grounds amplifier inpur.
Maximum input: $\pm 400 \mathrm{~V}$ (dc + peak ac).
Differential (A - B) CMAR (1222A): CMRR is al leasi 30 dB from de to $\ \mathrm{MHz}$.

Time bese
 3weop

Rangers: from $0.1 \mu \mathrm{~s} / \mathrm{cm}$ to $0.5 \mathrm{~s} / \mathrm{cm}$ (21 ranges) in $1,2.5 \mathrm{se}$ quence. $\pm 4 \%$ accuracy with Expander in calibrated position.
Expender: continuously expands sweeps al least 10 times. Maximum usabie sweep speed is approx. $20 \mathrm{~ns} / \mathrm{cm}$.

Sweep mode: sweep is iriggered by internal or extemal signal. Bright bascline displayed in absence of inpul signal.

rriggering

Internal: approx. 2 Hz lo 15 MHz on signals causing 1 cm or more vertical deflection.
External: approx. 2 Hz to 15 MHz on signals 0.1 V p-p or more.
External Input RC: approx. I megohm shunced by approx. 20 pF . Líne: riggers on line frequency.
TV aync: separator for + or - video, requires 1 cm of video signal 10 trigger, automatic frame ($0.5 \mathrm{~s} / \mathrm{cm}$ to $100 \mathrm{ps} / \mathrm{cm}$) and line select (50 $\mu \mathrm{s} / \mathrm{em} \mathrm{to} 0.1 \mu \mathrm{~s} / \mathrm{cma}$). Usable atso as a tow-pass filier.
Level and slope
Internas: at any poim on the positive or negative slope of the displayed waveform.
External: continuously variable from $+0.5 \mathrm{~V} 10-0.5 \mathrm{~V}$ on either slope of the trigger waveform. $\div 10$ extends trigger range to +5 V to -5V.
Callbrated X.Y operation (1222A)
Operation is vit channel A (X -axis) and channel B (Y -axis).
Bandwidth: X-axis de 10 I MHz otherwise see Verical Amplifiers Bandwidth specifications.
Gendilvity: sec Vertical Amplifiers Deflection Factors specifications.

Cathode-ray tube ard controls

Type: mono-aceelerator, approx. 2 kV accelcrating polential, P11 phosphor. P7 phosphor is available as an Option.
Gratleula: $8 \times 10 \mathrm{~cm}$ internal graticule, 0.2 cm subdivisions on major horizontsl and vertical axes.
Beam finder: relurns trace to CRT screen regardless of selting of horizontal and vertical controls.
Intensity modulation: +5 V (TTL compatible) de to 1 MHz blanks trace of any intensity. Input R approx. I k $\$$. Maximum input. 7 V rms.
External horizontal input (1220A/1221A)
Bandwidth: de to 1 MHz .
Coupilng: dc.

Expander	KMode Attenualor	Deflection Cactor
Cal.	$1: 1$	$1 \mathrm{~V} / \mathrm{cm}$
Cal.	$1: 10$	$10 \mathrm{~V} / \mathrm{cm}$
cw	$1: 1$	$100 \mathrm{mV} / \mathrm{cm}$

Continuous adjustment between ranges by Expander.
Input RC: approx. 1 megohm shunted by approx. 30 pF .
X-Y Phase shift: $<3^{\circ}$ at 100 kHz .

General

Probe adjust: approx, $0.5 \mathrm{Vp}-\mathrm{p}, 2 \mathrm{kHz}$ square wave for compensaling probe.
Power: $100,120,220.240 \mathrm{~V},+5,-10 \% .481066 \mathrm{~Hz}$ approx. 60 VA . Weight
1220A/1222A: nct. 7.3 kg (16 lb). Shipping. 0.5 kg (21 lb).
1221A: net, 7.0 kg ($151 / 2 \mathrm{lb}$). Shipping, 9.3 kg ($201 / 2 \mathrm{lb}$).
Dimentions: $311.2 \mathrm{~mm}(121 / 4 \mathrm{in}$.) wide, $181 \mathrm{~mm}(71 / 4 \mathrm{in}$.) high, 412.8 mm ($16 / \frac{1}{\mathrm{~h}} \mathrm{in}$.) deep overall.
Accessories furnished: one bluc light filter, one power card, fuses for 100.120 V operation and $220,240 \mathrm{~V}$ operation and one Operating and Service Manual.
Operaling environment: temperature, 0 to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 $\left.+130^{\circ} \mathrm{F}\right)$: humidity. 1095% relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$; altitude, 104.6 km (15000 ft): vibration, vibrated in three planes for is min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 10 to 55 Hz .
Note: probes are not supplied with these oseilloscopes, Model 10013 A probes are recommended for use with these oscilloscepes.
Option 007: P7 phosphor in lieu or P3ı; amber filter add $\$ 20$ Model number and name Price
1220A Dual Channel Oscilloscope $\$ 750$
1221A Single Channel Orciilloscope
$\$ 695$
I222A Dual Channel Oscilloscope

1200 Series description

The 1200 series 500 kHz oscilloscopes are versatile general purpose instruments for low frequency applications. These are all solid-state oscilloscopes, light-weight, reliable and siable, which mukes them ideal for a variety of applications. The many features of these scopes provide displays ihat are aceurale, versatile, easy-to-obtain and casy-to-red. Logical arrangement of conerols, a beam finder to locate offscreen displays. and aulomatic triggering make operation casy. which is important to persons in production line tesuing, system applica. tions, and classroom or laboratory instruction.

These dual channel osciltoscopes are available with $5 \mathrm{mV} / \mathrm{div}$ or 100 $\mu \mathrm{V} / \mathrm{div}$ deflection factors, standard or storage CRTs, and in cabinel or rack configurations. The instruments are light-wcighr, allowing use in remore or diflicult uccess areas such as: aircrajl flight lines. communicalions field sites. or weapons test sites.

Balanced inputs are provided on all ranges and on each channel which is useful in low Icvel audio applicalions. Phase shifi measurements can be made in the A vs B mode, whicb displays channel A signal verius channel 8 signal through identical amplifiers with less than 1° phase shift up to 100 kHz .

Field effect Iransistors at the vertical amplifier input provide stable. low-drift operation virtually free of annoying trace shifts caused by icmperature changes, shock, and vibration. Long lerm stability also means less frequeni calibration and lower periodic maintenance cosls.

The common mode rejuction ratio is up 10100000101 (100 dB) in the $1200 \mathrm{~A} / \mathrm{B}$ and $1201 \mathrm{~A} / \mathrm{B}$ models. This high CMRR provides an accurale means of measuring the difference between two signals while rejoeling those signal components, such as power line hum. common to both isputs.

12018

The rectangular cathode-ray tube has a parallax-free imermal graticule 10 assure accurale measurements. Standard 1200 series oscilloseopes are supplied with P3I phosphor with a selection of optional phosphors available at no extra cost; refer to Options in the specifications.

In applications with displays that oceur at slow rates, a storage/variable persistence CRT is available that eliminates annoving flicker and retains single eccurrence traces. This longer persistence is useful when displaying slowly moving bio-medical phenomena and in applications where the trace or display information musi persist after the exitation is removed. Improvements in target metcrital and processing provide a very rugged storage surface. This highly burn resislant storage surface does not require special operating procedures which increases easeof-use in low frequency applications.

All 1200 series oscilloscopes have a do-coupled Z-axis amplifier that allows external modulation of the CRT beam intensits. This allows a display of more information by using changes in intensity to highlight porions of the display or 10 maintain a constant intensity where the input signal duty cycle changes.

Applications requiring an ac-coupled input are easily filled by adding an external eapacitor. And, you can select the capscitor to fit ibe application rather than adapling to the seope capacitor.
Single, normal, and free run modes of sweep operation are flexiblt enough for complex measurcments, yet operation is simple and straightforward. The sweep eime and nagnifier controls provide a direct reading of a magnified sweep which reduces the chance of error and time for measurcments. An external input to the horizontal deflection system allows the operator to provide external deflection signals for X-Y displays of special sweeps.
The wide dymanie range of the trigger level control allows iriggering on any point on an on-sereen display or in external on any point up $10 \pm 100 \mathrm{~V}$. Rolating the trigger level coutral counterclockwise into its detent position selects tbe auto mode which displays a baseline in absence of a trigger signal. The sweep will automatically synchronize and trigger on mosi waveforms from 30 Hz 10500 kHz . Auto migger mode allows the operator to change a trigger signal in amplitude, fre quescy, or de-level and remain synchronized without adjusting the Irigger tevel control. The 1200 series oscilloscopes will trigger in Auto or Level mode with e signal of less than $100 \mathrm{mV} p$-p in external or less than one-half division of vercieal display in internal.
Trigger flexibility is expanded by providing a de or ac-coupled irigger signal of either + or - slopes, from the displayed signal (Int) or from the power line (Linc). or fronn an external inpul.

Rack versions (designaled by a B, "1200B." following the model number) are only $13.34 \mathrm{~cm}\left(51 / s^{*}\right)$ high which suves valuable rack space and allows more instruments to be included in a rack for a more versalile system. Since these instruments are complete oscilloscopes. they offcr the system user a read-out device and a convenient calibration and service cool.

Verical amplifiers specifications

Modes of operation: channcl A alone; channel B alonc; channels A and B (either Chop or Alternate); channels A and B us horizontal inpul (Chop on\}y); channel A vs B (A-vertical, B-horizontal). Chop frequency is approx. 100 kHz .
Bandwidit: de-coupled, de to 500 kHz ac-couplod, 2 Hz to 500 kHz .
A bandwidth limit switch (I200A/B, I201A/B) allows selection of upper bandwidth limit 10 approx. 50 kHz or 500 kHz .
Rlse lime: 0.7 us max.

Deflection factor

Rangea: 1200A/B. $1201 \mathrm{~A} / \mathrm{B}$, from $0.1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (17 positions) in I, 2, 5 sequence. I205A/B. from $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}(12$ positions) in I. 2.5 sequence.
Attenuefor accuracy: $\pm 3 \%$ with vernier in caliorated positson.
Vernier: continuously variable belwcen all ranges; exicnds maximum dellection factor 10 at leass $50 \mathrm{~V} / \mathrm{div}$.
Nolse: 1200A/B, l201A/B, <20 $\mu \mathrm{V}$ measured iangentially at full bandwidth.
Input: dilferential of single-ended on all ranges, selectable.
Common mode
Frequency: dc 1010 kHz on all ranges.
Rejeclion ratlo: 1200A/B, 1201A/B, 100 dB (100000 to l) with de-coupled inpui on $0.1 \mathrm{mV} /$ div range, decteasing by $<20 \mathrm{~dB}$ per decade of deflection factor to at Jeast 40 dB on the $0.2 \mathrm{~V} /$ div range: $1205 \mathrm{~A} / \mathrm{B}, 50 \mathrm{~dB}$ with de-coupled input on $5 \mathrm{mV} / \mathrm{div} 100.2 \mathrm{~V} / \mathrm{div}$ ranges; $C M R R$ is at least 30 dB on the $0.5 \mathrm{~V} /$ div to $20 \mathrm{~V} /$ div ranges. Maxlmum signal: I200A/B, I201A/B, $\pm 10 \mathrm{~V}$ (dc + pcak ac) on $0.1 \mathrm{mV} /$ div to $0.2 \mathrm{~V} /$ div ranges; $\pm 400 \mathrm{~V}(\mathrm{dc}+$ peak ac) on all other ranges. $1205 \mathrm{~A} / \mathrm{B} . \pm \mathrm{JV}$ (dc + peak ac) on $5 \mathrm{mV} / \mathrm{div} 100.2 \mathrm{~V} / \mathrm{div}$ ranges; $\pm 300 \mathrm{~V}$ (dc + preak ac) on all olher ranges.
inpul coupling: seleelable AC, DC, or OFF for boih + and - in. puls,
Input RC: I megohm shunted by approx. 45 pF ; consiant on all ranges.
Maximum inpul: $\pm 400 \vee(d c+$ peak ac).
Intornal trigger source: on channel A signal for A. Chop. and AI. ternate displays. On channel B sigital for B display.
Isolatlon: $>80 \mathrm{~dB}$ between channels at 500 kHz , with shiclded input connectors.
Phase ahlft: (channels A ys B) $<1^{\circ} 10100 \mathrm{kHz}$ wilh vernicts in calibrated position.

Time base specifications

Sweep

Ranges: from $1 \mu \mathrm{~s} / \mathrm{duv} 40 \mathrm{~s} / \mathrm{s} / \mathrm{div}(2)$ positions) in 1 , 2 . 5 sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier; continumusly variable between ranges; extends slowest sweep 10 at least $12.5 \mathrm{~s} /$ div.
Magniller: direct reading $X 10$ magnifier expands fastest sweep to 100 ns ; div wioh $\pm 5 \mathrm{E}$ stouracy.
Automatle trlggering
Bascline is displayed in absence of an input signal.
Internal: 50 Hz to above 500 kHz on mosi signals causing 0.5 division or more vertical deflection. Triggering on line frequency also selectable.
Externas: 50 Hz in ahove I MHz on most signals at least 0.2 V p-p. Trigger slope: posilive or negative slope on internal, external, or line trigger signals.
Ampiltude selection Iriggering
Internal: de to above 500 kHz un signals causing 0.5 division or more vertical dellection.
External: de to 1 M Hz on signals at least 0.2 V p-p. Input impedance is 1 megolm shunted by approx. $20 \mathrm{p} F$.
Trigger level and glope: imternal. at any point on vertical wavcform displayed: or continuonkly variable from $+100 \mathrm{~V} 10-100 \mathrm{~V}$ on cither shope of the external (rigger signal.
Trigger coupling: de or ac for external. line. or internal iriggering. Lower ac culoff is 2 Hz for external; 5 Hz for imernal.
Single sweep: selectable by front panel switch. Reset switch with armed indicator light.
Free run: selectable by fronl panel switch.
Maximum lnput: 1350 V (dc + peak ac).

Horizontal amplifler

Bandwidth: de-coupled. de to 300 kHz ac-coupled, 2 Hz to 300 kHz . Deflectlon faclor: ranges. $0.1 \mathrm{~V} / \mathrm{div}, 0.2 \mathrm{~V}$; úiv. $0.5 \mathrm{~V} / \mathrm{div}$, and $V /$ div: vernier, continuously variable betwoen ranges, extents maximum defloction factor to at hasi $2.5 \mathrm{~V} /$ div.
Maximum input: $\pm 350 \mathrm{~V}$ (de + peik de).
Input RC: I megolmi shunted by approx. 20 pF , single-caded.

Cathode-ray tube and controls specifications

Slandard CRT, 1200A/E, 1205AB

Type: mono-accelerator. 3000 V accelerating polential: P3l phosphor standard (refer to Options for olher phosphors).
Graticule: 8×10 div imiernal graticule. 0.2 subdivision markings on horizontal and vertical major axes. I div $=1 \mathrm{~cm}$.
Varlable persistence/storage CRY, 1201A/日
Type: post-accelerator, variable persistence storage lube: 10.5 kV acoclerating potential: aluminized P3I phosphor.
Gratleule: 8×10 div internal graticule. 0.2 subdivision markings on major axes. 1 div $=0.95 \mathrm{~cm}$. Front panel recessed serewdriver adjustment aligns trace with geaticule.
Persletence/storgge characleristlcs:
(Referenced co a centered 7×9 div area in STD mode and to a centered 6×8 div area in FAST mode.)

Peraistence: conventional, nalural persistence of P3I phosphor. approx. $40 \mu \mathrm{~s}$: variable, continuously variable from 0.2 s to $>1 \mathrm{~min}$. in STD mode; and from 0.2 s to 15 s in FAST mode.
Slorage wrlling epeed: STD mode, $20 \mathrm{div} / \mathrm{ms} ;$ FAST mode, 0.5 div/ $\mu \mathrm{s}$.
Brlghtness: $340 \mathrm{~cd} / \mathrm{m}^{2}(100 \mathrm{fl})$ in write mode.
Storage time: STD writing speed, variable from approx. 1 min. to >2 hours. Fast writing speed, variable from apprex. IS s $10>15$ min.
Erase: pushbutton crasure takes approx. 1.2 s. Write gun is blanked and sweep is resel until erasure is completed.

General specifications

Intensity modulation: +2 V signal blanks irace of normal intensity. $+8 \vee$ signal blanks trace on any iniensity. DC-coupled input on rear pancl; amplifier rise time approx. 200 mss , inpur R is approx. $5 \mathrm{k} \Omega$.
Beam Inder: returns trace to CRT sereen regardlests ef horizontal or verical control scttings.
Callbrator: I $v \pm 1.5$ line frequency square wave.

Dimenslons

Cablnet models (designated by A suffix): 211.2 mm wide X

Rack models (deslgnated by \mathbf{B} suffix): $482 . \mathrm{h} \mathrm{mm}$ wide. 132.6 mm high, 433.4 mm deep overall ($19^{\circ} \times 5 . \mathrm{e}^{*} \times 17 \mathrm{H}_{\mathrm{n}}{ }^{\circ}$); 390.5 mm ($15 \% / s^{\prime \prime}$) behind front pancl.
Power requirements: 115 V ac $\pm 10 \%$, 48 to 440 Hz ; Watts lop. prox.) 1200A/B. $50 \mathrm{~W}: 1201 \mathrm{~A} / \mathrm{B} .60 \mathrm{~W}: 1205 \mathrm{~A} / \mathrm{B}, 45 \mathrm{~W}$.
Weight
1200A, 1205A: nel. 11.4 kg (25 lb). Shipping. $159 \mathrm{~kg}(341 / \mathrm{lb})$.
1200B, 1205B: nel. 10.2 kg (221/2 lb . Shipping, 15.9 kg (35 lb).
1201A: nct, 13.6 kg (30 lb). Shipping, 17.9 kg (391 l 16).
12018: nel, $12.5 \mathrm{~kg}(27 / / 2)$. Shipping, $18.2 \mathrm{~kg}(40 \mathrm{lb})$.
Options Price
Vertical output slgnais specilications (Opt 015)
Outpul: $0.3 \mathrm{~V} / \mathrm{div} \pm 10^{\circ} \%$. 0 V offel unaffected by pasition control setting.
Bandwidth: de to 500 kHz .
Dynamle range: $\pm 3.5 \mathrm{~V}$.
Maximum slewing rate: $12 \mathrm{~V} / \mu \mathrm{s}$ with 300 pF lond.
Minimum load RC: 10 kSI shwted by approx. 300 pF .
Source Impedance: upprox. 300 ohms.
006: rack models only, reas input terminals wired in parallel with front panel vertical and harizontal input cerminals
007: standard CRT only. P7 phosphor in licu of P31
N/C
00̈s: variable persistence/storage models only, remote
crase through rear panel banana jack, shorting to ground provides ctasure
015: verical chunnel signal outputs through rear panel conneciors

Madel number and name
1200 A or 1200 B Dual Channcl, $100 \mu \mathrm{~V}$ Oscilloscopc
1201A or 1201B Dual Channel, $100 \mu \mathrm{~V}$ Storage
Oseilloscope
$\$ 2300$
1205 A or 1205 B Dual Channel. 5 mV Oscilloscape $\$ 1250$

Probe/instrument compatibility

Noles:

* Indectes that mode wili mamian the Dandwaditi at the instrument

Voltage divider probe specifications

$\begin{gathered} \text { Model } \\ \mathrm{No.} \\ \hline \end{gathered}$	Obvision Reato	$\begin{aligned} & \text { gesishance } \\ & \text { 4n } \end{aligned}$	Shunt Gapacitancr	Compen. sles Scope Ioput Cupacities	Pent Vorla	Ownial\| Londit m(1)	Price
10n01\%	10:1	10	10 pr	15-55	600	15 (5)	180
100018	10:1	10	20 pi	15-45	600	3.0 (10)	860
100024	30:1	9	$2.5 \mathrm{pf}^{\text {a }}$	15-55	1000	1.3 (3)	150
100028	50.1	4	5 DF	15-55	1000	30 (10)	550
10003 h	10:1	10	10 pr	15-55	600	$1.3(4)$	510
10040	10:1	10	10 DF	20-30	500	$1.1(3.5)$	505
10.050	10.1	10	17 pJ	20-30	500	$3.0(10)$	565
100660	D1	10	Tipf	20-30	500	1.8(6)	565
100016	11	-	4005	-	6\%	$11(3.5)$	527
100086	11	-	60 pF	-	600	18(6)	327
100138	101	10	13 咃	24-45	500	I. $\mathrm{E}(6)$	839
100146	101	10	10 pI	9-13	500	1.1 (3.5)	365
100164	10.1	10	14 VF	9-13	500	$18(6)$	365

10020A Resistive dividers

Division Rallo	Inpul 8 * (0hnes)	Dlvision Accuracy	$\begin{aligned} & \text { Max } V^{\circ \theta} \\ & (\mathrm{mss}) \end{aligned}$	Inpul C (pF)
1:1	50	-	6	-
5:1	250	$\pm 3 \%$	9	<0.7
10:1	500	$\pm 3 \%$	12	<0.7
20:1	1000	$\pm 3 \%$	15	<0.7
50:1	2500	± 35	25	<0.7
100:1	5000	$\pm 3 \%$	35	<0.7

- Wihes terminated in SD ohmis.
- "Limileat by power dissipation of resistrva element

Length (overall): approx. 12 J .9 cm (4 ii).
Weight: net, 0.45 kg (I lb). Shipping, 1.36 kg (3 lb).
Accesaorles supplied: blocking capacitor. BNC adapter tip, 6-32 adapier up, alligator lip. bool extension, cable assy's 5.1 cm (2 im .) and $15.2 \mathrm{~cm}(6 \mathrm{in}$.$) ground, spanner lip, insulating cap. colored sleave.$
10020A Resistive divider probe kil

1120A 500 MHz active probe

(Measured with output connected to a 50 ohm load.)
Bandwidth: (measured from a terminated 50 ohm source) do-coupled, de $10>500 \mathrm{MHz}$; ac-coupled, < $1.5 \mathrm{kHz} 10>500 \mathrm{MHz}$.
Pulae response: (measured from a terminated 50 ohm source) rise time, $<0.75 \mathrm{~ns}$; periurbations, $< \pm 6 \%$ measured with 1 GHz sampler. Dynamle range: $\pm 0.5 \mathrm{~V}$ wht $\pm 5 \mathrm{~V}$ de offsel.
Noise: approx. 1.5 mV (measured langentially).
Input RC: $100 \mathrm{k} \Omega$. shunt capocitance approx. 3 pF at 100 MHz ; with 10:1 or $100: 1$ dividers, shunt capacitance is $<1 \mathrm{pF}$ at 100 MHz .
Meximum input $\pm 80 \mathrm{~V}$.
Weight: net, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, $3.2 \mathrm{~kg}(7 \mathrm{lb})$.
Power: supplied by oscilloscope plug-ins with probe power jacks or a Model 1122A probe power supply.
Length: $1.3 \mathrm{~m}(4 \mathrm{ft})$ overall; with Option 001. $1.8 \mathrm{~m}(6 \mathrm{f})$.
Accessories furnished
Model 102414 10:1 divider. increases inpul R to approx. I megohm shurled by $<1 \mathrm{pF}$ at 100 MHz .
Model 10243A 100:1 divider: increases input R to approx. I megotim shunted by $<1 \mathrm{pF}$ at 100 MHz .
Model 10242A bandwidth ilmiter: reduces bandwidsh to approx. 27 MHz shunted by approx. 6 pF and reduces giain $<2 \%$.
Also included: slip-on hook lip. 6.4 cm (2.5 ir .) ground lead, spare probe tips, a slip-on BNC probe adapler, iwo red ID sleeves, and a probe divider adjusiment lool (PN 5020-0570).

1124A 100 MHz active probe

(Measured when connected 10 a $S 0$ ahm load.)
Bandwldth: (measured from a terminated 50 ohm source) de-coupled, de to 100 MHz ; ac-coupled, 2 Hz to 100 MHz .
Pulee response: (measured from a terminated 50 ohm source) rise lime, <3.S ins: perturbations, 5 Th p-p. Measured with pulse rise lime of $>2.5 \mathrm{~ns}$.
Attenualion ratlo: $10: 1 \pm 50 \% 100: 1 \pm 5 \%$.
Dynamic range: $\times 10, \pm 10 \mathrm{~V} ; \times 100, \pm 100 \mathrm{~V}$.
Input RC: 10 megohms shunted by approx. 10 pF .
Maximum sale Input
DC-coupled: X $10, \pm 300 \mathrm{~V}(\mathrm{dc}+$ peak $a c) \leq 100 \mathrm{MHz} ;$ X 100 ± 500 $V(d c+$ pcak ac) $\leq 100 \mathrm{MHz}$
AC-coupled: X10, $\pm 300 \mathrm{~V}$ (dc + pcak ac) $\leq 100 \mathrm{MHz}$. DC component musi not exceed $\pm 200 \mathrm{~V} ; \times 100, \pm 500 \mathrm{~V}$ (de + peak ac) $\leq 100 \mathrm{MHz}$. DC compunent must nat excetd $\pm 200 \mathrm{~V}$.
Accessories supplied; one 20.3 cm (8 in .) ground lead, one retractable hook tip, and two probe tip insulating caps.
Power: supplied by 1800 series plug-ins with probe power jacks or Modél II22A probe power supply.
Welghl: nel, 0.2 kg (6 oz). Shipping, 0.91 kg (2 lb).
Length: approx 1.5 m (5 n) overall.

1125A Impedance converter probe

Model I125A Active Divider Probe provides high impedance inpul (approximately $100 \mathrm{k} \Omega$) at less than 50 Hz which decreases as frequency increases. Input impedance remains a constant $5 \mathrm{k} \Omega 1050$ MHz with the $\times 100$ tip and 500 ohms with the $\times 10$ ip 10 greater than 250 MHz . The low probe Lip shunt capacitance of $<0.7 \mathrm{pF}$ provides minimum capacitive londing at high frequencies. Power is supplied by plug-ins with probe power jacks or the 1122 A probe power supply.
1125A Specificatians
Attenuatlon ratio: (oscilloscope gain may be adjusted for $10: 1$ and 100.1 division ratio) $10.5: 1$ and $105: 1, \pm \$ 5$.

Dynamle range at probatip: $\times 10, \pm 4 \mathrm{~V} ; \times 100, \pm 40 \mathrm{~V}$.
Input impedance at probe tlp
High trequency: approx. 500 ohms $(X 10)$ or $5 \mathrm{k} \Omega(\mathrm{X} 100)$ shunted by 0.7 pF (in $\times 10$ or $\times 100$ modes).
Low trequency: approx, $100 \mathrm{k} \Omega$ (de-coupled).
Maximum Input
All modes: $\pm 300 \mathrm{~V}$ (de + peak ac with $\pm 200 \mathrm{~V}$ max de component.
X10: de $10500 \mathrm{~Hz}, 200 \mathrm{~V} \mathrm{rms}$; decreasing 6 dB per oclave to 12 V rms at $10 \mathrm{kHz} . \geq 10 \mathrm{kHz}, 12 \mathrm{~V}$ mes is max allowable continuous input.
X100: dc to $1.5 \mathrm{kHz}, 200 \mathrm{~V}$ rms: decreasing 6 dB per octave to 35 V rons al $10 \mathrm{kHz} . \geq 10 \mathrm{kHz}, 35 \mathrm{~V} \mathrm{rms}$ is max allowable contiouous inpul.
Bandwidth: (with X 10 or X 100 tip and supplied 1.3 m (4 ft) cable).
DC-coupled: de 10250 MHz
AC-coupled: 20 Hz to 250 MHz .
Pulse response In $\times 10$ or $\times 100: \leq \pm 5 \%$ perturbations measured from a terminated 50 ohm source.
Accessories supplied: one $1.3 \mathrm{~m}(4 \mathrm{f}) 50$ ohm cable. one $\times 10$ divi der lip, one X 100 divider tip, one rigid bool extension, two red color coding sleeves, two clear plastic insulating cops. two jade gray insulating caps, one 5.1 cm (2 in) 6.32 ground lead, one 15.2 cm (6 in.$) 6-32$ ground lead, one $6-32$ alligator tip and one $6-32$ alligator tip.
Power: supplied by insuruments with probe power jacks or a Model 1122A probe power supply.
Length: approx overall tength, 147.3 cm (58 in .).
Welght net, $0.2 \mathrm{~kg}(6 \mathrm{oz})$. Shipping. $0.9 \mathrm{~kg}(2 \mathrm{lb})$.
Model number and name Pricer
ll20A 500 MHz Active Probe
1120 A Opi 001, $1.8 \mathrm{~m}(6 \mathrm{At})$ lengit
$\$ 565$
1124A 100 MHz Aclive Probe add $\$ 25$

II25A Impedance Converter Probe
$\$ 170$
$\$ 200$

1111A AC current amplifier

Deflection factor: (with a $50 \mathrm{nV} /$ div nscilloscope deflection factor) in XI. I mA/div to $50 \mathrm{~mA} / \mathrm{div}$; in X 100 , $100 \mathrm{~mA} /$ div $105 \mathrm{~A} / \mathrm{div} ; 1.2$. S sequence in XI or X 100 .
Accuracy: in Xl. $\pm 39 \%$ in $\mathrm{X} 100 . \pm 4 \%$.
Rise tlme: 18 ns .
Nolse: < $100 \mu \mathrm{~A} p-\mathrm{p}$, refcenced to inpul signal.
Maximum ac current: above 700 Hz , 50 A p-p; below 700 Hz decreases al l. $4 \mathrm{~A} / 20 \mathrm{~Hz}$.
Output impedance: 50 ohms.
Dimensions: 38.1 mm high, 130.2 mon wide. 152.4 ms deep ($1 / \mathrm{s} x$ $51 /{ }^{1} \times 6 \mathrm{in}$.)
Welght: ncl, approx, 0.91 kg (2 lb). Shipping, 1.36 kg (3 (b).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz .1 .5 wates.

1110A Current probe

Senslilulty: without 100 ohm termination, $1 \mathrm{mV} / \mathrm{mA}$; with 100 ohm termination, $0.5 \mathrm{mV} / \mathrm{mA}$.
Accuracy: $\pm 3 \%$.
Bandwldth
Lower -3 dB polnt: withoul 100 ohm termanation. 1700 Hz with 100 ohm termination, 850 Hz .
Upper -3 dB point: with $\& \mathrm{pF}$ capacitive load, $>45 \mathrm{M} \mathrm{Hz}$; with 30 pF capacilive load, 35 MHz .
Rlse time: with a pF capacitive load. 7 ns ; with 30 pF capacitive load. 4 ns .
Insertion Impedance: approx. 0.01 ohm shunted by I $\mu \mathrm{H}$: capacitunce to ground <3 pF.
Maximum de currenl: 0.3 A .
Maximum ac current: $15 \mathrm{~A} p-\mathrm{p}$ above a kHz : decreasing below 4 kHz al $3.8 \mathrm{~A} / \mathrm{kHz}$ rate.
Weight: net. $0.45 \mathrm{~kg}(\mathrm{l} \mathrm{lb})$. Shipping. $0.91 \mathrm{~kg}(2 \mathrm{lb})$.
Dímensions: probc aperture. 3.9 mm ($\%$ 32 in.) diameter; overall lengih. 1.5 m (5 fil).

1122A Probe power supply

Probe driving capabllity: up to four Hewlett-Packard active probes.
Power oulpul: -12.6 and $+15 \mathrm{~V}, \pm 3 \%$.
Power inpul: 115 V or $230 \mathrm{~V} \pm 10 \% .48$ 10 440 Hz .40 W (wilh four probes).
Wolght. net. 2.7 kg (6 lb). Shipping. $3.63 \mathrm{~kg}(8 \mathrm{lb})$.
Accessories suppled: four 10131891.4 cm (36 in .) exicnder cables.

Digital trigger probes

Models 10250A (TTL), 10251 A (MOS), and 10252A (ECL) Trigger Probes are useful service, production, and design trouble-shooting tools that offer digitat pattern triggering to enhance the use of oscilloseopes. logic analyzers. and other test equipmont. With the 4-bit trigger probe, you triget on four parallel events. The four inpuss may be switched to HI. LO. or OFF (don'r care) for convenient selection of the trigger point. No separate power supply is needed because probe power is obtained from the ciscuit under lest.

The compact Model 1230A Logic Trigger unit generates a trigger outpui pulse (TTL compatible) from parallel digital paltern recognition with digital detay capability for oscilloscopes, logic analyzers, or olher externally triggered lest equipment. Paltem recognition is selectable to 8 bits with the trigger word switches and digital delay is selectable to 9998 clocks with a choiec of synchronous or asynchronous operation.

For 4 and 8 bit parallel irigger probe specifications and prices refer to the Digital Circuit Testers and Analyzers section.

Model number and name	Price
Model 1111 A Curren Amplifier	$\$ 335$
Model 1110 A Curren Probe	$\$ 150$
Model 1122 A Probe Power Supply	$\$ 375$

10011B

10035A

10407B

Probe accessories

Terminatlons
Model 10100C: 50 ohm focdihrough.
Model 101008: $100 \mathrm{ohm}(\pm 2 \mathrm{ohm})$ feedthrough for IIIOA current prabe.

Probe tip
Model 100118 BNC adapler tip: for probes 10004 D .10006 D . $10007 \mathrm{~B}, 10008 \mathrm{~B}, 10014 \mathrm{~A}, 10016 \mathrm{~A}$, and 1124 A .

Prohe tip kits

Probe tip kits, Models 10036A and 10037A, extend usefulness of $10004 \mathrm{D}, 10005 \mathrm{D}$ and 10006D prober. Model 10036 A consists of an assortment including tips for the following: 2.0 mm (0.08 in .) jack; 06 $\mathrm{mm}(0.025 \mathrm{in}$.$) and 11.4 \mathrm{~mm}$ (0.045 in .) square pin; $1.0 \mathrm{~mm}-1.6 \mathrm{~mm}$ ($0.040-0.062 \mathrm{in}$.) dia pin; and a long pin tip. Model 10037A comains six $0.6 \mathrm{~mm}(0.025 \mathrm{in}$.) squarc pin lips. Probe lip kit, Model 10035 A for 10001A-10003A probes contain pincer jaw, banana hip. pin lip, and spring lip.

Model 10034 A probe adapter kit consists of an assorment of 6-32 sctew-on cips, and two ground lead cables which allow many methods of connecting the ground leads in a circuit. A 6-32 to slip-on adapter allows these lips to be used on $10004 \mathrm{D}-10006 \mathrm{D}, ~ 10007 \mathrm{~B}, ~ 10008 \mathrm{~B}$, $10013 \mathrm{~A}, 10014 \mathrm{~A}, 10016 \mathrm{~A}$, and 1124 A probes. The kil consists of one 15.2 cm (6 in.) and one 30.5 cm (12 in .) ground lead, one hook tip, one alligator tip. one pin tip, one lip for $0.6 \mathrm{~mm}(0.025 \mathrm{in}$.) square pins. one banana lip, and one slip-on so 6.32 adapter.

Calibration and service accessories
 Plug-in extender

Model 10407B: 180 system extender (metal frame extends boit plugins). Allows catioration and maintenance while a unit is operating.

226A Time mark generator

Model 226A is a high quality, time mark generator that provides 30 precision time intervals for calibrating oscilloscope lime hases. Marker intervals are in a convenient $1,2,3$ sequence that matches the sweep time seltings on oscilloscopes. A single, easy-to-read front panel rovary switch provides easy use without confusing nomenclature. Ranges: from 2 ns 1010 s (30 ranges) in 1.2 .5 sequence.
Oulput: $+1 \vee$ peak into 50 ohms. 28 intervals from 10 ns to 10 s . Sine wave output on 2 and 5 ns ranges provides 1 V into 50 ohms.
Accuracy; $\pm 0.005 \%, 0^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}: \pm 0.002 \%$ at $25^{\circ} \mathrm{C}$ after $1 / 2$ hour warmup.
Trigger frequency: same as time mark to $100 \mathrm{~ns}, 10 \mathrm{MHz}$ for all ranges fasler than 100 ns.
Programining (optlonol): all ranges are programmable, requires 6 parallel lines (6 bit word) and 2 timing lines, TTL compalible.
Dlmensions: 114.3 min high, 196.9 mim wide. 203.2 man deep ($4.5 \times$ 7.75×8 in.).
Welght: nel, $3.2 \mathrm{~kg}(7 \mathrm{lb})$. Shipping. $4.5 \mathrm{~kg}(10 \mathrm{lb})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 4810440 \mathrm{~Hz}$; approx. 25 walts.

Model number and name	Price
10100C S0 ohm Feedthrough Termination	$\$ 22$
10100B 100 ohm Feedehrough Termination	$\$ 26$
10011B BNC AdapIer Tip	$\$ 12$
10034A Probe Tip Kit	$\$ 20$
10035A Probe Tip Kil	$\$ 9$
10036A Probe Tip Kil	$\$ 35$
10037A Probe Tip Kil	$\$ 25$
10407B Plug-in Extender	$\$ 140$
226A Time Mark Generator	$\$ 775$
226A Option 003, TTL compatible programming	add $\$ 155$

Viewing accessories

Viewing hoods

10176A: viewing hood for 32.7 cm (5 in .) reetangular CRT bezels. 10104A: collapsible viewing hood for 1700 series ascilloscopes.
10116A: collapsible light shield for 1220 series oscilloscopes.
10180A: light shield for large screen 182 oscilloscopes.
10140A: vieving hood for 1740A oscilioscope. Consac your HP Field Engineer for information.

Light filters

10102A: metal mesh screen for 1700 through 1707B oscilloscopes improves display conerast and serven as RFI filier. The screen's meial frame is grounded through four metal tabs 10 provide RFI 万llering.
10178A: melal mesh for 18), 183, 184 oscilloscopes.
10115A: blue light filter for 1700 series oseilloscopes.
Amber plasdc fliter: HP P/N $5020-0530$, for 12.7 cm (5 in.) rectangular CRT.
Blue plastic filter. HPP/N 5060.0548 , for 12.7 cm (5 in.) reclangu. lor CRT.
Smoke gray plastle filter: HP P/N 5020-0567. for 12.7 cm (5 in.) rectangular CRT.
Model number and name
10176A Viewing Hood for $12.7 \mathrm{cro}(5 \mathrm{in}$.$) reet. CRT$
10104A Viewing Hood for 1700-1722A oscilloscopes
10116A Light Shield for 1220 series oscillescopes
10116A Light Shield for 1220 serics oscitloscopes
$\$ 13$
10190A Light Shield for 182 oscilloscopes
10102A RFI Screen for 1700 through $1707 B$ Oscillo-
soopes
10178A Filler, mesh contrast/RF for 181,183.184
mainframes
IOIISA Filter, blue contrast for 1700-1722A oscilloscopes
Amber plastic filuer (HP P/N 5020-0330) for $12.7 \mathrm{~cm}(5$ in.) recl. CRT
Bluc plastic filter (HP P/N $5060-0548$) for 12.7 cm (5 in.) rect. CRT
Smoke gray plastic filter (HP P/N 5020-0567) For 12.7
cm (s in.) red. CRT

Rack mount slides and adapters

Slides are available for mounting modular and rack siyle oscilloscopes. A slide adapter is required 10 sceure $3 n$ oscilloscope to the slitues.

140 series modular oscilloseopes	
8ilde edapter klt: HP P/N 1490-0721	547
Fixed slldes: HP P/N 1490-0714	\$62
Plvol slldes: HP P/N 1490-0718	\$66
1710B/1712A/1720A/T722A oscilloscopes 10491A Rack Mount Adaplet	\$150
180. 181. and 184 rack style oscillascopes Fixed slldes, 22-In.: HP P/N 1490-0714 Plyot slldes, 22-1n.: HP P/N 1490-0719	$\$ 62$ $\$ 64$
183 rack style oscilhoscopes Plyot slides, 24-In.: HP P/N 1490-0924 Sllde adapter for 180 series: HP P/N 1490.0768	$\$ 62$ $\$ 39$

Protective covers

Models 10166 A and 10169A provide front panel prolection and space for probe and aceessory storage for 180, 181, 183. 184 and 1200 series cubinet styic oscilloscopes.
10166A: for 180, 181, 183. 184 cabinel oscilloscopes
10169A: for 1200 series cabinet oscilloscopes A rack siyle metal front panel cover is avalabic io fil
$180.181,183$ or 184 rack mode) oscilloscopes. Order HP P/N 5060-0437.

OSCILLOSCOPES
 Cameras for display recording
 Models 123A\& 197A

123A Description

Model I23A is a lightweight compact camera which adapts with ease to most Hewlet-Pack ard oscilloscopes and displays. The carnem does not require external power and only weighs 1.6 kg (31) (b) making it ideal for use in field applications. The 123A has a range finder for casy focusing using is split image technique. This range finder alsis serves as a viewing port so thal you can make minor CRT intensity and graticule illunination adjustments with the camera in place. For convenience in setting up the display the camera has a swing-away feature allowing full visibility of the CRT screen. Controls are colof coded for oplimum sellings and are located outside of the cameru for easy reading and fast adjustment to reduce initial secup time.
The 123A mounts directly or with adapters to the oscilloscopes as listed in the oscillostope/camers adapier table.

123A Specifications

Reduction ratlo: continuously adjustable from 1:1 to 1:0.65.
Lens: $56 \mathrm{~mm} . \mathrm{r} / 3.5 \mathrm{lens}$: aperiure ranges $\mathrm{f} / 3.5 \mathrm{f} / \mathrm{f} . \mathrm{f} / 5.6, \mathrm{f} / 8.1 / 16$, and 5/22.
Shutter speeds: $1 / 10,1 / /$ sin $1 / 15,1 / 2,1 / 2,1 / 2$ and 1 seconds. Time and Bulb. Cable has thumbserew lock for time exposures. X-type contacts provided to trigger or synchronize other equipment with shater retcase.
Gratleule illumination: supplied by the oscillorcope or oscillosenpe adapler.
Gamera back: $82.6 \mathrm{~mm} \times 108.0 \mathrm{~mm}(31 / 4 \mathrm{in} . \times 41 / 4 \mathrm{in}$.) Polaroidin pack back
Mounting: lifi on/afr mounting with positive lock. Mounts directly on most HP 1700 series oscitloscopes. Adapters are available to fit other scopes, see Camera accessorics.
Range finder: viewing port provides split image of the CRT to allow selling of the focus.
Viewing: range finder viewing por allows viewing the CRT with camcra in position. Camera swings away for wide angle viewing.
Focus: adjustable with camera back closed or open; split image focusing plate provided for use when object-to-image ratio is changed. Dimenslons: 220 mm long. 122 mm high, 192 mm wide ($813 / 16.491 \mathrm{tm}$. $7 \% / 16$ in.).
Welght: net, 1.6 kg ($31 / \mathrm{f}$ (b). Shipping, 2.3 kg (5 lb).
Accestorles furnished: combination split image focusing plate and reduction ratio scale, and instruction minual.
"Polaroid"ei by Polatoid Corp.

197A Description

Model 197^ is a versatile, general purpose osellloscope camera that can be used for many trace recording applications. All controls are located outside of the camera for easy rending and fast adjusiment during sel-up. The controls are also color coded for optimum seltings for most pholos which reduecs initial set-up time.
An electronically-eontrolled shutter, with all solid-state circuits for reliable operation, provides accurate exposure times from $1 / 20104500$ onds. The shatter may be operated remotely by providing a closure to ground and a contact closure is provided when the shulter is open to allow synchronization of other equipment.
The 197A can be directly mounted on most Hewlet1.Packard oscilloscopes with 12.7 cm (5 in .) CRTs and will also swing away from the CRT for casy trace viewing. Adapters are available for many other oscilloscopes.
The reduction ratio (i.e., object-to-image ratio) may be varied from I:I to $1: 0.7$ with a serewdriver adjustment. This allows the optimum amount of a graticule to be photographed, which is usefut when making multiple exposures or when used on different size graticules. The camera can be quickly focused to matel the reduction ratio with the split-image focus plate supplied with the camera.

The 197A camera is supplied with an $82.6 \mathrm{~mm} \times 108.0 \mathrm{~mm}(3 \% \mathrm{in}$. $\times 41 / 4$ in.) Polaroid pack back. The back may be rotated 90° from the normal horizontal position to a vertical position and can be moved ibrough II detented positions for muktiple exposures. The back may also be replaced with a Graflok of back which allows use of cet or roll film.
"Grallok" el by Graflex, Inc.

197A Specifications

Heduction ralio: continuously adjustable from $1: 1$ to $1: 0.7$. Refur. ence scale provided on focus plate.
Lens: $75 \mathrm{~mm} . \mathrm{f} / 1.9$ high transmission lens; aperture ranges $/ / \mathrm{I} .9$ to r/16.
Shutter apeeds: $1 / 3,1 / 4,1 / 6,1 / 4,5,1,2,4$ seconds, Time and Bulb: shutler has a sync contact closure oulpul for triggering external equipment and an input jack for remote operation.
Graticule Illumination: provided internally with ultra violet light with variable intensity control and OFF, FLASH. ON switeh.
Camera back: $82.6 \mathrm{~mm} \times 108.0 \mathrm{~mm}(31 / \mathrm{in} . \times 41 / \mathrm{in}$.) Polaroid pack back (other backs are available. sec Options): backs may be interchanged without focusing and may be rotated in 90 -degree increments.
Mountíng: lifi on/orf mounting with positive lock, swing-away hinging to left. Mounts directly on most HP oseilloscopes with 12.7 cm ($\$$ in.) round or rectenguar CRTs. Adapters are available to fil many other scopes.
Viewing: low-angle, direct viewing through a flexible facemask.
Multiple exposure: back can be moved through If deiented positions ($1 /: \mathrm{cm}$ per detent at $1: 0.9$ object-10-image ratio).
Focus: adjustable focusing with lock: split image focusing plate provided.
Dimensions: 356 mm long, 267 mm high, 194 mm wide ($14,10^{1 / 2}, 73 / \mathrm{s}$ in.).
Weight: net, $4.5 \mathrm{~kg}(10 \mathrm{lb})$. Shipping. 7.3 kg (16 lb).
Power: $115 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 6$ wats.
Acceasories furniahed: combination split imago focusing plate and reduction ratio scale, $2.3 \mathrm{~m}(7.5 \mathrm{f})$ power cord and instruction manval.

Options Price
003: Grañok back in place of pack back (on inilial order). Ni/C
006: adapis 197A 10 1332A. 1335A.
add $\$ 25$
D12: factory wired for 230 V operation. N / C
Nodel number and name
223A Oscilloscope Camera \$535
197A Oscilloscope Camera $\$ 795$

10355A

10360A

10362A

10356A

10361A

10363A

10106A

10367A

10370A

10372A

10366B

10369A

10371A

10375A

Film backs for 197A camera

These film backs provide added fexibility of performance and se. lection of film for oplimum tuce photos to fit many applications. Model 197A has the Polaroid Pack Film back as slandard equipment. Any of these backs may be ordered initially as oplions al no extra charge or may be ordered separately to fil at varery of applications. 10353A Pack fllm back: uses Polaroid Land Film, 82.6 nim $\times 108.0$ mm ($31 / \mathrm{s}$ in. $\times 41 / 4 \mathrm{in}$.), with cight exposures.
10352 Graflok back: requires a film holder available from local camera stores. The back aceepts Polaroid Land $101.6 \mathrm{~mm} \times 127.0 \mathrm{~mm}$ ($4 \mathrm{in} . \times 5 \mathrm{in}$.) Film holder, standard cut-film holders, Film-pack adapters, and roll lilm holders.

Camera bezel adapters

Hewlett-Packard Model 197A camera directly fits HP 127.0 mm (5 in.) rectangular and round CRT oscilloscopes and can be mounted on many other oscilloscopes by using bezel adapters (see oscilloscope/camera adapler rable). HP Model I23A camera altaches direcily 10 most 1700 series oscilloscopes and can also be adapied to other oscilloscopes (sec oscilloscope/camera adapter table).
10355A: adsols 195A and 197A cameras 10 Tektronix and Faischild/Dumont 127.0 mm (5 in .) round bezels.

10358A: adapls I9SA and 197A cameras lo Textronix 560 Series rec. langular bezels.
10360A: adapis 196A/B camera to Hewlett-Packard 127.0 mm (S in.) rectangular CRT.
10361A: adapts Tekıronix Cl2 camera 10 Hewlell-Packard 127.0 mm (5 io.) reclangular CRT.
10362A: adapıs Tekıronix C27 camera to Hewlett-Packard 127.0 mm (5 in.) rectangular CRT.
10353A: adapis Tekiconix C30A, C31, C32, or C40 cameras to Hew-lett-Packard 127.0 mm ($\$ \mathrm{in}$.) rectangular CRT.
10106A: adapts Tekironix C30A, C31, C32, or C40 cameras 10 mosi Hewlett-Pyckard 1700 scries oscillaseopes with 6×10 div CRTs.
10366B: adapts 195A and 197A cameras to HP display models I330A/I33tA (seriat prefix IIIOA and sbove) and 1331A (serial prefix Ili6A and above). For lower serial prefix numbers contact your Hewlett-Packard Field Engineer.

10367 A: adapts Models 195A and 197A cameras to Model 182 oseilloscope.
10369 A: adapis 123A camera to Hewlelt-Packard 127.0 mm (5 in .) rectangular CRT (180 series).
10370A: adapis 123A camera 10 Hewlett-Packard 182 large screen CRT.
10371A: adapis 123A camera to Textronix 422/453/454/485 oscilloscopes.
10372A: adapis I23A camera to Tektronix $465 / 475$.
10375A adapts 197A. 195A cameras to 1332A. I335A displays. Tekeronic 600 \& 7000 series oscilloscopes.
10376A: adapts 197A camera to 1740A oscilloscope. Contact your HP Field Engineer for information.

Carrying cases

10358B: constructed of fiberglass and aluminum wich padding for prolection during transit. The earrying ease will accommodule the 195A or 197A cameras.
10374A: carrying case for (23A camera with storage spac: for I pack of Film.
Model number and name Price
10353A Pack Film Back \$130
10352B Graflok Back $\quad \$ 150$
J0355A Camera Adapter $\$ 27$
10356A Camera Adapler
10360A Camera Adapler
1036IA Camera Adaptcr
10362A Camers Adapler
10363A Camers Adaplet 10106A Camera Adapler
10366B Camera Adapier 10367 A Camera Adapler
10369A Camera Adapicr 10370A Camera Adapler
10371A Camera Adapier
10372A Camera Adapier
10375A Camera Adapter
$\$ 27$

10358 B Carrying Case
10374A Carrying Case
\square Oscilloscope/Camera Adapler Table'

Testmobile/instrument compatibility

Ieslmobile Model Number	Instrumenl Model Number
1000A	7402A
1001 A withoul Slorage Cabinel 1002A with Slorage Cabunel	1700 ${ }^{*}$, 17008. 1701A/8*, 1702 $A_{\text {. }}$ 17034, 1706A/日 ${ }^{*}, 1707 A^{*}, 1707 B$. 1710A/B, 1712A.1720A. 1722 A 1740A. 1620A, 1220A, 1221A. 1222a. 3580A.
10018 withoul Storage Cabinet 1002 B with Storage Cabinel	$180 A^{\circ}, 180 \mathrm{C}, 181 \mathrm{~A}, 181 \mathrm{~T}, 182 \mathrm{~A}^{\circ}, 182 \mathrm{C}$ 182T, 183A, 183C ${ }^{\circ}$, 184A. 1601 L .
1003A without Slorage Cabinel 1004A wilh Storage Cabinet	1208. 130C. 140A, 1408. 180TR. 181AR, 181TR, $183 \mathrm{~B}, 1830$. $18 \mathrm{AB}, 1645 \mathrm{~A}$.
11144.	180 and 1200 cabinet styre, and 1220 and 1700 series, 3580 A .**
11178	All instuments listed above pius 1200 series. 143A. 143 S .

- Instruments are no longar in prodoction.
- The 1114 A is compatible with all of the instruments listeat for use with the $1001 \mathrm{~A} / \mathrm{B}$ and $1002 \mathrm{~A} / \mathrm{B}$, plas 1200 series cabinet models.

1000 Series description

The 1000 scrics iestmobiles are of sturdy lightweight aluminum construction with high qualgy casters sei 48.3 cm (19 in .) apart to provide a stable platform, Large 10.2 cm (4 in .) mar resistant rubber tires provide quict, shouth movement, even over uneven floor surfaces. The top mounting trays on these testmobiles are convenient table-top height and can be tilted with one hand to any desired viewing angle between 53° above and 15° below horizental. The mount locks in posilion with a twist of the handle. Mouming trays vary in size and thickness and are designed for specific HP instruments as shown in the Testmobile Instrument Compatibility chart, A sturdy motded shelf near the base provides space for addilional equipment or you can order models with a conventent cabinet which includes a molded top shelf, an $11.4 \mathrm{~cm}(4 / 2$ in.) drower, and two internal shelves for maximum slorage space.

1000 Series specifications

Compatlbility: sec Testmobile/Instrument Compalibility chart.
TIlf angle; continuous within 70° range (55° above, 15° below horizontáal).
Load limits: mounting tray. $27 \mathrm{~kg}(60 \mathrm{ib}$): lower molded shelf ($1001 \mathrm{~A} / \mathrm{B}, 1003 \mathrm{~A}$). $34 \mathrm{~kg}(75 \mathrm{lb}) ; 54 \mathrm{~kg}(120 \mathrm{lb})$ combined loud with an instrument on the rnounting tray and a load on the lower shelf.
Satety: testmobiles are designed to hold one instrument only on the mounting tray, with no provisions for stacking: and are designed to be pushed with the mounting tray handle, especially over uneven floor surfaces.
Dlmenslons: see outline drawings.
Wheel slze: 102 mm (4 in.) dianicter.

Welght

1000A, 1001A/B, 1003A: net, 11.4 kg (25 lb). Shijpping. 17.3 kg (38 1b).
1002A/B, 1004A: ncl, 17.3 kg (38 ib). Shipping. 23.2 kg (s l lb).

1114A Description (new)

Model IIIAA is a gencral purpose tesimobile designed for 180 and 1200 cabinet style, and 1220 and 1700 serics uscilloscopes. withoul speciat adapters. A channel in the tilk tray pusitions: the front feet of the oscilloscope and in nylon tiendown strap securely holds the instrument in place. The combination tilt tray handle/release lever allows onc-hand continuous adjusiment of viewing angle, from 15° below horizental 1060° above. A base iray provides space for ofher instruments /accessories. Large rear wheels allow easy pushing over carpeted or rough Hoor surfaces. and locking froni cestiers hold the tesemobilc in position.

1000A, 1001A, 10018, 1003A

$1114 A$

1114A Specifications (new)

Compatibility: 180 and 1200 cabinel style, and 1220 and 1700 series oscilloscopes. See Tesimobile/instrument Compatibility chart.
TIIt angle: 75° range in $) 2$ steps $\left(60^{\circ}\right.$ above, 15° helow hormontal) . Load limitsi tilt tray, $18.2 \mathrm{~kg}(40 \mathrm{Hb}): 36.4 \mathrm{~kg}$ (80 jb) eombined load with an metrument on the tilt may and a load on the base tray.
Saloty: lestmobiles afe designed to hold one instrument only on the lilt tray. with no provisions for stacking: and are designed to be pushed with the lift tray handle, especially over unceen flour surfaces.
Dimensions: sec oulline drawing.
Wheel size: 76 mm (3 m .) diameter, locking caster (front): 152 mm (6 in.) diameter (rear).
Weight: net, 12.7 kg (28 lb). Shipping. $15 \mathrm{~kg}(33 \mathrm{lb})$.

1117 B Description

Model 1117 B for cabinet and rack model instruments provides tilt tray angles from $-15^{\circ} 10+30^{\circ}$ in $71_{1^{\circ}}$ increments for easy viewing. In addition, other instruments can be mounted in the standard ElA racks of the lower compariment. Rack mounting depth is 58.4 cm (23 in .) and power distribution is supplied. Optional atecessory drawers 7.6 cm (3 in.) and 20.2 cm (8 in .) deep are available 20 provide convenient storage space. The drawers may be installed in many verlieal posiLons of the lower compariment. allowing room for other rack mounted equipment.

1117B Specifications

Compaliblity: cabinet or 48.3 cm (19 in.) rack model oscilloscopes.

See Testmobile/lnstrument Compatibility chart.
Till angle: $-15^{\circ} 10+30^{\circ}$ in $7 j^{\circ}$ steps.
Dimenslons: sce outline drawing.
Wheol stze: 102 mm (4 in .) diameter.
Weight: net, $41.3 \mathrm{~kg}(91 \mathrm{lb})$. Shipping. 49.4 kg (109 lb).
Insirument mounting hardware supplied: 8 screw's for rack mounting insirumenis (HP P/N 2731-0002); 8 cup washers (HP P/N 3050 0007): 8 nylon washers (HP P/N 3050-0248): 8 Timnerman nuls (HP P/N 0590-0172).
Opllonal accesscries
Model 10475A: 7.6 cm (3 in.) drawer.
Welght: nel, $4,1 \mathrm{~kg}$ (9 lb). Shipping, 5.9 kg (I3 lb).
Model 10475A: $20.3 \mathrm{~cm}(8 \mathrm{in}$.) drawer.
Welght: nel, 5.4 kg (11 lb). Shirping, 8.2 kg (18 lb).

Model number and name	Price
Model 1000A	\$240
Model 1001a with molded lower shelf	\$225
Model 10018 with molded lower shelf	\$240
Model 1003A with molded lower shell	\$240
Model 1002A with storage cabinel	\$290
Model 1002B wilh slorage eabirse	\$290
Model 1004A with slorage cabinel	\$300
Model 1114A Testmobile	\$140
Model Il17B Tesimobile less drawers	\$350
Model 10475a 7.6 cm (3 in.) drawer	560
Model 10476A 20.3 em (8 in.) drawer	\$75

Hewlelt-Packard's caltode-ray tube displays arc high-perfornance instruments with bright, high quality readouls which are idcal for both end user and OEM applications. These displays are complete units which include the cathode-ray tube. vertical and horizontal deflection amplifiers, a video (Zaxis) amplifies, and high and low voltage power supplies.

Yokelcss electrostatic deflection in HP dis. plays provides increased writing speeds and resuced power requirements when compared to magnetic detlection displays. The most importani advantuge of elcelrostalic deflection is that characters and vectors can be written about ten times faster than with customary magnetic displays.

Halt-rack dlsplays

Model 1332A is a high resolution, high brightness display with a 158.8 mm ($61 / \mathrm{inch}$) diagonal CRT which is only $133.4 \mathrm{~mm}(51 / 4$ in.) high. The 1332A is designed to meet the stringen sequirements of medical diagnostic and instrumentation systicm applicalions. The major features in the 1332A include a small crisp spot size that varies by no more than 10% over the quality area: mulliple gray levels with rocus independent of intensity setling: hugh stability of position. gain, and
brighiness; regulated CRT filament vollage to climinate light output variations with changes in line voliage: large $115 \mathrm{~cm}^{2}$ display: arca; bright 22.5 kV CRT: and Underwriters Laboralories Listing.
One application of the 1332A is in conjunction with the Scintillation Camera (Gamma Camera). This medical diagnostic system uses the 1332A to display the oulpul of a special nuelear detector that is sensitive to radiation emitted from a patient's body. In this case. radioactive isolopes introduced into the body are selcetively absorbed by different cells. The difference in radiation levels are displayed as concentrations of dots that show up on film as intensity modulation. The 1332A's high resolution. light outpul uniformity, and stable leght ourpul give cleas time exposure photographs necessary for diagnosis by the medical spectalist.

Another spplieauon requiring sable CRT light oulput for long scan periods is in Medical Themography. In thix diagnostic tech. nique. a very sensitive infrared detector seans the body to detect skin temperature. Similar to other applications. the stable light oulput and foces permils time exposure pholographs to accuracty map a prolite of skin emperature.

5 MHz bandwidth. large display ares. and exceilent picture quality make the 1332A ideal for use in insirumentation systems. System applicalions include dipplay monitors. nuclear spectrometers, swepl frequency measurements, frequency ratios, spectrum amalysis, Tourict analysis. spectrophotometry, chemical analysis. and nuclear magnetic resonance.

Halt-rack storage displays

Model 1335A high revolution. storage CRT display offers medical and instrumentation OEM users a variable persisience, storage, and non-storage CRT display with excellent performance. Outstanding picture quality and amplifier performance with a frame designed for OEM use make the I335A a significant advancement in storage displays.
A non-storage resolution of approximately 40 lines per cm (100 lines per in.) with a spot size that is relatively independert of intensity setting or Z-axis input signals enhances the CRT image in applications requiring rocusing over a wide range of intensity levels. Variable persistence allows the elimination of ficker in some presentations with the abiluy to increase the persistence 10 match the refresh rate.

The 1335A CRT is a totally new design which is optimized for information display and offers a high resolution inage with excellent contrast and uniformity in medical diagnostic applications. Fine image delail and a well focused spot at all intensity levels and positions make the 1335A ideal far use in Spectrum, Fourier, Network, and Chernical analysis as well as automatic test systems.
In systein applications, the 1335 A offers Sexibility in selecting Erase, Slore. Write, Conventional and Variable Persistence modes. These operating modes can be selected with the inamaal from panel controls, remote program imputs, of a combination of both.

Large screen displays

Five large screen graphic displays are available For OEM computer graphic and insurumentation applications. Linear writing speed, in these displays, is an unmatched $25.5 \mathrm{~cm} / \mu 5$ ($10 \mathrm{in} . / \mu \mathrm{s}$) for visible writing and is capable or slew rates in excess of $255 \mathrm{em} / \mu \mathrm{s}$ (100 in./ $\mu \mathrm{s}$) when the spor does not have to be seen. These specds are attained with a yokeiess, elecirostatic deflection system which consumes much less power than the multiwinding coils of magnetic deflection systems. Overall power consumption of these displays
is a low 100 watts compared so 500 or more for others. Additionally, the much faster respoñsc of electrostalic deflection permits as much as 10 times the amount of information to be displayed in a given period as that of magnetic displays.

Fast amplifier response (5 MHz bandwidh) and electrostatic CRT defection also simplifies sysiem programming since vectors and characters can be written randomly from anywhere in the display ares in less time than the sequential programming necessary for raster scan magneric displays. Since coils are not used for deflection, no delay line is needed to properly synchronize Z-axis blanking with spol movement thus eliminating the possibilly of dixplay smearing and also making the display tasier 10 inlerface with a sys. tent.

Model 1321A has a 533 mm (21 inch) diagonal display with excellenl geomelry and linearity and a small) 0.51 mm (0.020 inch) spot size. The large $305 \times 305 \mathrm{~mm}(12 \times 12$ inch) quality area is ideal for presenting complex graphic information while using the additional vicwing aria for character writing.

Model 1317 A is a 432 mm (17 inch) diagonal display which is the largest $X-Y$ display presenily made that mounls direclly in a
482.6 mm (19 inch) rack with its long CRT axis horiconal. This large, high resolution display is ideal for the readous in computer graphic and instrumentation systems, since it mounls dircelly in standard 482.6 mm (19 inch) EIA racks.

Models 1310A (482.6 mm , 19 inch, diagonal) and I3IIA (355.6 mm . 14 inch. diagonal) displays are housed in optional atiractive plastic covers which when ordered with a till stand, make them ideal for table top applications.

20 MHz display

Model I300A has an extremely wide de to 20 MHz bandwidth in the X, Y, and Z amplifiers which is ideal for high speed graphie and analog system displays. The 203.2×254 mm (8×10 inch) viewing area with a bright display provides the resolution needed in many system applications.

Fast, 20 ns rise time. 200 ns setling time. and 80 as point ploting time allow rapid switching of input data withoul nicker. This, coupled with less than 0.15% repeatability error and 1% linearity, provides accurate graphic displays even with several unsynchronized multiplexed inputs.

High resolution/storage OEM systems
NEW

1332A and new 1335A Description

Model 1332A is an expeptional cathoderay fube display which is capable of meecing a wide variely of OEM medical and elcerronic instrument display needs. The eathode ray tube has the resolution and piclure quality required for medical diagnostic systems plus an extremely bright display needed for differentiating between many gray shades. Eleetrical performance has becn extended to 5 MHz to mect the display needs of today's OEM systems and digital processors.

Model 1335A high resolution. storage CRT display offers medical and instrumentation OEM users a variable persistence, storage and non-storage CRT display with excellent performance. Outstanding picture quality and amplifier periormance with a frame designed for OEM use combine to make the 1335A a significant advancement in storage displays.

Models 1332A and 1335A (Opl 330) are listed with Underwriters Laboratories in accordance with the U.L. 544 Medical Safely Standard which defines delailed patient protection requirements. Regular inspection of our production facility by U.L. assures you that this paLient protection is buill into the display that you purchase.

Both models are 13.3 cm ($51 / \mathrm{in}$.) high, half rack width. 49.5 cm ($191 /$ in.) long packages that can be combined with identical emply modules to form an altractive full width horizontal or verlically stacked OEM instrument.

Stable light output of 1332A for long scan periods permits time exposure photograph to paint a picture os budy temperature versus location in a Medical Thermography application.

Picture clarity

Model 1332A

Spot resolution is an unmatched 0.305 mm (0.012 in .) diametcr al high intensity levels and remains extremely well focused over the enlire range of intensily levels. This resolution makes the 1332A well suiled for applications requiring sharp focusing on multiple gray shades or varying writing speeds with frequent video drive level chang. es. Spot resolution. within the quality area, varies by less than 10% making the display espucially useful in applicutions where sharp focus is required throughout the quality arca. An example of this is where alphanumeric characters are mixed with traces, curves, or graphs.

In some applications it is important for the light umited from the various areas of the phosphors to be matched within some spocified uniformily. The 1332A Option 570 has this important parameter spec. ified. In addition. the light outpul stability (drift) is specified and includes the Z-axis amplifier. Applications requiring a high degrec of uniformity and stability are usualiy associated with the integration of random dols or scans on photugrapbic film such as in medical diag. nosis.

Fine Image detall and a wellulocused spot at all Intensity levels make the 1335A Ideal for use in Spectrum, Fourler. Network, and Chemical analysis as well as automatic test systems.

Model 1335A

The CRT can be operaled in non-slorage, storage, or variable persistence modes. In the non-storage mode (called CONVENTION. AL). the CRT operates similar 10 a mono-accelerator conventional CRT with an exceptionally small spot that focuses uniformly over the
entire qualizy area. Resolution is approximately 40 lines per em (100 línes per ín.). In addition, spot size is relatively independent of insensity seltings or Z-axis input signals, eliminasing the need 10 refocus at each intensily setting. This characteristic enhances the CRT image in applications requiring the CRT to focus on a wide range of intensity levels. Applications include those where markers intensify areas of inlerest, where characters or vectors are written, and anywhere that the wriling speed or drive levels of the beam vary. The light outpul remains exiremely stable because of regulated CRT filament voltages and an exceptionally stable Z-axis amplifier.

The same oxcellent CRT performance is maintained in the Variable Persistence operating mode. Persistence is continudusly adjusiable with a front panel control, from approximately 0.20 s 10 fulf storage. This mode allows you 10 eliminate flicker on some presentations by increasing the persistence to match the refresh rate. The variable persistence mode is selected by pressing the WRITE pushbution.

The slorage CRT is preset 10 storo dots having a Z-axis width of I $\mu \mathrm{s}$ or greater for up to 30 minutes. The storage mode offers the greateat contrast because the background is completely dark. An internal adjustment allows an incterase of writing speed to capture faster signals with reduced slorage time and wace to background contrast. Another adjustment is usod to enhance either the storage time of the Irace or the stored brightness of the stored images. Stored resolution is over 20 Hines per em (50 lines per in.) and stored zraces retain sharp delails.

A Posi Deflection Accelergtor CRT assures a bright, crisp trace. An opaque aluminum layer behind the phosphor enhances trace brightness while blocking stray light from the CRT filaments that could resch photographic lilm during time exposures.
Regulated, low power write gun and hood gun filaments assure a consiant light output under varying line conditions. More importantly. tho low power filament operation significantly extends CRT life and eliminates grid and other stray emissions common lo older. less efficient designs.

Programmablility (1335A)

The Model I335A offers users great faxibility in selecting ERASE. STORE, WRITE, CONVENTIONAL, and VARIABLE PERSISTENCE modes. These modes can be selected with the manual front penel controls, remote program inputs, or a combination of both.
In manual operation, the front panel controls select the storage modes. In program moden a single progran line inhibits the manual controls and prevents operator intervention. Additional control linos can be used to solectively enable the front panel ERASE and VARIABLE PERSISTENCE controls during remole operstion to provide ínteraclive capability. Provisions have been made so that any programmable funclions can be hard wired to operate ithrough the frone panel conlrols during remote aperation.

Empty half-wldth Irame, avallabie as an accessory, provides an atiractive full-wldth or double-helight package with an Integrated appearance with space lor your speclal circults.

Eiectronics

The X and Y amplifiefs have 70 ns rise time (bandwidih is 5 MHz) and the \mathbb{Z}-axis blanking amplifser has a 25 ns rise time. When faster X and Y amplifier response is required, Modol 1332A has an Oplion available to obtain 25 ns rise times. All amplifiers are full differential and operate at exceplionally low power levels for stable, drint-free performance over wide ranges of operating lemperatures.
The time required to make any size movement on the CRT, including the response time for the amplifiers to settle within one spol diam-
eter of final position, is less than 300 ns. This means that many thousands of vectors and characiers can bo written on the display withour flicker or annoying distorlions.

OETH frame

The 1332A and 1335A displays are buif around a comprehensive. wcll-designed, mechanical frame which allows OEM's to develop many integrated package combinations to fil their applications. The basic package is 13.3 cm ($51 / 4 \mathrm{in}$.) high, and half a standard rack widih. The frame consists of four eastings which provide a serong puckage and docs not requife additional support from the system it is installed in.

Emply modules of equal size allow the frame 10 be combined inte either a full width module suitable for rack mounting or bench use or in a vertically stacked configuracion. Your custom-designed circuils can easily be installed in theso emply modules. Combining covers are also available to give the combined frames an integrated, single-unit appearance. Additional hardware is also available for rack mounting, mounting on slides, and to dress up the basic frame.

Considerable effort has been laken in developing the structural, thermal. RFl, and modular characteristies of this mochanical frame to provide you with the best possible display lor your OEN sysiem.

All frequenty used controls are adjustable from the front pand for maximem accessibility when the 1332A of 1335A is mounted in a rack, cabinet, or system. The most frequently used controls, such as intensity, focus, and position have knobs while in 「requently used controls such as astigmatism. trace align, and X and Y gain are serewdriver adjustments. A front panel door oovers the controls lor a more pleasanl appearance aod seduces the chance of misadjusiment by untrained personnel. The ac line switch is mounted on the rear panel to prevent inadvertent turn-off and allows the display to be powered through the common system power bus.

The well-designed interiar leyout and use of plug-In boards, mullconductor cables. and mult-pIn connectors make the 1332A and \$335A very senlceable.

Servicegbllity

Construction of the I332A and I335A is modular, rugged, and extremely serviceable. Printed circuit bosads are plug-in type with interconneolions through edge connectors and mulliconductor wire surips that connect to sockets on the boards. Serviceability also extends to CRT replacument which, with a knowledgeable technician. can be accomplished in approximalely ten minutes. Calibration Lime is kept 10 a minimum with easily accessed and independent adjustments.

Options and accessories

A wide range of options are available to permit you to tailor the display to your specific reguirements: refer to Specifications for a complete Itsting. Aocessories available include rack mounling kits, OEM half module frames and rack slidex, and BNC shorting caps for use with certain Options. For comvenient system interconnection, Model 10488A 3.6 m (12 f) Display Cable is available as an accessory. Model I97A Ope 006 is an ideal camera for recording 1332A and 1335A displays. Refor to the 1332A and 1335A dats sheets for a complete deseription of accessories.

Models 1332A \& 1335A (conL)

1332A and 1335A Specifications

Vertical and horizontal amplifiers

Response

Rise flme: 70 ns ($10 \% 1090 \%$ paints) for full screen deflection or less.
Bandwidith: de to approx, 5 MHz for 7.6 cm (3 m .) deflection (1332A), 5.1 cm (2 in.) deflection (1335A).
Phase shift: < 1° de to I MHz (measured with X and Y gain set to max).
Defleclion factor
Horlzonial: $100 \mathrm{mV} / \mathrm{div}$ (I V p.p for 10 div denlaction). Froni panel adjustable from approx. $80 \mathrm{mV} /$ div $10200 \mathrm{mV} /$ div. 1 div $=1.2 \mathrm{~cm}$ (0.47 in .), 1332 A .1 div $=0.95 \mathrm{~cm}(0.37 \mathrm{in})$..1335 A .
Vertical: $100 \mathrm{mV} / \mathrm{div}$ (0.8 V p-p for 8 div denection). Fromt panel adjustable from approx. $80 \mathrm{mV} /$ div $10200 \mathrm{mV} /$ div. I div $=1.2 \mathrm{~cm}$ (0.47 in), 1332 A . $1 \mathrm{div}=0.95 \mathrm{~cm}(0.37 \mathrm{in}),. 1335 \mathrm{~A}$.
Setting time: signal sectes to within one spot diameter of final value in < 300 ns for any large or small novement. Off screen dellection not 10 exceed specified dynamic range.
Inputs: sear panel BNC connectors with shield grounded. Full dif-「erential inpuls available, sec Options.

Input RC: approx. I megohm shunted by $<60 \mathrm{pF}$.
Maximum lnpul: $\pm 50 \mathrm{~V}$ (de + peak ac)
Polarlty: posilive verrical inpul moves beam up; posilive horizon(a) input moves beam right.

Posilion: front pancl controls adjust zero input to an off-screen position in any direction from anywhere within the viewing area. Beam position with both inputs shorted (0 V into X and Y amplificrs) and the position control edecrically centered is in the geometric center of display ares.
Dynamic range: at leasi ± 1.5 screen diameters from center screen.
Crosstalk: $<0.254 \mathrm{~mm}$ (0.010 in .) with onc inpul terminated in 50 ohms and the other driven by a I $V, 500 \mathrm{kHz}$ signa), $<0.38 \mathrm{~mm}(0.015$ in.) at 5 MHz when driven from al 50 ohm source. Drift

Positlon: $\leq 0.5 \mathrm{~mm} / \mathrm{hr}(0.020 \mathrm{in} . / \mathrm{hr})$ and $\leq 1.02 \mathrm{~mm}$ (0.040 in) in 24 hr with covers installed after 15 min. warmup.
Gain: < 1.0% under all combioations of specified line voltage with covers installed after 15 min . warmup and (emperature between $+20^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$.
Common mode rejectlon ratis: al least 40 dE (100:1) up to 10 kHz for I V (full screcn) inputs; at leasi 25 dB ($18: 1$) at I MHz for I V (ful) screen) inputs.

Z-exis ampitiey

Rise time: <25 ns: CW bandwidh approx. 5 MHz .
Blanking range: 0 to 1 V .
Blanking polarity: $+i V$ into positive inpul fully unblanks CRT.
Input: rear panel BNC connector with shicld grounded. Full differential input availabien see Options.
Input AC: approx. I megohm shunted by $\langle 60 \mathrm{pF}$.
Meximum Input: $\pm 50 \mathrm{~V}$ (dc + peak ac).
Gatn: internally adjustable over $2.5: 1$ altenuation satio.
Light output stablily (drift): spor photometer measurements of light outpul made at one hour intervals will not vary more than 10% from previous measurement for any location within the useable display area, under all specified conditions of line voltage and iemperature wilh intensity set to $>5 \%$ of peak brightness.
Cathode-ray tube (1332A)
Type: post deflection accelerator, approx. 22.5 kV accelerating po tential. aluminized P3I phosphor (sec Options for other types of phosphor). electrostatic focus and dellection.
Vhewing area: $114 \mathrm{~cm}^{2}$ ($17.67 \mathrm{in} .^{2}$) spprox. 9.6 cm vertically by 11.9 cm horizontally ($3.8 \mathrm{in} . \times 4.7 \mathrm{in}$.).
Qualty area: center 9 div horizontally and ceater 7 div vertically.
Graticule: 8×10 div internal grancule. 1 div $=1.2 \mathrm{~cm}(0.47 \mathrm{in}$.).

Resolution

Spot size: $\leq 0.3 \mathrm{~mm}$ (0.012 in .) at center screen. Does not vary by more than 10% over entire quality area with intensity held constant. Measured using shrinking raster method. Line resolution is approx. 3.15 lines/cm (80 lines/in.).
Light outpul
Llne brightness: at least $170 \mathrm{co} / \mathrm{m}^{2}(50 \mathrm{n})$ at a writing speed of
$0.254 \mathrm{~cm} / \mu \mathrm{s}(0.1 \mathrm{in} / \mu \mathrm{s}), 60 \mathrm{~Hz}$ refresh rate, P31 phosphor. 0.3 mm (0.012 in,) spol size.
Uniformity; light output of spots located anywhers in the quality area does not vary by more than 40%.
Geometry: < 3% pincushion and barrel distortion over usable display area.
LInearly: < 3% of full scalc along major axcs.
Contrast rallo: 4:1 or greater. Mcasured by photometrically sum. ming the irace brightness and background. then dividing by the background brightness.
Cathode-ray tube (1335A)
Type: posi deflection aecelerator, approx. 8.5 kV accelerating poiential, aluminized P31 phosphor. elecirostatic focus and dellection.
Vlewing area: $72.2 \mathrm{~cm}^{2}$ (11.2 in..2), approx 8 cm verlically by 10 cm horizontally ($3.1 \times 3.9 \mathrm{in}$.).
Quality area: center 9 div horizontally and center 7 div vesticaliy.
Gralicule: 8×10 div iniernal gralicule, 1 div. $=0.95 \mathrm{~cm}(0.37 \mathrm{in}$.)
Geomelry: < 3 若 pincushion and barrel distortion over usuble display area.
Linearity: <3\% of full scale along major axes.
Contrest ratlo: 4: i or greater. Measured by pholometrically summing the trace brighiness and background. then dividing by the background brigheness.

Conventlonal (non-store) parameters

Spol size: $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) over entire quality area. Measured using shrinking raster mehod. Non-stored line resolution is approx. 39 lines/em (100 lines/in.).
Llne brlghtnese: $68 \mathrm{~cd} / \mathrm{m}^{2}(20 \mathrm{n})$ at à writing spoed of $0.254 \mathrm{~cm} / \mu \mathrm{s}$ ($0.1 \mathrm{in} . / \mu \mathrm{s}$), 60 Hz refresh rale, P31 phosphor, 0.0254 mm (0.010 in .) spot size.
Pereistence: approx. 40μ s for P3I phosphor.

Slorage parameterg

Stored spot resolution: approx. 20 lines $/ \mathrm{cm}$ ($\$ 1$ lines/in.).
Brighiness: $>680 \mathrm{~cd} / \mathrm{m}^{2}$ ($>200 \mathrm{n}$) in W'RITE mode.
Erase lime: < 500 ms .
Storage Ime: >1 min. at full brightness in WRITE mode extending to >30 min. in STORE mode al lower brighness.
NOTE: storage (ime (brightness) in STORE mode is continuously ad. justabic from I min. (full brigheness) $10>30$ min. (minımum brightness) with an internal adjustment.
Varlable persiatence: continuously adjustable from 0.2 s io full storage (one min.).
Information storage rate: 750000 dots per second.
Dot writing time: will stare a dot anywhere inside the quality area having an unblanking time of I $\mu \mathrm{s}$.
Writing speed: $>50 \mathrm{~cm} / \mathrm{ms}$.

Remote programming (1355A)
(TTL compatibleexcopI VARIABLE PERSISTENCE)
Remolely programmabie lunctions: ERASE, WRITE, STORE, CONVENTIONAL and VARIABLE PERSISTENCE.
Remote seleotion: a single TTL control line disables the front panel ERASE, WRITE, STORE. CONVENTIONAL. and VARIABLE PERSISTENCE functions and transfers conirol to the remote inputs. Conlrol enable: scparate TTL inputs to enable front panct ERASE and/or VARIABLE PERSISTENCE controls during remote operation.
Varlable persigience: an uxternal de voltage between 0 and +10 V sels the persistence. Or. a pot can be connecied ithrough the Remote Inpul connector to control persistence if 10 V de is not available.
Erase verlfy: a TTL HIGH oulput during ERASE (will drive ren low power gates).
Sately protection
Implosion: transparent safely panel belween CRT and bezel protecis viewer.
High voltage shock: anode lead is securcly atached to CRT.
X-ray emission: $<0.05 \mathrm{mr} / \mathrm{hr}$. Not measurable with Victoreen Model 440 RF/C in background noise.
UL ilsting: meets Underwriter's Laboratories listing For Medical and Dental Equipmert (Option 330).

NOTICE TO USER: This instrument is designed and manufactured primarily for OEM systems applications. Therefore, without Option 3)5 or Option 330. the lop and boltom protective covers are not provided and intemal wiring connections of HAZARDOUS VOLT. AGES ARE EXPOSED. Opcrator prutection from these hayardous voluages must be provided by the purchaser and/or user of the instrument. If in doubl, ORDER OPTION 315 or OPTION 330. OPTION 330 meets UL listing for Mcdical and Denal Equipment.

General

Inpüt eonnectors: rear panel BNC for X. Y, and Z-inputs with shields grounded.
Front panel controle
Knobs: POSITION X, POSITION Y, FOCUS. INTENSITY: PERSISTENCE. I335A only.
Puabbultone (1335A): ERASE, WRITE. STORE, and CONVENTIONAL.
Screwdrlver adjustments: TRACE ALJGN, ASTIGMATISM, GAIN X, GAIN Y.
Line indicator: front panel lamp.
Operating environment. emperalure, 0 to $+55^{\circ} \mathrm{C}$, non-operating $-40^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$: humidity, up to 95° 㟋, relative humidity at $40^{\circ} \mathrm{C}$; ablitude, up to 4600 km (15000 ft), non-operiting up to 7000 km (25000 ft); shock, 30 g level with 11 ms duration and $1 / 2$ sine wave shape; vibration, vibrated in three plumes for 15 min . each with 0.254 mm (0.010 in .) excursion, 101055 Hz .
Power selectable 100, 120.220, or $240 \mathrm{Va},+5 \%,-10 \% ; 48 \mathrm{~Hz}$ to 440 Hz . , max power (I332A) 50 VA (approx. 40 W), max power (I335A) 6S VA (approx. SS W). Average power dissipation at 60 Hz and 120 V without any oplions is approx. 24 wats (1332 A), approx. 35 watts (1335A). "Systems requiring UL Medical and Dental listing musi opcrate from 48 Hz 1066 Hz only.
Dimenslons: $213 \mathrm{~mm}\left(8 \frac{1}{4} \mathrm{in}\right.$.) wide, $146 \mathrm{~mm}(51 / 4 \mathrm{in}$.) high including「eet, $524 \mathrm{~mm}(203 / \mathrm{sin}$) deep.
Weight: nct. 8.6 kg (19 lb) with covers and Ceet. Shipping, 10.5 kg (23 lb). Covers, feet, till stand, and trim are nol supplied with standard 1332A, 1335A.
Accessorles supplied: one blue contrası fïlter. one Operating and Service manual. one 0.375 A fuse (1332A) or ane 0.5 A fuse (I335A) for 220.240 V ac operation, one $2.3 \mathrm{~m}(7.5 \mathrm{n})$ line cord $\left(90^{\circ} \mathrm{IEC}\right.$ to NEMA S-ISP, 3 conductor) for use in Cinada, Mexico. Japan, and U.S.. and one remote program connector (1335A only).

Optlons

Price

X and Y amplifiers

Deflaction factor

100: $500 \mathrm{mV} / \mathrm{div}, 5 \mathrm{~V}$ p.p for full-scran deflecion
101: $1 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~V} \mathrm{p}$-p full screen deflection
Polarlty
105: negative X and Y inpuls move beam up and righı (BNC conneclors)
106: full differential inputs, shield grounded (BNC connectors)
Input Impedance
110: 50 ohms
Rle ilme
120 (1332A): 25 ns rise time
Z-axis input (video ampilfier)
Blanking eange
200: 0105 V
201: 0 10 10 V
Polarlty
205: negative input unblanks trace, BNC shicld grounded
206: full differential input. BNC shield grounded
Input Impedance
210: 50 ohms
Galn oharaclerlalics
215: light oulput varies linearly ($\pm 20 \%$) with a linear
change in Z -axis input voltage (gamma correction)
Digltal Jnput
216: TTL blanking level. High slate (+2.5 V to +5 V) blanks any analog Z-inpul signal. Low state (0.0 V to 0.8 V) relurns blanking io analog Z-axis inpul. Inpuls through boith BNC connector and Remole Program Input (I335A)

Cathode-ray tube

Gratlcule/phosphor type

011 (1332A): PII aluminized with 8×10 div internal graticulc
039 (1332A): P39 aluminized with 8×10 div internal graticulo
631: P3I, non-internal graticule, gluminized
611 (1332A): PII, non-internal graticule, aluminized phosphor
639 (1332A): P39, non-iniernál graliculc، aluminized phosphor

Contrast filters

NOTE: the plastic filer serves as incegral implosion protection for the viewer, therefore the display cannol be ordered without the standard or an optional filter.
561: ckear, replaces sinndard blue filter
add $\$ 5$
562: clear, RF'J coated surliace, also includes metallizend front pasc!

General
 $A C$ line cord

300: 2.3 m (7.5 fi) removable, 240 V max. 3 conductor 90° IEC to Greal Britain. Singapore
301: 2.3 m (7.5 fi) removable, 240 V max, 3 conductor IEC to Australia, New Zesland
302: 2.3 m (7.5 fi) removable, 240 V max, 3 conductor 90° IEC co East and West Europe
303: 2.3 m (7.5 it) removable, 240 V max. 3 conductor
IEC 10 NEMA 5-I5P (USA, Canado, Japan, Mexico)
304: $77.2 \mathrm{~cm}(30 \mathrm{in}$.) coiled extends $101.8 \mathrm{~m}(6 \mathrm{fi})$ removable, 120 V max, 3 conductor IEC to NEMA $5-15 \mathrm{P}$ (USA. Canada, Japan, Mexico) (not available with Option 315 or 330)

AC line vollage tolerance

$310:+5 \%,-20 \%$ tolerance al $100,120,220$. or 240 V ac setting. Increases power dissipation to 50 watts (1332A), 60 watls (1335A).

Front panel controls

322 (1335A): 10 1urn intensity control potentiometer with counting dial
323: screwdriver adjustments on lefl side of front panel changed 10 internal adjustments
324 (1332A): adds 25 pin connoctor to rear panel. X. Y, and Z-signal inputs wired to the positive signal inpurs (nocc: input capacilance increases to spprox. 120 pF)
325 (1332A): scalc illumination. Illuminates phosphor background for photographing the internal graticule (available with standard phospher and phosphor Options OII and 039 only)
326: controls on right side of front panel changed to serewidriver adjusiments. These include INTENSITY, FOCUS, POSITION X, and POSITION Y (also includes scale illumination when Opuion 325 is ordered for 1332A).
Consumer safety
315: includes covers, feet, trim. and tili stand
330: meets UL listing for Modieas and Dontal Electronic Equipment. Includes special three conductor ac line cord, specially marked covers, feet, lilt stand, 1 rim. and UL label

Model number and name
1332A High Resolution Display
$\$ 1250$
1335A High Resolution Storage Display $\$ 1900$

1317A with standard rack mount ears fits in 48.3 cm (19in.) rack.

1321A

1317A and 1321A description

Advanced display pertormance

Models 1317A and 1321A large screen displays' unique high speed performance is the answer 10 many OEM display requifements. These high resolution displays are ideal as the readout in computer graphic and insurumentation systems because of their high slewing speeds. and low-power operation. High slewing speeds result from a yokeless, low. power deflection technique.

Model 1317A has a large 43 cm (17 in .) diagonal CRT mounted in a frame that fits in a standard 48 cm (19 in) rack. The I317A has about 65% more display area than some 35 cm (14 in) diagonal disploys and only requires 8 cm (37io in.) more verical rack space. Model 1321A contains a 53 cm (21 in .) diagonal CRT with a large $30.5 \mathrm{~cm} \times 30.5 \mathrm{~cm}$ ($12 \mathrm{in} . \times 12 \mathrm{in}$.) quality area. The small 0.51 mm (0.020 in .) spol size and excellem geometry and linearily specifications in the quality area. make the I32IA ideal for presenting complex graphic information.

High writing speed

Linear writing speed, for borh displays, is an unmarched $25.4 \mathrm{~cm} / \mu \mathrm{s}$ ($10 \mathrm{in} . / \mu \mathrm{s}$) for visible writling. The all solid-state dellection amplifiers are capable of slew rates in exaess of $254 \mathrm{~cm} / \mu \mathrm{s}$ (100 jn . / $\mu \mathrm{s}$), however, motion is nonlincar at this speed. Character stroke writing capability of less than 100 ns per stroke means that 4096 alphanumeric characters can be refreshed in less than 6 ms . Point plotiing time for small steps, including the beam ketting time, is less han 200 ns per point, minimizing the writing time for dol matrix type character generation.

Fast amplifier response also simplifies system programming since vectors and characters can be written randomly from snywhere in the display area rather than sequentially. Since deneetion coils are not used, no delay line is needed to compensate Z-axis unblanking with spor movement which etiminates the possibility of smearing.

Yokeless deflection

The yokeless, electrostatic deflection system consumes much leas power than the multi-winding coils of magnetle deflection systems, thus making it more reliable. Overall power consumption of these displays is a low 100 wats, compared to 300 waits or more for oihers. Additionally. the much faster response of electrostatic defloction permils more informanon to be displayed without lieker. A sharp clear display. even with the wide-angle dellection and curved faceplate, is mainlained with dynamic focus and astigmatism correction. Focus is comocled for changes in beam position and intensity (drive level) al video speeds (20 ns).

Designed for OEM systems

These high-quality, large sereen displays are designed for easy inlerfacing to graphic and instrument syskems to provide a high resolution, visual readoux. The large CRT's are housed in a rugged frame with an attractive front pancl that fits flush with the system panel. Display controk are conveniently located behind a front panel door under the CRT for easy access.

Rear panel X. Y, and Z inpul connoclors are standard BNC or Noating BNC configuration and sre mounted on removable pancis for casy adaplion 10 any inpur conliguration.

For maximun consumer safety, lhese displays are listed with Underwriters Laboratories for use in Electronic Dala Produets and Hospital systems, thereby mecting OSHA (Subpar S) approval. The 1317A and I321A with Option 008 are listed with Undenvriters Laboratories in accordance with UL544 Medical Safely Standard which delines detailed pationt prolection requirements. Regular inspoction of our production facility by U.L. assures you that this patient protection is built into the display that you purchase.

Options and accessories

Options for different phosphors, conformal contrast filhers with an anti-glare surface. gamma correction, Z-axis inpul changes, differential X. Y and Z inputs. Fixed slides, and U.L. Medieal and Denial Equipment Listung are available to permit tailoring the display to specific applications. For convenient system interconnection. Model 10488A 3.6 m (12 ft) display cable containing three color coded cables is available as an accessory. If you need other features so interface a display to your system. contact your Hewlell-Packard Field Engineer und discuss your requirements.

1317 A and 1321A Specifications

Vertical and horizontal amplifiers

Response
Flee thme: $\leq 75 \mathrm{~ns}$ (10% 10 90% painis) for full serecn deflection or less.
Bandwidth: de 105 MHz (3 dB down) for (1317 A) $10.2 \mathrm{~cm}(4 \mathrm{in}$.$) .$ (1321A) 12.7 cm (5 in .) deflection or less.
Phase shitt: $<0.1^{\circ} 1050 \mathrm{kHz}$ and $<1^{\circ} 10250 \mathrm{kHz}$ for full sereen sig. nal inputs.
Deflecilion factor: continuously variable with front panel control.
1317A: from approx. $39 \mathrm{mV} / \mathrm{cm}$ ($100 \mathrm{mV} / \mathrm{in}$) $\mathrm{to} 69 \mathrm{mV} / \mathrm{cm}$ (175 mV/in.).
1321A: from 日pprox. $33 \mathrm{mV} / \mathrm{cm}(83 \mathrm{mV} / \mathrm{mg}$) $1058 \mathrm{mV} / \mathrm{cm}(147$ $\mathrm{mV} / \mathrm{in}$.).
Linear writing time: $<40 \mathrm{~ns} / \mathrm{cm}$ ($<100 \mathrm{~ns} / \mathrm{in}$.).
Linear writing speed (1317A): $>25 \mathrm{~cm} / \mu 5(>10 \mathrm{in} . / \mu s)$.
Dlagonal eetiling lime: within one spot diameter of tinal value in
<500 ns (1321A). <1 $\mu \mathrm{s}(1317 \mathrm{~A})$ for any on or off screen movement. Off sereen deflection not to exceed one screen diameter.
Repeatablily; <0.15\% orror (full screen) for re-addressing a point from any on or off screen direction. Off screen deflection not to exceed one screen diameter.
8equential point plotting tlme: signal settles 10 within 0.25 mm (0.010 in .) of final value in $<200 \mathrm{~ns}$ for any 2.5 mm (0.10 in .) sicp.
Crastalk: $<0.38 \mathrm{~mm}$ (<0.015 in.) with one inpul corminated in 50Ω and the other inpul excited by a $1 \mathrm{~V}, 500 \mathrm{kHz}$ signal.
Drft: $1.3 \mathrm{~mm} / \mathrm{hr}(0.05 \mathrm{in} . / \mathrm{hr}$) and $2.5 \mathrm{~mm}(0.10 \mathrm{in}$.) in 24 hr with Covers installed after $1 / 2$ hr warmup.
Spot jitter and motion: (1317A) $<0.25 \mathrm{~mm}$ (<0.010 in.): (I321A) $<0.13 \mathrm{\pi m}$ (<0.005 in.).
Inpuls: BNC connectors with Moating shield. Separate differential inputs (shield grounded) available.
Inpul AC: driven side $10 \mathrm{k} \Omega$ shuned by spprox, 40 pF . Shicld input is 47 M to ground and can be replaced with 10 kD for full differential in. put. A switchable SOR terminalion between shield and ground is also provided.
Maximum input: $\pm 50 \vee(d c+$ peak ac) with $10 \mathrm{k} \Omega$ internal lermination. $\pm 5 \mathrm{~V}$ (de + peak ac) with 50Ω internal termination.
Polarity: positive vertical inpul moves beam up; positive horizontal inpul moves beam right.
Positton: front panel controls allow zero input to be set off sereen in any direction from anywhere within viewing area.
Dynamte range (1321 A): al least ± 1.5 screen diamelers from center screen.

Z-exis ampliiier
Rlee ilme: < 20 ns (CW bandwidth is approx. IS M Hz).
Blanking range: 0 tol V .
Blanking polarlty: positive input unblanks CRT, internally reversible for negative unblanking.
Ingut: BNC connector (shield grounded).
Inpul AC: approx. $10 \mathrm{k} \Omega$ shunied by approx. 60 pF . 50Ω termination may be selecied whith internal switeh.
Maximum input: $\pm 50 \mathrm{~V}$ (de + peak ac) with $10 \mathrm{k} \Omega$ intemal lermination. $\pm 5 \mathrm{~V}$ (dc + peak ac) with son incernal eermination.
OHfet: internal adjusiment provides $\pm 1 \vee$ offset (continuous) to blanking range.
Gain sdjust extends blanking range by over 2.5:1 (continuous).

Cathode-ray tube

Type: post deflection accelerator, approx, 28.5 kV accelerating potential; P3I aluminized phosphor standard (other phosphors available): eleclrostatic focus and deflection.

Vlewing area

1917A: 43 cm (17 in.) diagonal; approx. $34 \mathrm{~cm}(13.5 \mathrm{in}$.) by 26 cm (10.25 in.).
1321A: 53 cm (21 in.). diagonal; approx. 35 cm (14 in.) by 30 cm (12 in.).

Resolullon Spel alize			
MODEL	INSIDE QUALITY ABEA	OUTSIDE QUALITY AREA	QUALITY AREA
1317A	$\begin{gathered} 051 \mathrm{~mm} \\ (0.020 \mathrm{in.}) \end{gathered}$	$\begin{aligned} & <0.76 \mathrm{~mm} \\ & (0.030 \mathrm{in} .) \end{aligned}$	$\begin{gathered} 25.4 \times 25.4 \mathrm{~cm} \\ (10 \times 10 \mathrm{in} .) \end{gathered}$
1321A	$\begin{gathered} 0.51 \mathrm{~mm} \\ (0.020 \mathrm{in} .) \end{gathered}$	$\begin{aligned} & 1.02 \mathrm{~mm} \\ & (0.40 \mathrm{n} .) \end{aligned}$	$\begin{gathered} 30.5 \times 30.5 \mathrm{~cm} \\ (12 \times 12 \mathrm{in}) \end{gathered}$

Llnes: approx. 20 lines/em (50 lines/in.) measured with shrink. ing raster method, inside quality area.
Llght output: line brightness is approx. $170 \mathrm{~cd} / \mathrm{m}^{2}$ (50 f) at a wriling speed or $0.25 \mathrm{~cm} / \mu \mathrm{s}(0.10 \mathrm{in} / / \mu \mathrm{s}), 60 \mathrm{~Hz}$ refresh rale, P3I phosphor, 0.51 mm (0.020 in .) spol size.

Goomelry: $<3 \%$ (1317A), $<2 \%$ (1321A) pincushion and barrel dis. torion within quality area.
Linearity: $<3 \%$ (1317A). <1\% (I321A) of full scale along major axis within qually arca.
Phoaphof protectlon: automatically detects ibsence of beam defleclion and limits beam surfent to as salie but viewable level.
Dynamje focus: aulomatically corrects spol geometry for position on screen and beam intensity (video drive level).
Contraal ratlo: $4: 1$ or greater with $340 \mathrm{~cd} / \mathrm{m}^{1}(100 \mathrm{fl})$ ambient light and CRT face in a vertical plane. Measured by photometrically summing the trace and background brighness and then dividing by background brightness.
Trace align: rotates X axis into geometric alignment with CRT viewing area.
Orthogonality: separately aligns Y-axis perpendicular to X-axis.
Focus unlformity: spot size does nol vary more than 10% anywhere whin the quality area when referenced to center screen at a lixed videa drive level.

Saiety protection

Impiosion: meets safety requirements of U.L. 478 for EDP units and systems which exceeds IEC 348 (1EC 65) salely requirements.
High voltege: anode lead is permanenely bonded to CRT.
X-ray emisslon: < $0.1 \mathrm{mr} / \mathrm{hr}$ measured with Victorecn Model 440 RF/C. The Displays are listed with Underwriters Laboralories for Electronic Data Products. Ihercby meating OSHA (Subpart S) approval.

General

X, Y, and Z lnpute: rear panel BNC female connectors. X and Y inputs have a floating shleld and the Z input has a grounded shield.
Front panel conlrola: Intensity. Position X, Gain X, Position Y, Gain Y, Trace Align. Octhogonality, Focus, and Asligmatism located below the CRT behind a hinged door.
Line Indicator: lamp mounled behind front pand door.
Power: selectable $100,120,220$, or 240 V ac $+5 \%$ or -10%; 48 Hz to
440 Hz : maximum power in $1317 \mathrm{~A}, ~ I I 5 \mathrm{VA}$ (approx. 100 watis), in 132IA, 135 VA (approx. 110 watts).

Dimensions

1317A: 425.5 mm ($161 / \mathrm{in}$.) wide, 409.6 mm ($161 / \mathrm{sin}$.) high including feet, $566.7 \mathrm{~mm}(223 / 10$ in.) decp.
1321A: $527.1 \mathrm{~mm}(203 / 4 \mathrm{in}$) wide. $482.6 \mathrm{~mm}(19 \mathrm{in}$) high with leel, $631.8 \mathrm{~mm}(241 / 6 \mathrm{in}$.) deep.

Weight

1317A: nel. 26.3 kg (58 lb): shipping, 33.4 kg ($731 / \mathrm{lb}$).
1321A: net, 36.3 kg (80 lb): shipping. $43.1 \mathrm{~kg}(95 \mathrm{lb})$.
Operating environment temperature, 0 to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$-non-operating, $-40^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} 10158^{\circ} \mathrm{F}\right)$, humidity, to 95% relative humidily at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$: altílude, to 4600 m (is 000 f)-non-operaling, to $7600 \mathrm{mz}(25000 \mathrm{f})$).
Accessorien supplied: 0,75A slow blow fuse for 220 and 240 V ac operation, one $2.3 \mathrm{~m}(7.5 \mathrm{ft})$ power cord, and one Operating and Service Manual.

Model nuimber and name	Price
I317A Large Screen display	$\$ 3200$
1321A Large Screen display	$\$ 3700$
I0488A Display Cable	$\$ 55$

$1310 \bar{A}$

1310A and 1311A Description

Advanced display pertormance

Models 1310A and 1311 A are directed beam, high speed 48.3 cm (19 in.) and 35.6 cm (14 in) graphic displays with excellent dynamic performance that matches speeds with computer generated graphic information. The electrostatic CRT provides a crisp, small spot anywhere in the large quality area of the CRT. Also. Ihe CRT has a reetangular shape and information can be written anywhere in this large viewing area. Bright, casy-10-see displays result from the 28.5 kV accelerating potential while X-ray emissions are unmeasurable, ensuring a safc operating environment.

High writing speeds

Linear writing speed is 25.4 cm (10 in .) per microsecond which aslows characier strokes to be wrillen in less than 100 nanoseconds. Maximum slew rate of the electronies is $>254 \mathrm{~cm}$ (100 in .) per microsecond. The large-step jump and setile ime is I $\mu \mathrm{s}$. This offers programming simplicity since characters and vectors can be ploted in random fashion from anywhere in the display area. A typical application of this high speed would be to plot a video signal on the display and write characters or vectors during the vertical retract or blanking interval. Point ploting time for small steps is less than 200 ns per point: thus matrix type displays are written in minimal time.

Electrostatic deflection

Electrostatic deflection replaces deflection coils needed by magnetic CRTs and the high powered circuits to drive the cails. The power consumption of these displays is a low 100 watts which eliminates noisy fans and over-sized mechanical cooling assemblies. Electrostatic deflection ends the need for major and minor deflection systems with multiple input connections. The single dilterential input for each axis signinicantly reduces the ciffects of common mode signals. Input RC is 10 kR shunted by $<40 \mathrm{pF}$ with switchable 50 ohm terminations available when required.

Moduiar construcilon

Internal consiruction is modular, and very serviceable. Plug-in circuir cards reduce calibration or troubleshooting time.
These displays are supplied with open frame construction for

1311A
mounling in a standard 48.3 cm (19 in.) rack or in your custom designed enclosures, Covers and a tilt stand are available for free standing applications. Refer to Options and Accessories in the specilications for listings of the standard items that are available.

1310A and 1311A Specifications

Vertlcal and horizontal amplifiers
Rise flme: < 75 ns. 10% to 90% points for full screen deflection or less.
Bandwidth: de 105 MHz (3 dB down at 5 MHz) with 8.9 cm (3.5 in .) denection in 1311 A and 12.7 cm (5 in.) deflection in 1310A.
Phase shiff: $<0.1^{\circ}$ to 50 kHz and $<1^{\circ} 10250 \mathrm{kHz}$ for full sereen signals.
Linear writing time: $<39.4 \mathrm{~ns} / \mathrm{cm}$ ($<100 \mathrm{~ns} / \mathrm{inch}$).
Linear writling speed: $>25.4 \mathrm{~cm} / \mu \mathrm{s}$ (>10 inches $/ \mu \mathrm{s}$).
Dlagonal eettiling lime: signal settes to within 1 spot diameter of final value in <500 ns for any on screen movements.
Sequental polnt plotting time: signal settles 10 within 0.254 mm (0.01 in.) of final value in < 200 ns for any 2.54 mm (0.1 im .) step.
Repeatabillty: < 0.15% of full screcn error for re-addressing a poimt from any direction on sereen.
Crosstalk: $<0.381 \mathrm{~mm}(<0.015 \mathrm{~m}$.) with one input shorted and the other input excited by 500 kHz .
Deflection factor ${ }^{-}$

	Vertical	Morizontal
1310A	1 voll for 27.9 cm (1l in.) diflection	1 voll lor 38.1 cm (15 in.) deflection
1311A	1 voly tor 21.6 cm ($8 \mathrm{~K} \%$ in.) dellection	1 yolt for 27.9 cm (l) la.) dellaction

Spor jliter and molion: $<0.38 \mathrm{~mm}$ (<0.015 inch).
Poaltlon: zero isput can be sel 10 any on screcn position.
Polarlty: positive vertical input moves beam upi posilive horizontal input moves beam right. Polarity can be reversed by changiog internal lead connections.

Input RC: driven side $10 \mathrm{k} \Omega$ shunted by $<40 \mathrm{pF}$. Shield input is 47 ohms to ground. This can be replaced with 10×2 for differential input. A switchable 50 ohm termination between shield und senter conductor is also provided.
Maximum Input: $\pm 50 \mathrm{~V}$ (dc + peak ac) with 10 k 2 internal termination: $\pm 5 \mathrm{~V}$ (dc + peak ac) with 50 ohm internal sermination.
Linearity: 1% of full scale display along major axes.
Drift: $) .27 \mathrm{~mm} /$ haur (0.05 inch/hour) and $2.54 \mathrm{~mm}(0.10 \mathrm{inch})$ in 24 hours with covers installed.

Z-axis amplifier

Risa time: <20ns.
Senativity; I V provides full blanking or intensity.
Input polarity: internal switch selects polarity (switch is normally sel so negative voluge unblanks signal).
Gain adjust: internally adjustable over 2.5:1 atenuation ratio.
Balance: inlernal adjusiment provides $\pm \mathrm{I} \mathrm{V}$ offsel.
Input RC: approx. $10 \mathrm{k} \Omega$ shunicd by approx. 60 pF .50 ohm termination may be selected with iniernal switch.
Maximum Input: $\pm 50 \mathrm{~V}$ (dc + pcak ac) with $10 \mathrm{k} \Omega$ internal termination; $\pm 5 \vee$ ($\mathrm{dc}+$ peak ac) with 50 ohm internal termination.
Cathode-ray tube
Viewing area
Model 1310A (48.26 cm) (19 ln.): 27.94 cm high $\times 38.1 \mathrm{~cm}$ wide (il $\times 15 \mathrm{in}$.),
Model 1311A (36.58 cm) (14 ln .): 21.59 cm bigh $\times 27.94 \mathrm{~cm}$ wide ($81 / 2 \times 11$ in.).
Type: post-accelerator, 28.5 kV accelerating potential. P3I aluminized phosphor is standard (refer to options for other phosphors). Electrostatic focus and deflection.
Resolution
Model 1310A: 20 lines/em (50 lines/inch). shrinking rister method.
Model 1311A: 27 lines/cm (67 lines/inch), shrinking raster method.
Spot aize

	Spot size in Qualty Ares	She of Quallity Afed
1310 A	$0.5 \mathrm{~mm}(0.020 \mathrm{in})$.	$27.94 \times 27.94 \mathrm{~cm}\left(11 \times 11 \mathrm{in} \mathrm{n}_{1}\right)$
1311 A	$0.38 \mathrm{~mm}(0.015 \mathrm{in})$.	$21.59 \times 21.59 \mathrm{~cm}(8 \mathrm{~h} \times 88 \mathrm{in})$.

Brightness: at least 50 rool-lamberts measured at $2.54 \mathrm{~mm} / \mu \mathrm{s}(0.1$ in. $/ \mu 5$). 60 Hz rate, with spol size of 0.5 mm (0.020 in .) on 1310A and 0.38 mm (0.015 in .) on 311 A .

Contras1 ratlo: 4:1 or grealer.
X-ray emlasion: CRT emission < $0.05 \mathrm{mr} / \mathrm{hr}$ (not measurable in background noise with Vicloreen Model 440RF/C).
Implogion prolection: rim and tension banding prevents implosive devacuation.
Phosphor protection: circuit detects absence of deflection and limits beam current.
General
X, Y, and Z input connectora: BNC ype mounted to rear panel. Weight

Model 1310A: net, 24 kg (53 lb), with covers 26.8 kg (59 lb). SKipping, 32.2 kg (71 lb).
Model 1311A: net. 18.1 kg (40 lb), with eovers 20.4 kg (45 lb). Shipping. 28.1 kg (62 lb).
Dimenslone: dimensional dravings are too numerous for presenta-
tion in this catalog. Contact your local HP Ficld Engineer for a data sheet with these drawings.
Power: 115 V ac $\pm 10 \%$ or $230 \mathrm{Vac} \pm 10 \%, 48 \mathrm{~Hz}$ to 440 Hz maximum power 115 VA .
Operating environment: temperature, $010+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$): humidity, 1095% relative humidity al $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$); alli-
tude, 104.6 km (15000 fl): vibration, vibrated in three planes for 15 min. each with 0.254 mm (0.010 in .) excursion, 10105.5 Hz .
Accessorles supplied: rack mount adapter, front panel cover, onc 0.75 A slow blow fuse for 230 V ac operalion, one power cord, and one Operating and Service Mannul.
NOTIGE TO USERS: this insirument is designed and manufaciured primarily for OEM systerns applications. Thereforc. withour OP. TJON 003, the Top and Bottom Prolective Covers are not provided and internal wiring conneetions of HAZARDOUS VOLTAGES ARE EXPOSED. Operator protection from these hazardous voltages must be provided by the purchaser and/or user of the instrument. If in doubl, ORDER OPTION 003.

Options:

003: 10p and bottom covers with till stand (rack mount adapler not supplied with Option 003 instruments).
005 : form fitting neutral density contrast filter with anti-glare surface improves trace contrast for easier viewing.
006: form lilling blue contrast fiter with anti-glare surface.
604: P4 aluminized phosphor in licu of P31.
607: P7 aluminized phosphor in lieu of P31 with form futing amber anti-glare contrast filter.
639: P39 aluminized phosphor in licu of P31.
"Special displays, such as sound CRTs and differeni sere CRIs, are ovsilatere. Contacl youf local HP fielo Eng", neer for information.

Accessories

Cover kits: top and bollom cover for field installation, For dosk top operation, a tilt stand is required since the covers are not designed to support an instrument. Cover kit for I310A is HP P/N 01310-68703. for I3IIA HP P/N 01311-68703.
Tilt stand kits: provide field inscallation or tile stand for stand alone opcration. Kit for 1310A is HP P/N 01310-68702. for 1311A HP P/N 01311-68702.
Aack mounling kites rack mounting adapters are supplied with standard instruments on initial order or may be ordered later as a kit. Rack mounting kit for the 1310A is HP P/N 01310-68701. For the 131IA HP P/N 0i311.6870I.
Sllde hits: fixed slide kits are availabie for mounting the ISIOA and 1311A Displays in a standand 19 -inch (48.3 cm) rack. A pivoting slide kit is also avavable for the 1311A. Fixed slide kil for 1310A is HP P/N O1310-68704, for I3IIA HP P/N OI3II-68704. The pivoting slide kit for the I311A is HP P/N 01311-68705.

Options and accessories

Price
Options for 1310A and 1311A:
Option 003: LOp and bottom covers/tilt stand
add \$225
Option 005: neutral density contrast filter for 1310A add $\$ 45$ neutral densily contrasi filter for 1311A add $\$ 30$
Option 006: blue conirast filier for 1310A
add $\$ 45$
blue contrast fither for 1311A
add $\$ 30$
Option 008: adds covers, warning labels. UL 544 listing for medical, dental use.
Option 604: aluminized P4 phosphor add $\$ 30$
Option 607: uluminized P7 phosphor
add $\$ 80$
Option 639: aluminized P39 phosphor
add $\$ 30$
1310A Cover Kit HP P/N 01310-68703
$\$ 100$
1311A Cover Kit HP P/N DI311-68703
$\$ 100$
1310A Till-Stand Kil HP P/N $03310-68702$
$\$ 111$
1311A Tilt-Siand Kit HP P/N 01311.68702
$\$ 111$
1310A Rack Mount Kit HP P/N 01310-68701
$\$ 20$
1311A Rack Mount Kit HP P/N 01311-68701
$\$ 22$
1310A Fixcd Slide Kit HP P/N 01310-68704
$\$ 217$
1311A Fixed Slide Kil HP P/N OI3II-68704
$\$ 100$
1311A Pivouing Slide Kit HP P/N 01311-68705
$\$ 175$
Model number and nanie
(OEM discounts are available.)
1310A 48.26 cm (19 -inch) Display
$\$ 3600$
$\$ 3300$

1300A Specifications

$\mathrm{X}-\mathrm{Y}$ amplifiers

Bandwidth: (20.3 cm . 8 -inch reference at 50 xHz): dc-coupled. de to 20 MHz ; ac-coupled, 2 Hz to 20 MHz .
Rise IIme: < 20 ns (10% to 90\% paints).
Deflection factor: al least $39.3 \mathrm{mV} / \mathrm{cm}(0.1 \mathrm{~V} / \mathrm{in}$.) gain control al. lows deflection factor to be adjusted belween approx. $39.3 \mathrm{mV} / \mathrm{cm}(0.1$ V / in.) and $98 \mathrm{ov} / \mathrm{cm}(0.25 \mathrm{~V} / \mathrm{in}$.$) .$
Drift: $<0.5 \%$ of full screen/hr afler $\%$ hr warmup; $<1 \% / 8 \mathrm{hr}$.
Jitter and movement $<0.254 \mathrm{~mm}$ ($<0.010 \mathrm{in}$).
Linear writing speed: $>50.8 \mathrm{~cm}$ ($>20 \mathrm{in}, / \mu 5$).
Setting ifme: (jump scan time) < 200 ms 10 within a luace width of final value for any on screen movement.
Sequential polnt ploting time: signal setules to whitin one spol diameter of final position in <80 ns for any step $\leq 2.54 \mathrm{~mm}(0.1 \mathrm{in}$.$) .$
Repeatablity. < 0.15% error for readdressing a point from any direction from a source impedance of $<4 \mathrm{k} \Omega$.
Input RC: I megohm shunled by approx. 20 pF .
Input single-ended; maximum inpu1 $\pm 500 \mathrm{~V}$ (de + peak ac).
Linearlty: over $20.3 \times 25.4 \mathrm{~cm}(8 \times 10 \mathrm{in}$.$) screen, \pm 1 \%$ of full screen; any 2.54 cm (1 in .) with respect to any other 2.54 cm (1 in .) within 10%. Includes geometric distortion caused by pincushion and symmetry.
Phase ahilt: 0.1° to 50 kHz up to 254 cm (100 in) signal; 1° to 1 MHz , up to 25.4 cm (10 in .) signal.
Croes tolk: 40 dB at 20 MHz with full scale input signals, inputs driven from 50Ω source impedance: imperceptible below 5 MHz
Z-axis amplifier
Analog input: de 1020 MHz bendwidth over the 0 to 1 V range; +1 V for full blanking, - $1 \vee$ for full intensity: vernier provides $2.5: 1$ reduction. balance adjusiment allows intensity reference level adjustment of $\pm 1 \mathrm{~V}$. maximum input $\pm 500 \mathrm{~V}$ (dc \pm peak ac): diflerential delay with sespeet to either X or Y amplifier, ± 2 ns.
Rise time: <20 ns (10% to 90% points).
Sweep blank input digital dc blanking with $<1 \mathrm{kM}$ sousce and -0.7 V to +5 V ; unblanking with $>20 \mathrm{k} \Omega$ source and 0 V to -5 V . Repelilion rates io i MHz .

Chap blank input ac-coupled blanking, +50 V pulse blanks CRT. Inpul grounded when nol in use. (Duly eycle should be $<5 \%$ for proper operation.)
Cathode-ray tube
Vlewing area: $20.3 \times 25.4 \mathrm{~cm}(8 \times 10 \mathrm{in}$.).
Accelerating potental: 20 kV .
Pholographle writing speod: $>50,8 \mathrm{~cm} / \mu \mathrm{s}$ ($>20 \mathrm{in} . / \mu \mathrm{s}$). using Polaroida CU-5 camera and 3000 speed film.

Brightness

Vector: $\geq 322.9 \mathrm{ix}$ (30 n) line brightness for bean velocity of 0.254 $\mathrm{cm} / \mu \mathrm{s}(0.1 \mathrm{in} . / \mu \mathrm{s})$, refreshed at a 60 Hz rate.
Dot: $\geq 32.3 \mathrm{Ix}(\geq 3 \mathrm{n})$ brighiness for a 40 ns dot refreshed at a 60 Hz rate.
Spot alze: $<0.8 \mathrm{~mm}$ ($<30 \mathrm{mils}$) throughout $20.3 \times 25.4 \mathrm{~cm}(8 \times 10$ in.) screen at 30 ft lamberts light oulput; nominally 0.51 mm (20 mils) as center screen (shrinking raster).
Phosphor and graticule: aluminized P3) phosphor with 2.54 cm (1 in.) grid and $0.51 \mathrm{~cm}(0.2 \mathrm{in}$.) subdivisions on major axes of internal graticule. Other phosphors are available, refer to oplions. Other graticules are available on special order. A light green light filter is supplicd for implosion prolection.
Controle and inputs location
Front panel: intensity, ustigmatism, trace align, focus, and on-off switch.
Rear panel: X-Y-Z inputs, calibrator, X-Y gain, position and acde input switches. Z-axis gain and balance.
Dlmenalone: 42.6 cm ($161 / \mathrm{in}$.) widt; 31 cm ($121 / \mathrm{in}$.) high; 50.8 cm (20 in .) deep overall, 45.7 cm (18 in .) deep from rack mount adapters.
General
Callbrator; line frequency square wave, $0.5 \mathrm{~V} \pm 2 \%$.
Wolght: neh $20.41 \mathrm{~kg}(45 \mathrm{lb})$. Shipping, $29.94 \mathrm{~kg}(66 \mathrm{lb})$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$; 48 to 440 Hz ; spprox. I7s W .
Acceseorles eupplled: groen lighl filter, power cord, and one Operating and Service Manual.

Options

Price
001: neurral density anti-glare light filter
004: P4 aluminized phosphor in lieu of P3s
007: P7 aluminized phosphor in lieu of P31
604: non-insernal graticule, aluminized P4 phosphor
807: non-internal graticule, aluminized P7 phosphor
691: non-internal graticule, aluminized P31 phosphor
800: Rack Flange Kit

Accosentlea

Light flitere
10181A: amber for P7 phosphor (supplied with Option 007 and 600 displays)
10182A: green for standard phosphor (supplied with slandard I300A Display)
Dlaplay cable, Model 104e8a: provides interconnection between the display and signal input source. The cable conteins three color-coded coaxial cables with three male BNC conneciors on each ond for X. Y. and Z inputs. Approx، 3.6 cm (12 fi) long.

Chassis alldes

Fixed slldes: HP P/N 1490-0714
Plvol slidea: HP P/N 1490-0718
silde adapter kit: one adapter kit (HP P/N 1490-0721)
is required for mounting one pair of slides to a display.

Introduction

Hewlett-Packard power supplies are available in many types, sizes, and ratings. There are laboratory supplies used in circuil development, modular supplies to power systems, high power supplies for indusirial processes, and many special purpose supplies ranging from conslant-curfent sources to bipolar power supply amplifiers.

The true value of a power supply

The best power supply for the job must first satisly all the physical criteria: voltage and current ratings. performance specifications, size, and features. Bul equally important are the less tangible aspects that affoct the real eost of ownership. Such factors as the experience and expertise of the manufacturer's engineering staft should be considered. Are his designs conservative-does lie use quality componenis-does he have established QA procedures?

If you have a problem or need application assistance, are the manulaclurers' reps accessible, responsive, and knowledgeable? Are spare paris and service available on an world. wide seale?
Those factors do not show up on a spec sheel, but are elosely related to a company's capability and responsibitity tawards its customers. When you purchase a power supply from Hewlet1-Packard, you receive guaranteed product performance plus all the intan. gibles that add up to long-term value-and it usually cosis no more.

Regulation techniques

HP power supplies are designed using one of four proven stabilization techniques: series, switching, SCR, and SCR pre-regulator/series regulator.
Serles regulation: this technique uses a feedback loop to control the voltage drop across a series-pass rimansistor located between the rectified de input and the output terminals of the power supply. The fecdback network senses changes in the oulput voleage and develops an error signal which adjusts the drop across the series transistor such that it maintains the output terminal volisge at the desired level. Good regulation (0.001% to 0.05%), low ripple and noise ($50 \mu \mathrm{~V} 10 \mathrm{imV}$). and fast transient response ($<\mathrm{SO} \mu \mathrm{s}$) characterize this type of regulator.
With all its altributes of excellent perfotmance and circuit simplicity. the series regulalor has one drawback; it is relatively ineffcient (typically 30 to 40%). Heal sinks are employed to dissipate the beat generated by the series ininsistors and this necessarily increases the size and weight of the supply.
All linear OEM modular and low power lab supplies use this technique.
Switching regulation: this lechnique regulates the oulput vollage by essentially switching a series mansistor on and off al a rapid rate (about 20 kHz) and delivering this "chopped" current to an output filier. A Seedback nelwork senses changes in the output and ficeds back a correction signal which adjusis the transisiors on-off duly cycle to
maintain a constant oulput voltage. Since a eransistor dissipates very litule power when it's fully on or off, the regulator has excelient efficiency (typically 65-80\%).

Besides low power dissipation, another advanlage of this lochnique is that the high pulse repeution cates make possible the use of transformers, inductors, and filer copacitors that are much smaller than those required for operation al power line frequencics.
Stabilization performanoce of the switching regulator is somewhat lower than the series regulator (iypically 0.2% regulation: 20 mV rms. 40 mV p-p ripple and noise) but well suifed for the majority or OEM system spplications.
SCA regulation: in roany high power applieations: the tight regulation and low ripple and noise characteristics of the series regulator can be beneficially Iraded for economy. efficiency, and compact size. This is where the SCR regulalor is most valuable. Typical performunce specifications for SCR supplies ore 0.05 to I S. regulation, 50 mV rms. $500 \mathrm{mV} \mathrm{p}-\mathrm{p}$ ripple and noise. $50-200$ ms transient response, and 70 es elliciency. Regulation is accomplished by sensing botb the $A C$ inpul and DC output of the supply and generating a firing pulse for SCR's located in two legs of a bridge rectifier. If the output voltage tries to decrease. the control circuil gericrates the fizing pulse earlier in the input hall cycle. More voltage is then passed itrough the SCR to the outpur filter to raise the oulput voliage to the correci level.

SCR pre-segulator/beries regulator: this sechnique incorporates the best of both worlds. and is used in most medium to high power, high performance power supplies. Im these supplies, the SCR pre-regulator changes the rectifier output in coordinution with the output voltage or the supply so that only a small voltage drop is mainialned actoss the serics pass ransistor. This reduces the power dissipation in the serics clements and grearly improves the efficiency (up to 70'in). Typical performance specifications are similar to sesies regulaled supplies except for slower transient response.

Selecting power supplies

By model number: if you know the model number, you can find the power supply deseription page from the numerical index in the from of this calalog.
By vellage rating: the condensed listing on the following two pages lists power supplies in order of oufput vollage sating. The reference catalog page covers detailed specifications.

Free technical literature

Hewiett-Packard publishes two application notes reialed to power supply theory and applications:
(1) DC Power Supply Handbook, AN-90A.
(2) Applications of A DC Constant Current Source, AN-128.
Both ean be oblained at no charge from your local HP Field Engincer. thD POWER SUPPLIES

Condensed listing

DC Volls	DC Amps (Max.)	Type	Model	Page
4-5.5	8	$\begin{aligned} & \text { Low Cost } \\ & \text { Lab } \end{aligned}$	6384A \dagger	177
$\begin{gathered} 0 \pm 5 \& \pm 20 \\ \text { Dual Range } \end{gathered}$	1	BPSA ${ }^{\circ}$	6825A/6830A \dagger	198
$0 \pm 58 \pm 50$				
Dual Range	1	BPSA*	6826N/683IA +	198
5 ± 0.50	2	Modular	62005A	201
5 ± 0.50	4	Modular	62005C	201
5 ± 0.50	8	Modular	62005 E	201
5 ± 0.50	16	Modular	620050	201
5.8 ± 121015.	$18 \& 24$			
± 0.25	max	Modular	633150	202
5 ± 0.25	22	Modular	63005C	202
5 ± 0.50	40	Modular	62605J	202
5 ± 0.25	60	Modular	626051	202
5 ± 0.25	100	Modular	62805M	202
6 ± 0.60	1.5	Modular	600638	204
6 ± 060	3	Modular	60065A	204
6 ± 0.60	8	Modular	60066A	204
$0-6.0 \pm 20$,	25805	Low Cost	6236A	176
Dual fracking		Lat		
0-7.5	3	Low Cosi Lab	$62038 \dagger$	177
0-7.5	5	Gen Pupose	6281A \dagger	180
0-8	1000	High Pwr.	6a6aC \dagger	188
$0-10$	I	Low Cosi Lab	6213 +	175
0-10	$!$	Low Cost Lab	$62142 \dagger$	175
0-10	2	Prec, Voll	$6113 A+$	195
- $0-10$	10	Gen. Pumpose	6282A ${ }^{\text {F }}$	182
0-10	20	Gen. Purpose	$62563 \dagger$	184
0-10	50	Ger Purdose	62598 \dagger	184
0-10	100	Gen. Purpose	6260B +	184
$0 \pm 10 \& 0 \pm 100$				
Dual Range	0.5	BPSA*	6827A/6832A \dagger	198
12 ± 1.30	0.5	Modulas	$60122 B$	204
12 ± 1.30	1	Modular	601238	204
12 ± 0.60	1.5	Modular	62012A	201
12 ± 1.30	2.2	Modular	601258	204
12 ± 060	3	Modular	62012C	201
12 ± 060	6	Modular	62012 E	201
12 ± 1.30	6	Modutar	601258	204
12 ± 0.60	12	Modular	62012G	201
12 ± 0.60	23	Modular	626121	202
$\pm 12 \pm 0.60$ Dual	1.4	Modular	62212A	201
$\pm 1210 \pm 15$.	2818 A	Modutar	633150	202
$\pm 12 \pm 0.60$ Dual	$\max _{3.3}$	Mocular	62212E	201
$\pm 12 \pm 0.60$ Dual	6	Modular	62212G	201
0-15	200	High Pwr.	$64538 \dagger$	188
15 ± 075	1.25	Modula	62015A	201
15 ± 0.75	2.5	Madular	62015C	201
15 ± 0.75	5	Modular	62015 E	201
15 ± 075	10	Modular	62015G	201
15 ± 075	20	Modular	626151	202
$\pm 15 \pm 1.50$ Dual	02	Madular	60153D	204
$\pm 15 \pm 1.50$ Dual	0.75	Modular	60155 C	204
$\pm 15 \pm 0.75$ Dual	1.25	Modilar	62215A	201

DC Volts	OC Amps (Myy.)	Type	Model	Page
$\pm 15.85 \pm 0.25$	$2 \& 18$ max	Modula	633150	202
$\pm 15 \pm 0.75$ Dual	3	Modutar	62215E	201
$\pm 15 \pm 0.75$ Dual	52	Modular	822156	201
0-16 or 0-18	$600 \text { or }$	High Pwi.	6466 C †	188
0 ± 16	12.5	Dig. Piog.	6128C †	205
		Volt.		
0-1880-土20	180.5	Low Cost	6237A	176
Dual Tracking		Lab		
18 ± 0.90	1	Modular	62018A	201
18 ± 090	2.25	Modular	62018C	201
18 ± 0.90	4.5	Modular	62018C	201
18 ± 0.90	9	Modulin	620186	201
18 ± 0.90	16.7	Modular	62618)	202
0 $\pm 20,0-6$	0.5\&2.5	Low Cost	6236A	176
Dual Tracking		Lab		
$0 \pm 20.0-18$	0.581	Low Cost	6237A	176
Dual Tracking		Lat		
0-20 \& 0 - 80	0.680 .3	Low Cosi	$62048 \dagger$	177
Dual Range		Lab		
0-2080-40	0.680 .3	Low Cost	62058 ${ }^{\text {+ }}$	177
ino Dual Range		Lab		
0-20	1	Prec. Volt.	6101A \dagger	195
0-20	1	Prec Volt.	$61114 \dagger$	195
0-20	1.5	Low Cost	62018 \dagger	177
		Lab		
0-2080-40	1.58	Low Cosl	$62008 \dagger$	171
Dual range	0.75	Lab		
0-20 \& 20-40				
Dual Range	281	Piec Voll.	6104A \dagger	195
0-20820-40				
Oual pange	281	Prec. Volt.	$61144 \dagger$	195
0-20	3	Gen. Purpose	6284 +	180
0-20 \& 0-20				
Two Outpuls	383	Gen. Purpose	$6253 \mathrm{~A} \dagger$	180
0-20	5	Gen Purpose	6285A \dagger	180
0-20	10	Gen. Puriose	$62638 \dagger$	184
0-20	10	Gen. Purpose	6286A ${ }^{\text {? }}$	180
0-20	15	H/gh Pwr.	64278 ¢	188
0-20	20	Gen, Purpose	$62648 \dagger$	184
0-20	45	H/gh Pwr.	$64288 \dagger$	188
0-20	50	Gen. Purgose	$62618{ }^{+}$	184
0 ± 20	0.5	BPSA	6833A \dagger	198
20-40 \& 0-20				
Dual Range	182	Prec. Voll.	$61044 \dagger$	195
20-40 8 0-20				
Dual Range	182	Prec. Voll	$6114{ }^{\text {¢ }}$	195
0-24	3	Gen. Purpose	6224 B +	180
24 ± 2.40	0.25	Modular	60242B	204
24 ± 2.40	0.5	Modular	602438	204
24 ± 1.20	0.75	Modula	62024A	201
24 ± 2.40	1	Modular	60244B	204
24 ± 2.40	1.5	Modular	60245B	204
24 ± 1.20	1.75	Modular	62024C	201
24 ± 2.40	35	Modular	60246 B	204
24 ± 1.20	3.75	Modular	62024E	201
24 ± 1.20	7.5	Moduriar	62024G	201
24 ± 1.20	125	Modular	62628J	202

DC Yolts	DC Amos (Maz)	Type	Hodel	Page
0-25	0.4	Low Cosi Lab	6215A 1	175
0-25	0.4	LOW CosI Lab	6216A \dagger	175
0-25 \& 0-50				
Oual Range	180.5	Gen. Purpose	$62208 \dagger$	180
$\begin{gathered} 0-25 \& 0-25 \\ \text { Two Tracking } \end{gathered}$	2	Gen. 9 urdose	62278 +	194
28 ± 1.40	0.7	Modular	62028	201
28 ± 1.40	1.5	Modular	62028C	201
28 ± 1.40	3.25	Modular	62028 E	201
28 ± 1.40	6.5	Modular	620286	201
28 ± 1.40	10.7	Modular	626281	202
$\begin{gathered} 0-30 \& 0-60 \\ \text { Dual Range } \end{gathered}$	180.5	Low Cost Lab	5206B \dagger	I77
0-36	10	High Pwr.	6433B \dagger	188
0-36	100	Hegh Pwr.	64568 \dagger	188
0-36	300	High Pwr.	$6469 \mathrm{C} \dagger$	188
0-40\&0-20	0.380 .6	Low Cosi	$62048 \dagger$	177
Dual Range		Lab		
0-40\&0-20	0.380 .6	Low Cost	6205B \dagger	177
Dual Range		Lab		
0-40	0.5	Prec. Voll.	8102A \dagger	195
0-40	0.5	Prec. Voll.	$61124 \dagger$	195
0-40	0.75	Low Cosl Lab	$62028 \dagger$	177
0-4080-20	0.758	Low Cosi		
Dual Range	1.5	Lab	6200B \dagger	177
0-4080-40				
Two Oulputs	$1.5 \& 1.5$	Gen. Pupose	6255A \dagger	180
0-40	1.5	Gen. Puydose	6289A \dagger	180
0-40	3	Gen, Purgose	$62658 \dagger$	184
0-40	3	Gen. Purgose	$62904+$	180
0-40	5	Gen. Purpose	$62668 \dagger$	184
0-40	5	Gan. Pupose	82912 \dagger	180
0-40	10	Cen. Purpose	$62678 \dagger$	184
0-40	25	High Pw/,	$64348 \dagger$	188
0-40	30	Gen. Purpose	62688 †	184
0-40	50	Gen, Purdose	$62698 \dagger$	184
48 ± 2.40	0.45	Modu'as	62048A	201
48 ± 2.40	1	Mocular	62048 C	201
48 ± 2.40	2	Modular	620485	201
48 ± 2.40	4	Modular	62048G	201
0-50	0.2	Low Cos! Lab	5217A \dagger	175
0-50	0.2	Low Cosi Lab	62182 \dagger	175
0-50 (Compliance)	0-0.5	Prec. Cur.	61770	200
0-50\&0-25	0.581	Gen. Purdose	$62208 \dagger$	180
$\begin{aligned} & 0-50 \& 50-100 \\ & \text { Oual Range } \end{aligned}$	0.8\&0.4	Prec. Yolt.	$6105 A+$	195
0-50 \& 50-100				195
Dual Range	$0.8 \& 0.4$	9rec. Voll.	$6115 A+$	195

OC Yolts	DC Amps (Mar.)	Type	Hodel	Page
$0-50 \& 0-50$				
Two-Tracking	1	Gen, Purgose	$62288{ }^{+}$	194
0-50	1.5	Gen. Purgose	$62268 \dagger$	180
50-100 \& 0-50				
Dual Range	0.480 .8	Prec. Voll.	6115A \dagger	195
50-10080-50				
Dual fange	0.480 .8	Prec. Voll	6105A \dagger	195
0 ± 50	5	Oig. Prog.	6129C \dagger	205
		Voll.		
0 ± 50	1	Dis. Prog.	$61300+$	205
		Voll.		
0 ± 50	1	8PSA"	6824 \dagger	198
$0-6080-30$ Dual Range	0.581	Low Cos:	$62068 \dagger$	177
		Lab		
$\begin{aligned} & \text { Dual Range } \\ & 0-60 \end{aligned}$	1	Gen. Puppose	$62948 \dagger$	180
0-60	3	Gen, Purpose	62964 \dagger	180
0-60	3	Gen. Purpose	62718	184
0-60	5	High Pwi.	$64388 \dagger$	188
0-60	15	Gen. Purpose	$62748 \dagger$	184
0-60	15	High Pwr.	54398 \dagger	188
0-54	50	High Pwrr.	$6459 \mathrm{~A} \dagger$	188
0-64	150	High Pwe.	$6472 \mathrm{C} t$	188
0-100 (Compliance)	± 0.016	Oig. Prog.	6140A \dagger	205
		Cur.		
0-100 (Compliance)	± 0.016	Oig Prog.	6145A \dagger	205
		Cur.		
0-100	0.1	Low Cost	6211A \dagger	175
		Lab		
0-100	0.1	Low Cosl	$6212 a+$	175
		Lab		
0-100	0.2	Prec. Voll.	6106A \dagger	195
0-100	0.2	9 Prec Voll.	6116A \dagger	195
0-100 (Compliance)	0.25	Prec Cur.	$6181 \mathrm{C}+$	200
$\begin{aligned} & 0-100 \\ & 0 \pm 100 \end{aligned}$	0.75	Gen. Pupose	62998 \dagger	180
	0.5	Dig. Prog.	6131C \dagger	205
		Voll.		
0-110	108	High Pwi.	$6475 \mathrm{C} \dagger$	188
0-120	2.5	High Pwr.	$6843 B$ †	188
0-160	0.2	Low Cost Lab	$62078 \dagger$	177
0-220	50	High Pwr.	6477C \dagger	188
0-300 (Compliance)	0.1	Prec. Cur.	$6186 \mathrm{C} \dagger$	200
$0-300$	35	High Pus.	6479C \dagger	188
0-320	0.1	$\begin{aligned} & \text { Low Cosi } \\ & \text { Lab } \end{aligned}$	$62098 \dagger$	177
0-320	1.5	Gen. Purpose	895A	184
$0-400$ or $0-500$or $0-600$	25 or 20			
	or 15	HIgh Pwr.	64836 \dagger	188
1-600	1.5	High Purr.	$64488 \dagger$	188
0-1000	0.2	High Voll.	$6521 A \dagger$	192
0-1600	0.005	Hegh Voil	6515A \dagger	192
0-2000	0.$)$	High Voll.	$6522 \mathrm{~A} \dagger$	192
0-3000	0.006	Prec. Voll	$6110 \mathrm{~A} \dagger$	195
0-3000	0.006	High Voll.	6516A \dagger	192
0-4000	0.05	High Volt.	6525A +	192

- BPSA = Eidolar Power Supoly;Amgluliar
thazilable on GSA contract

Specification definitions

The following definitions expand on the terms used in the individwal power supply specification tables.
Load effect (load regulation): voliage load effect is given for a load current change equal to the current rating of the supply. Current load effect is given for a load voltage change equal to the voltage rating of the supply. In general, where a supply has both fronit and rear outpur terminals, load effeer is specified for the rear terminals only.
Source etfech (Ine regulation): given for any change in line voltage within the specified range at any output volsage and eurrent within rating.
PARD (rlpple and nolse): measured within 20 Hz to 20 MHz bandwidth at any line voltage and under any load condition within rating. For the bigh voliage supplies, models 6515 A .6525 A , the measurement bandwidth is I Hz 1020 MHz .
Temperalure coelficlent: oulpul change per degree Certigrade change in ambient following 30 -minutes warm-up.
Driti (stablity): change in oulput (de 1020 Hz) over 8 -hour incerval under constant line, load, and ambient following 30 -ninules warmup.
Resolution: minimum oulpur voltage or current change that can be obtained using front panel controls.
Output impedance: typical values, approximated by a resistance in series with an inductance.
Load effect translent recovery (load Iranaiont recovery): time reguired for output voltage recovery to within the specified level of the nominal outpue following a chenge in output current equal to the current rating of the supply or 5 amps, whichever is smaller.
Remote programming apood: typical time required to non-reperifively change from zero 10 within 99.9% of the maximum rated oulpui voltage, or from the maximum rated oulpul voltage to within 0.1% of that voltage above zero (99% and 1 偻 for high power models 6427 B 6483C and precision models 610IA-6|16A).
Remole semaing: a means by which the power supply monitors a stabilized oulpul quantity directly al the load using exera "sensing" leads.

Stablilzed power supply:

(I) Constant Voltage Power Supply: A power supply that stabilizes oulput voltage with respect to changes of influence quantities.
(2) Constant Current Power Supply: A power supply that stabilizes output current with respect to changes of influence quantities.
(3) Constant-Voltage/Constant-Current Power Supply: A power supply that operates as a constant-votiage power supply or consismecurrent power supply, depending on load conditions.

Terms related to static operation

Constant-voltage/constant-current crose-over. the behavior of a power supply that automatically converts the mode of operation from voltage stabilization to current stabilization when the output current reaches a preset value and vioc versa.
Disconilinuoue control resolution (resolution): in the case of discontinuous control (e.g. by means of switches, wire-wound adjustable resistors), the maximurn increment in the value of a stabilized output quantity arising from the smallest reprodueible control element slep.
Difft: the maximum change of an oulput quantiry during a spocified period of ume following the wam-up time, with all infuence and control quantities maintained constant during the warm-up time and the period of drift measurement. Drin includes both periodic and random devistions over the bandwidth from zero frequency (dc) to a specified upper frequency limit. This specified upper frequency limit for drift must coincide with the lower frequency limit for PARD so that all deviations under constant operating conditions are covered by specifying one or the other.
(i) Warm-Up Time: the time interval afler switeting on the power supply until it complier with all performance specilicalions.

Terms related la dynemic operation
Output Impedance: the complex retio of a smusoidal voltage and a sinusoidal current at the oulput terminals, the one being caused by the other and being of external origin.
Tranaloni recovery time: the time interval between a step change in one of the influence quantities or control quantities and the instant when the stabilized output quantity retums to and stays within the transient recovery band.
Turn-on (turn-off) overahoot: the overshoot resulting from the application (removal) of the source powor or from the power supply source switch being tumed on (turned off).

Terms related to physical and environmental aspects

Amblent temperature: the ternperature of the medium in which the power supply is immersed, usually the temperature of the air sufrounding the power supply.
laolation voltage: in the case of a noating output, input, or control input, the maximum vollage thal may be permanently maintained between specified terminals.

Protection terms

Crowbar protectlon clreult a protection circuit which rapidy places a low resistance shunt across the output cerminals of the power supply, thereby initiating action to reduce output voliage 10 a low value.
Current limiting: the action of limiting the output current of a con-slan-voltage supply to some predetermined maximum value (fixed or adjustable) and automatically restoring the ourput voltage to its normal value when the overload of short circuit is removed. There are three types of eurrent limiling.
(I) By constant-voltage/constant-current crossover.
(2) By decreasing outpul voltage as current increases (otherwise known as autornatic currene limiting.)
(3) By decreasing both voltage and current as load resistance decreases (otherwise known as foldback or outback current limiting).
Overcurrent protection: protection of the power supply and/or connected equipment againsl excessive oulpul current, including the shor-circuil current.
Overtemperature protection: protection of the power supply or parts of it against temperatures execeding specified values.
Roveree vollage protection: protection of the power supply against teverse voleage applied at the outpul terminals.
Short-cireuti current: the steady-state current delivered by a constant voltage power supply when its oulput terminals are shor-circuited.
Thermal daconnect: a device which prevents the maineenance of excessively high temperature in certain parts of the apparatus by disconnecting those parts from their supply,
Voltage Ilmiting: the action of limiting the output voluage of a con-stant-current supply 10 some predeternined maximurn value (fixed or adjustable) and automatically restoring the output current to its normal value when the load conditions are restored to normal. There are two types or vollage limiting:
(i) By constant-voltage/constant-curcent crossover.
(2) By decteasing oulput current as voltage increases (otherwise known as automatic volage limiting.)
Open-olreuli vollage: the voltage at the terminals of a constant-current power supply when there is no load connected.

- Low ripple and noise
- Impact-resistant stackable case
- Compact package $-133 \times 83 \times 368 \mathrm{~mm},\left(31 / 4 \mathrm{H} \times 5 \frac{1}{4}{ }^{n} \mathrm{~W}\right.$ $\times 8$ " ${ }^{\prime \prime}$)

6211A-6217A

Description

These popular low-cost bench supplies are designed for general laboratory use. Afl models are equipped with front-panel mounted voltage controls. a combination voll/ammeter, and output binding posis. Outpui volcage is conlinuously variable, via coarse and line
 the supply. A melet function switch selects either outpul voliage or current for display on the panel meter.

Loud connections are made via three binding posts. Either the + or the - post may be grounded through an adjacent GND terminal provided for that purpose, of the supply may be operated noating al up to 300 voles above ground.
The Constani Voltage/Constant Current Models have concentric coarse and noe current conlfols which allow the cursent-limit poinl to be sel to any value within the current rating. Using these controls, the CV/CC supplies can also be operated as constanl current sources with $500 \mu \mathrm{~A}$ load regulation. All CV/CC models can be connecled in serics or parallel.

The Constant Voltage/Current Limiting (CV/CL) Model supplits are short-circuit protected by a lixed current limiting circuil which is activated at approximately 120% of rated load current. The CV/CL models can be connected in series only.

The molded, impact-resistant case includes an interlocking feature for stacking several units verlically. thus minimizing bench spate re quired for multiple supplies. Alternatively, up to ifree units can be mounted side by side in a $19^{\prime \prime}$ rack using Rack Mounting Kil I4S2IA.

\author{

- $10 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}$ \& 100 V (1) 10 W outpul
 - Fully adjustable output voltage
 - Short-circuit proof
}

6212A-6218A

Ratings

Volts	Amps	Madel	Load Elfed	Source EHect	$\begin{aligned} & \text { PARD } \\ & \text { Rms/p-p } \end{aligned}$	Mode
0-10	1	6213A	4 mV	4 mV	$200 \mu \mathrm{~A} / 1 \mathrm{mV}$	CV/CL
0-10	$0-1$	6214λ	4 mV	4 mV	$200 \mu \mathrm{~N} / \mathrm{lmV}$	CV/CC
0-25	0.4	6215A	4 mV	4 mV	$200 \mu \mathrm{~h} / \mathrm{I} \mathrm{mV}$	$\mathrm{CV} / \mathrm{Cl}$
0-25	0-0.4	6216 A	4 mV	4 mV	$200 \mu \mathrm{~A} / 1 \mathrm{mV}$	CV/CC
0-50	0.2	6217A	4 mV	4 mV	$200 \mu A / 1 \mathrm{mV}$	CV/Cl
0-50	0-0.2	6218A	4 mV	4 mv	$200 \mu \mathrm{~N} / 1 \mathrm{mV}$	$\mathrm{CV} / \mathrm{CC}$
$0-100$	0.1	6211A	8 mV	4 mV	$200 \mu \mathrm{~A} / 1 \mathrm{mV}$	$\mathrm{CV} / \mathrm{Cl}$
0-100	0-0.1	6212A	8 mV	4 mr	$200 \mu \mathrm{~A} / 1 \mathrm{mP}$	CV/CC

Prlce
14521A Rack kit for one, two. or threc supplies.
Includes 1 wo filler panels
Oplion 028230 V ac single phase input

Model number and name

6213A. 6215A, 6217A CV/CL Low Cost Lab Supplies $\$ 115$
62IIA CV/CL Low Cosi Lab Supply
$\$ 115$
6214A, 6216A, 6218A CV/CC Low Cost Lab Supplies $\$ 140$
6212A CV/CC Low Cosi Lab Supply

- Short-circuit proof
- No turn-on/turn-off overshoot

6236A

Description

Small size. ease of operation and application-related performance make the 6236A and new 6237A valued additions to any lab where digital or linear in egratod circuits are used.

Measuring only $31 / 2$ in. $H \times 8 \%$ in. $W \times 121 / 2$ in. D. the $6236 A$ and 6237 A lake up a minimum of bench space, and weighing $91 / 2 \mathrm{lb}$. can be handled with case. In addition io being compact and portable, these supplics arc easy 10 operate. All controls, meters and binding posts are functionally' related on a neatly laid-out front pancl. Control of aingle and dual outputs is provided by separate single-turn potemionteters. A threc-position meter switch selects the desired output for display of voltage and current on dual panel meters. The 0 to +20 V and 0 to -20 V outputs track one another within 1% to supply the aymmetrical vollages necded by operational amplificrs and similar balanced voltage source devices.

A single 0 to 40 V at 0.5 A output can also be obtained by connecting across the -20 V and +20 V terminals. All output terminals are isolated with respect to ground. Current return for each supply is through a common terminal and any one outpot terminal may be grounded.

These supplies are procected from overlonds by fixed currenı limuing circuits. The +20 V and -20 V outputs are limited to 0.50 A for all overload conditions. The 0 to 18 V single output of the 6237 A is similarly limited to 1.0 A . A foldback current limiting circuit in the 6236 A reduces the svailable outpul from 2.5 A at the 6 V selling to 1 A th the 0 V selling (and under shorl orcuil conditions). This foldback characteristic permits more available outpul current al the mosi commonly used outpui of 5-6 V ihan would normally be the case.
Speciflications (applicable lo both models, unless otherwise indicaled.)
DC Oulpat
B238A: 0 to $6 \mathrm{~V}(2.5 \mathrm{~A}$ al 6 V reducing to I A al 0 V$)$: and 0 to +20 V and -20 V at $0.5 \wedge$, dual tracking.
6237A: 0 to 18 V al $I \mathrm{~A}$: and 0 to +20 V and -20 V at 0.5 A . dual tracking.
AG Inpul: 120 V ac nominal, 104 V to $127 \mathrm{~V}, 47-63 \mathrm{Hx}, 112 \mathrm{~W}, 1.2 \mathrm{~A}$ max at 120 V . A 3 -wire, 6 - ft . power cord with grounding type plug is permanently attached. Sec option listings for nominal 100 V ac, 220 V ac, and 240 V ac operation. The power cable for these no-cost oplions is equipped with a plug appropriate for user's location.
Load effect (load regulation); $0.01 \%+2 \mathrm{mV}$ (all oulputs) for no load to full load change.

6237A

Source effect (Ine regulation): 0.01 象 +2 mV (all oulpuls) for any line voltage change within rating.
PARD (ripple noise): 0.35 mV rms, $1.5 \mathrm{mV} \mathrm{p}-\mathrm{p}(20 \mathrm{~Hz} 1020 \mathrm{MHz})$. Resolutlon: 15 mV for 6 V output. 70 mV for 0 to $18 \mathrm{~V}(6237 \mathrm{~A})$ and 0 to $\pm 20 \mathrm{~V}$ outputs.
Drift (stability): tolal drift in outpul (de 1020 Hz) over 8-hour inter. val under comatant linc: load, and ambicnt following 30 -minules warm-up is $0.1 \mathrm{t}+5 \mathrm{mV}$.
Tracking accuracy: maximum difference in absolute magnitude of plus and minus dual Iracking oulpur vollages for any setling within raling is 1 s.
Oulput impedance (typleal): approximated by :a sesislance in series with an inductance. $0.3 \mathrm{~m} \Omega+1 \mathrm{uH}(6 \mathrm{~V}$ ourpul), 1$) .3 \mathrm{~m} \Omega+1.5 \mathrm{uH}(18$ V oulpui), $0.5 \mathrm{~m} \Omega+1.5 \mathrm{uH}$ ($\pm 20 \mathrm{~V}$ outputs).
Load effect translent recovery (load transient recovery): $50 \mu \mathrm{sec}$ is required for outpul recovery to within $15 \mathrm{~m} V$ of the numinal output voliage foltowing a change in output current from fulf load to half load, or from half load to full load.
Oulput vollage overshoot: no overshoot with output control set above I V outpul. Below I V selling. Iotul ol untpul plus overshoot is <lv.
Temperature coefficient: $0.02 \%+1 \mathrm{mV}$ oulpul change per degres centigrade change in ambienl following 30 -minutes warm-up (all outpuls).

Temperalure ratings

Operaling: 0 to $40^{\circ} \mathrm{C}$ (outpul current is deraled linearly by 50 最
from $40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ maximum).
Storage: $-5010+75^{\circ} \mathrm{C}$.
Cooling: natural convection.
Dimensions: $89 \mathrm{~mm} \mathrm{H} \times 216 \mathrm{~mm} \mathrm{~W} \times 319 \mathrm{~mm} \mathrm{D}:\left(3 h^{\prime \prime} \mathrm{H} \times 81 \mathrm{~s}^{*} \mathrm{~W}^{\prime}\right.$ $\left.\times 12!2^{\prime \prime} \mathrm{D}\right)$.
Weight: $4.3 \mathrm{~kg}(9.5 \mathrm{lb})$
Color: ollve gray
Options and accessories Price
Option 100: $37.106 \mathrm{~V}, 47-63 \mathrm{~Hz}$ input
N / C
Oplion 220: 191-233 V, 47-63 Hz input
N / C
Oprion 240: $208.250 \mathrm{~V}, 47-63 \mathrm{~Hz}$ inpul
N / C
14523A Rack Kit for iwo supplics $\$ 15$
I45I3A Rack Kit for one supply
$\$ 25$
Model number and name
6236A Triple Outpui Power Supply
\$325
6237A Triple Outpul Power Supply
$\$ 325$

Low cost lab: General bench applications

- Short-circuit proof
- Floating output (up to 300 V above ground) -Can be used as a positive or negative source
- Remote sensing
- Bench or rack mounting
- Multi-function meter

8205B

6204B. 6206B

6200B-6203B, 6207B, 6209B

6384 A

Description

Models 6200B-6209B

This series of low-cost bench supplies includes nine models covering an outpu voltage range from $0-7.5 \vee 100-320 \mathrm{~V}$. All models. are equipped with coarse and fine output voltage controls (execpt Models 6207 B and 6209 B , which have 10 -iurn voltage conirols), volt/ampere metier, meter function/range switch, and front and rear outpul ferminals. In addition, an the dual-range models ($62048-6205 \mathrm{~B}$), an oulpul range switch pernils the selection of either a high or a low oulput vollage range.
Model 6203B combines the versability of a dual power supply with the flexibility of auto-parallet and auto-series operation to extend the output ratings of this supply to $20 \mathrm{~V} / 1.2 \mathrm{~A}, 40 \mathrm{~V} / 0.6 \mathrm{~A}$, snd $80 \mathrm{~V} / 0.3$ A. In addition, using the supply's auto-tracking capability, opposite polarity voltagex ($\pm 20 \mathrm{~V}, \pm 40 \mathrm{~V}$) can conveniently be oblained from this one supply.
The Constant Voltage/Current Limsting supplies (6204B-6205B), are short-circuit protected by a fixed current limiting circuil which is activated at approximately 110% of rated load current. The currentlimit point can be reduced by changing the value of a single intemal tesistor. For the Constant Voltage/Constant Current supplies, concenIric coarsc and fine current controls allow the current-limit point to be set 10 any value within the current raling. Using thesi controls. the CV/CC supplies can also be operated as constant current sources.
Units may be bench operated or rack mounted individually or in pairs using accessory rack mounting hardware.

Model 6384A

This low-cost bench supply is designed specifically for use with dig. ital-logic integrated circuits. lis oulpul ratings and superior performance, combined with the prolection of buill-in overvoltage crowbar and current timiting circuits, make it an excellent IC supply for both laboratory and systems use.
Voltage-sensitive loads ase protected by the overvoliage crowbar circuil. Following detection of an overvoliage condition. the crowbar is aclivaled and shorts the output. The crowbar threshold is factoryset 106.25 V . but is field-adjustable down 105 V .
The power supply will not be damaged by an overload condicion. If the load current ckeceds $8.5 \pm 0.2 \mathrm{~A}$, the culback cursent liait circuit is activated and reduces the output current to a safe level.

Models 6200B-6209B \& 6384A (cont)

Specifications \dagger

$\begin{aligned} & \text { OC } \\ & \text { Oulput } \end{aligned}$	Hoth	$4-3.5 \mathrm{y}$	0-1sV	$0-20 \mathrm{~V}$	Oul ranne		2 Cual hand	
					O-80	$0-40 \mathrm{~V}$	-204	0-10Y
	Ampa	8 A	0-3A	0-1.51	0.6 \%	0.3.	0.6 ¢	0.31
Moded		63841	62038	62018	62010		62058	

[^6] thelar to pape 174 for complete specilication definitions.

Dull fonet		Dual Range		$0-408$	$0-160 \mathrm{y}$	$0-320 \mathrm{y}$
0-20Y	0-40 V	0-30 Y	0-cory			
$0-1.5 \mathrm{~A}$	- 0.0 .75 A	14	$0.5 \wedge$	0-0.75 4	0-0.2A	0-0.14
52000		52069		82028	62078	62038

$0.015+4 m \mathrm{n}$	$0.015+4 \mathrm{mV}$	$0.01 \%+8 \mathrm{mV}$	$0.028+2 \mathrm{mf}$	0.02s + 2 mV
$0.038+250 \mathrm{~mA}$	HA	$0.034+250$ w	200	200 ul
$0.01 \%+4 \mathrm{mV}$	$0.018+1$ m	$0.018+1$ niv	0.02\% + 2 my	$0.027+2 \mathrm{my}$
$0.01 \%+250 \mu \mathrm{~A}$	NA	0.01\% $+250 \mu \mathrm{~A}$	200 mA	200 mA
$200 \mu V / 1 \mathrm{mV}$	$200 \mu \mathrm{~V} / \mathrm{I} \mathrm{mV}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$500 \mu \mathrm{~V} / 40 \mathrm{mV}$	$1 \mathrm{mV} / 40 \mathrm{nV}$
$500 \mu A \mathrm{rms}$	* H_{4}	500 cha rms	200μ ams	200μ A
$0.02 \%+1 \mathrm{mV}$	$0.02 \%+1 \mathrm{mV}$	0.02\% + i mV	0.02\% + 1 my	0.02\% + 1 mv
$0.02 \%+1 \mathrm{mk}$	NA	0.02\% + 0.5 mA	0.02\% + $150 \mu h$	$0.02 \%+75 \mu \mathrm{~A}$
$0.1 \%+3 \mathrm{ny}$	$0.15+5 \mathrm{my}$	$0.18+5 m 4$	$0.18+5 \mathrm{av}$	$0.18+5 \mathrm{mV}$
$0.17+5 \mathrm{~mA}$	MA	$0.15+2.5 \mathrm{~mA}$	$0.18+750 \mu \mathrm{~A}$	$0.15+350 \mu \mathrm{~A}$
10 mV	10 ma	10 mV	25 mV	40 mV
2 mA	H/	1 ma	$500 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$
$20 \mathrm{mR}, \mathrm{I} \mu \mathrm{H}$	$40 \mathrm{mil}, 2 \mu \mathrm{H}$	$20 \mathrm{msI} .1 \mu \mathrm{H}$	$20 \mathrm{mll}, 1 \mathrm{\mu H}$	$20 \mathrm{mil} .1 \mathrm{\mu H}$
50 as	50 18	50 us	$50 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$
10 mY	10 mV	10 mP	10 mb	10 my

CV/CC		CVICl		CV/CS:	CV/Cs	CV/CS
$2000 / 4 \pm 18$		$300 \Omega / \mathrm{V} \pm 1 \%$		2000/4 ± 18	$300 \mathrm{~N} / \mathrm{Y} \pm 1 \mathrm{~m}$	$3000 / v \pm 17$
$0.5 \times 1 / \mathrm{A} \pm 105$	1 kIV/A $+10 \%$	H2		$1 \mathrm{~h} / \mathrm{A} / \mathrm{A} \pm 10 \mathrm{~m}$	$15 \mathrm{LM} / 0.1 \mathrm{~A} \pm 10 \mathrm{~L}$	$15 \mathrm{k} 2 / 0.1 \mathrm{~A} \pm 10 \%$
1V/V $\pm 1 \%$		$1 V / V \pm 1 \%$		$1 \mathrm{~V} / \mathrm{V} \pm 1 \%$	$1 V / \mathrm{N} \pm 1 \%$	$I V / \mathrm{N} \pm 1 \%$
$1 \mathrm{~V} / \mathrm{A} \pm 10 \mathrm{~S}$	$2 \mathrm{~V} / \mathrm{A} \pm 107$	Hh		$2 V / A \pm 105$	$0.25 \mathrm{~V} / 0.1 \mathrm{~A} \pm 108$	$1.5 Y / 0.14 \pm 10 \%$
1 ms	4 ms	12 ms	50 ml	6 ms	200 ms	200 ms
3 ml	12 的	30 ms	120 ms	12 ms	1.3 sec	1.5 sec
15 tat	30 ms	360 ms	600 ms	30 ms	2.058 C	15 sec
4 ms	10 㖁	140 ms	50 mm	30 ms	0.5 sec	0.5 sec
$25-44 \mathrm{~V}$		23-65v		25-44V	MA	Wh
4\% of output +2 Y		4% of output +2 V		4\% of outgut +2 V	NA	NA
$\begin{aligned} & 5 V, 50 V \pm 38 \\ & 0.18 \mathrm{~A}, 1.8 \mathrm{~A} \pm 38 \end{aligned}$		$\begin{aligned} & 7 V, 70 \mathrm{~V} \pm 3 \% \\ & 0.12 \mathrm{~A} \cdot 1.2 \mathrm{~A} \pm 3 \% \end{aligned}$		$\begin{aligned} & 5 V, 50 V \pm 3 \% \\ & 0.09 \lambda 0.9 \mathrm{~A} \pm 3 \% \end{aligned}$	$\begin{aligned} & 20 \mathrm{~V}, 200 \mathrm{~V} \pm 3 \% \\ & 24 \mathrm{~mA}, 240 \mathrm{~mA} \pm 3 \% \end{aligned}$	$40 \mathrm{~V}, 400 \mathrm{~V} \pm 3 \%$ $12 \mathrm{~mA} .120 \mathrm{~mA} \pm 35$

$\begin{aligned} & 113 \mathrm{~V} 26 \pm 10 \mathrm{~F} \\ & 48-410 \mathrm{~Hz} \\ & 0.9470 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 215 \mathrm{~V} 36 \pm 10 \mathrm{~S} \\ & 48-400 \mathrm{HI} \\ & 14.66 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 104 \\ & 48-40 \mathrm{~W} \\ & 0.8 \mathrm{~A} .66 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{~V} \text { ac } \pm 10 \mathrm{~s} \\ & 48-63 \mathrm{~Hz} \\ & 18,60 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{w} \text { at } \pm 108 \\ & 48-63 \mathrm{Hi} \\ & 14.60 \mathrm{w} \end{aligned}$
Conveclion	Convection	Convection	Convection	Convection
$\begin{aligned} & 210 \mathrm{~mm} \times 89 \mathrm{~mm} \\ & \times 317 \mathrm{~mm} \\ & \left(85^{\circ} \mathrm{H} \times 3 \mathrm{~m}^{-} \mathrm{H}\right. \\ & \left.\times 12 \mathrm{~m}^{-0}\right) \end{aligned}$	$\left\lvert\, \begin{gathered} 215 \mathrm{~mm} \times 69 \mathrm{~mm} \\ \times 317 \mathrm{~mm} \\ \left(84^{\circ} w \times 3 h^{\circ} \mathrm{n}\right. \\ \left.\times 12 \mathrm{~m}^{\circ} 0\right) \end{gathered}\right.$			$\begin{aligned} & 216 \mathrm{~mm} \times 89 \mathrm{~mm} \\ & \times 317 \mathrm{~mm} \\ & \left(85^{\circ} \mathrm{W} \times 3 \mathrm{~m}^{\mathrm{H}} \mathrm{H}\right. \\ & \left.\times 12 \mathrm{~m}^{\circ} \mathrm{D}\right) \end{aligned}$
4.5 k ($\mathrm{ID} \mathrm{D} \mathrm{ID}^{\text {) }}$	$45 \mathrm{Lg}(10 \mathrm{ld})$	$4.5 \mathrm{~kg}(10 \mathrm{tD})$	$4.5 \mathrm{~kg}(10 \mathrm{lb})$	4.5 kg (10 ib$)$
$5.4 \mathrm{~kg}(12 \mathrm{lb})$	$5.4 \mathrm{~kg}(12 \mathrm{lb})$	$5.4 \mathrm{~kg}(12 \mathrm{lb})$	$5.4 \mathrm{~kg}(12 \mathrm{lb})$	$5.4 \mathrm{~kg}(12 \mathrm{ld})$
$\begin{aligned} & 1,8.9 .11,13, \\ & 14,28 \end{aligned}$	7,11, 13, 28	$\begin{aligned} & 7,8,9.11 .134 \\ & 14,28 \end{aligned}$	8.13.14. 28	8,13.14,28

Accessories available
14523A Rack Kit for two supplies
14513A Rack Kit for one supply

Options
007: tentiurn output voltage control. Replaces concentric coarse and fine voltage controls lor improved mechanical stability and conveniance (except 6205B).

Model 6205B

DOB: ten-turn output current control. Replaces concentric coarse and fine current controls for improved mechanical stability and convenience.
009: ten-iurn output voltage and current controls. Consists of Options 007 and 008 on same instrumens.
011: internal overvoltege prolection crowbar. Prolects delicarc loads against power supply failure or operator error. Monitors the oulput voltage and places a virtual shorl circuit (conducting SCR) across load alter preset trip vollage is excooded. On all models except 6205 B , the crowbar adjusement potentiometer is accessible from the front panel. On Model 6205B. dual crowbar controls ore accessible from the top of the unit.
Model 6205B

013: three-digit graduated decadial voltage control. Includes single len-turn control replacing coarse and fine voltage controls. Provides improved reseltability of output voltage.
Models 6200B, 62018, 6204B. 6206 B
Models 6207B, 62098

Model 6205B

014: three-digit graduated decadial eurrent control. Includes single ten-turn control replacing coarse and fine current controls. Provides improved reseltability of output current.
028: 230 V ac $\pm 10 \%$ single phase input. Factory modification consists of reconnecting the multitap input power transformer far 270 V operation.
040: interfacing for Multiprogrammer Operation. Prepares standard HP power supplies for resistance programming by the 6940B Muliprogrammer or 6941B Multiprogrammer Excender. Operalion with either of these instruments requires that the power supply be subjected 10 (1) Special Calibration, and (2) Protection Chockout. The former procedure insures that the power supply will not be damaged by the rapid, repetitive programming possible whit the Multiprogrammer.
Model 6205B

C05: eight-inch black handle altached to side of power supply.

Model number and name

6200R Dual Range CV/CC Bench Supply $\$ 250$
6201 B Single Range CV/CC Bench Supply $\quad \$ 230$
6202B Singlo Range CV/CC Bench Supply $\$ 225$
6203 B Single Range CV/CC Bench Supply
6204B Dual Range CV/CL Bench Supply
6205 B Independent Dual Range, Dual Ouipul CV/Cl
Bench Supply
6207 B Dal Range CV/CL Bench Supply
6100 Single Range CV/CC Bench Supply
6384 A Digital Logic Bench Supply
$\$ 250$

General purpose: $25-200$ W output Modets 6220B-6299A

- Constant voltage / constant current operation
- Remote sensing and programming
- Auto-series, -parallel \&-tracking operation

6281A, 6284A. 6289A. 6294A, 6298A

6282A. 6285A. 6286A.
6290A. 6291A. 6296A

6253A, 6255A

Description

6281A-6299A

This series of medium-power Constant Voltage/Constant Current power supplies is available in two power ranges: 37.75 watts (packaged in $31 /$-inch high half-rack cases), and $100-200$ walls (packaged in $51 /$-inch high half-rack cases). All models excepl 6294A and 6299A have separate coarsci and fine voltage and curremt controls that allow the voltage and current outputs to be varied from zero to the maximum rated values. The latter two models have ten-turn voltage controks. Crossover from constant voltage to constant gurrent operation occurs automatically when the load current exceeds the value establishod by the current control settings. A four-position meter function switch selects either of two oulput voltage or output current ranges (X). X0.I) for display on the panel meter.

The 37.75 wall models are of the series-regutaled type. They have excellenı regulation and ripple characteristics and include a special outpur-capacilor discharge circuit for improved programming spoed. The $100-200$ watt models employ a serias-regulator/SCR-preregulator configuration 10 achicve the high effiecency nucessary for a con-vection-cooled package of this size. They also have excellent regulawon. low ripple and noisc. and moderate programming speeds.

6253A and 6255A

These versatile dual-oulput models each contain two identical, in-
dependenily-adjustable 60 -watl power supplies in a full-rack width case. The regulator, voltage and current control, and metering circuits of each section of the supply are elecirically identicas to those of the individual 37-75 watt models described above.
By combining the versatility of a dual power supply with the flexibility of aulo-series and auto-parallei operation, twice the maximum rated output voltage or current of each scetion can be obtained from the one supply. In addation, using the supply's auto-tracking capability. oppositc-polarity voliages ($\pm 20 \mathrm{~V}$ for Model 6253A or $\pm 40 \mathrm{~V}$ for Model 6255 A) are possible.

6220B, 6224B, and 6226B

These Constant Voltage/Constant Current supplies are designed fos general laboratory usc. All have excellent regulation, low ripple and noise, and high speed programming characterisuses. Large easy-toread meter scales, 10 -turn voltage and current controls, and front and rear outpul terminals, enhance ease of operation. Model 6220 B is a dual-range instrument with outpur ratings of $0-25 \mathrm{~V}$ at $0-1 \mathrm{~A}$ or $0-50 \mathrm{~V}$ at 0-0.5 A. It is the only model of the three employing convection cooling. Model 6224 B and 6226 B have single outpuls of $0-24 \mathrm{~V}$ al $0-3 \mathrm{~A}$ and $a \leq 0 \vee$ al $0-1.5 \mathrm{~A}$. respectively.

Accessories and options

The accessories and options available for use with Models 6220 B 6299A are listed on page 183.

Specifications \dagger

[^7]
Modals 6220B-8299A

Specifications \dagger

birestre đue to front têminal resistâinc:
tRefer to page $1 / 4$ for complese specitication defintions

$0-308$	$0-604$	$0-604$	$0-1004$
$0-1.54$	$0-14$	$0-34$	$0-750 \mathrm{~mA}$
6268 B	6294 A	62964	6299 A

$0.018+2 \mathrm{mV}$	$0.015+2 \mathrm{mv}$	$0.015+1 \mathrm{mv}$	$0.085+2 \mathrm{mV}$
$0.018+250 \mu \mathrm{~h}$	$0.018+250 \mu \mathrm{~A}$	$0.05 \%+1 \mathrm{~mA}$	$0.015+250 \mu \mathrm{~A}$
0.01\% +2 mV	$0,014+2 \mathrm{mV}$	0.018 + 1 mV	$0.01 \%+2 \mathrm{mv}$
$0018+250 \mu$	$6.618+2504 A$	$0058+1 \mathrm{~mA}$	0019. $+250 \mu \mathrm{~A}$
$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$200 \mathrm{FV} / 1 \mathrm{mV}$	$500 \mathrm{\mu V} / 25 \mathrm{mV}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$
$200 \mu \mathrm{~A} / 1 \mathrm{~mA}$	$500 \mu \mathrm{tms}$	3 mA rms	$500 \mu \mathrm{Arms}$
$0.02 \%+500 \mu^{4}$	0.02\% + $300 \mu v$	0.02\% + 500 $\mu \mathrm{V}$	0.02\% + 500 - 4
$0026+0.8 m^{2}$	$0023+05 \mathrm{mh}$	$0028+1.5 \mathrm{~mA}$	002\% + 0.4 mA
$0.15+2.5 \mathrm{mV}$	$0.15+2.5 \mathrm{mV}$	$0.18+2.5 \mathrm{mV}$	$0.1 \%+2.5 \mathrm{mV}$
$0.18+4 \mathrm{~mA}$	$0.15+2.5 \mathrm{~mA}$	$0.1 \%+7.5 \mathrm{~mA}$	$0.1 \%+2 \mathrm{~mA}$
20 mv	10 ml	7 mv	20 mV
2 mA	05 mA	1 mn	1 mh
$10 \mathrm{~m} \mathrm{\Omega}$, $1 \mathrm{\mu H}$	$15 \mathrm{~m} \Omega, \lambda \mu \mathrm{H}$	$5 \mathrm{mH}, 1 \mu \mathrm{H}$	$30 \mathrm{mft} / \mathrm{l} \mu \mathrm{H}$
$50 \mu \mathrm{~s}$	50 us	50 ms	5043
10 mV	15 mv	15 mV	IS mV

200 51/V $\pm 1 \%$	$300 \mathrm{D} / \mathrm{V} \pm 15$	$300 \mathrm{~d} / \mathrm{V} \pm 1 \%$	$300 \mathrm{~L} / \mathrm{V} \pm 15$
$300.51 / A \pm 108$	$1 \mathrm{k} / 2 / \mathrm{A}=10 \mathrm{~s}$	$500 \mathrm{D} / \mathrm{/A} \pm 10 \%$	$1 \mathrm{k} 2 / \mathrm{A} \pm 10 \mathrm{~F}$
145	1 $4 / N \pm 1 \%$	1V/V	$1 V N \pm 1 \%$
$18 / \mathrm{A}$	$1 V / 4 \pm 10 \%$	332 $\pi V / R \pm 103$	$13 \mathrm{~V} / \mathrm{A} \pm 10 \%$
20 ms	25 ms	600 ms	25 ms
55 ms	80 ms	600 ms	200 ms
200 mes	2 sec	S\%s	1.5 sec
250 ms	175 ms	200 ms	200 ms
NH	5.65 Y	9.66 V	20.106 V
NA	43 of output +2 V	2\% of output +14	4\% of outpul +28
$6 \mathrm{~V}, 60 \mathrm{y} \pm 36$ 018 A18A土38	$\begin{aligned} & 7 \mathrm{~V} .70 \mathrm{~V} \pm 35 \\ & 0.12 \mathrm{~A}, 1.2 \mathrm{~A} \pm 3 \% \end{aligned}$	$\begin{aligned} & 7 Y, ~ 70 V \pm 3 \% \\ & 0 i \lambda \Delta A \pm 3 \% \end{aligned}$	$\begin{aligned} & 12 V .120 V \pm 3 \% \\ & 0.1 A . I A \pm 3 \% \end{aligned}$

$\begin{aligned} & 115 \mathrm{Vac} \pm 105 \\ & 48-63 \mathrm{~Hz} \\ & 18 \mathrm{~A} .164 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 1.3 \mathrm{~A} .114 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vat} \pm 105 \\ & 57-63 \mathrm{Hr} \\ & 4.5 \mathrm{~A}, 250 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{~V} \text { ac } \pm 10 \mathrm{~F} \\ & 48-440 \mathrm{Kz} \\ & 1.5 \mathrm{~A} .135 \mathrm{Wi} \end{aligned}$
$\begin{aligned} & 138 \mathrm{~mm} \times 159 \mathrm{~mm} \\ & \times 279 \mathrm{~mm} \\ & \left(54^{\circ} \mathrm{W} \times 644^{\circ} \mathrm{R}\right. \\ & \left.\times 11^{-} \mathrm{D}\right) \end{aligned}$	$\begin{aligned} & 216 \mathrm{~mm} \times 65 \mathrm{mmi} \\ & \times 368 \mathrm{~mm} \\ & 8 \mathrm{~m}^{\circ} \mathrm{w} \times 3 \mathrm{~m}^{\prime} \mathrm{H} \\ & \left.\times 14 \mathrm{~h}^{\circ} \mathrm{D}\right) \end{aligned}$	$\begin{aligned} & 216 \mathrm{~mm} \times 133 \mathrm{~mm} \\ & \times 466 \mathrm{mmm} \\ & \left(8 \mathrm{~h}^{\prime} \mathrm{W} \times 5 \mathrm{~K}^{\prime} \mathrm{H}\right. \\ & \left.\times 16^{-} \mathrm{D}\right) \end{aligned}$	$\begin{aligned} & 216 \mathrm{~mm} \times 89 \mathrm{~mm} \\ & \times 368 \mathrm{~mm} \\ & \left(83^{\circ} \mathrm{W} \times 3 \mathrm{n}^{\prime} \mathrm{H}\right. \\ & \left.\times 14 \mathrm{~h}^{\prime} \mathrm{D}\right) \end{aligned}$
Fan	Convection	Convection	Convection
	5.9 kg (13 10)	11.3 lf (23 16)	5.94 (1) (b)
82 kg (18 m)	6.8 kg (15 lb)	12.7 kg (28 (他)	6.8 kg (15 $\mathrm{l}^{\text {3 }}$)
$13.14,28.40$	$\begin{aligned} & 8,11,13,14 . \\ & 28,40 \end{aligned}$	$\begin{aligned} & 5,7,8,9,11 . \\ & 13,14,28 \end{aligned}$	$8.11,13,14,$ $28,40$

Accessories available

5060-8762 Adapter Frame, for rack mounting one, two or three $1 / 1$ rack width units.
1052A Combining Case for rack mounting one, two or three $1 / 3$ rack width units for quick removal. A cooling kit must be installed at the rear of the combining case. 5060-0789 Cooling Kil for 115 V ac, $50-60 \mathrm{~Hz}$ input. $5060-0796$ Conling Kit for $230 \mathrm{~V} \mathrm{ac}, 50-60 \mathrm{~Hz}$ input. 5060-8760 Blank Filler Panel.
14513A 31/2" High Rack Kil for one supply.
14523A 312^{n} High Rack Kit for two supplies.
14SISA Sy/ 4° High Rack Kit for one supply.
14S2SA 51/"" High Rack Kil for two supplies.
Options
005: 50 Hz ac input
007: Ten-turn outpus voliage control. Replaces concentric coarse and line voliage controls. Modeis 6253A and 6255A have dual controls.
All other models in this series have single controls.
008: Ten-iurn oulput current control. Models 6253A and 6255A have dual controls.
All other models in this serics have single controls.
009: Ten-ium output voliage and current conirols. Consisis of Options 007 and 008 on same instrumene. Madels 6253A and 6255A have sets of dual conirols.
All other models in this scries have single controls.
010: Chassis slides. Stides are attached to supply al faclory.
011: Inemal overvoltage protection crowbar. Models 6253A and 6255A have dual crowbars.
Models 628IA, 6284A, 6289A, 6294A, 6299A have single crowbars.
Models 6282A. 6285A, 6286A. 6290A, 6291A. 6296A have single crowbars.
013: Tbree-digit graduated docadial voltage control. Includes single 10 -1urn conirol. Models 6253A, and 6255A have dual controls.
Models 6220B, 6224B, 6226B. 6294A. 6299A have single cobirols.
All other modets in this series have single controls.
014: Three-digit gradualed decadial current control. Includes single la-turn control.
028: 230 V ac $\pm 10 \%$. single phase input.
040: lnterfacing for Muleiprogrammer Operation. Prepares standard HP power supplits for resistance programming by the 6940B/6941B Multiprogrammer. Models 6253A and 625SA require special calibration of dual programming circuils.
All other models in this series require special calibration of a síngle programming cirevit.

Model numbers and name

6220B General Purpose, Dual-Range Ouipul
6224B. 6226 B Gencral Purpose. Single Output
6253A, 625sA General Purpose. Two Oulpuls
6281 A General Purpose. Single Outpur
6282A. 6285A. 6286A. 6290A. 6291A, 6296A General
Purpose, Single Output
6284A Gencral Purpose, Single Outpue $\$ 280$
6289A General Purpose: Single Ouipur
6294A General Purpose, Single Ouiput
6299A General Purpose, Single Ouipui

- Built-in overvoltage protection*
- Constant voltage/constant current operation
- Remote programming of voltage and current

6283B, 6265B, 8266B. 6271B

6256B, 6254B, 6267B

- Remote sensing
- Auto-series, -parallel, and -tracking operation
- $\leq 50 \mu \mathrm{sec}$ load transient recovery

6274 B

6259B. 6260B, 6261B. 6268B. 6269B

895A

Models 6258B-6274B

This serics of high-performance Constanı Volage/Constanı Current supplies includes thiricen models with outpul ratings from 10 to 60 V . Alf models employ a transistor scres-regulator/triac-preresulator circuit to ashieve high efficiency, excellent regulation, low ripple and noise, and moderate programming speeds in a compaci full-rack width package.
Separate coarse and fine voltage and current conirols allow the voltage and current oulputs to be varied from zero to the maximum rated value. Crossover from constant vollage to constant cutrent operation occurs automatically when the load current exceeds the value established by the current control seltings.

Additional features include built-in overvaltage crowbar protection; remote error sensing; and auto-series, auto-parallel, and autotracking operation. The crowbar trip porni adjusiment and associated overvolage indicator arc conveniently located on the frome panel.

Auto-series, auto-paralkel, and auto-tracking connections should ordinarily include no more than three supplies. If a specific applica-
tion requires the use of more than three supplies in any of the throe connections, consult your local HP Ficld Engineer for additional information.

All de oulpul. ac inpul. sensing, conirol, and programming connec. thons are made to rear-panel terminals. Either the positive or negutive ousput ierminal may be grounded or the supplise may be operated noating as up to 300 volis above ground. Models 6256B. 6263B. $6264 \mathrm{~B}, 6265 \mathrm{~B}, 6266 \mathrm{~B}, 6267 \mathrm{~B}$, and 62718 are convection cooled. All other models in this series employ cooling fans.

Model 895A

Model 895A is a gencral purpose Consiant Vologe/Current Limit supply. Outpui voliage is adjusiable from $0-320 \mathrm{~V}$ via a front panel 10-turn potentiometer with concentric knoblock and a single-turn fine control. Separate voltage and current meters proved continuous indication of power supply outputs. High performance specifications include $0,007 \%$ line and load regulation and 1 mV rms ripple and noise. Remote sensing and programming are standard features.

[^8]Specifications \dagger

	Vold	$0-10 \mathrm{~V}$	$0-10 \%$	0－10V	0－20\％	O－20\％	$0-204$
Culput	Ampr	$0-20 \mathrm{~A}$	0－501	0－100 A	0－10A	A－20A	0－50 A
Hodur		62558	52598	52608	62638	62640	82818
tasdifer	V	$0.015+200 \mu \mathrm{~V}$	$0.017+200 \mu^{48}$	0．01\％$+200 \mu \mathrm{~V}$	$0.01 \%+200 \mu \mathrm{~V}$	$0.015+200 \mathrm{HV}$	0．01\％＋ $200 \mu \mathrm{~V}$
Mequlation）：	C	$0.028+500 \mu \mathrm{~A}$	$0.02 \%+1 \mathrm{~mA}$	$0.02 \%+2 \mathrm{mh}$	$0.02 \%+500 \mu \mathrm{~A}$	$0.02 \%+500 \mu \mathrm{~A}$	$0.02 \%+1 \mathrm{~mA}$
Sourca clled	V	$0.01 \%+200 \mu \nu$	001\％＋ 200 uv	$0.01 \%+20044$	$0.015+200$ ． 4	$0.01 \%+200$ \％ 4	0．01\％＋200 $\mu^{\prime \prime}$
Requationk	c	0．02\％＋ $5000 \mu \mathrm{~A}$	0．02\％＋ 1 mA	$0.02 \%+2 \mathrm{~mA}$	0．02\％＋ $500 \mathrm{\mu k}$	0．02x＋ $500 \mu \mathrm{~A}$	0．02\％+1 mA
Ph80 mm／p．e．	V	$200 \mu \mathrm{H} / 10 \mathrm{mV}$	$500 \mu / / 5 \mathrm{mV}$	$500 \mathrm{\mu V} / 5 \mathrm{mV}$	$200 \mu \mathrm{~V} / 10 \mathrm{mV}$	$200 \mu \mathrm{~V} / 10 \mathrm{mV}$	$500 \mu \mathrm{~V} / 5 \mathrm{mV}$
Noluer：	c	5 mA ims	25 mA mm	50 mA ms．	3 mA rms	5 mA rms	25 mA rms
Itampankure	v	$0.015+200 \mu 4$	0．01\％＋ $200 \mu \%$	$0.018+200 \mu \mathrm{~V}$	0．01\％$+200 \mu \mathrm{H}$	$0.01 \%+200 \mu \mathrm{y}$	$0.018+200 \mu Y$
cosman．	\checkmark	$0.018 \mathrm{~s}+2 \mathrm{~mA}$	$0.01 \%+4 \mathrm{~mA}$	0．018 +8 mk	$0.015+2 \mathrm{~mA}$	$0.018+2 \mathrm{~mA}$	$0.01 \%+4 \mathrm{~mA}$
DriH	4	$0.03 \%+500 \mathrm{nV}$	$0.03 \%+2 \mathrm{mV}$	$0.03 \%+2 \mathrm{mV}$	$0.03 \%+500 \mu \mathrm{~V}$	$0.03 \%+500 \mu \mathrm{~V}$	$003 \pm+2 \pi V$
	C	0．03\％＋ 6 mA	$0.03 \%+10 \mathrm{~mA}$	$0.035+20 \mathrm{~mA}$	$0.03 \%+6 \mathrm{~mA}$	$0.03 \%+6 \mathrm{~mA}$	$0.03 \%+10 \mathrm{~mA}$
	v	1 mv	1 mv	1 mV	2 m	2 mV	2 mil
Rasoluant	c	20 mA	50 mA		10 mA	20 ma	50 mik
Guipul impredanc： （Typleali：		$100 \mu 0.1 \mu \mathrm{H}$	$0.05 \mathrm{mR}, 1 \mu \mathrm{H}$	$0.02 \mathrm{mR}, 1 \mu \mathrm{H}$	$0.5 \mathrm{mR} .1 \mu \mathrm{H}$	02 maf 1 HH	$0.1 \mathrm{m2}, 1 \mu \mathrm{H}$
Land Ufod Irradent Q Cocorny：	Hima	50 us 10 ml	5015 10 my	50 as 10 mb	50 is 10 14	50 ums 10 mV	$\left\lvert\, \begin{aligned} & 50 \mathrm{~ms} \\ & 10 \mathrm{mV} \end{aligned}\right.$

	昒	v	2000／V $\pm 1 \%$	2000／V $\pm 1 \%$	2000／V ± 18	2008／V $\pm 1 \%$	2002／V ± 18	
	coul	c	102／A $\pm 10 \%$	4R／A ± 108 ．	$20 / A \pm 10 \%$	$100 \mathrm{R} / \mathrm{A} \pm 10 \%$	10¢／A $\pm 10 \%$	4a／A ± 108
	HoI	v	$1 V / 4 \pm 1 \%$	$14 / 4 \pm 1 \%$	$1 \pm / N \pm 1 \%$	$1 \mathrm{v} / \mathrm{v} \pm$ ！${ }^{\text {a }}$	$14 N \pm 1 \%$	$1 Y / Y \pm 1$ \％
	Cod	c	$25 \mathrm{~m} / \mathrm{h} \pm 109$	$10 \mathrm{mV} / \mathrm{A} \pm 10 \mathrm{~s}$	$5 \mathrm{nv} / \mathrm{A} \pm 10 \mathrm{x}$	$50 \mathrm{mb} / \mathrm{A} \pm 10 \%$	$25 \mathrm{mV} / \mathrm{A} \pm 10 \%$	$10 \mathrm{mV} / \mathrm{A} \pm 10 \%$
A	UD	NI	60 ms	70 ms	70 ms	150 ms	140 ms	150 ms
T	oown	H	60 ms	70 ms	70 ms	150 ms	140 ms	1500 ms
R		kL	5 sec	200 ms	200 ms	3 Sac	10528	250 ms
E		П	40 ms	10 ms	5 ms	60 ms	80ms	25 ns
	Overrohate Protedlan Croutar：	Pranct	2－12V	2－12v	2－12 V	2－23\％	2．5－23V	2－23v
		Harifn	5\％of autput＋1V	5\％of output +2 V	58 of output +2 V	5\％of output $+1 \%$	5\％of output＋1 V	5\％of output +2 V
	Hever lurger		$12 \mathrm{~V} .28 \mathrm{~A} \pm 2 \%$	128．634 \pm \％	$12 \mathrm{~V} .120 \mathrm{~A} \pm 2 \%$	248． $124 \pm 2 \%$	264．24 $4 \pm 2 \%$	24V． $604 \times 2 \%$

Power	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% ; \\ & 57-63 \mathrm{~Hz} \\ & 5 \mathrm{~A} .375 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 230 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 5 \mathrm{~A} \mathrm{B50W} \end{aligned}$	$\begin{aligned} & 230 \mathrm{Yac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 12 \mathrm{~A} .1600 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 108 \\ & 57-63 \mathrm{~Hz} \\ & 4.5 \mathrm{~A} .350 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 8 \mathrm{~A} .600 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 230 \mathrm{Vic} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 12 \mathrm{~A} .1500 \mathrm{~W} \end{aligned}$
Connetions	3 Temminal Strip	3 Terminal Stip	3 Teminal Stio	3 －wire， 5 －ft coid	3 Terminal Stripi	3 Tatminal Stind
Tetnporalurs falinex． $0-55^{\circ} \mathrm{C}$ DPAL	Convection	Fan（2）	Fan（2）	Convection	Convection	Fan（2）
DImmanons：		$\begin{aligned} & 483 \mathrm{~mm} \times 178 \mathrm{~mm} \\ & \times 445 \mathrm{mmin} \\ & \left(19^{\circ} \mathrm{H} \times\right)^{\prime} \mathrm{H} \\ & \left.\times 17 h^{\circ} \mathrm{D}\right) \end{aligned}$				$\begin{aligned} & 48 \mathrm{~mm} \times 178 \mathrm{~mm} \\ & \times 445 \mathrm{~mm} \\ & 119^{\circ} \mathrm{K} \times \mathrm{F} \cdot \mathrm{H} \\ & \left.\times 17 \hbar^{2} \mathrm{D}\right) \end{aligned}$
Hel	15.8 kg （35 ib）	313 kg （69 ld）	43.9 kg （97） lb$)$	$15.4 \mathrm{~kg} \mathrm{(} 34 \mathrm{lb}$ ）	21.3 kg （47 18）	35.3 kg （78 1b）
Ship	18.1 kg （40 lb$)$	35.3 kg （78 1b）	48 Ke（106ib）	18.6 kg （41 1 ld$)$	24.5 kg （ 54 lb ）	39.4 kg （87 lb$)$
Optiont Anilliber	$\begin{aligned} & \text { 5. I, R. . . } 10,13, \\ & \text { 1A. } 20.21 .22 \\ & 21.2 E .40 \end{aligned}$	$\begin{aligned} & 5,7,8,9,10,13 . \\ & 14,20,21,22 . \\ & 26.27,40 \end{aligned}$	$\begin{aligned} & 3,7,8,9,10.1 \overline{3}, \\ & 14.16,20.21 . \\ & 22.27,40 \end{aligned}$	$\begin{aligned} & \text { 5.7.8,9, 10, } 13 . \\ & 14,20,71,22 \\ & 27,28,40 \end{aligned}$	$\begin{aligned} & 5.7,8,9,19,13 . \\ & 34,20,21.22 . \\ & 27.28,40 \end{aligned}$	$\begin{aligned} & 5,7,1,9,10,13 \\ & 14,20,71,22 \\ & 26.27,40 \end{aligned}$

Models 8258B - 8274B (comt.)

Sperifications \dagger

[^9]Specifications \dagger

$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{Hr} \\ & 4 \mathrm{~A} .300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 102 \\ & 37-63 \mathrm{~Hz} \\ & 18 \mathrm{~A}, 1200 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 87 \mathrm{~A} 585 \mathrm{~W} \end{aligned}$
3.wire, 5-ft cord	3 Terminal Strio	3 Teraina Stio
Convection	Fan (1)	Convection
	$\begin{aligned} & 483 \mathrm{~mm} \times 13 \mathrm{~mm} \\ & \times 45 \mathrm{~mm} \\ & (19 \mathrm{~W} \times 5 \mathrm{~F} \\ & \left.\times 17 h^{\circ} \mathrm{D}\right) \end{aligned}$	
$15.4 \times 13410)$	21.7 kg (48 ib)	22.64 kg (50 18)
$18.6 \mathrm{~kg}(4) \mathrm{lb} \mathrm{B}^{\text {a }}$	24.5 kg (54 ld)	29.4 kg (6516)
5, 7, 8, 8, 10, 13 14. $20.21,22.27$. 28.0	$5,1,8,9,10,13$, 14.20.21,2221. 28,40	NOHE

f talkr to mage 114 lar complete spechisalyon detintions.

Options

005: 50 Hz ac inpui.
007: Ten-iwn outpul voltage control. Replaces coarse voltage conerol for improved resolution in selting the output voltage.
008: Ten-turn output curent control. Replaces coarse eurrent contral ror improved resolution in seteling the outpul cusrent.
009: Ten-turn oulput voltage and current controls. Consists of Oplions 007 and 008 on same instrument.
010: Chassis slides. Enables convenient access to rackmounted power supply interior for maialenance. Chassis slides are attached to supply at factory.
013: Three-digit graduated decadial voltage control. Includes a ten-turn conitrol, replacing coarse voltage control. Option 013 provides improved mechanical stability and accurate reselting of the output voltage.
014: Three-digit graduated decadial current control. Includes a ten-turn control, replacing coarse curtent control. Option 014 provides improved mechanical stability and accurate resetting of the oulput curremt.
016: 115 V ac $\pm 10 \%$ single-phaso input. Factory modification consists of replacing the input power transformer and circult breaker, and reconnecting the bias transformer, RFI ehoke, and fans for 115 V ac operation.
020: Voliage programming adjust. Allows the voltage programming coefficient and zero outpul voitage to be conveniently adjusiod to an accuracy of 0.1% via access holes in the rear panel. Option 020 consists of two potentiorneters, Iwo fixed resistors, and appropriate connections located inside the rear panel.
021: Cursent programming adjust. Allows the current programming coeficient and zero output eurrent to be conveniently adjusted to an accuracy of 0.15 via access holes in the rear panel. Option 021 consists of two potentiomelers, two lixed resistors, and appropriate connections located inside the rear panel.
022: Volcage and current programming adjusts. Consists of Oplions 020 and 021 on same instrument.
026: 115 V ac $\pm 10 \%$. single-phase ínput. Factory modification consisss of replacing the circuit breaker, and reconnecung the inpul power transformer, bias uansformer. RFI choke, and fans for IIS V ac operation.
027: 208 V ac $\pm 10 \%$, single-phase input. Factory modification consists of roconnecting the multi-tap input power transformer (and other components whore neeessary) for 208 V operation.
028: 230 V ac ± 10, single-phase input. Factory modification consists of reconnecting the multi-sap input power transformer (and other components where necessary) for $230 \vee$ operalion.
040: Interfacing for Multiprogrammer Operation. Prepares standard HP power supplies for resistance programming by the 6940日 Mulliprogrammer or 6941B Muleiprogramener Exiender.
Model number and name
895A High Performance DC Power Supply 6256B High Porformance DC Power Supply 6259B High Performance DC Power Supply 6260 B High Performance DC Power Supply 62618 High Performance DC Power Supply 6263B High Performanco DC Power Supply 6264B, 62678 High Performance DC Power Supply 62858 High Performance DC Power Supply 62668, 62718 High Pariormance DC Power Supply
6268B High Perromance DC Power Supply
6269B High Performance DC Power Supply
6274B High Performance DC Power Supply

Price

6427B-6483C

Description

Thus scrics of SCR-regulated power supplies is designed for highpower applications requiring a fixed or variable DC source rvith moderate regulation and sipple. For supplits with better regulation, faster response lime, and lower ripple, see models 6256B-6274B and 895A, pages 184 through 187.

Operating features

All supplies in this series are of the Constant Voliage/Constant Current Type. Large easy-lo-read panel meturs continuously monitor output voltage and current.

Input and oulpul power, remote sensing, remose programming, and auto-seris: parallel, and tracking connections are made to bus bars and terminal blocks on the rear panel.

Voltage and current controls

The lower power models ($6427 \mathrm{~B}-6439 \mathrm{~B}$) and the high power models with output voliages below 100 volus (6464 C - 6472 C) employ separate coarse and fine conirols. Above 100 volis, the high power supplies (and Model 6448 B) use 10 -turn vollage and I-Iurn current conirols. All medium power models (6453A. 6456B. 6459A) use sin-gle-turn voltage and current controls.

Protective features

In addition to the overload prolection isherent in Constant Voltage/Constani Current operation, there are many other buile in protective features included in these supplies. The fealures vary within the three model classifications as follows:
64278-6448B: (I) Reverse voluge protection. (2) Fused AC input linc.
6453A, B456B, 6459A: (I) AC line loss protcelion circuit monitors 3. phase inpul and culs off SCR's and opens outpul bus if a phasc drops out; operation rasumes when AC inpul returns to nommal. (2) 3-phase input circuit breaker. (3) Optional internal crowbar (Oplion 006) proleets load from overvaluge condicion.
6464C-6483C: (1) High-1emperalure protection thermostal opens input to power transformer and lights front panel indicator if supply overheals. (2) Prolonged overload protection circuit is activated and lights front pand indicator if output current execeds approximately IIS\% of maximum raling. (3) Opuional incenal crowbar (except on 6464C) protects load Irom overvollage condition. (4) Turn-on circuit limits peak line curtenl during star-up into low impedance loads. (5)

Phase-balance circuit permits operation with line-to-linc inpul volt. age imbalance up to 8\%. (6) Overcurrent and overvoltage circuits of master and slave supplies used in auto-serics. parallel, or -lracking operalion can be interlocked.
Auto-series, -parallel, -tracking operation
Supplies may be connected in auto-series, or auto-lracking. (Exceptions are Models 6448 B and 6483 C which cannot be conneeled in au-(o-scries.)

For the lower power models ($6427 \mathrm{~B}-6448 \mathrm{~B}$), up to threc supplies may be connected in any of the above configurations. Connection of the higher-pewer models (6453A-6483C) in auto-serics, parallel, or -lracking should ordinarily include no more than (wo supplics.

Remote sensing

Remote sensing permits regulation with respect to the point of load connection. rather than al the output terminats of the power supply. In all cases, there are limils to the permissible load-lead voltage drops. and the amount varics within the model groups, as follows.

Models 6427B-6448B: 2 volts in negalive ourpul lead.
Models 6453A, 6456B. 6459A: I voll in negative oulput lead.
Models 6464C-6483C 3 volts in negalive output lead.

FOWER SUPFLY OUTPUT RESTRICTIONS AS A FUNCTION OF LOAOING (REFER TO NOTE ON SPECIFICATION PAGES)

```
UNSPECIFIED REGION FOR CC OPERATION.
    MEETS SPECIFICATIONS IN CV OPERATION.
    UNSPECIFIED REGION FOR CV OPERATION.
    MEETS SPECIFICATIONS IN CC OPERATION.
    O UNSPECIFIED REGION FOR BOTH CC AND CV
    &8. MODES OF OPERATION.
```


Pemoie programming

The voltage and current outpuls of the supplies can be programmed by a remole resistance, or, for most models. a volage source. Programming speeds and cocimicients are detailed in the specifications table.

AC power requirements

The $A C$ power requirements vary with the three model classifica. bons (see option listings). When powered from a 50 Hz source (ponsible with Option 005), the rms ripple and transient response specilicafions increase by 50%. The p-p ripple specification is unchanged by line frequency.
Accessorles and optlons: Sce page 191.

Specifications Δ

[^10]Specifications Δ

specificalions are increesed by 50 \%

- Comstant Cuirent ripple ans noise depents on the value and iliarditeristics of the load. For a reustre foad

a Helet to page : 74 lor complete spacification delinitions.

Options

AC, input power

64278-6448E

Sld: $115 \mathrm{Vac}, \pm 10 \mathrm{~s}_{\mathrm{s}}$ single phase, $57-63 \mathrm{~Hz}$.
027: $208 \mathrm{Vac}, \pm 10 \%$, single phase, $57-63 \mathrm{~Hz}$
028: 230 V ac, $\pm 10 \%$, single phase, $57-63 \mathrm{~Hz}$.
005: Realignment for 50 Hz operation at any of the above line voltages.
6453A, 6456B, 6459A: AC input may be delts or wrye with isolation neutral. AC input connections are by means of Hubbell No. 7413G connector at rear of unit. A matching connector is furnished.

001: 208 V ac, $\pm 10 \%$, 3-phase, IS.S A per phase, 57. 63 Hz .
002: 230 V ac, ± 10 多. 3-phase, 14 A per phesc. 57.63 031: 380 V ac, ± 10 \%, 3 -phase, 8.5 A per phase, $57-63$
Hz
032: $400 \mathrm{Vac}, \pm 10 \%$. 3 -phase, 8.0 A per phase 57.53
Hz
003: 460 V ac, $\pm 10 \%$, 3-phase, 7 A per phase, 57-63
Hz.
005: realignment for 50 Hz operation al any of the above line voltages
6464C-6483C: AC inpuz may be dela or wye with iso-
laled neulral. AC inpul connections are by means of enclosed 4 -wire terminal block.

001: 208 V ac, $\pm 10 \%, 3-\mathrm{phase}, 5 \mathrm{~S}$ A per phase, 57-63
Hz .
002: 230 V ac, $\pm 10 \%$, 3-phase, 50 A per phase. 57-63
Hz.
031: 380 V ac, $\pm 10 \%$, 3-phase, 30 A per phase, 57-63 Hz.
032: 400 V ac, $\pm 10 \%, 3$-phasc, 28.5 A per phase, 57. 63 Hz .
003: 460 V ac. $\pm 10 \%, 3$-phase. 25 A per phase, $57-63$ Hz.
005: realignment for 50 Hz operation al any of the above line voltages.
006: internal overvoluge protection crowbar. For complete specifications, refer to specilications table. 6459A. 6477C, 6479C, 6483C
6453A, 6456A
6472C. 6475C
$6-466 \mathrm{C}$
6469 C
Other options
010; chassis slides. Enables convenient acoess 10 rack mounted power supply for maintenance. Chassis slides (one pair, $1 y_{s \prime \prime}$ high on models 6427B-6448B)
(Two pair, $3^{\prime \prime}$ high on models 6453A-6459A) art attached to supply at factory.
023: rack kit (attached at factory) for mounting one 6464C-6483C supply in standard $19{ }^{\circ}$ rack.
Accessories
14545A: set of 4 snap-on easters for one 6464C6483 C supply.
Model number and name
6427B High Power D.C. Supply
6428B High Power D.C. Supply
6433B، 6438B High Powar D.C. Supply
6434B High Power D.C. Supply
6439B High Power D.C. Supply
64438 High Power D.C. Supply
6448B High Powar D.C. Supply
6453A High Power D.C. Supply
6456B, 6459A High Power D.C. Supply
6464C High Power D.C. Supply
6466C. 6483C High Powes D.C. Supply
6469C, 6472C High Power D.C. Supply
6477C High Power D.C. Supply
6475C. 6479C High Power D.C. Suppiy

- Short circuit proo?
- Precise voltage control-four-decade thumbwheel or switch-and-vernier
- Convection cooling
- Floating output-can be used as a positive or negative source
- Front-panel meters
- Bench or rack mounting

6521A. 6522A. 6525A

6515A

6516A

Description

6521A, 6522A, 6525A
This series of high performance power supplies has broad application both in the laboratory and in the system. They have sufficient output current to power devices such as TWT's, klystrons, magnetrons, backward-wave oscillators, high-power gas lasers, electron-beam welding devices, etc. Output voltage is set easily and precisely by a three-decade thumbwheel switch plus a thumbwheel vernier providing 0.002% resolution. In constant voltage operation, a single-lurn current control allows the current-limit poim to be set to any value within the current rating. In constant-cuisent operation, the current control varies the output current while the voltage controls (thumbwheels) provide an adjustable voitage limit. The supplies are prolected against reverse voltages that could be generated by an active load. Protection from reverse current requires pre-loading the supply with a dummy load to ensure that the supply outputs current through the entire operating cycle of the load.
Plus and minus output connectors (Type UG-931/U) are provided on the rear panel. Mating connectors (Type UG-932/U) are supplied with each unit. Either the positive or negative terminal may be grounded or the supply may be operated floating at up to 2000 V above ground. Units are packaged in a 19 -inch wide case, suitable for rack or bench mounting.
6515A and 6518A
These high-voltage power supplies are lower in cos: and outpui
power than the 6521A-6525A supplies. Their small size, low price, and shorl-circuit-proof operation make them excellent high-vottage laboratory supplies, or high-voltage system supplies where current requirements are no more than 6 mA .
Model 6515A employs a sixteen-position rotary switch and a ienturn vernier control to adjust the output voltage. The rotary switch selects output voltage increments from 0 to 1500 V in 100 -volt steps; the vernier controi permits fine adjustment (100 mV resolution) over any 100 -volt span. Model 6516 A uses a three-decade thumbwheel switch plus a thumbwheel vernier for convenient and precise $\{0.1 \mathrm{~V}$ resolution) output voltage control.

Non-adjustable current-limit protection is provided on both models. On Model 6516A, the current-limit point is fixed at approximately 8 mA . On Model G515A, the current limit value varies with the selected outpur voltage range as follows (voltage range/currem limit): $0-300 \mathrm{~V} / 7.5 \mathrm{~mA}, 400-700 \mathrm{~V} / 65 \mathrm{~mA}, 800-1100 \mathrm{~V} / 32 \mathrm{~mA}, 1200-1500$ $\mathrm{V} / 25 \mathrm{~mA}$. Both supplies are protected against reverse voltages that could be generated by an aclive load. Pre-loading is necessary to protect the supplies from reverse currents.

Plus and minus output connectors (Type UG-93I/U) are provided on the from panel of both supplies. Mating connectors (Type UG$932 / \mathrm{U}$) are supplied with each unit. Either the positive or negative terminal may be grounded or the supply may be operated floating at up to 1000 V above ground. Units are packaged in half-rack widih cases. They may be bench operated or mounted individually or in pairs using accessory rack-mounting kits.

Specifications

时 Outpul	Yolt	0-1000 \%	0-1600 \%	0-2000	1-3600 4	$0-4000 \mathrm{~V}$
	Ampr	$0-200 \mathrm{mh}$	5 mA	$0-100 \mathrm{~mA}$	6 mA	0-50 mA
Hosel		65218	65154	6522 A	6516A	6525\%
Lomsilist	\checkmark	0.005% er $20 \mathrm{mV*}$	0.01% or 16 mvv	0.005% or $20 \mathrm{mV}=$	0.018 or 16 miv*	0.0054 or 20 mV*
Repulstini):	c	2% or 1 mA*	NA	28 or 1 mA*	NA	28 cor $1 \mathrm{~mA}{ }^{\text {a }}$
Source Elled	*	0.005\% or $20 \mathrm{mY*}$	0.01\% or $16.9 \mathrm{~V}^{*}$	0.0058 or $20 \mathrm{mV*}$	0.01% w 16 mV*	0.005% or $20 \mathrm{mV}=$
Regulatori):	c	1 mA	NA	1 mk	RA	1 mA
PRAD miveor	V	$1 \mathrm{mv} / 500 \mathrm{mV}$	$2 \mathrm{mV} / 5 \mathrm{mv}$	$1 \mathrm{mV} / 500 \mathrm{mV}$	$1 \mathrm{mV} / 15 \mathrm{mV}$	$1 \mathrm{mV} / 500 \mathrm{mV}$
mexes):	$\underline{5}$	2 mA ms	Na	1 mA ıms	NA	$500 \mu \mathrm{~A}$ ras
Temperatura Confiblent	\checkmark	$0.012 \%+1 \mathrm{mV}$	$0.02 \%+2 \mathrm{mv}$	$0.012 \%+1 \mathrm{nV}$	$0.02 \%+2 \mathrm{mV}$	$0.012 \%+1 \mathrm{mv}$
	c	$0.2 \%+0.2 \mathrm{~mA}$	Na	0.2\% + 0.1 mA	Na	$0.28+0.05 \mathrm{~mA}$
Dilits (5ibpllidy:	V	$0.0368+3 \mathrm{mv}$	$0.058+5 \mathrm{mV}$	$0.0365+3 \mathrm{mV}$	$0.055+5 \mathrm{mV}$	$0.036 \%+3 \mathrm{mv}$
	c	$0.25 \%+0.5 \mathrm{~mA}$	NA	$0.25 \%+0.25 \mathrm{~mA}$	va	$0.25 \mathrm{~m}+0.12 \mathrm{~mA}$
Reselution:	V	20 m	100 mV	40 ml	14	80 mv
	c	0.6 mA	NA	0.3 mA	Ha	0.15 ms
1.0.mer:		13. of setting	NA	15. of setting	1\% of settiog	1% of selting
Ontpul Impodines (Trplal):		0.30, 1 य ${ }^{\text {a }}$	-	0.108 .14 H	-	Q.an. 3 H
Las EHEX Inaskal tecovery	Trat	$50 \mu \mathrm{~s}$	$100 \mathrm{\mu s}$	50 us	$100 \mu \mathrm{~s}$	$50 \mathrm{\mu s}$
	Inves	0.005% of $20 \mathrm{mV}{ }^{\text {c }}$	0.01\% or $16 \mathrm{mV}{ }^{\circ}$	0.005% or $20 \mathrm{mV} /$	0.018 or $15 \mathrm{mV*}$	00058 or 20 mV
Oulput Moder		W/OC	Ev/Cl	CV/ec	cv/cl	Ev/CC
OC Outpal heotation:		2 kV	1 iv	2 EV	1 W	2 NV
Meder Rences:			$1.8 \mathrm{kV} \pm 2 \mathrm{~F}$		$3.5 \mathrm{kr} \pm 2 \mathrm{\%}$	$4 \mathrm{AV}, 50 \mathrm{~mA} \pm 2 \%$
Pswer:		$\begin{aligned} & 115 \mathrm{Vac} \pm 108 \\ & 48-440 \mathrm{~Hz} \\ & 1 \mathrm{~A} .270 \mathrm{~W} \end{aligned}$	$115 \mathrm{Vac} \pm 10 \%$ $60 \pm 0.3 \mathrm{~Hz}$ 162 mA .19 W	$\begin{aligned} & 115 \mathrm{Vac} \pm 109 \\ & 48-440 \mathrm{~Hz} \\ & 4 \mathrm{~h} .270 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \mathrm{x} \\ & 57-63 \mathrm{~kg} \\ & 12.40 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \mathrm{z} \\ & 48-440 \mathrm{~Hz} \\ & 4 \mathrm{~A} .270 \mathrm{~W} \end{aligned}$
Connections		3wire, 5-ft mons	3-wire. 5-1t cord	3-wite. 5 Hz cord	3-wire, 5-1t cerd	3 ment, 5-1t coid
Cosiline		Convection	Convection	Convection	Convection	Convection
	net	19 kg (42 lb)	4.1 kg (9 1 D)	19 kg (42 1b)	7.7 kg (27 ib)	19 ke (42 (0)
	3tip	$28.5 \mathrm{~kg}(63 \mathrm{lb})$	5.0 kg (21 (b)	28.5 kg (631b)	$9.5 \mathrm{~kg}(21 \mathrm{ib})$	28.5 kg (63 ${ }^{\text {(1) }}$)
Disemensions:		$\begin{aligned} & 483 \mathrm{~mm} \times 133 \mathrm{~mm} \\ & \times 457 \mathrm{~mm} \\ & \left(19^{-W} \times 55{ }^{*} \mathrm{~K}\right. \\ & \left.\times 18^{*} \mathrm{D}\right) \end{aligned}$			$\begin{aligned} & 216 \mathrm{~mm} \times 133 \mathrm{~mm} \times \\ & \times 406 \mathrm{~mm} \\ & \left(83^{\circ} \mathrm{W} \times 5 \mathrm{~m}^{\prime \prime} \mathrm{H}\right. \\ & \left.\times 16^{\circ} \mathrm{D}\right) \end{aligned}$	$\begin{aligned} & 483 \mathrm{~mm} \times 133 \mathrm{~mm} \\ & \times 45\} \mathrm{mm} \\ & \left(19^{\circ} \mathrm{w} \times 54^{\circ} \mathrm{H}\right. \\ & \left.\times 18^{\circ} 0\right) \end{aligned}$
Oigtona Araidule		NA	18.13	Na	5,18	Na

*Whichever Quantity is Greater
T Refer to page in for cimplete spechizaion detinitioris.

Options

005: 50 Hz ac inpul. Standard instrument is designed for 60 Hz inpul. Option 005 includes substicution of 50 Hz . magnetic components and readjustment of intemal prolection circuits.
013: Three-digit graduated decadial vollage control. Includes a calibrated 10 -turn control replacing the 10 turn vernier to provide resertability within 0.1%.
018: $230 \mathrm{Vac} \pm 10 \%$. singlc-phase input. Faciory modification includes the replacement of input inductor and power and bias transformers for operation at 230 Vac . 019: 230 V ac $\pm 10 \%$. 50 Hz , single phase inpul. inciudes replacement of fertoresonani iransformer assembly.

Price

Accessories available
$14513 \mathrm{~A}-89 \mathrm{~mm}\left(31 / 2^{\circ}\right)$ High Rack Kil for onc 6515 A 14523A- $59 \mathrm{~mm}\left(3 /{ }^{\prime \prime}\right.$ ") High Rack Kil for iwd 6515A's
N/C $\quad 14515 \mathrm{~A}-133 \mathrm{~mm}\left(51 / \mathrm{s}^{\sim}\right)$ High Rack Kit for one 6516 A $14525 \mathrm{~A}-133 \mathrm{~mm}\left(51 / \mathrm{A}^{\prime \prime}\right)$ High Rack Kir for two 6516As

Madel number and name
65ISA, 1.6 kV High Voltage Power Supply
6516 A. 3 kV High Voltage Powcr Supply
$6521 A, 1$ kV High Voltage Power Supply
6522A. 2 kV High Volugge Power Supply
\$1060
6525A, 4 kV High Voltage Power Supply

Price

- Two 50-watt power supplies for independent or tracking operation
- Built-in overvoltage protection crowbars

62278

Description

These versatile lab supplies each house lwo identical 50 W regulated power supplies. A convenient Jroni panel swith schecs cither independent or trocking operation. In the tracking mode. the right supply tracks the len within $0.2 \% \pm 2 \mathrm{mV}$. The (racking mode is especially useful for powering operational amplifiers. push-pull stages, deffection systims, or any application where plus and minus voltages must rack with insignifficant error. The independent mode permils operation of the wo supplits individually, in auto-parallel or in auto-series.

Each side of the dual supply can be operaled as a constant volage or constant current source, and cach has ils own crowbar for overvoltage protection. In the iracking mode. an overvoltage condition in cither supply trips bolh crowbars. The power supply oulpuls are isolated up to 300 V from output to chassis or oulpul to output.

Specifice:tions

DC oulput 6227B, 0-25 V © $0-2 \mathrm{~A} ; 6228 \mathrm{~B}, 0.50 \mathrm{~V}$ 아 0-1 A.
AC Input: 115 or 230 V ac $\pm 10 \%, 48-63 \mathrm{~Hz}, 260 \mathrm{~W}$. Sclected by rear panel switch.
CV load effect (load regulation): for a load current change equal to the current rating of the supply: $0.01 \%+1 \mathrm{mV}$.
CC load effect: for a load voligge change equal to the voltage raling of the supply: $0.01 \%+250 \mu \mathrm{~V}$.
Source effect (Ilne regulation): for a cbange in line voltage between 103.5 and 126.5 V ac or 207 and 253 V ac at any oulput voliage and current within raling: $C \mathrm{C}, 1 \mathrm{mV}: \mathrm{CC}, 100 \mu \mathrm{~A}$,
PARD (ripple and nolse): at any linc voliage and under any load condition within rating (20 Hz to 20 MHz): CV, $250 \mu \mathrm{~V} \mathrm{~ms} / 4 \mathrm{mV}$ p-p: CC. $250 \mu \mathrm{~A}$ гms/2 mA p-p.
Temperature coetliclent: oulput change per degree Centigrade change in ambient following 30 minutes warm-up; $\mathrm{CV}, 0.02 \%+200$ $\mu V: C C .0 .02 \%+300 \mu \mathrm{~A}$.
Drift (etabilly): tocal drift in outpat (de to 20 Hz) over 8-hour interval under consiant line, load, and ambient following 30 minules warm up; CV, $0.2 \%+2 \pi V, C C, 0.2 \%+3 \mathrm{~mA}$.
Remole resjatance programming: $\mathrm{CV}, 200 \Omega / \mathrm{V} \pm 1 \% ; \mathrm{CC}, 500 \Omega / \mathrm{A}$ $\pm 10 \%(6227 \mathrm{~B}): I \mathrm{k} \Omega / \mathrm{A} \pm 10 \%(6228 \mathrm{~B})$.
Remole voltage programming: $\mathrm{CV} .1 \mathrm{~V} / \mathrm{V} \pm 1 \%_{i}$ CC. $0.5 \mathrm{~V} / \mathrm{A}$ $\pm 10 \%$ (6227B): IV/A $\pm 10 \%$ (6228 B).
Progrsmming Spead (CV): 60 ms to within 25 mV of zero or maximum rated value.
Output impedance (typical): approximated by a resistance in scries with an jnductance; $6227 \mathrm{~B}, 2 \mathrm{~m} \Omega / 2 \mu \mathrm{H}: 6228 \mathrm{~B}, 1 \mathrm{~m} \Omega / 6 \mu \mathrm{H}$.
Resolution (flne control): voltage, 5 mV (6227B), 10 mV (6228B): current. I mA (6227B), 0.5 mA (6228B).
Internal overvoltage crowbars: during indcpendent opcration, each

Auto-parallel and auto-series capability

- Constant current in addition to constant voltage outputs

6228 日
supply is protected by its own crowbar. In the tracking mode an overvoliage in either supply resules in firing boith crowbars.
Trip voltage margln: the minimum trip vollage above the operating outpul vollage of the supply to prevent lalse crowbar tripping: 7% of the output voltage +1.5 V .
Trip voltage range: 6227B. 5-28 V dc; 6228B, 5-55 V dc.
Tracking orror: in Iracking mode. the slave supply is matched ta $0.2 \% \pm 2 \mathrm{mV}$ of the master.
Translent recovery lime: in constant vollage, the output will reeaver in $50 \mu \mathrm{sec}$ to wibin 10 mV of is nominal value for a sesislive load change demanding on output current change cqual 10 the corrent rating of the supply. The nominal output voltage is defined as the mean beiween the no load snd full load voluges.
Temperalure ratloga; operaling: 0 to $55^{\circ} \mathrm{C}$; Storage: -40 to $+75^{\circ} \mathrm{C}$. Cooling: nalural convectlon cooling.
Welght (net/shipping): $11 / 12.9 \mathrm{~kg}(24 / 28 \mathrm{lb})$.
Dlmenslons: $197 \mathrm{~mm} W \times 155 \mathrm{~mm} \mathrm{H} \times 310 \mathrm{~mm} \mathrm{D}\left(7 y_{4} \mathrm{in} . \mathrm{W} \times 61 / \mathrm{m}\right.$ in. $H \times 12 \frac{1}{4}$ in. D).
Finish: mint gray panel with olive gray ease.

Opllons

007: iwo ten-ium outpul voliage controls replace both
sets of concentric coarse and line voliage controls
Price
sels of concentric coarse and fine current conirols
008: four ten-iurn outpul voltage and current controls replace all four concentric coarse and line voliage and currene controls
019: three digit graduated decadial voliage conmol includes graduatos en-lurn conirol replacing slandard coarse and fine vollage controls
014: throe digit graduated decadial current control includes graduated ten-turn control replacing standard coarse and fine current controls
040: interfacing ror Muliprogrammer operation. Prepares suadard HP power supplies for resistance programming by the 6940B Multiprogrammer or 6941 B Multiprogrammer Extender

Accessories Available

su60-8762 - Rack kit for mounting one or two dual supplics
$5060-8700$ - Filler panel 10 block unused half of rack when mounting only one dual supply
Model number and name
6227 B Dual Tracking Power Supply
6228B Dual Tracking Power Supply

- 0.025% output voltage accuracy
- 5-minute warm-up
- Built-in overvoltage crowbar

B114A, 6115A

6104A. 8105A

Deacription

6104A, 6105A, 6114A, and 6115A

These four 40 -watt precision power supplies are ideal for applications where an aceurate, highly stable, and easy-to-use source of dc vollage is required. Als four models feature sutomatic dual range operation. For example, Models 6104 A and 6114 A can supply 0.20 V al 02 A , and $20-40 \mathrm{~V}$ at $0-1 \mathrm{~A}$, withoul manual range switching. Automatic output current range crossover occurs when the supply is providing greater than one-half of the maximum rated outpul voltage.

Output vollage contrals

Pushbutton voltage controls on Models 6114 A and 6115A allow the output volage to be set rapidly and accurately. The setting is displayed in large, easy-to-read numerals. A fint digit, set wia a chumbwheel on the switch assembly. provides oulpul volhage resolution of $200 \mu \mathrm{~V}$.
Models 6104A and 6105A are intended for applications where the supply is to be primarily remole programmed. The oulput voltage conerol on these units is a telt-turn potentiometer; an optional threedigit Decadial is available for improved resentability (Option 013).

Output current controls

A front-panel current conitol allows the output current to be set to any desired value within the maximum rating. Using this control, the supplies can be operated as constant current sources with 0.01% current regulation. A current mode indicator (a lighteenitting diode) immediately lights when either the supply is operated in the gross currem limii region, or the output corrent level established by the setling of the front panel control is reached.

Renwote programming

All four of these supplies can be remete programmed by means of an external voltage or resistance; when remote resistanie programned. output voltage aseuracy is 0.01% plus the accuracy of the remole programming resistor, and output current accuracy is 0.25% plus the accuracy of the remole programming resistor.

For computer conirolled applications, these supplies are designed to be digitally programmed with the HP Model 6940B Multiprogrammor or 6941 B Muliprogrammer Extender.

Overvoltage protection

A new circuit technique used in these supplies permits the output voltage to drop complelely to zero once the overvoltage procection cir. cuit bas bsen triggered, rather than to only $1-3 \mathrm{~V}$ as is typical with

- Constant voltage/current operation
- Thumbwheel or ten-turn voltage controls
- 0.1% output voltage accuracy

6110A

6111A, 6112A, 6113A, $6116 A$

6101A, 6102A, 6106A
other SCR erowbars. This same circuil technique also permits the trip threshold to be sct as low as 0.5 V . thus providing load protection at very low output voleage levels.
6101A, 6102A and 6106A
Although these 20 -watl precision power supplies do nol provide quite the level of performance and ilexibility of Models 6104 A .6105 A . 6114 A , and 6115A, they are lower in cost and are surtable for many precision power applications. Outpit vallage is adjusted by separate coarse (10 -turn) and fine (single-(urn) controls; resolution is $0.002 \%+$ $100 \mu \mathrm{~V}$ of the output voleage. A single-surn curtent conirol a llows fullrange adjustment of the current-limit point. Additional features include a volt/ampere meter and associaled meter function switeh. The four-position function swith seleats either of two outpui voltage or oulpul current ranges (X1, X0.1) for display on the panel meter.
The d-c outpur of these supplies is floating, allowing the supplies to be used as either possitive or negative sources. Terminals for + OUT. -OUT, and GND are provided on both the front and rear of the supply. The rear terminal strip also includes terminals for remote resislance programming, remote sensing, and aulo-series, auto-tracking operation.

Units are packaged in 3%-inch high, half-rack cases which may be bench operated or rack mounted using accossory rack mounting bard. ware.

6111A. 6112A, 6113A and 6116A

This series of precision power supplies bas essentially the same features and characteristics as models 6101A-6106A described above. bul also includes a five-decade thumbwheel voluge programmer for convenient and precise ($100 \mu \mathrm{~V}$ resolution) adjustment of oulput voltage. Units are packaged in $51 /$-inch high, half-rack cases which are suitable for bench or rack installation.

6110A

Model 6110 A is designed for upplications requiring a precise and stable source of high-voltage de power. Output voltage is set easily and procisely by a five-digit thumbwheel programmer providing 2 mV res. olution. A non-adjustable current-limit circuil proteets the supply from all overload conditions regardless of degree or duration. Plus and minus output connectors (Type UG-93I/U) are provided on the fromt panel. Mating connectors (Type UG-932/U) are supplied with each unit. Either the positive or the negative terminal may be grounded. or the supply may be operated floating at up 101.000 volls above ground. Units are packaged in 5%-inch high. half-rack cases which are suitable for bench or rack insurilation.

Models 6101A - 6116A (cont.)

${ }_{R}$ Specifications*

$\begin{aligned} & \text { OC } \\ & \text { Oulpot } \end{aligned}$	Yols	0-10	0-20	0-20	6-20	20-40	0-20	20-80	0-40	0-40	0-50	50-100
	Amps	d-2A	0-14	0-18	0-2.0.	$0-1.04$	$0-2.09$	0-10A	0-0.5A	0-0.5A	0-0.84	$0-0.48$
model		61134	61014	51118	6104λ		(114		61024	61124	61054	

- Reter ia page 174 try specilicatonn detinitions
" "Spechied with hival decade pot set to zera. II pat is sel to value bther than aero, pot wipee jump effect miay

 $+15 \mu \mathrm{~V}$ (8.hout) of $0.0015 \%+30 \mu \psi(90$-day) plus stabitly of remate programning devict

Wiven rimote programmed, dirlt is $0.25 \%+500 \mu \mathrm{~A}$ plus statility of temote programiring device.
saccuracy is equal to sccuraco ol reacte programmina bevlee $\pm 200 \mathrm{\mu}$ V.
$\$ 200 \mu V \mathrm{~V} \cdot \mathrm{D}$ noiso is trpical with a maximam $400 \mu \mathrm{~V} \mathrm{p}-\mathrm{D}$ spile of less than : psec duration occeming x! a repetition rste of twice powe fine trequency under worst case conditiom of Dish line, tull outpul volitagt when operated at 400 tu input, peak-to-peak ripple is less than 10 mv .

$0-50 \quad 50-300$	0-100	0-100	0-3000
$0-0.8$ A 0-0.4A	Q -200 mA	6-2,00 mA	6 mh
61158	6106A	61164	6110A
$0.0005 \%+50 \mu \mathrm{y}$	$0.001 \%+100{ }^{4}$	$0.0015+100 \mu \mathrm{~V}$	$0.0015+100 \mu \mathrm{~V}$
$0.015+500 \mu \mathrm{~A}$	NA	NA	NA
$0.0005 \%+100 \mu \mathrm{Y}$	0.001\%	0.0018	0.001%
$0.005 \%+20 \mu \hat{A}_{1}$	NA	NA	NA
$40 \mu \mathrm{~V} / 200{ }^{\mu \mathrm{V} / \mathrm{l}}$	$10 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	$60 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	$2 \mathrm{mV} / 5 \mathrm{mV}$
$200 . \mu \mathrm{A} / \mathrm{mA}$	NA	NA	NA
$0.001 s+15 \mu$	0.005%	$0.001 \%+10 \mu \mathrm{~V}$	$0.0015+50 \mathrm{nV}$
$0.028+25 \mathrm{xA}$	NA	NA	NA
$0.00155+15 \mu \mathrm{~V}^{08}$	$0.01 \%+1 \mathrm{my}$	$0.015+100{ }_{\mu} \mathrm{V} V$	$0.01 \%+500 \mu \bar{\nu}$
$0.0075 \%+30 \mu y^{* *}$			
$0.25{ }^{\circ}+4 \mathrm{~mA} \ddagger$	NA	NA	N:
$0.025 \%+1.0 \mathrm{mV}$	NX	0.01\% +1 mV	$0.15+100 \mathrm{mY}$
$200 \mu \mathrm{~V}$	0.002\% + $100 \mu \mathrm{y}$	$200 \mu \mathrm{~V}$	20 mV
8 mA	NA	NA	NA
$0.05 \mathrm{mL2}+3 \mu \mathrm{H}$	$10 \mathrm{mP}, 1 \mathrm{mH}$	10 mlt . 1 H H	\cdots
$<50 \mu 5$	NA	HA	NM
50 mV	NA	HA	NA.

$\mathrm{Cr} / \mathrm{CC}$	CV/Cl	$\mathrm{CV} / \mathrm{CL}$	$\mathrm{CV} / \mathrm{CL}$
Yes	Series \& Trachion	Series \& Tracking	Standard
Ys.	Yes	Yes	No
$20002 / \mathrm{V} \pm 0.01 \%$	$1 \mathrm{~kg} / \mathrm{V} \pm 0.15$	$1 \mathrm{kP} / \mathrm{V} \pm 0.15$	N
$160087 / \AA \pm 0.25 \%$	NA	NA	N
1Уノ5	1 $\mathrm{V} N \pm \pm 01 \%$	$1 \mathrm{~V} / \mathrm{V} \pm 0.1 \%$	N
$1 \mathrm{Y} / \mathrm{A} \pm 1.0 \mathrm{~s}$	NA	NA	N
4.46 sec	700 ms	NA	N
4.46 sec	700 ms	NA	N
500 ms	1 sec	NA	N
175 ms	100 ms	NA	N
$0.5 \mathrm{~V}-110 \mathrm{~V}$	20-105V	20-106 V	N
$23+0.5 \mathrm{~V}$	4\% of oulput +2 V	45. at output +2 V	N/
Standard	Option 011	Option 011	N
300 V	300 V	300 V	1000 V
$\begin{aligned} & 0-120 \mathrm{~V} \pm 2 \% \\ & 0 \mathrm{ne} \\ & 0-1.0 \mathrm{~A} \pm 25 \\ & \text { Meler } \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V}, 120 \mathrm{~V} \pm 3 \mathrm{~K} \\ & 25 \mathrm{~mA}, 250 \mathrm{~mA} \pm 38 \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V}, 120 \mathrm{~V} \pm 3 \% \\ & 25 \mathrm{~mA}, 250 \mathrm{~mA} \pm 3 \% \end{aligned}$	$\begin{aligned} & 3500 \mathrm{~V} \\ & 7 \mathrm{~mA} \pm 3 \% \end{aligned}$

108-127 or 208-2'54 Yac (5witchable), 4840 Hz .150 VA max	$\begin{aligned} & 115 \mathrm{Vac}+105 \\ & 48-63 \mathrm{Hc} \\ & 0.5 \mathrm{~A} .52 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{Ht} \\ & 0.5 \mathrm{~A} .52 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm i 6 \% \\ & 57-63 \mathrm{~Hz} \\ & 1 \mathrm{~A}, 50 \mathrm{~W} \end{aligned}$
Removabie	Atached	Altached	Atached
Convection	Corrvection	Convection	Convection
$\begin{aligned} & \text { 197 mm } \times 166 \mathrm{~mm} \\ & \times 335 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 216 \min \times 88 \mathrm{~mm} \\ & \times 318 \mathrm{mon} \end{aligned}$	$\begin{aligned} & 216 \mathrm{~mm} \times 133 \mathrm{~mm}, \\ & \times 318 \mathrm{~mm} \end{aligned}$	$\left\lvert\, \begin{aligned} & ? 16 \mathrm{~mm} \times 133 \mathrm{~mm} \\ & \times 406 \mathrm{~mm} \end{aligned}\right.$
$\begin{gathered} \left(3^{-W} \times 616^{H}\right. \\ \left.\times 133^{\circ} 0\right) \end{gathered}$	$\begin{aligned} & \text { (84-W } \times 3 h^{2} H \\ & \left.\times 124^{\circ} D\right) \end{aligned}$	$\begin{aligned} & \left(85^{2} W \times 55^{\circ} H\right. \\ & \left.\times 125^{*} D\right) \end{aligned}$	$\begin{aligned} & \left(81^{*} W \times 55^{*} H\right. \\ & \left.\times 16^{\circ} D\right) \end{aligned}$
$2.748(17 \mathrm{bs}$	4.5起(1015)	5 kg (31 B)	86 kg (1910)
$9.5 \mathrm{~kg}(21 \mathrm{im})$	$5.4 \mathrm{he}(12 \mathrm{D})$	$5.8 \mathrm{fg}(1 \mathrm{~d} \mathrm{f})$	10.4 kg (23 lb)
8,14	11. 28	11.28	5,18

Options
005: 50 Hz ac input. For 50 Hz operation of 6110 A .
008: Ten-turn output current conirol. Replaces the standard single-turn current control.
011: Internal ovcrvoliage protection crowbar. Protects delicate loads against power supply failure or operator error.
013: Three-digit graduated decadial voliage control Ataches to the standard ten-turn voltage control.
014: Threedigit graduated decadial current control Includes a ten-turn contral replacing the sisndard sin-gle-turn current conirol.
018: 230 V ac $\pm 10 \%$, single-phase inpul. Factory modification includes installation of a 230 V inpul power transformer to replace the standard ils V iransformer. 028: 230 V ac $\pm 10 \%$, single-phase input. Factory modification consists of reconnecting the multi-1ap input power transformer for 230 V operation.
040: Interlacing for Multiprogrammer Operation. Prepares standard HP power supplies for resistance programming by lihe 6940B Mulliprogrammer or 6941B Multiprogrammer Extender.
C05: Handic - Eight-inch black landle attached to side of $31 / \%^{*}$ high instrument. Standard on $5 \cdot, "$ high insiruments.

Accessories available

5060-8762 Rack Adaples - for rack mounting onc or two Precision Power Supplies in a stondard 19-inch rack.
$5060-8760$ Blank Panel - filler pancl For blocking ussused half of rack frame.
11057A Carrying Hundle - For added poriabilizy and bandling convenience.
1052A Combining Case - For mounsing one or two Precision Power Supplies in a standard 19 -inch rack where guick and easy removal and reinslallation of instruments is desirable. A cooling kit (listed helow) must be installed at the reat of the combining case when one or two Precision Power Supplies are operated in the casc.
5060-0789 Combining Case Cooling Kit - For 115 V ac, 50.60 Hz input.
s060-0796 Combining Case Cooling Kit - For 230 V ac. $50-60 \mathrm{~Hz}$ inpul.
14513A. $89 \mathrm{~mm}(31 / 2$) High Ruck Kit For one supply. 14523A. 89 mm ($3 / /^{*}$) High Rack Kil for two supplics. $14515 \mathrm{~A} .133 \mathrm{~mm}\left(5 \%{ }^{*}\right)$ High Rack Kil for one supply. 14525A, $133 \mathrm{~mm}\left(5^{2} h^{*}\right)$ High Rack Kit (or Ivo supplics.

Model number and name

6101 A Precision Power Supply
6102A Precision Power Supply
6104 A Precision Power Supply
6105A Precision Power Supply
6106 A Precision Power Supply 6130A Precision Power Supply GIIIA Precision Power Supply 6II2A Precision Power Supply 6113A Precision Power Supply 6114A Precision Power Supply 6115A Precision Power Supply 6)16A Prucision Power Suppls

Price

N/C

6825A-6827A

$8823 A$

Description

The Power Supply/Amplifier is a general-purpose instrumens useful in any laboralory engaged in research and development of eleciranic systems, circuitry, or components. The unit can be operaled in one or two basic operating modes; powes supply or amplifier. Terminals at the rear permit acoess to various internal control points co further expand the operational capabilities of the instrument. The resulting Mexibility lends the Power Supply/Amplifier to an almost unlimited number of applications.
Models 6825A through B832A
These models featuce dual-range output. Constant Vollage/Con. stant Current operation, and metaring of the ac and de output vollage and current. Output voltage and current as a ofe supply, or gain as a power amplifier, are remotely controllable and are comparible with Hewlett-Packard Muluprogrammer Syslems.

Each of the standard units (Models 6825A, 6826A, and 6827A) is available in a blank panel version (Moders 6830A. 6831A, and 6832A). The blank panel models are intended for dedicated system use where metering and front panel acoess to controls is not required.

As a de power supply, the unit can furnish a bipolar, Constant Voltage or Constant Current output. It can be remolely programmed with a resistance, voltage, or current and its high speed programming characteristics adapt it 10 a wide variety of laboratory and production lesting applications. The supply can sink, as well as source, current pormitting it to serve as a variable load device.

As a direct-coupled power amplifier, each unit ofters a signal-tonoise ratio of approximately 80 dB at full output with low distortion, and a frequency response up to $40 \mathrm{KH} \angle$ in the fixed gain mode.

Models 6823A and 6824A.

Although these models do nol provide quite the level of performance and Mexibility of Models 6825A through 6832A. they ace lower in cosi and are suitable for many applications.

As power supplies, these units offer Constand Voltage/Current Limiting operation, remole programming, and Auto-Series, AutoParallel operation.

As power amplifiers. the units exhibit a high signal-to-noise ratio with a 20 dB gain from de to 10 KHz Tbey are useful in servo systems, as pulse or oscillator amplifiers, for motor conerol, and a variery of oifet applications.

Opitons

Price

007: Ten-iurn output voltage conirol.
For models 6825A, 6826A. 6827A: roplacer single-1urn
yolage control for improved resoíution
For model 6824A; replaces concentric coarse and line vollage conerol for improved rachanical slabilily and convenience
028: 230 V ac $\pm 10 \%$, single phase input. Factory modification consists of reconnecting the input power transformer for the 230 V operstion. (Models 6823A and 6824A)

Accessories available

Models 6825A - 6832A

5060-8762 Rack Adapler Frame. For mounsing one or two half-rack units in a siandard 19 inch rack
5060.8760 Blank Panel. Filier panel for blocking unused half of rack frame
I 1057A Cartying Handle. Handle for adoed portability and handling convenience
1052A Combining Case. For mounting one or two halfrack units in a standard 19 -inch rack

5060-0789 Combining Case Cooling Kit. For 115 V ac, $50-60 \mathrm{~Hz}$ input
$5060-0796$ Combining Case Cooling Kit. For 230 Vac $50-60 \mathrm{~Hz}$ input
Models 6823A B824A
14513A Rack Kit for one 31/2" high supply
|45ISA Rack Kil for one 5y/ ${ }^{N}$ high supply
-14523A Rack Kii for two 3\%" high supplies

14525A Rack Kit for two $51 / 4$ " high supplier

Model number and name

6823A Bipolar Power Supply/Amplifier
6824A Bipolar Power Supply/Amplifice \$445
6825A Bipolar Power Supply/Amplifies \$800
6826A Bipolar Power Supply/Amplifier \$800
6827A Bipolar Power Supply/Amplifier
6830A Bipolar Power Supply/Amplifjer
6831A Bipolar Power Supply/Amplifier
6832A Bipolar Power Supply/A mplifier

Specifications \dagger

[^11]
Models 6177C, 6181C \& 6186C

- Continuously variable voltage limit:
- Output useful to micro-ampere region

6177C. 6181C

5186C

Description

These solid-state constant-current sources are ideal for semicon. ductor circuit development, component testing, and precision electro-. plating a.pplications.

Their high-speed remote programming characteristics make these supplies useful in testing and sorting semiconductors, resistors, relays, meters, etc. The ability to superimpose ac modulation on the de output permits the supplies to be used for measurement of dynamic or incremental impedance of circuit components.

Specifications

Load effect (load regulation): Less than 25 ppm of output $\pm 5 \mathrm{ppm}$ of range switch setting for a load change which causes the output voltage to vary from zero to maximum.

- High oufpul impedance-no output capacitor

Source olfect (Ilne regulation): Less than 25 ppm of output ± 5 ppin of range switch senting for a change in the line voltage from 104 to 127 V ac (or 127 to 104 Vac) at any output current and voltage within rating.
Load effect transient recovery: Less than $800 \mu s$ for recovery to within 1% of nominal outpul current following a full load change in ouipul voltage. (On 6186C. recovery time for $100 \mathrm{~mA} / 10 \mathrm{~mA} / 1 \mathrm{~mA}$ ranges is $800 \mu \mathrm{~s} / 1.6 \mathrm{~ms} / 4 \mathrm{~ms}$. respectively.)
Temperature coefficient: Output change per degree C is less than 75 ppm of oulput current +5 ppm of range switch setting.
Drift (stability): Less than 100 ppm of output current +25 ppm of range switch setting. Stability is. measured for eight hours after one hour warm-up under conditions of constant line, load, temperature, and output setting.
Resolution: $0,02 \%$ of range switch setting.
Temperalure rating: Operating 0 so $55^{\circ} \mathrm{C}$. Slorage $-4010+75^{\circ} \mathrm{C}$.
Accessories available Price
5060-8764: rack adapter for rack mounting one or two 6177 C or 6181 C supplics.
$5960-8762$: rack adapter for rack mounting one or two
6186C supplies.
5060-8530; filler panel for Models 6177C, G181C
5060-8760: filler panel for Model 6186C

Options

Q14: three digit graduated decadial current control. Includes calibrated 10 -turn control replacing front panel current knob. The dial is calibrated from 0 to 99.9 with minor divisions equal to 0.I.
028: 230 V ac $\pm 10 \%$, single phase input. Models 6177C and 618 IC only.
Model number and name
6177C. 6181 C Constant Current Source
oi86C Constant Current Source

Model			61774	61816	6) 886
Output Current \dagger			0-500 mA	$0-250 \mathrm{~mA}$	$0-100 \mathrm{~mA}$
Voltage Compliances			$0-50 \mathrm{Y}$ dr	$0-100 \mathrm{Vdc}$	0-300 V oc
Output Ranges		A	$0-5 \mathrm{~mA}$	B-2.5 mA	0-1 mA
		B	0-50 mA	$0-25 \mathrm{~mA}$	$0-10 \mathrm{~mA}$
		c	$0-500 \mathrm{~mA}$	$0-250 \mathrm{md}$	0-100 mA
AC Inout			$115 \mathrm{Vac} \pm 105,48-63 \mathrm{~Hz}:$ 0.6 A 55 W at 115 V ac For 230 Y as see Option 028	115 V ac $\pm 105.48-63 \mathrm{~Hz}$ 0.6 A. 55 W at 115 Yac For 230 V ac see Option 028	$\begin{aligned} & 115 / 230 \mathrm{Vac}, 48-63 \mathrm{~Hz} \\ & 0.9 \mathrm{~A} 90 \mathrm{Wat} 115 \mathrm{Vac} \\ & 115 / 230 \mathrm{Vac} \text { swich } \end{aligned}$
Constant Current Remotir Programming	Voltage Control (Acruracy: 0.5% of outpul curtent $+0.4 \%$ of range)	Range A	$200 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{Y} / \mathrm{mA}$.	$10 \mathrm{~V} / \mathrm{mA}$
		Range 8	$20 \mathrm{mV} / \mathrm{mA}$	$100 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{~V} / \mathrm{mA}$
		Range C	$2 \mathrm{mV} / \mathrm{mA}$	$10 \mathrm{mV} / \mathrm{mA}$	$100 \mathrm{mV} / \mathrm{mm}$
	Resistance Control (Accuracy 1\% at output control $+0.04 \%$ of range)	Range A	400 olims/mA	$2 \mathrm{~kg} / \mathrm{mA}$	$17 \mathrm{k} 2 / \mathrm{mA}$
		Range E:	40 uhms $/ \mathrm{mA}$	200 -hms/mA	1191 ma
		Range C	4 phus/mA	20 ohtms/ ma	100 ohms/mA
Voltage Limil Remote Programming	Voilase Control (Accuracy: 201.)		$1 \mathrm{~V} / \mathrm{V}$	$1 \mathrm{~V} / \mathrm{V}$	$1 \mathrm{~V} / \mathrm{V}$
	Resistance Control		870 ohms/V	440 ohms/V	820 ohms/V
	Acuracy		20%	20%	15\%
Trpical Outpul impedance (R in parallel with C)"		Range A	$\mathrm{R}=330 \mathrm{Meg}, \mathrm{C}=500 \mathrm{pI}$	$\mathrm{R}=1330 \mathrm{Meg}, \mathrm{C}=10 \mathrm{pF}$	$\mathrm{B}=10,000 \mathrm{Meg}, \mathrm{C}=900 \mathrm{pF}$
		Range 8	$\mathrm{R}=33 \mathrm{Meg} \mathrm{C}=0.005 \mu \mathrm{~T}$	$\mathrm{R}=133 \mathrm{Meg} \mathrm{C}=100 \mathrm{pr}$	$\mathrm{R}=1.000 \mathrm{Meg} \mathrm{C}=700 \mathrm{pF}$
		Range C	$\mathrm{R}=3.3 \mathrm{Mrg}, \mathrm{C}=0.05 \mu \mathrm{f}^{\prime}$	$R=13.3 \mathrm{MeqC}=1000 \mathrm{pF}$	$\mathrm{R}=100$ Mez $\mathrm{C}=1500$ of
PRED (Ripple and Noise): rms/D-p (dc to 20 MH't, Either output terminal can be grounded.		Range A	$1.6 \mu \mathrm{~A} / \mathrm{ms} / 40 \mu \mathrm{~A}$ D-p	$0.8 \mu \mathrm{Arm} / 20 \mu \mathrm{D} \cdot \mathrm{p}$	$200 \mu A r m s / 5 \mu A D-p$
		Range $\mathrm{B}^{\text {R }}$	$16 \mu \mathrm{cms} / 200 \mu \mathrm{~A} D-\mathrm{D}$	$8 \mu \mathrm{Amm} / 200 \mu \mathrm{~A}$ 2-	$2 \mu A$ rmis $/ 50 \mu$ A $p-0$
		Range C	$150 \mu \mathrm{ram} / \mathrm{l}$ mA p-g	$80 \mu \mathrm{~A} \mathrm{~ms} / 500 \mu \mathrm{H} \mathrm{D}-\mathrm{P}$	$20 \mu \mathrm{~A}$ rms/ $300 \mu \mathrm{ADDD}$
Programining Speed. From 0 to 98 an of range switch selting with a resistive load **(Output Current Modulation)			6 msec	6 msec	10 msec
Dimensions:			$\begin{aligned} & \text { TN }(W) \times 3 / 14^{\prime \prime}(\mathrm{H}) \times 12 \$^{\prime}(\mathrm{D}) \\ & 197 \mathrm{~mm}(W) \times 88 \mathrm{~mm}(\mathrm{H}) \times 315 \mathrm{~mm}(\mathrm{D}) \end{aligned}$	$\begin{aligned} & 1 \mathrm{~N}^{\prime \prime}(\mathrm{W}) \times 370^{2}(\mathrm{H}) \times 12 \mathrm{~K}^{\prime}(\mathrm{D}) \\ & 197 \mathrm{~mm}(\mathrm{~W}) \times 88 \mathrm{~mm}(\mathrm{H}) \times 315 \mathrm{~mm}(\mathrm{D}) \end{aligned}$	$\begin{aligned} & 2 .(W) \times 6 \% 3^{2}(\mathrm{H}) \times 125^{\circ}(\mathrm{D}) \\ & 197 \mathrm{~mm}(\mathrm{~W}) \times 158 \mathrm{~mm}(\mathrm{H}) \times 315 \mathrm{~mm}(\mathrm{D}) \end{aligned}$
Weight:	(Wet/Snipping)		$453 \mathrm{Mg}(10 \mathrm{id}) / 5.9 \mathrm{~kg}(13 \mathrm{lb})$	$4.53 \mathrm{~kg}(10 \mathrm{H}) / 5.9 \mathrm{~kg}$ (33 B B$)$	$5.9 \mathrm{~kg}(19 \mathrm{lb}) / 7.7 \mathrm{~kg}(17 \mathrm{~B})$

- This petwork is a simplijied representation of a compler network. The formula $z=R X_{c} / \sqrt{R^{2}}+\mathrm{XC}$ is used toc frequencies up to I MHz by substitufing the values given for R ano c . Above i Whr, the output impedance tor frequencies up to 1 MHz by substituting
- Output current can be modulated 100% up to 50 Hz : percent mofulation decreases lineariy to 10% al 500 | Hz |
| :---: |
| |

－UL recognized
－Cut－back current limiting
－Built－in overtemperature and reverse voltage protection

DC Output ratinges：

Hodel	$\underset{\text { dictage }}{\substack{\text { dit }}}$	Curreal（amperes）at rited temp．			
		$\begin{gathered} 1 / \text { rack } \\ \text { (A module) } \end{gathered}$	$\begin{gathered} \text { Y/ rack } \\ \text { (C madula) } \end{gathered}$	$\begin{gathered} \text { 1/n rack } \\ \text { (E modula) } \end{gathered}$	$\begin{gathered} \text { 1/2 mek } \\ \text { (G module) } \end{gathered}$
$\Delta 62003$	3	2.0	4.25	8.5	17.0
$\triangle 62004$	4	2.0	4.0	8.0	16.0
62005	5	2.0	4.0	80	16.0
462006	6	1.75	3.75	7.5	15.0
$\Delta 62010$	10	1.5	3.25	6.5	13.0
62012	12	1.5	3.0	6.0	12.0
62212	± 12	1．4／1．25＊	－	3．3／3＊	6／5＊
62015	15	1.25	2.5	5.0	10.0
62215	± 15	1．25／1．1＊	－	3／2．75＊	5．2／4．5＊
82018	18	1.0	2.25	4.5	9.0
62024	24	0.75	1.75	3.75	1.5
62028	28	0.70	1.5	3.25	6.5
62048	48	0.45	1.0	2.0	4.0

OOutout sdjustable is range of $\pm 0.5 \mathrm{VOr} \pm 5 \%$ ，whichever is grealic．
＊When dual models ase operated at 220 or 240 V ac（ 0 DL 301 or 102 ）dc oulpul is deraked to tower of two values．
sispecial ratings．Available on spectial otder basis at additional（ust．

Specifications

Load effect（load regulation）：less than 0.01% or 1 mV ．whichever is greater，for a no load 10 fill load（or vice versa）change in output cur－ renl．
Bource effect（line regulation）：less than 0.0 ）\％or I mV ，whichever is greater，for change in ac input voltage over the specified range，at any output voltage and current within rating．
PARD（ripple and nolse）：less than I mV rms． 2 mV p－p（ 5 mV for dual models）at any line voltage and under any load condition within sating．
Temperature coefficient：less than $0.01 \% /{ }^{\circ} \mathrm{C}$ over the temperature range from $01050^{\circ} \mathrm{C}\left(0\right.$ to $40^{\circ} \mathrm{C}$ for dual models）under condítions of constant load and line following 30 －minute warmup．
Drif（stabilly）： 0.1% total drift in de output voltage aver 8 －hour in－ terval，under conditions of conslant line，load，and ambient tempera－ ture following 30 －minute warmup．
Load effect translent recovary：outpul voltage recovers 10 within 15 mV of nominal outpul volıage in $50 \mu \mathrm{~s}$ lollowing a load change firom full to half load（or vice versa）．
AC Inpul power： $104-127 \mathrm{~V}$ ac． $48-63 \mathrm{~Hz}(57-63 \mathrm{~Hz}$ for dual models）． single phase．Sec Options 101，102，and l03 for other bine voltage rat－ ings available．
Storage temperature：$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

Operating lemperature：single outpus models； $0.50^{\circ} \mathrm{C}$ ．Dual－out－ pul models， $0-40^{\circ} \mathrm{C}$ ．Derated operation up $1071^{\circ} \mathrm{C}$ is possible for all models．
Goolling：convection cooled．
DC output isolatlon：output is isolated；any output terminal may be grounded．
Current IImil，slngle－output modele：adjustable，「actory－sel 10 ap－ proximately lOS\％of maximum rated oulpul currene，Cuts back lin． early 10 approximately 10 of rated output current when supply is shorl－circuitod．Automatically reseds when overload is renoved．
Current Ilmil，dual－output modele：separate current limit circuils for slave $(-)$ and master $(+)$ supplies．Slave is factory sel 10 approx－ imately 105 名 of maximum rated output current．Cuts back linearly to approximately 10 of rated output when $(+)$ to COM outpul is short－ circuited．

Master is factory sel to approximutely 105% of maximum rated oul－ pul cureni．Culs back linearly to approximately $\mathbf{1 0 \%}$ of ratce output when（ + ） 10 COM output is short－circuited．

For single－output connections（ $+10-$ ）current limit is determined by the lower of the two to current limit settings．
Tracklng accuracy（dual－oulput models）：the slave supply is maiched 10 within ± 1 身 maximum of the master supply．
Dlmensions
A－gufir modela： 48 mm W $\times 128 \mathrm{~mm} \mathrm{H} \times 31 \mathrm{lmmD}\left(1.91^{\circ} \times\right.$ $\left.5.03^{\prime \prime} \times 12.25^{\prime \prime}\right)$
C－E－suffr models： $100 \mathrm{~mm} W \times 128 \mathrm{~mm} \mathrm{H} \times 311 \mathrm{~mm} D$ $\left(3.94^{\prime \prime} \times 5.03^{\prime \prime} \times 12.25^{\prime \prime}\right)$ ．
G－gulfix models： 206 man $W \times 128 \mathrm{~mm} H \times 292 \mathrm{~mm} \mathrm{D}\left(6.11^{*} \times\right.$ $5.03^{\prime \prime} \times 11.50^{\circ}$ ．
Wolght（neU／shlpplng）：
A－suffix models： $2.7 \mathrm{~kg} .(6 \mathrm{lb}) / 3.6 \mathrm{~kg}$ ．（8 lb）
C－sufflx models： 4.5 kg ．（ 10 lb ）／5．4 kg．（ 12 lb ）
E－buflix models： $5.9 \mathrm{~kg} .(13 \mathrm{lb}) / 7.3 \mathrm{~kg} .(16 \mathrm{lb})$
G－sufflx models： 9.5 kg ．（ 2 I lb ）／11．3 kg ．（ 25 lb ）
Accessories available：see page 204.

Options， 62000 series

Price
011：internal overvoltage protection crowbur．Adjust－ ment range is from +0.5 V de above the minimum rated output voltage $10+2 \mathrm{~V}$ above the maximum rated ous－ put voltage．
101： 220 V ac Nominal（ $190-233 \mathrm{Vac}$ ）， $48-63 \mathrm{~Hz}$ ，single phase ac inpul．
102： 240 V ac Nominal（ 208.254 Vac ）， 48.63 Hz ，sin＊ gle phase ac input
103：120／240 V ac Nominal（ $104-120 / 208-254 \mathrm{~V}$ ac）． $48-63 \mathrm{~Hz}$ ，single phase，field－changeable ac input．

Optlons， 62200 series

011 ：internal overvoltage proteclion crowbar．The ad－ jusiable trip level is factory set 102 volts above the nom． inal ouspul voltage for either outpul（ 4 V for both out－ puls）
101： 220 V ac nominal（ $190-233 \mathrm{Vac}$ ） $47-63 \mathrm{~Hz}$ ，single phase ae input．
102： 240 V ac nominal（ $208-254 \mathrm{~V}$ ac）, $47-63 \mathrm{~Hz}$ single phase ac input．
Model number and name

62000 series

A－suffix Models
C－suffix Models
E－suflix Models
G－suffix Models
62200 sarles
A－sulfix Models
S185
E－suflix Models
$\$ 235$
G－suflix Madels
$\$ 345$
（Quantily \＆OEM discounts are available）．

Modular: 110 W , switching regulated

- Meets UL 478, IEC 435, VDE 0871 Level N
- Advanced 20 kHz switching design
- Brown-out protection: 87 to 127 V ac or 18010250 V ac

83005C, SIngle

Specifications

(Applicable 10 both models, unless otherwise indicuted)

Outpul ralings:

$$
\begin{aligned}
& 63005 \mathrm{C} 4.85105 .25 \mathrm{~V} \text { @ 22A } \\
& \text { 63315D 4.75205.25 V © 18A } \uparrow \\
& +11.410+15.75 \text { V © } 2 \mathrm{~A} \dagger \\
& -11.410-15.75 \text { V@2A } \dagger
\end{aligned}
$$

\& Muximum load eurrents cannot be obtained simultaneausly. See drmwiog below for load sharing (radoolf.

\pm 11.4 TO $\pm 1575 V$ (TOTAL $)$ OUTPUT CIRRFFNT

Dual output tracking accuracy (63315D only): $\pm 2 \%$.
Temperalure eflect: $0.015 \% /{ }^{\circ} \mathrm{C}$.
Source effect: 0.02% over entire input voltage range.
Load effect: $0.1 \%, 0-100 \%$ load charige.
PARD (rlpple and nolse): all outputs; 5 mV rms, 40 mV p-p. 20 Hz 1020 MHz .
Laad effect transient recovery: outpul voltage returns 10 within 1 务 of nominal in less than $1 \mathrm{~ms}(5 \mathrm{~V}$ outpul, both models) $25 \mu \mathrm{~s}(\pm 12$ to $\pm 15 \mathrm{~V}$ oulput) following a load change from 100% to 50% or $50 \% 10$ 100%.
Drift (Btability): less than 0.1% over 8 -hour interval following 30 minute warmup.
Reverse voltage protectlon: supply is protected againsl application of reverse polarity voltage across the oulput icrminals.

- 20 ms carryover time

- Built-in overvoltage, overcurrent, overtemperature protection

63315D، Triple

Dielealrie withatand voliage:

Primary- (o-case 1500 V sms for f min.
Primary-to-output(s) is00 V rms for 1 min .
Oulput(s) to case 500 V de for I min.
Insulatlon resistance: 5 voli oulpul to ± 15 voll outpui (63315 D) 10 megohms (min.) output to case, 10 megohms (min.).
Overvoltage proleclion: standard, non-adjustable, 5 V output (both modils) 6-7 V: ± 12 lo $\pm 15 \mathrm{~V}$ oulpul, $16-18 \mathrm{~V}$.
Input voltage: $87-127 \mathrm{~V}$ ac or $180-250 \mathrm{~V}$ ac $19,48-63 \mathrm{~Hz}$. Field changeable on terminal block.
AC Inrush current: 20 A pk. max. at tum-on.
AC Inpul protection: intemal 5 A fuse.
Remole shutdown: via barrier strip teminal, with TTL inpul or coniacl closure. Low (closed) $=$ oulput off. High (open) $=$ output on.
Carryovar time: 20 ms minimum al full load.
Overtemperature protectlon: thermal cutout auto-seset.
Overcurrent protection: foldback current limiting.
83315D: Adjusiable from 5010 IS0 \% of raled output.
63005C: Adjusiable from 50 to 130% of rated outpus.
Remote sensing; cerminals are provided which will correct for loadlead voltage drop of up to 5% while maintaining nominal voltage al the load. Load is protected if sensing leads are inadveriendly opened.
Operaling lemperalure range: $0-40^{\circ} \mathrm{C}$, full rateos oulput. Derate linearly by $1.7 \% /{ }^{\circ} \mathrm{C}$ from $40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Coolling: convection cooled: may be conduction cooled through surface at end of case. Finned heat sink removable.
Deslgned to conform to safety standerda:
Recognized (yellow card number ESI529) complies with IEC 435.
EMI characterlstles: complies with VDE 0871 LEVEL N.

Olmenslons

639150: $126 \mathrm{~mm} \mathrm{H} \times 121 \mathrm{~mm} \mathrm{~W} \times 279 \mathrm{~mm} \mathrm{D}\left(4.96^{\prime \prime} \times 4.76^{\circ} \times\right.$ 10.82")

63005C: $126 \mathrm{~mm} \mathrm{H} \times 87 \mathrm{~mm} \mathrm{~W} \times 279 \mathrm{~mm} \mathrm{D}\left(4.96^{\circ} \times 3.44^{\circ} \times\right.$ 10.82")

Weight

633150: 4.6 kg (10 lb)
63005C: $3.6 \mathrm{~kg}(8 \mathrm{lb})$

Model number and name	Price
63005C Single Outpui Supply	$\$ 495$
633iSD Triple Output Supply	$\$ 375$
(Quantity and OEM discounts are available)	

\author{

- UL Recognized Component (UL 478) Yellow Card \#E51529
 - Advanced 20 kHz Design
}
- Overvoltage, overcurrent, overtemperature and reverse voltage protection are standard.

Ratings and Specifications: L, M and J Series Switching Supplies

DC Oulpul		Model	$\begin{array}{\|l} \hline \text { Lood }{ }^{2} \\ \text { Elfect } \\ \% \end{array}$	$\begin{aligned} & \text { Sourct? } \\ & \text { EHecl } \\ & \% \end{aligned}$	$\begin{gathered} \text { PAROJ } \\ \text { Tms/D-p } \\ (20 \mathrm{~Hz}-20 \mathrm{MHz}) \end{gathered}$	Lasd Effect Tramstent Recovery	$\begin{aligned} & \text { Carry } \\ & \text { Over } \\ & \text { Time } \end{aligned}$	Derale Oulport Limearly wilh Temp.		AC Ingul ${ }^{6}$		
Volls	Amps							From	To	Amps	Watts	EH. \%
$4 \mathrm{~V}(\pm 0.5 \mathrm{~V})^{\prime}$	40 A	XX	0.10	0.10	$20 \mathrm{mV} / 40 \mathrm{mV}$	3 ms	30 ms	$40 \mathrm{~A} 30^{\circ} \mathrm{C}$	20 A (1) $1^{\circ} \mathrm{C}$	3.5	308	65
$\begin{aligned} & 5 V(\pm 0.5 V) \\ & 5 V(\pm 0.25) \\ & 5 V(\pm 0.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \mathrm{~A} \\ & 60 \mathrm{~A} \\ & 100 \mathrm{~A} \end{aligned}$	62605I 62605L 62605 M	$\begin{array}{\|l\|} \hline 0.10 \\ 0.05 \\ 0.05 \\ \hline \end{array}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & 0.05 \end{aligned}$	$20 \mathrm{mV} / 40 \mathrm{mV}$ $15 \mathrm{mV} / 50 \mathrm{mV}$ $15 \mathrm{mV} / 50 \mathrm{mv}$	$\begin{array}{r} 3 \mathrm{~ms} \\ 0.5 \mathrm{~ms} \\ 0.75 \mathrm{~ms} \end{array}$	$\begin{aligned} & 30 \mathrm{~ms} \\ & 15 \mathrm{~ms} \\ & 15 \mathrm{~ms} \end{aligned}$	$40 \mathrm{~A}=50^{\circ} \mathrm{C}$ 60 A G40 $0^{\circ} \mathrm{C}$ 100 A (13) $40^{\circ} \mathrm{C}$	$\begin{aligned} & 20 \mathrm{~A} @ 71^{\circ} \mathrm{C} \\ & 30 \mathrm{~A} @ 70^{\circ} \mathrm{C} \\ & 60 \mathrm{~A} @ 70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 3.5 \\ 8 \\ 11.5 \end{gathered}$	$\begin{aligned} & 308 \\ & 450 \\ & 750 \end{aligned}$	$\begin{aligned} & 65 \\ & 68 \\ & 70 \end{aligned}$
$6 \mathrm{~V}(\pm 0.5 \mathrm{~V})^{7}$	33 A	XX	0.10	0.10	$20 \mathrm{mV} / 40 \mathrm{mV}$	3 ms	30 ms	33 A @ $50^{\circ} \mathrm{C}$	16.5 A (6) $71^{\circ} \mathrm{C}$	3.5	308	65
$10 \mathrm{~V}(\pm 0.5 \mathrm{~V})^{\text {r }}$	25 A	$x x^{\prime}$	0.10	0.10	$20 \mathrm{mV} / 40 \mathrm{mV}$	3 ms	30 ms	25A@50 ${ }^{\circ} \mathrm{C}$	12.5 A ($71^{\circ} \mathrm{C}$	4	334	75
$\begin{aligned} & 12 V(\pm 0.6 V) \\ & 12 V(\pm 0.6 V)^{\mathrm{K}} \\ & 12 \mathrm{~V}(\pm 0.6 \mathrm{~V})^{8} \end{aligned}$	$\begin{aligned} & 23 \mathrm{~A} \\ & 30 \mathrm{~A} \\ & 50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 626121 \\ & x x \\ & x x \\ & \hline \end{aligned}$	$\begin{array}{\|l} 0.10 \\ 0.05 \\ 0.05 \end{array}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & 0.05 \end{aligned}$	$20 \mathrm{mV} / 40 \mathrm{mV}$ $15 \mathrm{mV} / 85 \mathrm{mV}$ $15 \mathrm{mV} / 85 \mathrm{mV}$	$\begin{array}{r} 3 \mathrm{~ms} \\ 0.3 \mathrm{~ms} \\ 0.4 \mathrm{~ms} \end{array}$	$\begin{aligned} & 30 \mathrm{~ms} \\ & 10 \mathrm{~ms} \\ & 10 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 23 \mathrm{~A} \text { © } 50^{\circ} \mathrm{C} \\ & 30 \mathrm{~A} @ 40^{\circ} \mathrm{C} \\ & 50 \mathrm{~A} \text { © } 40^{\circ} \mathrm{C} \end{aligned}$	11 A @ $71^{\circ} \mathrm{C}$ 18 A (3) $70^{\circ} \mathrm{C}$ 30 A (6) $70^{\circ} \mathrm{C}$	$\begin{gathered} 4.5 \\ 8 \\ 12.5 \end{gathered}$	$\begin{aligned} & 334 \\ & 480 \\ & 840 \end{aligned}$	$\begin{aligned} & 75 \\ & 73 \\ & 75 \end{aligned}$
$\begin{aligned} & 15 v(\pm 0.75 \mathrm{v}) \\ & 15 v(\pm 0.75 \mathrm{v})^{3} \\ & 15 v(\pm 0.75 \mathrm{v}) \end{aligned}$	$\begin{aligned} & 20 \mathrm{~A} \\ & 24 \mathrm{~A} \\ & 40 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 62615 \mathrm{~J} \\ & \mathrm{XX} \\ & 62615 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.10 \\ 0.05 \\ 0.05 \end{array}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & 0.05 \end{aligned}$	$20 \mathrm{mV} / 40 \mathrm{mV}$ $15 \mathrm{mV} / 65 \mathrm{mV}$ $15 \mathrm{mV} / 65 \mathrm{mV}$	$\begin{array}{r} 3 \mathrm{~ms} \\ 0.3 \mathrm{~ms} \\ 0.3 \mathrm{~ms} \end{array}$	30 ms 10 ms 10 ms	$\begin{aligned} & 20 \mathrm{~A} @ 50^{\circ} \mathrm{C} \\ & 24 \mathrm{~A} @ 40^{\circ} \mathrm{C} \\ & 40 \mathrm{~A} \Leftrightarrow 40^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \text { ब } 71^{\circ} \mathrm{C} \\ & 14.4 \mathrm{~A} @ 70^{\circ} \mathrm{C} \\ & 24 \mathrm{~A} @ 70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 5 \\ 8 \\ 12.5 \end{gathered}$	$\begin{aligned} & 375 \\ & 480 \\ & 840 \end{aligned}$	$\begin{aligned} & 80 \\ & 73 \\ & 75 \end{aligned}$
$18 \mathrm{~V}(\pm 0.90 \mathrm{~V})$	16.7 A	626181	0.10	0.10	$20 \mathrm{mV} / 40 \mathrm{mV}$	3 ms	30 ms	16.7 A @ $50^{\circ} \mathrm{C}$	8A @ 710 C	5	375	80
2 V ($\pm 1.2 \mathrm{~V})$	12.5 A	626241	0.10	0.10	$20 \mathrm{mV} / 40 \mathrm{mV}$	3 ms	30 ms	12.5 A (6) $50^{\circ} \mathrm{C}$	6 A (6) $31{ }^{\circ} \mathrm{C}$	5	375	80
$28 \mathrm{~V}(\pm 1.4 \mathrm{~V})$	10.7 A	62628J	0.10	0.10	$20 \mathrm{mV} / 40 \mathrm{mV}$	3 ms	30 ms	10.7 A @ $50^{\circ} \mathrm{C}$	5A@ $\mathrm{II}^{\circ} \mathrm{C}$	5	375	80

 and 0.15\% from 0-15\%
2. For a change in ac line voltage over spectied range
3. At any line voltage and under any load condition withlty rating.
 50% or 50% to 100%.

Additional specifications

Temperalure coefficlent: change in dc output per ${ }^{\circ} \mathrm{C}$ cbange in ambient under conditions of constant load and line, following $30-\mathrm{min}$. warm-up: less than $0.02 \% /{ }^{\circ} \mathrm{C}$ over the temperature range from 0 to $40^{\circ} \mathrm{C}$ (0 to $50^{\circ} \mathrm{C}$ for J serios).
Drift (atabilty): total drift in de outpul voltage (dc to 20 Hz) over 8hour interval under conditions of constant line. load, and ambient femperalure following 30 -minutes warm-up: less ihan 0.1 \% .

Temperature rallings

Storage: $-55^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$
Operating: $01040^{\circ} \mathrm{C}$ ambient, fan cooled (L \& M series)
0 to $50^{\circ} \mathrm{C}$ ambient, convoclion cooled (J-sories).
Inpul power
Llne: $104-127$ V ac, $48-63 \mathrm{~Hz}$, single phase. See Opcions 106 (L 8 M series) and $101 / 102$ (3-seriss) for other line voltage ralings available.

Currenl limil

L\& M Serles: screwdriver adjustment of outpul current limit is accessible through a hole below the bacrier strip. Minimum adjustment range is 75% to 105% of rating.
5. Time that output remains within 2% of specified nominal tollowing leas of ac ingut.
 " 5 " supplies).

1. Special ratings available on special order busis at additionial cost.
2. Special refings available on special order basia ar no additianal cost

J-Series: internal adjustment, fuctory-set to approximately 110% of maximum rated oulput current. Automalically resers when overload is removed. Minimum adjusiment range is approximately 50% 10113%.
Dimanelons: $207 \mathrm{mon} \mathrm{W} \times 127 \mathrm{~mm} \mathrm{H} \times 292 \mathrm{~mm} \mathrm{D}\left(8.14^{\prime \prime} \mathrm{W} \times 5.03^{\prime \prime}\right.$ $\left.H \times I I .50^{\circ} D\right)$.
Weight: ncl, $6.6 \mathrm{~kg}(14.5 \mathrm{Jb})$. Shipping. $8.2 \mathrm{~kg}(18 \mathrm{Jb})$.
Accessortes Avallable: see page 205.
Options \quad Price
101: 220 V ac nominal ($190-233 \vee \mathrm{sc}$), $48-440 \mathrm{~Hz}$
single phase (J-series)
N / C
102: 240 V ac nominal (208-254 Vac), $48-440 \mathrm{~Hz}$ single phase (J-series) N/C
106: $187-250 \mathrm{~V} \mathrm{ac}, 48-63 \mathrm{~Hz}$, single pbase (L \& M series)
Model number and name
62600 M Series Switching Regulated Supplies
62600 J Scries Switching Regulated Supplies
62605 L Series Suniching Regualled Supply $\$ 560$
(Quantity and OEM discounts are available)

62411A

62412A

62413A

60000 Series Supplies

60000 series description
These single and dual outpul modular supplies are intended for applications requiring a fixed constant voltage source of de. The nombnal oulput voleage is regulated to 0.05% and may be offiset from the design oenter by up to $\pm 10 \%$. All supplies are short circuit proof and will nol be damaged by overload.
60000 serles specifications
Load effect: better than 0.05%.
Source effect: betier than 0.0 S\%
PARD: less than I. 5 mV fms. 6 nJV p-p (except 60245 B 60246 B which are 9 and 12 mV p-p, respactively).
Temperature coefficlent: 0.025% follawing 30 -minutes warmup.
Drift: 0.1 , measured wilhin de 1020 Hz bandwidth, under constant line, load, and ambient. following 30 -minules warmup.
Slave tracking error (dual supplies): less than 30 mV for each I V change in outpul vohage of master supply.
Temperature ratings: $01055^{\circ} \mathrm{C}$. Output current is linearly derated from 100% al $55^{\circ} \mathrm{C}$ 10 70% at $71^{\circ} \mathrm{C}$.
Oulput ratings:

Model*	OC Oulput		Oimemitori	Pites
	Wols	anos	W $\times \mathrm{H} \times \mathrm{D}$ (mm)	
600638	5-6, ${ }^{\text {c }}$	15	$165 \times 86 \times 152$	856
60065	5-6j	3.0	$130 \times 85 \times 186$	1120
600554	5-6.3	8.0	$130 \times 108 \times 279$	1210
601728	11.75-1425	0.5	$105 \times 86 \times 105$	\$80
601238	11.73-14.25	1.0	$105 \times 86 \times 152$	585
60:238	11.)3-13.25	23	$130 \times 86 \times 186$	\$110
601268	11.75-14.25	6.0	$130 \times 108 \times 219$	5190
602428	235-285	0.35	$105 \times 86 \times 105$	\% 80
602438	235-285	0.5	105 \times \% \times ? 52	\$ 85
60248	235-785	10		195
607458	235-783	15	$130 \times 86 \times 185$	8110
667768	23,5-185	35	$130 \times 108 \times 279$	\$190
601530	± 15 (± 15)	0.2	$105 \times 85 \times 152$	5105
60153C	\pm ((± 15)	0.75	$130 \times 86 \times 186$	5145

 E2000 series accessories
62411A: covers front of rack mounling tray. A clearance of $21 / /^{\prime \prime}$ behind the panel controls, meters, switches. ale.
62412A: mounls on rear of rack mouncing tray. A $21 / d^{*}$ clearance behind the pancl permits addition of conneetors, terminal blocks, etc.
62415A: mounts on rear of rack tray for convenient ac power connections to supplies
62414A: a $20^{\prime \prime}$ slide kil for use with standard 19^{4} wide equipment racks of $20^{\prime \prime}$ depth. Does nol fil 2940 A or B enclosures
62410A: accommodates any combination of 62000 Series modular supplies totaling a full rack width or less. Atraches to a 19^{*} equipment rack, via Fronl mounting ears
12692B: used with 2940A/B Scries HP cabinct enclosures
62413A: occupies only $1 y^{* \prime \prime}$ of rack space. yet provides over $0.02 \mathrm{~mJ} / \mathrm{s}$ (4SCFM) of cooling air to modular supplies installed in rack tray

Digitally controlled; binary or BCD

Models 6128C-6131C, 6140A \& 6145A

- Digitally programmable in binary or BCD
- Complete digital-to-analog subsystem in one package
- Fast, accurate, bipolar output

6128G, 6129C

6130C. 81310

Digital voltage sources
HP's family of digital voltage souras (DVS's) include models $6128 \mathrm{C}, 6129 \mathrm{C}, 6130 \mathrm{C}$, and 6131 C . All models are programmatle in binary or 8421 BCD and have many system-oriented features that enhance their use in qutomatic testing and control environmenis. Among these features are: isolation belween the digital input and analog outpul fines. digisal storage of programmed inputs, programmable current latch, analog input, and current monitoring termimals.

Isolation

All digital lines of the DVS's are isolated from the analog output. This feature is essential in automatic test systems to avoid forming ground loops that could impair system operation and damage the compuler and instruments.
Nearly all computer manufacturess ground the power supplias for the digital I/O logic to the mainframe of the compuler, which is connected to the ac power line ground. If a DVS did not have jsolation. one of its analog outpul lerminals would be connected to the digital input common line.

Internal storage

The DVS's internally store the computer's output magnilude (volfage selting). polarity, range, and oulput latch/limit digital inpuls when the cumputer's gate command is received. When the DVS has limished processing the digital inpul, it natifies the computer by iransmitting its fits. Since the DVS stores the digital data, the computer does not have to continually refresh the DVS: it is free 10 carry eut other importunt lasks. The DVS mainfains its programmad oulpul indefinitely, changing the output only when the computer changes the digital input dala and sends another gate command.
In addition to climinating the need for redundant programming by the computer, internal storage also facilitates the control of multiple DVS's from a single compuler 1/O channcl. The number of DVS's that can be controlled from a single I/O channel depends on the capabilitics of the computer's I/O data bus drivers. Most computers can easity drive up to eight DVS's.

Programmable current latch

Overcurient protection is provided by a current latch circuit which can be externally programmed to one of cight values betwexn 2% and

Digital inputs isolated from analog output
 Internal storage of digital data
 - Digitally programmable current latch (on DVS models) or voltage limit (on DCS models)

100 (six valucs for the 6131 C) of the unit's rated output current. When activated, the currem lateh circuit turns off the output power amplifier reducing the oulput current to less than 20 mA . The reacbion lime of the eurrent latch circuil (time between the start of a current overload and turn off of the power amplifier) can be adjusied by adding an external capacitor at the rear terminats. The upper current limit is safeguarded by a separate fixed current limit circuit that prevents the output current froms exceeding 110% of the current rating. The computer is continuously informed of possible current overload or current latch conditions by status outpuls which are fed back to the programming source.

Analog input

In automatic test systems, it is onten desirable to inject an ac "wiggle" on top of a programmable de level to measure impedance al various voliage levels, 20 simulate wanst case power supply conditions for a module under test, or measure component parameters such as dynamíc gain or transconductance. Many automatic control syslems require this fealure to provide "dither" for the systern. Alf DVS's provide an analog input to futfill this need.

Current monitoring ferminals

The output current of all DVS's can be measured withoul upselling voltage aceuracy by connecting a voltmeter across the current monitoring terminals on the rear barier strip.

Specifications

Sec pages 206 and 207.
Digital current sources
The Digital Cusrent Sources, Models 6140A and 6145A, are ideally suited for system applications requiring a rapidly programmable, high-precision source of curren. The 6I40A DCS is avaliable for operation with either binary or 8421 BCD control devices while the 6145 A is avallable only for BCD operation. The 6145 A , however, also features manual, high resolution thumbwhest swituhes that allow it to be utsized as a bench instrument or in system spplicotions.

The isolation, internal slorage, and analog inpul features described for the DVS's also apply to the DCS's. In addition, the DCS's have programmable vollage limiting and voltage movituring terminals.

Models 6128C-6131C, 6140A \& 6145A (cont)

Programmable voltage limit

DCS's incorporate programmable gross voltage limiting to protect the laad from overvaltage conditions. The nominal positive or negative voltage limit is programmed and, if the oulput voltage exceeds the programoned value by approximately 0.2 V de. a shunt regulator wilthin the DCS automatically activates and begins to draw current away from the load. At the onsel of voltage limiting, the DCS starts to reduce output current to compensate for the voltage overload, If the overload increases and oulpul vollage reaches approximstely $\pm 10 \%+$ 1.4 V de of the programmed limit, the DCS axtsins full voltage limit operation during which output current is reduced towards zero if necessary to hold oulput volisege at the maximum limit value $\pm 10 \%+1.4$ V de of programmed limit. When in full voliage limit operation. but not before, the DCS returns status and Iag signals to the compuler to natify it of the eurrent overload condition.

If the overload was iemporary (whether or not full volage limit was reached). the DCS aulomatically re-establishes the programmed current outpul. At this time. if full voltage limit was reached, another Flag is generated and another overlead status signal returned to notify the computer that an overload occurred. This status siennal (overload stored) is not removed until the DCS is reprogrammed.

The DCS also includes a Voltage Limit Override input that allows the programmed voltage limit selting to be overridden and the DCS placed at the minimum volfage limit (2 V dc). This input is expecially usciul in systems applications in which one compuler override signal is distributed in a chain and all of them set to the minimum voltage limit simulianeously.

Voltage monitoring

The DCS is a precise constant corrent source that employs an active guard supply to eliminate leakage current now between the outpul terminals. The guard is mainiained within 10 mV of the Hl oulput terminal at the DCS and completely surrounds it so that anty Itakage current is "captured" by the guard and does not flow in the load. The guard outpul is also provided at a rear terminal and provides a convenient point at which to monitor the output voltage. If a voltmeter were connested directly to the Hl output terminal, it would lower the output impedance and the meter would draw current from the load. By connecting the meter to the guard, however, the voltage oulput can be monitored without impaixing current regulation of the DCS.

Common specifications

(Refer to table on page 207 for additional spocifications).
AC power input:
8128G, 6129C: $115 / 230 \mathrm{~V}$ ac. $48-63 \mathrm{~Hz}: 6.4 \mathrm{~A}, 780 \mathrm{~W}$ (3) 115 V ac: $115 / 230 \mathrm{~V}$ ac switch-selected.
$6130 \mathrm{C}, 6131 \mathrm{C}: 115 \mathrm{~V}$ ac $\pm 10 \%$, $48-440 \mathrm{~Hz} ; 1.2 \mathrm{~A} .100 \mathrm{~W}$.
6140A, 6145A: $115 / 210 \mathrm{Vac}, 48-63 \mathrm{~Hz}: 1.2 \mathrm{~A} .100 \mathrm{~W}$ (6) 115 Vac :
$115 / 230 \mathrm{~V}$ ae swith-sclected.

Dimensions:

6128C, $6129 \mathrm{C}: 42.55 \mathrm{~W} \times 26.67 \mathrm{H} \times 54.3 \mathrm{~cm} \mathrm{D}.\left(16 \% \mathrm{H}^{\circ} \mathrm{W} \times 10 \%_{2}^{\circ}\right.$
$H \times 21$ 污 D).
$6130 \mathrm{C} .6131 \mathrm{C}: 42.55 \mathrm{w} \times 13.34 \mathrm{H} \times 39.69 \mathrm{~cm} \mathrm{D}:\left(16 \%{ }^{n} \mathrm{~W} \times 5 \%{ }^{n}\right.$
$H \times\left(55 / /^{\prime \prime} D\right)$.
6140A, $6145 A$: $42.55 \mathrm{~W} \times 13.34 \mathrm{H} \times 49.40 \mathrm{~cm} \mathrm{D} ;\left(16 \%^{m} \mathrm{~W} \times 51 / 4^{4}\right.$
$\left.\mathrm{H} \times 19 \%^{\prime \prime} \mathrm{D}\right)$.
Welght:
8129C, 6129C: nel, 33 kg (72 lb). Shipping, 35 kg (78 lb).
6130C, 6131C: nct, 15 kg (32 lb). Shipplng, $22 \mathrm{~kg}\{48 \mathrm{lb}\rangle$.
8140A, 6145 A : net. $20 \mathrm{~kg}(45 \mathrm{lb})$. Shipping, $24 \mathrm{~kg}(52 \mathrm{lb})$.
Cooling:
6130C. 6131C: are convection cooled.
6128C, 8129C. 6140A, 6145A: are forced air cooled.

Accessorles furnighed:

1251-0086 50-contact rear plug.
$5060-8743$ Rack mounting kit for Models 6128C and 6129C.
$5060-8740$ Rack mounting kit for Models 6130C, 6131C. 6140A, and 8145 A.
5060-7943 Plug-in extender board for DVS models.
5060-7948/5060-7982 Two plug-in extender boards for DCS modcls.

Software for HP computera

Drivers in the form of punched papes tape with accompanying operating manuals are available for Hewlett-Packard BCS, DOS. RTE, and BASIC software operating systems, Contact your HP Field Engineer for prias and ordering information.
AC power option
Price
028: Transíormer tap change for $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$. single phase input on 6130 C and 6131 C .

Standard imlerlace opllons

These options apply to all DVS's and the 6540^ DCS. Standiard options are not available on Model 614SA, which uses BCD microcircuil logic levels.
J20: binary interface for 12661A 1/O programmer card for Hewleti-Packard compulets.
J99: Interfacing DCP's with calculator-based test/control systems. All DCPS's may be modiñed to be compaible with ASCll-ie-Parallel Converter. Model 59101A in calculator-based systems. In addition to DCPS modification. two items are supplied as part of Option J99: (I) a 1.83 m cable (HP No. 14552A) to connect DCPS to Model S9301A: (2) J99 Imeriace Note, contzining Installation Insiructions, Software Listings. Operating Instructions, and Diagnustics.
081: BCD interface for NPN open collector circuits.
062: binary interface for NPN open collector circuils.
063: BCD interlace for microcircuil logic levels.
064: binary interface for microcircuit logic levels.

Special optlons

If none of the standard interface options meet your requiremenns. quotations for special options may be oblained from your Howlett. Packard field engineer. Accessories available
14533B Pocket programmer permits manual programming of all inpul futctions by switch closure
14534A Pocket programmer extension cable (18^{\prime})
14535A HP compuler interface kit includes 12661A computer $1 / 0$ card. Id 939 A cable, verification sollware and BCS driver. Up to eight DCPS's may be concolled from one 14535A
14539A cable connoces the firs1 DCPS in a chain of up 10 eight insiruments to the 12661 A DVS programming card for Hewlell-Packard computers
14536λ chaining cable connecis an additional DCPS to the existing chain of DCPS's
14544A Cable connects a DCPS with option 595 (no charge) 10 a DEC PDP.8/I computer. Includes instructions for constructing the interface from DF.C logic modules
Model number and narne
6128C, 6129C Digital Voliage Source
Option 507: Front Handle Kit
6130C. 613IC Digital Voltage Source
6I45a Digital Current Sourec
add $\$ 10$

Specifications

	6128C	6129C	6130C	6131C	$\begin{gathered} 6140 A \\ 6145 \AA\langle B C D \text { Only }\rangle \end{gathered}$
DC OUTPUS: Binary Instruments (Oplion 120. 062. or 068) XIRage	$\begin{aligned} & 16.384 \text { to } \\ + & 16.3835 \mathrm{~V}, 12.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16.384 \text { 10 } \\ + & 16.3835 \mathrm{~V} .5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -16.384 \mathrm{to} \\ + & +1.38 .383 \mathrm{~V}, \mathrm{IA} \end{aligned}$	$\begin{array}{r} -16.38410 \\ +16.3835 \vee, 0.5 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} &-16.38410 \\ &+ 16.3835 \mathrm{~mA} .100 \mathrm{~V} \\ & \hline \end{aligned}$
XIO Range		$\begin{aligned} & -50 \text { to } \\ & +50 \vee, 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -5010 \\ & +50 \mathrm{~V}, 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} &-10010 \\ &+100 \mathrm{~V}, 0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -163.84 \mathrm{in} \\ + & 163.835 \mathrm{~mA} .100 \mathrm{~V} \end{aligned}$
842] BCD Jnsifuments (Oplion 061 or 063) XI Range	$\begin{array}{r} -9.999 \text { y } 10 \\ +9.999 \vee .12 .5 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} -9.999 \vee 10 \\ +9.999 \vee .5 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & -9.999 \vee 10 \\ & +9.999 \mathrm{~V} .1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -9.999 \mathrm{~V} 10 \\ & +9.959 \mathrm{~V} .0 .5 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} -9.999 \pi A 10 \\ +9.999 \mathrm{~mA}, 100 \mathrm{~V} \\ \hline \end{array}$
XIO Range		$\begin{aligned} &-5010 \\ &+50 \vee, 5 A \end{aligned}$	$\begin{aligned} & -5010 \\ & +50 V, 1 A \end{aligned}$	$\begin{array}{rl} -99.99 & \text { Y } 10 \\ +99.99 & .0 .5 \mathrm{~A} \end{array}$	$\begin{aligned} & -99.99 \mathrm{~mA} 10 \\ & +99.99 \mathrm{~mA} 100 \mathrm{~V} \end{aligned}$
RESDLUTIOK: Biarry Instruments	XI Range: 0.5 mV	XI Range: 0.5 mV XIO Range: 5 my			$x 1$ Range: 500 nA $X 10$ Range: $5 \mu \mathrm{~A}$
8421 BCD Insinoments	XI Range 1 my	XI Range: I mV $\times 10$ Range. 10 mV			$X 1$ Aange: ! μA $X 10$ Prange: $10 \mu \mathrm{~A}$
BASIC ACCURACY (90 DAYS): Aecuracy al $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$, 115 V ac inpul. no load, following 30 minutes warn-up	XI Pange: 1.5 mV	XI Ranga: 1.5 my X 10 Range: 15 mV	XI Range: I mV X10 Range: 10 mV		$X I$ Range: $1 \mu \mathrm{~A} \pm 0.01 \mathrm{c}$ XIO Range: $10 \mu A \pm 0.01 \%$
PROGRAMMING TIME For oulpul to setile within 0.1% ol programmed change	$350 \mu \mathrm{sec}$	$\begin{gathered} 300 \mu \mathrm{sec} \\ \text { (wilhout range change) } \end{gathered}$			
STABILITY: DC output drift under constant I Biary listruments	XI Range: $500 \mu \mathrm{~V}$	XI Range: $500 \mu \mathrm{~V}$ XJO Range: 2.5 mV		XI Range: $500 \mu \mathrm{~V}$ $X 10$ Range: 5 my	XI Range: 500 nA X10 Range $5 \mu A$
8421 BCD Instruments	XI Range: $300 \mu \mathrm{~V}$	XI Range $300 \mu V$ $\times 10$ Range: 1.5 my		$X I$ Range: $300 \mu V$ Xlo Range: 3 mV	X1 Range: 500 nA Xlo Range: $5 \mu \mathrm{~A}$
RIPPLE ARD HOISE: At any line 8 load condifion within raling	$\begin{aligned} & 6 \mathrm{mV} \mathrm{D} \cdot \mathrm{D} \\ & 2 \mathrm{mV} \mathrm{~ms} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \mathrm{mV} \cdot \mathrm{D} \\ & 3 \mathrm{mV} \mathrm{~ms} \end{aligned}$	XI Range. 2 XlO Range:	$\begin{aligned} & 0-\mathrm{D} .0 .5 \mathrm{mV} \mathrm{~ms} \\ & 0 . D .15 \mathrm{mV} \mathrm{~ms} \end{aligned}$	
LOAD EFFECT Change in oulpul vollage (or cursent for DCS's) for any load change within rating	$150 \mu \mathrm{~V}$	X) Range: $150 \mu \mathrm{~V}$ X 10 Range: $500 \mu V$		Xl Range: : 50 LV X10 Range: 1.5 mV	XI Range: <100nA X10 Range < 1000 nA
SOURCE EFFECT Change in output vollage (or clirrent for DCS's) for any line vollage change wilthin specitied range Binary Instrument	$300 \mu \mathrm{~V}$				X1 Rarge: 200 na $X 10$ Range: 1000 nA
8421 BCD insifuments	$250 \mu \mathrm{~V}$	XI Range: $200 \mu V$ Xlo Range: 2 mV	X] Range: $\mathbf{4 0 0} \mu \mathrm{V}$ $\times 10$ Pange: 4 mv		XI Range: 200 nA $\times 10$ Range: 1000 nÅ
TEMPERATURE COEFFICIENT Change in oulpul per "C in ambient temperature Blazry Instruments	$160 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	XI Range: $160 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ XIO Range: $800 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		XI: $160 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ x $10: 1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	XI Range: $150 \mathrm{nA}+$ 0.0006 䆓 of outpul/ ${ }^{\circ} \mathrm{C}$ X10 Range: $1.50 \mu \mathrm{~A}+$ 0.0006% ol outpel/ ${ }^{\circ} \mathrm{C}$
8421 ECD Instrumenls	$100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	XI Range: $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ X 10 Range: $500 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		XI: $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ XIO: $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	X1 Range: 150 nA + $0.0006{ }^{\circ} \mathrm{c}$ of output $/{ }^{\circ} \mathrm{C}$ X) 0 Range: $1.50 \mu \mathrm{~A}+$ 0.0006% of output/ ${ }^{\circ} \mathrm{C}$
ANALOG INPUZ DC Gain	$-I V / V \pm 0.2 \%$	$\begin{aligned} & \text { XI Range: }-1 \mathrm{~V} / \mathrm{V} \pm 0.2 \mathrm{~s} \\ & \text { X10 fange: }-10 \mathrm{~V} / \mathrm{N} \pm 0.2 \% \end{aligned}$			$\begin{aligned} & \text { X) Range: }-1 \mathrm{~mA} / \mathrm{N} \\ & \text { X10 Range: }-10 \mathrm{mAN} \end{aligned}$
Bandwidlh (\pm J dB)	$\approx 9.0 \mathrm{kHz}$		$\approx 25 \mathrm{kHz}$		
Slability -8 hrs. (+ Slab. of input signal)	$500 \mu v+$ input	$\begin{aligned} & \text { XI Range: } 500 \mu V+\text { inpui } \\ & \text { X10 Range: }+5 \mathrm{mV}+\text { inpul } \end{aligned}$			$\begin{aligned} & \text { X1: } 0.5 \mu A+\text { input } \\ & \text { X10: } 5 \mu A+\text { inpuit } \end{aligned}$
Impedance		$10 \mathrm{k} /$			600Ω
Max. Input	$\pm 16.38 \mathrm{~V}$	XI Range: $\pm 20 \mathrm{~V}$X 10 Range $\pm 5.0 \mathrm{~V}$		$\begin{aligned} & X f: \pm 20 V \\ & X 10: \pm 10 V \end{aligned}$	16 V (either range)

Intraduction

Hewleth-Pin'kard offers at wide selection of recorders and ploters that record and display data accuratily. quickly. and reliably. Some application areas are manufacturing. education. laboratories, R \& D, and hospicals. The recorders can also he utilized by the original equipment manuliselurer (OEM) to fulfill the need for recording and displaying data from the OEM's equipment. Models may be chusen from X-Y. strip chart, osci)lographic. and instrumentation tape recorders. as wels as graphic ploteres for computer. limeshare, and calculator users.

X-Y recorders

These recorders are designed to plot Cirrlesian coordinate grap bs irom de eloctrical information. They may be selected in iwo basie chart sizes and from three basic levels of performance depending upon measurcment needs. Certain models have high sensitivity and high common mode rejection. Models arc available with and without time sweep capablity. Metric and English instruments may also be selected. Additionally, wo-pen models capable of simulaneously ploting iwo curves may also be chosen. Finally, whether the application be in Bio-Medical, Chemical. Malefial Texting, elc., a wide varicly of X-Y Recorders is available to fit the requirement.
Plug-in modules
To expand the versatility and application of one group of X-Y Recorders. plug-in modules are provided. it an application changes. the needed measurement capability is attainable by simply adding an inexpensive plug-in. Recorders vilizing the modules afe the 7004 B and 7034A. Modules include Amplifiers. Time Bases, DC Onsel. Fillurs, Null Deleciors, and Scanners. The nexibility in-
herent in the plug-in concept will allow the user to meet the constantly clanging requirements of laboratory measurement.

Digital grachic plotters

HP Graphic Plotters bring complete graphic capability to your mini-compuler or terminal with a minimum of programming effort and softwarc. Simple commands and data fornats which can be generated by almost any computer in any language. are used to control the plater.

The platers provide pietorial display of numerical data in almost all areas of Engineering and Scicnce. Typical applications include curve filling, regression analysis, Iransfer functions, eleciromutha nical systein simulation. probability distribution. shear and moment diagrams, verifying numerical control machine programs - almost any(hing which is reprusenled by columns of numbers. A few simple program sices arc often all that is needed to add graphic capability to any application program.

Strip chart recorders

HP Strip Charr Recorders produce accurate records in rectilinear coordinates, All two-pen models permit both channels io realize she full resolution of the chart width simultancously, since the pens can ovcrlap on the same chart without interierence.
Selection of a servo-driven strip chan re corder depends upon the specific applicalion. The 7100 Scries and 7130A Scries modcls offer one-pen and two-pen servo drive systems. The 7123A and 7143A offer single-pen only and utilize the linear motors with only one moving part. The 7ISSB ballery-operated unit is useful in ficlo applications as well as laboratory uses.

Oscillographie recorders

Time correlation of multiple channels of data, instantaneous readout, and the capability to use calibrated units of the customer's choice are just some of the advanages of using the direet writing Oscillographic Recorders. Permanent and casily sepraduced records of signals from de 10150 Hz can be made. From lwe to eight channels of iecording afe available, depending upon the recorder model selected.

With appropriate plug-in signal condition. ers. the recorders can record electrical signals from microvolts to volts. Add transducers and they can make records of all types of physical measurements, such as force. position, strain, stress. acceleration. and temperature.

Plug-in preamplifiers/bank

amplification

A wide line of preamplifiers is a vailable for both ink and thermal recorders which provide unmatched fiexibility. Additionally, two bank amplificers are available for general purpose applications where economy is desired on the thermal writing oscillographs.

Portable tape recorder

The 3960 A is a small-size, lighl-wcighs portable instrumentation lape recorder designed 10 perform in a large assorment of applications - data acquistion and data reproduction - formerly performed by large, ex. pensive recorders. Porlability is further enhanced by the capability of operating from either $A C$ or DC power sources, a built-in DC calibrator. and peak AC/DC metcr to facili. tate any required pre-recording adjusiments. Plug-in sislid-state circuit boards contain the necessury circuitry for FM Record/Reproduce. Diruct Record/Reproduce, and for an optional Voice Channel.

X-Y RECORDERS								
	Descriplion	Clart Size DIN (Inches)	Na. of Pens	Time Base	Max, Sensitivily		Slandaró Frilling Helhod	Plug. Ins
Hodel					$\mathrm{mV} / \mathrm{cm}$	mV/in.		
136 A	$X \cdot Y_{1} \cdot Y_{2}$ General Purgose	$81 / 2 \times 11$	2	Standard	0.2	0.5	Gefillable Izak Pen	No
7010A	0LM	A4 (8) $\times 11$)	1	Oplion	10	10	Disposable Pen	No
7015A	Lab - Gereral Puidose	A4 (81/3 $\times 11$)	1	Option	10	10	Disposable Pen	No
70344	Fasl Response. AC Capabil:ly	$\begin{gathered} 22 \mathrm{~cm} \times 28 \mathrm{~cm} \\ (8 \% 1 \% 11) \end{gathered}$	I	Plug-In	0.25	0.5	Disposable Pen	Yes
7035 B	General Purpose	$\begin{gathered} 22 \operatorname{cm} \times 28 \mathrm{~cm} \\ (81 / 1 / \times 11) \end{gathered}$	1	$\begin{aligned} & \text { 17108A } \\ & \text { Plug. } 10 \end{aligned}$	0.4	1.0	Disposable Pen	No
7004B	Fast Response, AC Capability	$\begin{gathered} 28 \mathrm{~cm} \times 42 \mathrm{~cm} \\ (11 \times 17) \\ \hline \end{gathered}$	1	Plug-In	0.25	0.5	Disposable Pen	Yes
7040A	OEM	A3 (11×17)	1	Oplion	0.2	05	Disposable Pen	No
7041A	DEM Fast Response	A3 (1) $\times 17)$	1	Oplion	0.2	0.5	Disposable Реп	No
7044A	General Purpose	A3 (11 $\times 17$)	1	Option	025	0.5	Disposable Pen	No
7045A	Fast Response	A3 (11×17)	1	Oplion	0.25	0.5	Disposable Pern	No
7046A	Fasi Pesponse	A3 (11 $\times 17$)	2	Option	0.25	0.5	Disposable Pen	No
7047A	Tast Respense	A3 (11 $\times 17$)	I	Slandard	0.02	0.05	Oisposable Pen	No

PLOTEERS									
Madel	Descriplion	Code	Interface	$\begin{gathered} \text { Dala } \\ \text { Transmission } \\ \text { Rate } \\ \hline \end{gathered}$	Wax Plolting §peed Vec/Min	Plot Acculacy	Resiabily	Ploller Commands	Humerical Resolution
7202月	Termiral Plotter. Connecls between Computer Termiral 8 MODEM	Serial ASCII	$\begin{aligned} & \text { EIA RS232C } \\ & \text { (CCITV24) } \\ & \text { or } 20 \mathrm{mATH} \end{aligned}$	$\begin{gathered} \text { 10. } 15, \text { or } 30 \\ \text { Char/s } \\ \text { Asynchoonous } \end{gathered}$	120	$\begin{gathered} \text { Wilthın } \\ 0.076 \mathrm{~mm} \end{gathered}$	$>0.18 \mathrm{~mm}$	Mnemonic	$\begin{gathered} \hline \operatorname{lin} 10,000 \\ 0 \\ 0.01 \% \end{gathered}$
7203A	High Speed Terminal Ploller. Connects delween Compuler Terminal \& MODEM	$\begin{aligned} & \text { Serial } \\ & \text { ASCII } \end{aligned}$	$\begin{aligned} & \text { EIA RS232C } \\ & \text { (CCIT V24) } \\ & \text { only } \end{aligned}$	$\begin{gathered} 100130 \\ \text { Chir/s } \\ \text { Asynchionaus } \end{gathered}$	450 Dependent on Vector slope \& Leng!'	Within 0.1 mm	$>018 \mathrm{~mm}$	Single ASCII Character	$\begin{gathered} 1102500 \\ 0 I \\ 0.04 \% \end{gathered}$
7210A	Computer Plotler. Connects to Computer Mainlrame	Parallel BCD (842I) or ginary	Binary Oplion 001 inciudes HP 2100/21MX Inlerlace	Synchronous by Handshake	1200 Dependenion Veclor slope $\&$ Lenglh	Within 0.1 mm	$>0.18 \mathrm{~mm}$	Deterin. by stalus al buts in lusel data pass	$\begin{gathered} \hline 1 \operatorname{in} 10,000 \\ \Delta 1 \\ 0.01 \% \end{gathered}$

SIRIP CHARTS													
model	Demeribian	CMart NRGUh		He. 01 Chomands	Slandurd Ma. Chul Sprets	Charl Spead Ranea				$\begin{aligned} & \text { Stundrior Writing } \\ & \text { Melhod } \end{aligned}$	Maximum Serailivily int (melfic) Full Scale		$\begin{gathered} \text { Signal } \\ \text { Input Senaitivity } \end{gathered}$
				$\operatorname{lin}_{\mathrm{Cm} / \mathrm{Hf}}$		$\underset{(\mathrm{man} / \mathrm{Hin}}{\mathrm{man}_{2}}$	$\begin{aligned} & \text { Wln } \\ & 10 . \mathrm{H} \end{aligned}$						
		Cm	in.										
680	L.Jb-OEM	12	5	1	8	2.5	20	1	8	Cadryalimen w/riglact cht	5	(6)	10 sisns
114\%	0L"	12	3	1	Dete: by Col.	3	15	1	6	Bisp. ima Pen	1	(1.2)	Single Spans
7155	$\square \triangle$ CoEM	12		1	7	1	12			Disp. Ini Pen	1	(1.2)	16 Spans
TIGOB	Lxi-DEM	25	i6	2	12	2.5	$\overline{5}$ cri/eef)	2 \%. Sect	Cadry inh pen w/replace carl	01	(0.1)	Plug. In
71018	Gen Furoose-ठM	$2{ }^{\circ}$	10	1	11	2.3	$5 \mathrm{~cm} / \mathrm{sec}$	1	2 $7 \mathrm{~m} / \mathrm{sec}$	Cagliy ink pen witeplace CAn	0.1	(0.1)	Flug ! n
1123	OLM	25	10	1	Deler. by Opl	3	13	1	6	Disb Inx Pro!	1	(1)	Singie Soan
71370	L8D.0EM	23	10	1	${ }^{8}$	N/A	N/A	$0.25 \mathrm{~h} \mathrm{f} / \mathrm{m} / \mathrm{m}$	2	Cap/ry inl pen w/rillace car	0.1	(N/1)	Plugis
712 AA	Lbl-OEM	15	ii'	2	1	N/A	N/A	0.25 וnımin	2	Cadry int pen wieplacicall	01	(N/A)	Piuz-In
7130A	OEM	25	10	$?$	Deter by Opl	,	15	1	,	Displaib Pen, Tnemil 00 ¢	1	(1)	Sinple Soan
Ilinin	0 CH	25	10	1	Deter. by Opl	3	15	1	6		1	(1)	Single Span
71328	Lx ${ }^{\text {b }}$? 3	16	2	8	2.5	15	1	\%	Dind fih Pen, Taumi Opl	I	(1)	11 Stant
71334	LID	35	10	1	B	2.5	15	1	6	Disp Ink Pion Theent: 0 al	1	(I)	11 Spans

DSCILOGRAPHIC RECORDERS						
Sysiem	Ho. of Channels X Charl Hidth (mm)	Wriling Melhod	Filh Amp Model No.	Maximum Sensitivily mV/Diy	Vertical Rack Space Requirement	
					(mm)	Inches
7402A	2×50	Pressurized Ink	$\begin{aligned} & 17400 \mathrm{~A} \\ & 1 \mathrm{hra} \\ & 17404 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.001 \\ & 1 \\ & 20 \\ & \hline \end{aligned}$	267	101/2
7404A	4×40	Piessurized Ink	$\begin{aligned} & 17400 \mathrm{~A} \\ & \text { thru } \\ & 17404 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.001 \\ & 1 \\ & 20 \end{aligned}$	267	10\%
7414A	4×40	Therraal	8800 Series Pieamps	0.001	267	$10^{1 / 2}$
74184	$\begin{aligned} & 6 \times 40 \\ & 8 \times 40 \end{aligned}$	Thermal	8800 Series Preamps	0.001	$\begin{aligned} & 451 \\ & 406 \end{aligned}$	$\begin{aligned} & 17 \% \\ & 26.0 \end{aligned}$

to RECORDERS \& PRINTERS
Fast response $\mathrm{X}-\mathrm{Y}$ recorder, plug-in-modules Models 7004B, 7034A, $\hat{\alpha}$ í7170̂ series plug-ins

High performance

7004B

The Hewlell-Packard Models 7004B and 7034A provide acceleration of more than $3800 \mathrm{~cm} / \mathrm{s}^{3}$ ($1500 \mathrm{in} . / \mathrm{s}^{2}$) and slewing speed of $76 \mathrm{~cm} / \mathrm{s}$ ($30 \mathrm{in} . / \mathrm{s}$). The high acceleration allows the pen to follow small, quick inpul changes. Front and rear guard terminals are available for signal inpuls. Guarding helps eliminate the common mode voltage effects that are 1roublesome when recording from low-level sources such as thermocouples, strain gauges and similar sources. Ad. ditional features include the proven Autogrip electrostatic paper hold. down, the disposable ink pen, a RECORD/SETUP switch, knob locks, fiye-way binding posts. tili stand, to name a few.

Selection of the plug-ins is dependent upon the type of X-Y recorder, as well as purpose. Two plug-ins per axis are placed in the main. frame. Each may be used individually or in series by seling the from pancl switch.
70048. 7034A, 17170 Series plug-ing specifications

70048 and 70344 Performance specificalions
Plug-ins: accepl 4 singlawidic; 2 per axis.
Type of input: lloating \& guarded signal pair. Avsil thru front panel or rear connector.
Zero sel: may be sel \pm Ifs from zero index.
Zero check awliches: pushbution in cach axis allows verifica. of recorder's zero position without removal or shoring of inpul signal.

Malnframe accuracy: $\pm 0.2 \%$ of full scalc.
Range vernler: lockable, covers 2.5 imes range setting.
Slewing apeed: more than $75 \mathrm{~cm} / \mathrm{s}(30 \mathrm{in} . / \mathrm{s})$ independent of line voliage \& lrequency.
Agcelerallon: more than $3800 \mathrm{~cm} / \mathrm{s}^{2}\left(1500 \mathrm{in} . / \mathrm{s}^{1}\right)$.
Reference alabllity: betier than $0.003 \% /{ }^{\circ} \mathrm{C}$.

- Plug-in versatility

7034A

17170A

17171A

17172A

Terminal basod linearlty: ± 0.1 \% of full scale.
Resertabilly: $\pm 0.05 \%$ of full scalc.
7004 B and 7034A General specificatlons
Paper holddown: aulogrip grips charls up to tire of platen
Pen lift: local and rumole control (comact chsure or TTL),
Dimensfong; $7004 \mathrm{~B}-445 \mathrm{~mm}$ widc. 267 mm high, 121 mm deep ($17 \%^{\prime \prime} \times 17 Y^{\prime \prime} \times 4 \%^{\prime \prime}$). $7034 \mathrm{~A}-445 \mathrm{~mm}$ wide. 267 mm high. 121 $\mathrm{mm} \operatorname{decp}\left(171 / 2^{*} \times 101 / 2^{*} \times 4 \% 4^{*}\right)$.
Welght: 700 d B - net $12.7 \mathrm{~kg}(28 \mathrm{lb})$. Shipping $14.1 \mathrm{~kg}(42 \mathrm{lb})$.
7034 A - nct 73 kg (16 lb). Shipping 14.1 kg (31 lb).
Power: lls or 230 V ac $\pm 10 \%, 5010400 \mathrm{~Hz}$, approx. 85 VA (dependent on plug-in).
17170 DC Coupler specifications
Input range: single tixed cafió range of $50 \mathrm{mV} / \mathrm{cm}(100 \mathrm{mV} / \mathrm{in}$.)
Input resitance: I M Ω consiant.
Common mode rejectlon: 120 dB al de \& 70 dB al $50 \mathrm{~Hz} \&$ above with 1001 b belween low side \& guard conneel point with source imped. $10 \mathrm{k} \Omega$ ar less.
17171A DC Amplifier apecificatlons
Inpul ranges: $0.25,0.5,1,2.5,5,10,25 \mathrm{mV} / \mathrm{cm}, 0.05 .0 .1,0.25 .0 .5$.
$1.2 .5 .5 \mathrm{~V} / \mathrm{cm}(0.5,1.2,5,10,20.50 \mathrm{mV} / \mathrm{in} . .0 .1,0.2,0.5,1,2.5 .10$ V (in.).
Inpul reslstance: $1 \mathrm{M} \Omega$.
Common mode rejectlon: 120 dB at de \& 100 dB at $50 \mathrm{~Hz} \&$ above with 100Ω between low side \& guard connect point al 0.25 $\mathrm{mV} / \mathrm{cm}(0.5 \mathrm{mV} / \mathrm{in}$.). CMR on otherq decreases $20 \mathrm{~dB} /$ decade step in atlenuation
System accuracy; $\pm 0.2 \%$ full scale.

$17173 A$

171748

17175A

17176A

17177A

17178A

17172A Time base specificatlons
Sweep epeeds: $0.25,0.5,1,2.5 .5,10,25.50 \mathrm{~s} / \mathrm{cml}(0.5,1,2.5,10$. 20, $50,100 \mathrm{~s} / \mathrm{in}$.).
Syetem accuracy: $\pm 1 \%$ of fs on 6 [astest ranges: $\pm 2.5 \%$ on remaining 2.
17173A Null detector speclficatlons
Plol rate: Up to 50 plorsis.
Enable/disable: Requid disable voltage +3 V min. $10+20 \mathrm{~V}$ max.
Requd enabic voltage - 0 V de or no connect. Other voltage combinations available on request.
Muting: local or remute.
Plotting accuracy: ± 0.25 \% of full scale.
17174B DC Ottset specitications
Offest: <l mV 10 approx, 1 V .
Controis: 2 lockable. 10-T high resolution controls (<1 mV to approx. $10 \mathrm{mV} \&<1 \mathrm{mV}$ to approx. I V. An oftsel polarity switch allows upscale or downscale zero olfact.
OHget voltage stability; $>0.005_{i} \mathrm{i},{ }^{\circ} \mathrm{C}$.
17175A Filter speciflcallons
Input ranges: -5 to +50 V de. 10 V ac max p-p.
Maximum source Impedance; 1 kjihigher impedance decriascs filter response.
Rejeclion: $>55 \mathrm{~dB}$ a 50 Hz \& higher ($1 / \mathrm{s} 5$ rise lime) or $>70 \mathrm{~dB}$ 日 $50 \mathrm{~Hz} \&$ higher (I s rise lime). Front panel seluction.
17176A Scanner apeciflcations
Input froni panel miniature kinding posis isolated from ground (high \& low only). Mainframe inpu: - utilizes existing inpul conneclors.
Atlenualor: fuxed attenuator in decade sieps from XI ta X0.001.
Variable allenuator provides continuous coverage.
Inpul impedance: $100 \mathrm{k} \Omega$.
Accuracy: 0.2% of full scalc.
Scan rale: adjust. from $0.1104 \mathrm{~s} / \mathrm{scan}$.
17177A AC/DC Converter DC preampllier speciflcalions
Input ranges; $2.5 \mathrm{mV} / \mathrm{cm}$ so $10 \mathrm{~V} / \mathrm{cm}(5 \mathrm{mV} / \mathrm{in} .1020 \mathrm{~V} / \mathrm{in}$.) in I . 2. 5 sceps.

Minimum usable input (ac only): $\pm 0.2 \%$ of full scale.
Maximum allowabla Input; 300 V peak.
Type of Input: floating \& guarded sig, pair. No rear inpuls. Input Impodance: I Mn shunted by less than 40 pF .
Maximum allowable source resialance: 10Ω.
Common mode relection: 80 dB al de \& $50 \mathrm{~Hz} \&$ above with i00』 belwoen low side \& gurd connect poini \& al $2.5 \mathrm{mV} / \mathrm{cm}$ (5 $\mathrm{mV} / \mathrm{in}$.). CMR on other ranges, decreases $20 \mathrm{~dB} /$ decade slep in yllenuation.
Rlge/fall time (ac only, 10-90\%): Slow responsc (5 Hz to 100 kHz) 2.5 s max: fast response (50 Hz to 100 kHz) 0.5 m misx.

Calibrallon (ac only): responds to average value of input waveform; calib in rms valuc of sinewave.
Accuracy (\% of fs): DC $- \pm 0.5$ \%: AC (fast responsc) - $\pm 0.25 \%$ from 150 Hz 10 $50 \mathrm{ksiz}, \pm 0.5 \%$ from 50 Hz to $150 \mathrm{~Hz} \& 50 \mathrm{kHz}$ to 100 kHz ; AC (slow rexponse) - $\pm 0.25 \%$ from 30 Hz to 50 kHz from $S \mathrm{~Hz}$ to 30 Hz \& 50 kHz 10100 kHz .
Linearity (ac): express as \% of fs, measuring from 0.5% of fs.
Warmup time: 3 minutes nom.
Zero drift (reserred to input): $\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Offet up to Ifs of offisel using reconder's zero.
Slze: double width occupies boih plug-in spacus in axis.
17178A DC AHenuator speclicatloñ
Input ranges: $0.05,0.1,0.25,0.5,1,2.5,5,10 \mathrm{~V} / \mathrm{cm}(0.1,0.2,0.5,1$. 2, 5. $10,20 \mathrm{~V} / \mathrm{in}$.$) .$
Input reslatance: I M Ω.
Common mode rejection: 120 dB al dc \& 70 dB at 50 Hz g above with 1000 between low side \& point where guard is connected (at 50 $\mathrm{mV} / \mathrm{cm}$ or $100 \mathrm{mV} / \mathrm{in}$.). Oither ranges CMR decreases $20 \mathrm{~dB} / \mathrm{de}$ cade step in attertuation.
Syslam accuracy: $\pm 0.2 \%$ of full scale.

Options	Price
001: Meirically scaled \& calibrated (7004B/7034A)	N/C
002: X-axis retrans pol. $5 \times \mathrm{ll} \pm 0.1 \%$ linearity (7004 B)	\$90
003: Tank type pens (70048)	N/C
004: Power supply for 17005-04 incremens charl adv. (7004B)	\$55
001: Merricnfly scaled (17170A/17171A/17172A/ 17177A/17178A)	N/C
001: +3 to 20 V enable. 0 V disable (17173A)	\$25
001: Symbol ploting eapability (6) (17012B/C)	\$30
002: -3 10-20 V disable, 0 V enable (17173A)	\$25
003: $-310-20 \mathrm{~V}$ enuble. 0 V disable (17173A)	\$25
Nocdel number and name	
7004 B X-Y Recorder ($28.26 \mathrm{~cm} \times 43.18 \mathrm{~cm})\left(11^{\prime \prime} \times 179\right)$	\$1900
7034A X-Y Recorder ($21.59 \mathrm{~cm} \times 28.36 \mathrm{~cm}$) $\left(81 /{ }^{\circ \prime} \times\right.$	
II")	\$1825
17170A DC Coupler Plug-in	\$50
17171A DC Amplificr Plug-in	\$375
17172A Time Base Plug-in	\$275
17173A Nulb Detector	S350
17174B DC Offset Plug-in	\$175
17175a Filicr Plug-in	\$150
17176A Scanner Plug-in	\$500
17177^ AC/DC Converter Plug-in	\$695
17178A DC Altcnuator Plug-in	\$200
17012B/C Point Plotter	\$150

OOI: Meirically scaled \& calibrated (7004B/7034A) N/C
002: X-axis retrans pol. $5 \times 2 \pm 0.1 \%$ linearity (7004 B) $\$ 90$
003: Tank type pens (70048)
N/C
004: Power supply for 1700504 increment charl adv.
(7004B)
$\$ 55$
001: Merricnfly scaled (17170A/17171A/17172A/
17177A/17178A)
$001:+31020 \mathrm{~V}$ enable, 0 V disable (17173A)
N/C
$\$ 25$
001: Symbol plotiing eapability (6) (17012B/C) $\$ 30$
002: -3 to- 20 V disable, 0 V enable (17173 A) $\$ 25$
003: -3 to -20 V enable, 0 V disable (I7173A) $\$ 25$
Anodel numbel and name
7004 B X-Y Recorder ($28.26 \mathrm{~cm} \times 43.18 \mathrm{~cm})\left(11^{\prime \prime} \times 179\right) \quad \$ 1900$
7034 A X-Y Recorder $(21.59 \mathrm{~cm} \times 28.36 \mathrm{~cm})\left(81^{* "} \times\right.$
$\left.11^{4}\right)$
17170A DC Coupler Plug-in
$\$ 50$
17171A DC Amplifier Plug-in \$375
17172A Time Base Plug-in \$275
17173A Null Detector $\$ 350$
17174B DC Offet Plug-in \$175
17175A Filer Plugeing
17176A Scanner Plug-in \$500
$\$ 150$
17177^ AC/DC Converter Plug-in \$695
17178A DC Atsenuator Plug-in \$200
17012B/C Point Plotter $\$ 150$

- Floating Guarded inputs

7035B

- Disposable pens

7035 B with 17108A

Maximum allowable source impedance: no restricions axeept on fixed $0.4 \mathrm{mV} / \mathrm{cm}(1 \mathrm{mV} / \mathrm{im}$.) range. Up to $20 \mathrm{k!}$! source impedance will not aler recorder's performance.
Accuracy: $\pm 0.2 \%$ of full scale.
Linearity: $\pm 0.1 \%$ of full scale.
Reseltebility: $\pm 0.1 \%$ of full scale.
Zero eal: zero may be set up to one full sesle in any diecelion from zero index. Lockable zero controls.
Slewing apeed: $50 \mathrm{~cm} / \mathrm{s}$. ($20 \mathrm{in} . / \mathrm{s}$) nominal at 115 V .
Common mode rejection: conditions for the following data are line frequency with up $10 / \mathrm{k} \Omega$ between the positive inpul nnd guard conneclion poin. Max. de common mode voltage is 500 V .

Ranfo		OC (CMA)	AC (CMR)
Melric	English		
$0.4 \mathrm{mV} / \mathrm{cm}$	$1 \mathrm{mV} / \mathrm{in}$.	13008	10008
$4 \mathrm{mV} / \mathrm{cm}$	$10 \mathrm{mV} / \mathrm{in}$.	11068	80 d8
$40 \mathrm{mV} / \mathrm{cm}$	$100 \mathrm{mV} / \mathrm{in}$.	$90 ¢ 8$	6008
$400 \mathrm{mV} / \mathrm{cm}$	$1 \mathrm{~V} / \mathrm{in}$.	$70 \mathrm{d8}$	4048
$4 \mathrm{~V} / \mathrm{cm}$	$10 \mathrm{~V} / \mathrm{in}$.	50 dB	2088

General specifications

Papor holddown: autogrip electric papes holddown grips $216 \mathrm{~mm} \times$ $279 \mathrm{~mm}\left(8 \frac{1}{2} \mathrm{in} . \times 1 \mathrm{in}\right.$.) charts or smaller. Special paper nol required. Pon lift: electric pen lift capabie of being remotely controlied.
Dimenslons: 265 mm high, 445 mm wide, 121 mm deep ($10 / 1 \mathrm{~m}^{*} \times$ $17 \% " \times 4 \%^{\circ}$ deep).
Weight nel, 8 kB (18 lb). Shipping. 10.9 kg (24 lb).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. 501060 Hz . approximately 45 VA

17108A Specifications

Sweep epeede: 0.2, 0.4, 2, 4, $20 \mathrm{~s} / \mathrm{cm}(0.5,1.5,10.50 \mathrm{~s} / \mathrm{im}$).
Accurscy: 5% of recorder full scale.
Linearify: 0.5% of full scale $\left(20^{\circ} \mathrm{C} 1030^{\circ} \mathrm{C}\right)$
Output voltage: 0 to 1.5 V .
Powor: replaceable mencury battery (100 hr).
Options and accessories
Price
Opi 001 - Meiric callbration
N/C
Opi 003 - Reiransmating potenifomeler on Xaxis 5
$k \Omega \pm 3 \%$
Opt 020 - modificalion for use with models 3580A and
3581A/C:
$\$ 295$
17108A Time Base Plug-In
add $\$ 225$
17108AM Time Base Plug-In (meiric)
add \$225

Normal mode rejection: $>30 \mathrm{~dB} \mathrm{Hl} 60 \mathrm{~Hz}: 18 \mathrm{~dB} /$ oclave above 60 H\%.

7035B General Purpose X-Y recorder
\$1255

Low cost OEM; lab X-Y recorders
 Models 7010A \& 7015A

- Low cost

7010A-002

The Hewlet1-Packard Models 7010A and 7015A X-Y Recorders are low cont, onc-pen. DIN 44 ($81 ; \times 11 \mathrm{in}$.) instruments that reature moximum elecirical and mechmacal Mexibilicy to fil many and varied applications. The 7010A is specifically designed for the OEM user who is concerned with cosi and space. Oplional voltage spans from 0.01 $\mathrm{V} /$ div $10 \mathrm{IV} / \mathrm{div}$ as well as lime base swecp oplions, control pancl. metric calibration, elecirical pen lift. and carrying case are available. The 7015A is for the laboratory user such as schools and other institutions where cost is the primary consideration without sacrificing re liability or dependability. A contral pantl supplied with power on /orn, standby, and range swilchis (threc spans from $10 \mathrm{mV} / \mathrm{cm}$ to $1 \mathrm{~V} / \mathrm{cm}$), as well as vernier and zero conecols is provided with the standard recorder. Oplions available include metrie calibration, time buse, clectric pen Jif, and carrying case. Standard equipment supplied on boih unsis inclades the electrostatic papur holddown, rear consector, rack mounting brackets, and a uiliversal pen holder (localed in the standard Accessory Kit) that will hold mosi fiber tip pens.

7010A and 7015A Specifications

Performance epecificallons

Input ranges: 7010A - single range, $0.1 \mathrm{~V} / \mathrm{div}^{\prime}, 701 \mathrm{sA}$ - ihree ranges $0.01 \mathrm{~V} / \mathrm{cm}, 0.1 \mathrm{~V} / \mathrm{em} .1 \mathrm{~V} / \mathrm{cm}(0.01 \mathrm{~V} / \mathrm{mn} .0 .1 \mathrm{~V} / \mathrm{in} . .1 \mathrm{~V} / \mathrm{in}$.$) ,$ Vemier adjustment overlapping all ranges.
Type of Inputs: hoaling, constant I M Ω impedance.
Impedance to ground; 10 M n from cither terminal to ground.
Common mode rejectlon: $100 \mathrm{~dB}(\mathrm{dc}), 90 \mathrm{~dB}(\mathrm{ac})$ from $+10^{\circ} \mathrm{C} 10$ $+40^{\circ} \mathrm{C} .0-80 \% \mathrm{RH}$. Degrades $20 \mathrm{~dB} /$ docade step in attenuator (both ac and dc).
Conneotlon: 7010A - via circuit board pins or slandard reár connector. 7015A - front panel binding posts or slandard rear connec-

Accuracy: $\pm 0.3 \%^{\circ}$ or full scale al $25^{\circ} \mathrm{C}$ on $0.1 \mathrm{~V} /$ div. (includes linearity and deadband). Temperacure cocfficient $\pm 0.02 \% / C^{\circ}$.
Range accuracy: $\pm 0.3{ }^{3}$, of full scile $\pm 0.2 \%$ or deflection (includes lincarily and deidband) at $25^{\circ} \mathrm{C}$. Temiperature cocflicicol $0.02 \% /{ }^{\circ} \mathrm{C}$.

Deadband: 0.2% of full scale.

Overahoo:: 2% full scale maximum.
Slewlng spead: $50 \mathrm{~cm} / \mathrm{s}$. ($20 \mathrm{in} . / \mathrm{sec}$) minimum.
Peak acceleratlon: X-axis $-1270 \mathrm{~cm} / \mathrm{sec}^{2}\left(500 \mathrm{in} . / \mathrm{scc}^{2}\right)$ min. Y-axis - $2540 \mathrm{~cm} / \mathrm{sec}^{2}$ ($1000 \mathrm{in} . / \mathrm{sec}^{2}$) minimum.

Zero conditions:

Control rangea: pen posilioned at any location on charr using 10 T pol +1 rull scale zero suppression.
Resolulion: pen positioned wilhn +0.005 in . of any point on chart.
Zero drift: pen will nal move more than $2.5 \mathrm{~mm} / \mathrm{day}$ ($0.1 \mathrm{in} . / \mathrm{day}$) independent of temperature.

- Universal pen holder

General spechicalions
Paper holdown: aulogrip cleciric paper holdodown grips DIN AA or $81 / 2 \times 11$ in. charis.
Front panel controls:
7010A: oplional
7015A: power on/off, servo standby, fange switches, vernier, zero controls and chart hold. Pen life switches optional.
Writing system: dispasible pens, and universal pen holder to hold most liber lip pens.
Platen size: bolds DIN A4 or $81 / 2 \times 11$ in. size charl paper.
Dimenstons: 267 mm high, 432 nm wide. 135 mm deep ($101 / 2 \times 17 \times$ 5 inches). Provisions provided for rack mounting in DIN or 15° size rack.
Power: swich seleclable for 100, 11S, 200, 210 V ac, $47.5-440 \mathrm{~Hz} .70$ VA muximun.
Welght: nel, 7.2 kg (16 lb): shipping, 10 kg (22 lb).
Tlme base: (oplional)
Sweop ratas; 7010A: single rate $-1 \mathrm{sec} / \mathrm{cm}, 10 \mathrm{sec} / \mathrm{crm} 7015 \mathrm{~A}$: six From $0.1 \mathrm{sec} / \mathrm{in}$. $1050 \mathrm{sec} / \mathrm{div}(0.5 \mathrm{sec} / \mathrm{in} .10100 \mathrm{sec} / \mathrm{div}$.)
Accuracy: 1.5% 6 $25^{\circ} \mathrm{C}$, emperature coeflicient $\pm 0.1 \%$ per ${ }^{\circ} \mathrm{C}$ over temperature range of $+10^{\circ} \mathrm{C} 10+40^{\circ} \mathrm{C}$.
Controls: siart, resel, actuated by remote contact closuse or TTL. 7015A also from control pancl.

Options 7010A:	Price
001: Metric calibration	N / C
002: Control pancl - provides power on/ofi servo stundby, chart hold switch, zero controls, and, is ordered, uluerric pen lif	\$50
003: Electric pen lift	\$50
004: Deletes recorder case	less \$50
005: Single span - $10 \mathrm{ml} /$ / div - X-axis	N/C
006: Single span - IV/div - X-axis	N/C
007: Single span - $10 \mathrm{mV} / \mathrm{div}-\mathrm{Y}$-axis	N / C
008: Single span - I V/div - Y-axis	N/C
009: Sweep rate -) see/div - X-axis (includes elect. pen lift)	\$150
010: Sivecp ralc - 10 sec/div - X-axis (includes cluel. pen lift)	\$150
01 r : Case, carrying (not to be used for shipping)	\$75
7015A:	
001: Mutric culibration - $10 \mathrm{mV} / \mathrm{cm} .100 \mathrm{mV} / \mathrm{cm}, \mathrm{l}$	
V/cm	N/C
002: Time base (includes electric pen lim)	\$200
003: Eloctric pen lifi	\$50
004: Case, carrying (nol to be used for shipping)	\$75
Model number and name	
7010A OEM X-Y Recisrder	\$900
7015A Lab X-Y Recorder	\$945

RECORDERS \& PRINTERS
 OEM, Dedicated applications $\mathrm{X}-\mathrm{Y}$ recorders Models 7040A \& 7041A

- Rugged one-plece casting
- Over 40 options

The 7040 A and $704 \mathrm{IA} \mathrm{X}-\mathrm{Y}$ recorders are specifieally designed for dedicated, single-purpose recording applications. The 7040 A is a me-dium-speed unil while the 7041 A is a high-spoed unil featuring fast acceleration for applications where recording time is critical or incoming data is al a high rate.

Both models use a one-piece aluminum casting mainframe which eliminates the need for critical mechanical adjustments. They are also equipped with the Aulogrip paper holddown system and the quickchange disposable per.

Additionally, over 40 options give these recorders the ability to be customized for the needed application. Most of the options can be casily and quickly installed or changed in the field. This includes a control panel (Opition 038) which would provide the basic recorder luncifons such as zero set, servo. pen, and charl operation. Other options include a time base, a plug-in X-axis event marker. TTl. logic remote control, plus a varicty of inpul ranges.

A funclional and quantity discount is available for boih units when qualified for the OEM purchasc agreement.

7040A \& 7041A Specifications

Inpul ranges: single range from 0.2 to $500 \mathrm{mV} / \mathrm{cm}(0.5 \mathrm{mV} / \mathrm{in} .101$ V / in.), specified by option choice.
Type of Input floating. 200 V de or peak ac max: internal polarity switch: inputs through rear barrier strip or optional conncetor.
Input resistance: I M
Common mode relection: 100 dB dc 80 dB al line frequency.

Slowing speed:

7040A: $50 \mathrm{~cm} / \mathrm{s}(20 \mathrm{in} . / \mathrm{s}$) min .
7041A: $76 \mathrm{~cm} / \mathrm{s}(30 \mathrm{in} . / \mathrm{s}) \mathrm{min}$.
Acooleratlon (peak)
7040A: Y axis $2540 \mathrm{cms} / \mathrm{s}^{2}\left(1000 \mathrm{in} . / \mathrm{s}^{2}\right) ; X$ axis $1270 \mathrm{~cm} / \mathrm{s}^{2}(500$ in. $/ s^{2}$).
7041A: Y axis $7620 \mathrm{~cm} / \mathrm{s}^{2}\left(3000 \mathrm{in} / \mathrm{s}^{3}\right.$); X axis $5080 \mathrm{~cm} / \mathrm{s}^{2}(2000$ in. $/ s^{1}$).
Accuracy: ± 0.2 of full seale.
8woep: optional, single range.
Zero eet: external control provided by user: front panel controls available as Option 038.
Paper holddown: aulogrip eleclric paper holddown grips DIN A3 or 11 in . $\times 17 \mathrm{in}$. size charts or smalicr.
Pen litt electric pen lift controlled remotely by contaci closurc: TTL logic level provided by Oplion 039.
Dlmensions: 356 mm high. 483 mm wide, 165 mm deep ($14 \times 19 \times$ $61 / 3^{\circ}$): rack mounling siruclure integral wilh unit.
Welght: net, 13.2 kg (29 lb). Shipping, 16.8 kg (37 lb).

Power: 115 or $230 \mathrm{~V} \pm 10 \% .50$ to 400 Hz , approx. 130 VA . Notec OEM discoube arailable on tuth models.
Options
Input renge: specify one range option for each axis: must be both English or both metric

X	Y	Range	Price	X	Y	Range	Price
001	007	$0.5 \mathrm{mV} / \mathrm{in}$.	$\$ 30$	013	019	$0.2 \mathrm{mV} / \mathrm{cm}$	$\$ 30$
002	008	$1 \mathrm{mV} / \mathrm{in}$.	$\$ 30$	014	020	$0.5 \mathrm{mV} / \mathrm{cm}$	$\$ 30$
003	009	$10 \mathrm{mV} / \mathrm{in}$.	$\$ 30$	015	021	$5 \mathrm{mV} / \mathrm{cm}$	$\$ 30$
004	010	$100 \mathrm{mV} / \mathrm{in}$.	$\mathrm{~N} / \mathrm{C}$	016	022	$50 \mathrm{mV} / \mathrm{cm}$	N / C
005	011	$500 \mathrm{mV} / \mathrm{in}$.	N / C	017	023	$100 \mathrm{mV} / \mathrm{cm}$	N / C
006	012	$1 \mathrm{~V} / \mathrm{in}$.	N / C	018	024	$500 \mathrm{mV} / \mathrm{cm}$	N / C

Note ollire ranex durlable on sDecinal orber.
Sweep range: specilied by option, X axis only; accuracy \pm ! 多 of full sculc $\pm 0.1 \% /{ }^{\circ} \mathrm{C}$ max; TTL Jogic start and reset

	Sweep	Price		Sweep	Price
025	$1 \mathrm{~s} / \mathrm{in}$.	$\$ 135$	030	$0.5 \mathrm{~s} / \mathrm{cm}$	$\$ 140$
026	$5 \mathrm{~s} / \mathrm{in}$.	$\$ 135$	031	$1 \mathrm{~s} / \mathrm{cm}$	$\$ 140$
027	$10 \mathrm{~s} / \mathrm{in}$.	$\$ 135$	032	$5 \mathrm{~s} / \mathrm{cm}$	$\$ 140$
028	$50 \mathrm{~s} / \mathrm{in}$.	$\$ 135$	033	$10 \mathrm{~s} / \mathrm{cm}$	$\$ 140$
029	$100 \mathrm{~s} / \mathrm{in}$.	$\$ 135$	034	$50 \mathrm{~s} / \mathrm{cm}$	$\$ 140$

Note' ofber 3weed ranges aralable on spectial order.
035: event marker, upper margin of X axis
038: X axis retransmithing potentiometer ($19.2 \mathrm{k} \Omega$)
037: Y axis retransnituing potentiometer ($13.1 \mathrm{k} \Omega$)
038: conerol pancl; for line. pen lif. chari, servo standby, zero, and zero check: add $44 \mathrm{~mm}\left(13 /{ }^{4}\right)$ to height
039: TTL logie remole control; for pen lifi and servo standby: also event marker if installed
040: rear connector: X, Y input signals and retransmitting poicntiometers, lime base controls. Aulogrip servo standby, pen lift, event marker and Oplion 039 control lines brought to a single locking connector
041: side Irim panels and dust cover (356 mm , [14"]) for standard unit
042: side trim panels and dust cover ($400 \mathrm{~mm} .\left[15 \%_{2}^{\mu}\right.$]) for unil with Oplion 038 installed

Model number and name

7040A Mediunl 5psed X-Y recorder
7041 A High speed $\mathrm{X}-\mathrm{Y}$ recorder

RECORDERS \& PRINTERS

Two-pen, three parameter X-Y/Y recorder

The Model 7046A is a general-purpose 2-pen laboratory X-Y recorder designed to assure high quality recordings withou sacrificing ruggedness, relistility and high performance so necessary for a laboratery recorder. The unit has dynamic performance that surpasses most 2 -pear recorders by offering Y -axis acceleration exceeding 6350 $\mathrm{em} / \mathrm{s}^{2}$ (2500 in / sec^{2}). This high acceleration plus very litele oversheot results in the 7046A reproducing a wide range of fast changing input signals.
A front panel poslarity swich that switches pen direction, and the response switch which reduces the speed of the unit, are also available. The Aulogrip paper holddün sysiem which holds DIN A3. up to $27.9 \mathrm{~cm} \times 43.2 \mathrm{cma}(11 \times 17 \mathrm{in}$.) size paper is also standard.

7046A Specifications

Performanca spectications

Input ranges: merric calibration available in $0.25,0.5,2.5,5.25$ $\mathrm{mV} / \mathrm{cm} ; 0.05,0.25,0.5,2.5,5 \mathrm{~V} / \mathrm{cm}(0.5 .1,5.10 .50 \mathrm{mV} / \mathrm{in} . ; 0.1,0.5,1$. 5. 10 V /in.). Contínuous vernier betwoen ranges.

Type al input: floating and guarded. 500 V de or peak ac maximum. Polarity reversal swich located on from panel, guard internally connected. Inpuls through front pinel binding posts or rear connector.
Input resiatance: I megohm constant on all ranges.
Common mode: 110 dB de and 90 dB at 50 Hz and above (exceeds 130 dB oc and I 10 dB ac under normal lab environmental conditions) with I k Ω between HI and LO terminals, CMV applied between ground and LO, and attenuator on most sensitive range On other ranges, CMR docteases 20 dB per decade step in attenuation.
Slewing speed: Fast Response. $76 \mathrm{~cm} / \mathrm{s}(30 \mathrm{in} . / \mathrm{s}$) minimum: Slow Response. $36 \mathrm{~cm} / \mathrm{s}$ ($15 \mathrm{in} . / \mathrm{s}$) (ypical.
Acceleration (peak, fast responsc only): Y-axis $6350 \mathrm{~cm} / \mathrm{s}^{2}(2500$ in. $/ \mathrm{s}^{2}$). X-8xis $3800 \mathrm{~cm} / \mathrm{s}^{2}$ ($1500 \mathrm{in} / \mathrm{s}^{2}$).
Accuracy: $\pm 0.2 \%$ of full scale (includes linearity and deadband) al $25^{\circ} \mathrm{C}$. Temp Coefficient $\pm 0.01 \%$ per ${ }^{\circ} \mathrm{C}$.
Range accuracy: $\pm 0.2 \%$ of full scale $\pm 0.2 \%$ of deflection (includes
fincarity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coefficient $\pm 0.010^{\circ}$ per ${ }^{\circ} \mathrm{C}$. Deadband: 0.1% of full scalc.
Overshoot: 1\% of full scalc (maximum).
Zero set: zero may be placed anywhere on the writing ares or clectrically off scale up to one full scale from zero index.
Environmental (operating): 0 to $55^{\circ} \mathrm{C}$ and $<95 \%$ relative humidity $\left(40^{\circ} \mathrm{C}\right.$).

General speciffcations

Writing mechaniam: servo actualed ink pens.
Writing area: $25 \mathrm{~cm} \times 38 \mathrm{~cm}\left(10^{\circ} \times 15^{\prime}\right)$.
Paper holddown: autogrip clectric paper holddown grips DIN A3 or 11 in. $\times 17$ in, charts or smaller. Special paper not required.
Pen int: electric (remole, via contace closure or TTL level).
Dimenslons: 44] mm high, 483 mm wide, 173 mm decp (17) $\mathrm{s}^{*} \times 19^{\circ}$ $\left.\times 61 \% / u^{\prime \prime}\right)$; rack mounting strecture integral with unit.
Power: ils or 230 volks ac $\pm 105 \mathrm{~m}, 48$ to $400 \mathrm{~Hz}, 175 \mathrm{VA}$.
Welght. nel, 16 kg (35 lb); shipping. $21.4 \mathrm{~kg}(47 \mathrm{lb})$.

Options
 007: Metric Calibration

001: Time Base
Sweep rates: Melric calibration is $0.25,0.5,2.5 .5,25.50$ $5 / \mathrm{cm}(0.5,1,5.10,50,100 \mathrm{~s} / \mathrm{in}$)
Accuracy: 1 e al $25^{\circ} \mathrm{C}$ (Temp. Coefl. $\pm 0.1 \% /{ }^{\circ} \mathrm{C}$ max). Gencral: swithable to X-axis. Slart and rearet by front panel control, remole by momentary contact closure to ground or TTL levels. Automatic resel at full scále, recyele accomplished by conimuous starl signal.
002: Event Marker
Writes in upper margin, aligned with X -axis position of Y pen, approximatcly 0.12 cm (0.05 is.) excursion completed 50 ms after application of signal. Controlled remotely by contace closure 10 ground or by TTL hevels. Conlacl resistance: $4 \mathrm{k} \Omega$ (maximum).
70464 2-pen, X-Y/Y, recorder

The Models 7044A. 7045A, and the 7047A ark general purpose X-Y recurders specifically designed to offer (he nueded requiruments to perform laboralory measurements. This allows for a wide rande of quickchanging signals to be reproduced accurately and dependably. The 704AA is a medium-speed recorder designed for most general-purpose applications. The 7045A and 7047A offer higher speed and Y-axis ac celeration exceeding $7620 \mathrm{~cm} / \mathrm{sec}^{2}$ ($3000 \mathrm{in} . / \mathrm{sec}^{2}$).

Other oulstanding fealures found on the recorders include 10 calibrated de inpul ranges on each axis ol uhe 7044A and 7045A from 0.25 $\mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$ ($0.5 \mathrm{mV} / \mathrm{in}$. $1020 \mathrm{~V} / \mathrm{in}$.) and 12 ealibrated de mput ranges on each axis of the 7047 A from $0.02 \mathrm{mV} / \mathrm{cmi}$ to $5 \mathrm{~V} / \mathrm{cm}\langle 0.05$ $\mathrm{mV} / \mathrm{in}$. $1010 \mathrm{~V} / \mathrm{in}$.). In between, a l-S-10 scquence is used (except for the $0.02 \mathrm{mV} / \mathrm{cm}$. most sensitive range selling of the metric option on the 7047^.) On all ihrec. arhitrary full scale voliage rianges may be es tablished with the vernier control in conjunction with the calibrated de ranges.

Additionally, these recorders are equipped with front panel polarily switches which reverse pen direction, eliminating the need for reversing the inpul leads. The 7045A and 7047A are provided with a RESPONSE switch which allows the user 10 slow the response of the recorder for eisier setup. The 7047A preamplifiets for the X and Y axes are contained in wo speciatly designed aluminum enciosures. These contain chopper de amplitiers and have the unique servicuability featore of being removable and operational outside of the mainframe, using the catrle extender included in the Accessory Kit.

Also available on all models is the continuous duty, aluminum framed de servo motor, the X-axis of the 7045A and 7047A contain the larger, faster motor. This reduces overheating and wear if the pen is driven offscale for an indefinite lime. The urouble-frec Autogrip electrostatic holddown platen capable of hoiding chart paper of the Europein size A3 and II in. $\times 17 \mathrm{in}$. size is included, as well as a dis. posible pen with four color choices, and plaslic coalcd wirewound balance potentiometer. Latest circuitry design and assembly tachniques have ulso boen incorpocated. thereby reducing failure and maintenance tione.

Oplions include the Time Base (standard on the 7047A) Event Marker and Metric Scaling. TIL Remole Conirol and Rear Connector are slandurd on all models.

7044A, 7045A Specifications

Performance spectifications

Inpul ranges: $0.25,0.5,2.5,5,25 \mathrm{mV} / \mathrm{cm} ; 0.05,0.25,0.5,2.5 .5 \mathrm{~V} / \mathrm{cm}$ (English calibration available in 0.5. I, 5, $10,50 \mathrm{mV} / \mathrm{in}$.: 0.1, 0.5. 1. 5. $10 \mathrm{~V} / \mathrm{in}$.). Conlinuous vernicr between rangas.

Type of Input: ncating and guarded. 500 V dc or peak ac maximum. Polarity reversal switch located on front panel, guard intermally connected. Inputs through front panel 5 -way binding posts or rear connector.
Input realetance: I megohm constamt on all ranges.
Common mode: 110 dB de and 90 dB al 50 Hz and above (exceeds 130 dB de and 110 dB ac under normal lab environmental conditions) with $1 \mathrm{k} \Omega$ between HI and LO terminals, CMV applied between ground and LO, and altenuator on most sensitive range. CMR deereases 20 dB per decade step in attenuation.

Slewing speod

7044A: $50 \mathrm{~cm} / \mathrm{sec}(20 \mathrm{in} / \mathrm{sec})$ minimum.
7045A: Fast Response, $76 \mathrm{~cm} / \mathrm{sec}(30 \mathrm{in}, / \mathrm{sec})$ minimum. SloH Responsc, $36 \mathrm{~cm} / \mathrm{sec}$ ($1 \mathrm{Sin} . / \mathrm{sec}$) (ypical.
Acceleration (peak)
7044A: Y-axis $2540 \mathrm{~cm} / \mathrm{sec}^{1}\left(1000 \mathrm{in} . / \mathrm{sec}^{2}\right), X$-axis $1270 \mathrm{~cm} / \mathrm{sec}^{2}$ (500 in . $/ \mathrm{sec}^{2}$).
7045A: (Fast Response only) Y-axis $7620 \mathrm{~cm} / \mathrm{sec}^{2}$ ($3000 \mathrm{in} . / \mathrm{sec}^{2}$). X-axis $5080 \mathrm{~cm} / \mathrm{sec}^{2}$ (2000 in / $/ \mathrm{sec}^{3}$).
Accuracy: $\pm 0.2^{\circ} \%$ of full scale (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Terap Coeflicient $\pm 0.01{ }^{\circ} \mathrm{per}{ }^{\circ} \mathrm{C}$.
Range Accuracy: $\pm 0.2 \%$ of lull scale $\pm 0.2 \%$ of deflection (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coefficient $\pm 0.01{ }^{\circ} \mathrm{C}$ per ${ }^{\circ} \mathrm{C}$.
Deadband: 0.1% of full scale.
Overshoof: 7044A - 2\% of full scale (maximum). 7045A - 1% of full scalc (maximum).
Zero set: zero may be placed anywhere on the writing area or electrically off seale up to one full scale from eero index.
Envlronmental (operating): 0° to $55^{\circ} \mathrm{C}$ and $<95 \%$ relative humidly ($40^{\circ} \mathrm{C}$).

General spectifications

Writing mechanlemt servo actuated ink pen.
Writing area: $25 \mathrm{~cm} \times 38 \mathrm{~cm}\left(10^{\circ} \times 15^{7}\right)$.
Paper holddown: aulogtip electric paper holddown grips DIN A3 or 11 in, $\times 17 \mathrm{in}$. charts or smaller. Special paper nol required.
Pen IHf: electric. (Remote via TTL.)
Dimenslons: 400 mm high. 483 mm wide. 165 mm deep ($15 y_{4}{ }^{*} \times 19^{*}$ $\times 61 / 2^{\prime \prime}$): rack mounting structure integral with unit.
Power: 115 or 230 V ac $\pm 10 \%, 48$ to 400 Hz 7044 A . $135 \mathrm{VA}: 7045 \mathrm{~A}$. 175 VA .
Weight: nel, $13.7 \mathrm{~kg}(30 \mathrm{lb})$. Shipping, $19.1 \mathrm{~kg}(42 \mathrm{lb})$,

Options

Price
006: Metric Calibration

001: Time Base

Sweep rates: $0.25,0.5,2.5,5,25,50 \mathrm{sec} / \mathrm{cm}(0.5,1,5,10$, $50,100 \mathrm{sec} / \mathrm{in}$)
Time Base Accuracy: 1.0% al $25^{\circ} \mathrm{C}$.
Temp Coefficient $\pm 0.1 \%$ per ${ }^{\circ} \mathrm{C}$.
General: Switchable to either X or Y axis. Start and resel by front pancl control, vemole by momentury contacl closure to ground or TTL levels. Automalic resel at full scale. recycle accomplished by coninuous start signal.
002: Event Marker: Wrlecs in upper margin, aligned with X-axis position, approximately $0.13 \mathrm{~cm}(0.05 \mathrm{in}$.) excursion compicted 50 msec after application of signal. Controlled remolely by contact closure 10 ground or by TTL levels.

7047A Specifications

Performance specifications
Inpul ranges: $0.02,0.05,0.1,0.5,1.5 \mathrm{mV} / \mathrm{cm} ; 0.01,0.05,0.1,0.5,1,5$
V/em (0.05, 0.1, 0.5, 1. $5.10 \mathrm{mV} / \mathrm{in} . ; 0.05,0.1,0.5,1,5,10 \mathrm{~V} / \mathrm{in}$.$) .$ Continuous vernicr between ranges.
Type of Input: floating and guarded (front input only). Eroploys a unique common mode driver circuit that eliminates the need for connecting CMV to the recorder if CMV is less than or equal to 10 V pk . Input resletance: I megohm constant on all ranges.
Accuracy: $\pm 0.2 \%$ of full seale (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coefficient $\pm 0.03 \mathrm{~g}^{\prime \prime}$ per ${ }^{\circ} \mathrm{C}$.
Range accuracy; $\pm 0.2 \%$ of full scale $\pm 0.2 \%$ of dellection (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coefficient ± 0.01 \% $^{\circ}$ per ${ }^{\circ} \mathrm{C}$. Deadband: 0.1% of full scale.
Common mode rejectlon: 140 dB de and 130 dB ac with $\mathrm{I} \mathrm{k} \Omega \mathrm{im}$ balance in either the high or low lerminal (exceeds 150 dB under normal laboratory conditions.) CMR decreases 20 dB per decade siep in attenuation.
Normal mode rejection: 30 dB minimum at line frequency with
FILTER IN. (50 dB sypical at 60 Hz and 40 dB typical at 50 Hz).
Slewing epeed: $76 \mathrm{~cm} /$ second ($30 \mathrm{in} / \mathrm{sec}$) minimum. $97 \mathrm{~cm} / \mathrm{sec}$ (38 in. $/ \mathrm{sec}$) typical under normal fab conditions.
Acceleration (peak): Y-axis $7620 \mathrm{~cm} / \mathrm{sec}^{2}\left(3000 \mathrm{in} . / \mathrm{sec}^{2}\right)$
X-axis $5080 \mathrm{~cm} / \mathrm{sec}^{-}\left(2000 \mathrm{in} / \mathrm{scc}^{2}\right)$
Overshoot: 1% of lull scale maximum.
Callbrated z ero offset provides eleven scales of ealibrased zero offsel in both axex. Switchable in steps of onc fulf seale from +1 to -10 scales.
Offeel accuracy: at $25^{\circ} \mathrm{C}, \pm 0.1 \%$ of full scalc times N wherc $\mathrm{N}=$ number of scales of olfscl.
Temperalure coetricient: $\pm 0.004 \%^{\circ}$ of full seale limer N per ${ }^{\circ} \mathrm{C}$.
Time base: specds of $0.1,0.5,1,5,10,50 \mathrm{sec} / \mathrm{cm}(0.5,1,5,10,50,100$ seconds/in.). Switchable into X or Y axis.
Thene base aceuracy: 1.0% at $25^{\circ} \mathrm{C}$. Temp Coefficient ± 0.1 易 per ${ }^{\circ} \mathrm{C}$.
General specifications
Writing mechanism; servo actuated ink pen.
Writing area: $25 \mathrm{~cm} \times 38 \mathrm{~cm}$ ($10 \mathrm{in} . \times 15 \mathrm{in}$.)
Paper holddown: autogrip eloctric paper holddown grips DIN A3 or II in. X 17 in. charts or smaller. Special paper not required. Pen Ifte electric (remote via TTL level).
Dimenslons: 441 mm H $\times 483 \mathrm{~mm} W \times 173 \mathrm{~mm} D\left(17 \mathrm{~m}^{\prime \prime} \times 19^{\prime} \times\right.$
$6^{13} / 10^{\circ}$); rack mounting stryelure iniegral with unit.
Power: 115 or $230 \mathrm{Vac} \pm 10 \%, 48$ to $66 \mathrm{~Hz}, 180 \mathrm{VA}$ maximum.
Waight: nel, 18.6 kg (4 l lb). Shipping, $24 \mathrm{~kg}(53 \mathrm{lb})$.
Metric calibration - option 001 Prlce
Ranges are $0.02,0.05,0.10,0.50,1,5 \mathrm{mV} / \mathrm{cm} ; 0.01,0.05$, O.I, 0.5, I, $5 \mathrm{~V} / \mathrm{cm}$.
N / C
Event marker - option 002
Marking area: in margin at same X coordinate as recorder pen.
Excursion: approxinalely 0.050 isch.
Actuation itmer siroke compleze 50 ms after application of signal.
Ink capaclty: 0.45 ex cartridge, cartndge reloading lype. Wriling distance 500 fi minimum.
$\$ 75$
Model nurnber and name
7044A Medium speed X-Y recorder $\$ 1715$
7045A High speed X-Y recorder \$2075
7047A High sensilivity X-Y recorder $\$ 2850$

The 7202A Graphic Plotter brings complete graphic capability 10 the computer terminal with a minimum of programming effort and software overhead. ASCII characters are utilized in a brief and concise lormat to represernt the high tesolution absolute position coordinates. Simple mnemonic commands control the ploting modes Ploter oft, plot lines, or plot prints. Only a few program statements sare needed to bring full graphic display to the terminal. Scale the dals with a simple formula and add a single print statement to cause the four-digit integer X and Y coordinates 10 be printed on a line and ploteded. The result is the rinal graph.

A 7203A bringx high-speed graphle display to the computer terminal. Serial ASClI charseters transmitted by the computer system are interpected as bínary position dala. Pen and position mancuvers are independent, single characler commands to provide increased flexibility and control. Data sealing and conversion into the proper ASCII character representation is easily handied by a progrum subrouline. Four ASCll characters representing X and Y coordinates are transmitted by the system for each data print. Moves of any length up to the maximum plot dimension can be made al any angle. Plotier control subroulines are available for most Hewlett-Packard timeshare sysrems (i.e., Option 005 for HP $2000 \mathrm{C} / \mathrm{F}$ sysems) to hamale all scating. binary code conversion and timing considerations. Merely define the range of the data and the speed of the terminal.

Convenient front panel sealing controis of the Plotiers permit selection or any plot sizc or position on any style paper up 1011×17 inches. The paper is held secure by an electrostatic holddown system. Clean, convenient disposable pens arc available in four culors.

7202A and 7203A Speciflcations

7202A pertormance apecifications
Plotting surface: $12.7 \times 12.7 \mathrm{~cm}$ ro $25.4 \times 38.1 \mathrm{~cm}(5 \times 5 \mathrm{in} .1010$ \times is in.).
Plotifing maneuvera: plots lines or points.
Speed: up 10105 vector/min.
Numerical code: ASCII: X and Y represented by four-digit integers (separated by al least one space).
Numerical resolution: $1 / 10,000$ (0.001 \%).
Plot accuracy; belter than $0.076 \mathrm{~mm}(0.03 \mathrm{in}$.$) .$
Resettability: $0.18 \mathrm{~mm}(0.007 \mathrm{in}$.) maximum.
Data rate: 110. 150. or 300 baud, switchable.
Controls: power, char hold, terminal mute, line/local, pen down. graph limits, chapacters $/ \mathrm{sec}$.
Indicators: power, plot, improper format.
Interlace: EIA RS232C or 20 mA current loop, select configura. tion option desired. Other interface configurations available. Contacl faclory.

Move lenglh: 76.2 mm (3 in .) max. with pen down; 254 mm (10 in .) max, wih pen up.
Power requirements. IIS/230 Vac, 48 io $400 \mathrm{~Hz}, 100 \mathrm{VA}$
7203A pertormance specilications
Plolting surface: front panel scalable up to $25.4 \times 38.1 \mathrm{~cm}(0 \times 0$ 1010×15 in.).
Plotting maneuvers: pen or posilion. Pen and posilion maneuvers are independent commands.
Speed: up to 450 vectors per minute.
Numerical code: binary; X and Y represented by ASCII characler pairs.
Numerical resolution; $1 / 2500$ (0.04%).
Plot accuracy: better than 0.10 mm (0.04 in .).
Resettabllity: $0.18 \mathrm{~mm}(0.007 \mathrm{in}$) maximum.
Controls: powte, chart hold, mute line/local, pen up, pen down, eraph limits, charactor/sec.
Indleators: power, error. plot.
Data rate: 110 or 300 baud. switchable.
Inlertace: EIA RS232C.
Move length: any length at any angle with appropriate software subroutine.
Power requirements: $100,115,200$, or $230 \mathrm{~V} \pm 10 \%, 481066 \mathrm{~Hz}$, 100 VA maximum.

7202A and 7203A general spectifications

Paper size: any size up to $29.9 \times 43.2 \mathrm{~cm}(11 \times 17 \mathrm{in}$.).
Plorting mode: absolute coordinates.
Writing method: ink, disposable pens.
Height: $216 \mathrm{~mm}(81 / 2 \mathrm{in}$.).
Widih: 508 mro (20 in.)
Deplh: $511 \mathrm{~mm}(201 / \mathrm{kin}$.).
Weight: 18.1 kg (40 lb); shipping 23.6 kg (52 lb).

Opllons

Price
Spocify cither Option 001 or 003 for Model 7202A: either Option 001 or 002 For Model 7203A.
001: EIA RS232 MODEM interface - 7202A
N/C
003: EIA RS232 terminal interiace - 7202A
N/C
001: EIA RS 232 MODEM interface - 7203A
N/C
002: EIA RS232 terminal interface - 7203A
N / C
005: Softwart SUBROUTINE for HP $2000 \mathrm{C} / \mathrm{F}$ 7203A
$\$ 20$
006: Software SUBROUTINE for HP 3000 - 7203A
$\$ 20$

- High speed, high resolution graphics
- Built-in vector generator

Absolute or relative coordinates

- Versatile "handshake" interface
- Accepts binary or BCD codes

The Hewlelt-Packard Model 7210A Digitat Ploner is an oulput peripheral designed for use with computers and computer systems. The exceptional speed, resolution, and accoracy are avaikable at the low cose normally associated with analog ploters, yet the 7210A does not require the higher system overhead of increntental plotters.

It can be added easily to either your computer or terminal. Accepsing either Binary or BCD codes under full program control, the pen cun make up to 20 moves per second at any angle. The internal microprocessor allows typical operation with less than 250 16-bit words of compula memory.

Any sheet type graph paper, up to $27.9 \times 43.2 \mathrm{~cm}$ (11×17 inches), with or without preprinted grids, may be used. The Autogrip paper bolddown system solidly grips the paper. Fous colors of ink are available io clean, disposable pens that can be changed quickly and easily.

7210A Speciflcatlons

Ploting eurlace: 25.4×38.) cm ($10 \times 15 \mathrm{in}$.).
Ploting area: front panel scalable up $1025.4 \times 38.1 \mathrm{~cm}(0 \times 010$ 10×15 in.).
Plolting maneuvere: pen or position. Pen and position maneuvers are independent commands.
Vector generation: aulomatic. A command to perform a position maneuver will cause the Plotier to traverse a straight line path to any specified point on she platen.
Veotor length: limited only by the ploting surface.
Vector apead: up $1030.5 \mathrm{~cm} / \mathrm{sec}$ ($12 \mathrm{in} / \mathrm{sec}$ send). The speed is de pendent upon the slope of the line. Plotter will process up to 20 vectors/second.
Numerical code: position data is reccived in BCD (8421) or Binary.
ploiting modes: sbsolule coordinates and relative coordinates.
Numerical resolution: $1 / 10,000(0.01 \%)$.
Plol accuracy: beter thas 0.10 cm (0.04 inch) in 38.1 cm (15 inches).
Resettablity: 0.18 mm (0.007 inch) max.
Writing melhod: ink, disposable pens. Four colors available.
Paper alze: any size up $1027.9 \times 43.2 \mathrm{~cm}$ (11×17 in.).
Power: $100 \mathrm{~V}, 115 \mathrm{~V}, 200 \mathrm{~V}$, or $230 \mathrm{~V} \pm 10 \%$ (choice of 4 positions at rear panel), $481066 \mathrm{~Hz}, 100$ watls maximum.
Wolght: net, 18.1 kg (40 lb). Shipping $23.6 \mathrm{~kg}(52 \mathrm{lb})$.
Acceseorles supplled
HP Parl Number

1. Accessory Kit

1 Pkg Disposable Pens, Red (5)
I Pkg Disposable Pens, Blue (5)
07210-80010

I Pkg Disposable Pens, Black ($\$$)
5081-1190
5081-1191
5081-1193

1 Stidewire Cleaner	5080-3605
1 Slidewire Lubricant	5080-3635
1 Fuse (for 230 V operation)	2110-0080
2. Operating Manual	07210-90000
3. Interfise Manual	07210.90002
4. Mating Connector	
150 Pin Conncctor	1251.2771
1 Hood	1251-2769
2 Jackscrews	1251-2770
5. Dusi Cover	4040-0477
6. Graph Paper. 20 sheets (English)	9270-1004
7. Graph Paper, 20 sheets (Merric)	9270-1024
8. Power Cord 2.3 m (7.5 ft)	8120-1348

Supplies available

Disposable Pens (package of 5)	HP Pant Number
Red	$5081-1190$
Blue	5081.1191
Green	$5081-1192$
Black	$5081-1193$

Graph Paper (box of 100 sheels)
Linear
Linear
Linear
Linear
Semi-Log
Semi-Log
Semi-Log
Plol Arca

Semi-Log
Log-Log
Log-Log
Log-Log
Blank (with scaling points)

$25 \mathrm{~cm} \times 38 \mathrm{~cm}$

$10 \mathrm{in}, \times 15 \mathrm{in}$.
$18 \mathrm{~cm} \times 25 \mathrm{~cm}$
$7 \mathrm{in} . \times 10 \mathrm{in}$.
$10 \mathrm{in} . \times 2 \mathrm{cycle}$
10 in. $\times 3$ cycle
2 cycle $\times 15$ in.
3 cycie $\times 15$ in.
2 cycle $\times 3$ cycle
3 cycle $\times 2$ eycle
3 cycle $\times 4$ gycle

Accessories available
17260 A plotter stand (inc

5080-3605
5080-3635
2110-0080
07210-90000
$07210-90002$
1251-2771
1251-2769
1251-2770
$4040-047$
9270-1024
8120-1348

HP Parl Number
9270-5024
9270-1004
$9270-1023$
9270-1006
$9280-0159$
9280-0160
9280-0169
9280-0168
9280.0167
$9280-0165$
9280.0171

9280-0180

Price

17261A mounting plate
Carrying/ransit ase (p/n 9211-1377)

Options

000): Interfact to HP 2100 and 21 MX Series Compuler.

Includes all hardware and softivare.
7210A Digital Plotier

- One and two pen mainframes

71008

- Seven plug-in modules

7128A

17500A

1750:A

17502A

17505A

17508A

The Hewlin-Packard Models 7100B/7101B and 7127A/7128A Sirip Charl Recorders are basic recorder framos containing all the me chanical and electrical elements for strip chart recording. A wide line of interchangcable plug-ins complete their recording ability. Models 7100 B and Models 7128A have iwo independent pens and require iwo input modules: Model 7101B and Model 7127a are single pen recorders and require one input module.

7100 Series speciflcations

Performance specifications

Reaponse Pime: $<0.3 \mathrm{~s}(50 \mathrm{~Hz},<0.6 \mathrm{~s})$.
Linearity (terminal based): $\pm 0.1 \%_{0}$ iull scale.
Resettablity: $\pm 0.1 \%$ full scale.
Charl Speeds:
$7100 \mathrm{BM} / 7101 \mathrm{BM}: 2.5 .5,15,30 \mathrm{~cm} / \mathrm{h}: \mathrm{I} .2 \mathrm{\Sigma}, 2.5,5, \mathrm{IS}, 30 \mathrm{~cm} / \mathrm{min}:$
$1.25 .25 .5 \mathrm{~cm} / \mathrm{s}$.
7100B/7101B: I, 2, in./h; 0.1,0.2,0.5. I, $2 \mathrm{in} . / \mathrm{min}: 0.1,0.2,0.5,1$.
$2 \mathrm{in} . / \mathrm{s}$.
7127A/7128A; $1 / 4,1 / 3,1,2 \mathrm{in} . / \mathrm{min}$.
Option H01; 6. 12, 24, 48 in./hr.
Option H02: $11 / 2,3,6,12 \mathrm{in} . / \mathrm{hr}$.
Chart speed accuracy: synchronous with line frequency.

Qeneral epecifications

Writing system: servo actuated ink pun.

Gild width: 25 cm or 10 in .
Chart length: 36 m or 120 n .
Pen Ift: manual (remote oplional).
Power: IIS/230 V $\pm 10 \%, 60 \mathrm{~Hz}$ (50 Hz opional).
71008/7128A: 65 VA
71018/7127A: 42VA

Welght:

7100B/7128A: ner, 11.8 kg (26 lb). Shipping. 18.2 kg (40 lb).
$7101 \mathrm{~B} / 7127 \mathrm{~A}:$ net, $10.9 \mathrm{~kg}(24 \mathrm{lb})$. Shipping. $17.3 \mathrm{~kg}(38 \mathrm{lb})$.
Dimenslons:
7100B/7101B serles (cablnet); 304 mm high. 445 mm wide, 210

7100BR/7101BR (rack): 222 mm high, 483 mm wide, 210 mm deep $\left(8: 3 / 3 i^{"} \times 19^{\circ} \times 81 / 4^{\prime \prime}\right)$.
7127A/7128A series (cablnat): 231 mm high, 425 mm widc, 210 man deep $\left.(9 \mathrm{~J} / 3)^{\circ} \times 162 / 4^{\circ \prime} \times 81 / 4^{\prime \prime}\right)$. (Rack; brackets supplicd) 222 mm high. 583 mm widc. 210 mm decp $\left(8^{2} \% \mathrm{~s}^{\prime \prime} \times 19^{\circ} \times 81 / 4^{\prime \prime}\right)$.

17500A/17501A Specifications

Voltage apans:

17500A: $5,10,50,100,500 \mathrm{mV} ; 1,5,10,50,100 \mathrm{~V}$ full scale.
17501A: $1,2,5,10,20,50,100,200 \mathrm{mV}, 0.5,1,2,5,10,20,50,100$ \checkmark full scale.
Accuracy: $\pm 0.2 \%$ of full seale.

Input resistance: I megohm al null on all fixed calibrated and variable spans excepl 100 kS in the variable mode on the four most sensilive spans on the 17500 A only.
Interference rejection: dc common mode: 120 dB on the four most sensilive spans of the 17500A and the (hree mosi sensitive of the 17501A. Line frequency, 100 dB on the four most sensitive spans of 17500 A and the three mosi sensitive of 17501 A .
Zero-8et: adj, full scalc. plus one full scale of suppression. 5 scaler of zcro suppression available on the 17501A.
Maximum source Impedance: up to $10 \mathrm{k} \Omega$ source impedance will not sler the recorder's performance on the four mast sensilive spans of the 17500A and the six most sensitive of the 17501A. No source intpedance restrictions on spans above 100 mV fs.
Reference slability. $0.005 \% /{ }^{\circ} \mathrm{C}$.
Welght: ocl, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $2.2 \mathrm{~kg}(5 \mathrm{lb})$.

17502A Specifications

Voltage epane; single span to match cold-junction thermocouples of lypes J, K, R, S. and T.
Accuracy: $\pm 0.5 \%$ or $\pm 1^{\circ} \mathrm{C}$. (whichever is grealer): refer 10 NBS CIR 561, dated 1955.
Input resletance: potentiometric.
Inierference rejection: de common mode, 120 dB ; line frequency. 100 dB .
Weight: nct, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, $3.2 \mathrm{~kg}(7 \mathrm{lb})$.

17503A Specifications

Voltage span: 1 mV .
Type of input noaling (500 V de max) rear inpul only.
Input resistance; potentiometric.
Maximum allowable source realstance: 5 kl
Normal mode rejection: $>60 \mathrm{~dB}$ al 60 Hz .
Common mode rejection: 120 dB (dc) and $100 \mathrm{~dB}(60 \mathrm{~Hz})$.
Accuracy: $\pm 0.2 \%$ full scale.
Relerence slabliliy: $0.005 \% /{ }^{\circ} \mathrm{C}$.
Zero set: \pm I scale.
Weight: net, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $2.2 \mathrm{~kg}(5 \mathrm{lb})$.

17504A Specifications

Voltage spans: 5 mV thru 100 V . determincd by range card, no vernier.
Type of indut: foaling (500 V de max) rear input only.
Input resistance: I Mn at null on all spans
Maximum allawable source realatance: $10 \mathrm{k} \Omega$.
Normal mode rejectlon: $>60 \mathrm{~dB}$ at 60 Hz
Common mode rejectlon: $120 \mathrm{~dB}(\mathrm{dc})$ and $90 \mathrm{~dB}(60 \mathrm{~Hz}$) four mosi sensitive range cards.
Accuracy: $\pm 0.2 \%$ full scale.
Relerence atabilily: $0.00 \leq \% /{ }^{\circ} \mathrm{C}$.
Zero sef: ± 1 scale, screwdriver adjust.
Welght: ncl $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $2.2 \mathrm{~kg}(\mathrm{~s} \mathrm{lb})$.

17505A/17506A Specifications

Vollage apant

17505A: .I, 2, .5, I, 2, 5, 10, 20. 50. 100, 200. $500 \mathrm{mV}: 1.2,5,10$.
20. 50,100 v full scate.

17506A: any one of the above spans (specify).
Accuracy: ± 0.25 名 of liull scale.
Input realstance: I M Ω at null.
Interference rejection: de CMR: 120 dB on mosl sensitive span. Line frequency CMR: 100 JB on most sensitive span. Line frequency nommal mode: 17505 A : switchable, 60 dB or $100 \mathrm{~dB}, 17506 \mathrm{~A}: 100 \mathrm{~dB}$.
Zero sel: $+2,-1.5$ sesles. Optional calibrated of Tsel of $+110-10$ scales in one scale steps on 17505A.
Zero atabllity: $\pm 1 \mu \mathrm{~V}$ afler one hour.
Maxlmum source impedance: $10 \mathrm{k} \Omega$ on ninc most sensitive spans: no source impedance resirictions on spans above 100 mV is.
Reference stabllily: $0.005 \% /{ }^{\circ} \mathrm{C}$.
Welght: nel, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping, $2.2 \mathrm{~kg}(5 \mathrm{lb})$.

7100 Series oplions

		$\begin{aligned} & 71008 \\ & 11018 \end{aligned}$	$\begin{aligned} & 7127 \mathrm{~A} \\ & 7128 \mathrm{~A} \end{aligned}$	Price $\$$
Retransmitting 5 hr Potenlionteler	Channel I Channel 2	$\begin{aligned} & 004 \\ & 016 \end{aligned}$	$\begin{aligned} & 014 \\ & 015 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$
High-Low Limit Swilches (Each limil SPDF wilh 0.5 A. 30 V oc contacls)	Channel I Channel 2 Both Channels	$\begin{aligned} & 005 \\ & 017 \\ & 018 \end{aligned}$	$\begin{aligned} & 001 \\ & 009 \\ & 010 \end{aligned}$	$\begin{array}{r} 55 \\ 55 \\ 115 \end{array}$
Event Marker	Lefl side: Ink Bolh sides: ink	$\begin{aligned} & 012 \\ & 014 \end{aligned}$	$\begin{aligned} & 004 \\ & 0006 \end{aligned}$	$\begin{aligned} & 40 \\ & 80 \end{aligned}$
Remote Conirol	Pen Lifl Chat ON-OFF	$\begin{aligned} & 006 \\ & 007 \end{aligned}$	$\begin{aligned} & 008 \\ & 002 \end{aligned}$	$\begin{aligned} & 55 \\ & 25 \end{aligned}$
Righl Hand Laro	Hard (scale, 10100) Solt (stale. 10 to $-0.5)^{2}$	$\begin{aligned} & 020 \\ & 025 \end{aligned}$	$\begin{aligned} & 020 \\ & 025 \end{aligned}$	$\begin{aligned} & N / C \\ & N / C \end{aligned}$
50 Hz Operalion		010	003	N/C
Locking Glass Door		011	013	55
Inlegralor (Integrales Channel 2 II 2 pen units ${ }^{1.2}$		015	007	880
Oisposable Pen Tips		024	024	N/C
Carrying Randle		SId	011	25
Mirl Gray Control Panel		029	029	N/6

1 Nol compatible with prent marker (nichl hand), etransmithing potentiometer (Channel 2), of metric calibra. hom
2. Hequires speeal Hemleft-Pachard chart paoer.

Plug-In options
 Price

17500A/17501A/17502A:
001: 5 scale zero suppression (17501A) $\$ 55$
002: calibralced for use with Inlegrator (8 in. span)
(17500A/17501A)
029: mini griy control panel
N / C
N / C
17503A:
001: deteclor Seloctor Switch
002: 50 Hz
003: calibrated for use wilh Integrator (8 in . span)
029: mint gray control panel
N/C
N/C

17504A:
001: 50 Hz
002 calibrated for use with) ntegrator (8 in . span)
010-019; range cards (specify opl)
Additional range curds (order by part number)

17505A:

001: + 1 to -10 scalces of calibrated offset in one scale
sleps. Accuracy ± 0.25 多 per sicp
002: calibrated for use with Integralor (8 in. span) N/C
003: 50 Hz
N/C
029: mint gray control pancl
N/C
17506A:
002: calibrated for use with Integrator (8 in. span)
N/C
003: 50 Hz
005-023: spans (specify one)
N/C
029: mini gray control panel
N/C
Model number and name
Single Channet:
$7101 \mathrm{~B} / \mathrm{BR}, 7101 \mathrm{BM} / \mathrm{BMR}$ Sirip charl recorder $\$ 1150$
7127A Surip charı recorder (Englisb) $\$ 990$
Dual Channel:
$7100 \mathrm{~B} / \mathrm{BR}, 7100 \mathrm{BM} / \mathrm{BMR}$ Stip charl recorder \$1725
7128A Strip charl recorder (English) $\$ 1550$
17500 A Mulliple span plug-in $\quad \$ 360$
17501A Multiple span plug-in
\$415
17502 Temperalure pluginn in
17503A Single span plug-in
$\$ 330$
17504A Single span plug-in
$\$ 305$
17505A High sensitivity plug-in
$\$ 465$
17506A (specily voltage span)
$\$ 310$

- Low silhouelte

7143A

The Hewlet-Packard Models 7123A and 7143A Strip Chart Recorders are designed spacifically for dedicated recording applications. High reliability, excellent performance, plus a large assurtment of uptions allow custom tailoring to each application, Thesc $31 / 2$ inch high recorders conserve rack space without sacrilicing chare drive, chart view capabilitics, or overall operalion.

7123A and 7143A Specifications

Performance specificatione

Inpul ranges: single span. I mV thru 100 V (specified by option).
Type of input: single ended, floating.
Input reslstance:] M Ω constant on all spans.
Normal mode rejection (at line frequency): $>6 \mathrm{~dB}$ ($>66 \mathrm{~dB}$ with optional filter).
Common mode rejection: $>100 \mathrm{~dB}$ al de and $>80 \mathrm{~dB}$ at linc frequincy.
Reaponae tlme: < $1 / 3 \mathrm{~s}(<1 / 2 \mathrm{~s}$ for spans below I V) with less than 10 $k \Omega$ source impedance.
Overshoot: <1 \% of lull scalc.
Accuracy (Including linearity and deadband): $7123 \mathrm{~A} \pm 0.25 \%$ or rull scale al $25^{\circ} \mathrm{C}$. Temp Coeff $0.01 \% /{ }^{\circ} \mathrm{C}: 7143 \mathrm{~A} \pm 0.4 \%$ of [ull scate al $25^{\circ} \mathrm{C}$. Temp Coerf $0.01^{\text {min }} /{ }^{\circ} \mathrm{C}$.
Deadband: $7123 \mathrm{~A}-0.1 \%$ of full seale; 7143A - 0.2% of full scule.
Zero drlft: $< \pm 0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \pm 0.03 \%$ full scale ${ }^{\circ} \mathrm{C}$ for $7143 \mathrm{~A}: \pm 0.015 \mathrm{seg}^{\circ}$ lull scaic/ ${ }^{\circ} \mathrm{C}$ for 7123A.
Reference stablily: $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$.
Chart speeds: speed determined by option choice.
Chart speed accuracy: synchronous with line frequency.
Zero set: left hand, adjustable \pm I full scale (right hand optional).
Environmental (operaling): 0° to $55^{\circ} \mathrm{C}$, and 95% relative humidity ($40^{\circ} \mathrm{C}$).

General speciflcatlons

Writing mechanism: disposable ink pen.
Grid wldth: 7123A - 25 cm (10 in .): 7143A - 12 cm (5 in.).
Chart length: 28.5 meters (95 fl).
Pen Iff: manual (remote oplional on 7123A),
Dimensions: $7123-81 \mathrm{~mm} \times 432 \mathrm{~mm} \times 495 \mathrm{~mm}\left(31 / 2^{*} \times 17^{\circ} \times\right.$ $\left.191 / \mathrm{m}^{*}\right) ; 7143-81 \mathrm{~mm} \times 216 \mathrm{~mm} \times 495 \mathrm{~mm}\left(31 /^{\prime \prime} \times 81_{2^{\prime}} \times 191 / 2^{\circ}\right)$. Power: $115 / 230 \mathrm{~V} \pm 10 \%$. Opıion $060-60 \mathrm{~Hz} .60 \mathrm{VA}$; Oplion $050-$ $50 \mathrm{~Hz}, 60 \mathrm{VA}$.
Weight: 7123 A - nes, 19 kg (42 lb). Shipping. 23 kg (5I lb). 7143 A nel. 11.3 kg (25 lb). Shipping, 15 kg (33 lb).

Only one moving part

Options
Span: Must specily one. Front scale determined by Merric or English charl speed.

$7123 \mathrm{~A}, 7143 \mathrm{~A}$	Span	Price	7123 A .7143 A	Span	Price
001	1 mV	$\$ 165$	008	1 V	$\mathrm{~N} / \mathrm{C}$
002	5 mV	$\$ 165$	009	5 V	$\mathrm{~N} / \mathrm{C}$
003	10 mV	$\$ 115$	010	10 V	$\mathrm{~N} / \mathrm{C}$
004	50 mV	$\$ 115$	011	50 V	$\mathrm{~N} / \mathrm{C}$
005	100 mV	$\$ 115$	012	100 V	$\mathrm{~N} / \mathrm{C}$
006	500 mV	$\$ 11 \mathrm{~s}$			

Chan speede: Must specify one basic speed or one basic chart speed and one reducer or one mulliple speed.

016	$6 \mathrm{in} . / \mathrm{min}$	N / C	022	$15 \mathrm{~cm} / \mathrm{min}$	N / C
017	$4 \mathrm{in} . / \mathrm{min}$	N / C	023	$10 \mathrm{~cm} / \mathrm{min}$	N / C
018	$1 \mathrm{in} . / \mathrm{min}$	N / C	024	$5 \mathrm{~cm} / \mathrm{min}$	N / C
019	$1 / \mathrm{in} . / \mathrm{min}$	N / C	025	$3 \mathrm{~cm} / \mathrm{min}$	N / C
020	$1 / \mathrm{in} . / \mathrm{min}$	N / C	026	$15 \mathrm{~cm} / \mathrm{hr}$	N / C
021	$1 \mathrm{in} . / \mathrm{hr}$	N / C	027	$3 \mathrm{~cm} / \mathrm{hr}$	N / C

Variable apeed opllons: dual speed via speed reducer (not compatible with Options 045, 048, 092).

Optlons

020: 60:1 Speed reducer*
029: 10:1 Speed reducer*
030: 4:I Speed reducer
044: 2:1 Speed reducer*

- The slowest speed must nol be less than 2.54 cr . ith (1 in (hit)

Options requiring power supply
041: Oplion power supply
031: Remote speed change
032: Remole chart on-oft (not compatible with Oplions
$045 \& 045$)
033: Remole pen liர̃ (7123A Only) $\$ 40$
040: Limit switches $\$ 130$
036: Electric wiring
034: Evenl marker (right hand) ink

Mulfiple speeds (7123A only
045: 4 speods: $1 / 4,1 / 2,1.2$ in./min plus external inpul
048: 4 speeds: $0.5,1.2 .5 .5 \mathrm{~cm} / \mathrm{min}$ plus extemal input

Other options

039: Reiransmilting potentiometer ($5 \mathrm{k} \Omega, \pm 0,5 \%$
linearil)', 10 V de max).
007: Inpul filter. I mV ihru 5 mV spans
013: Inpui filter, 10 mV thru 100 V spans
014: RHE Zero hard right (scale, 10 to 0)
015: RH Zero soft (scale, 10 to -0.5. 7123 only)
043: Rack slides (7123 only)
035: Charl integrator (7123 only)
Analylical option combinations. (7l23A only). The following thres optsons are for analytical applications such as chromalography and include I mV span. inpul filter for added line frequency rejection (60 dB), right hand zero. mini-gray conurol pancls, and charl speeds as indicated.
090: $1 / 1$ and $1 / 2 \mathrm{in}$./min
091: I and $1 / 4 \mathrm{in} . / \mathrm{min}$
092: $1 / 4.1 / 2.1 .2$ in. $/ m i n$ plus external inpul (nol compatible with Oprions 028, 029, 030, 031.032, 044)
Model number and name
7123A Sirip Chari Recorder (25 cm or 10 in .)
7143A Strip Chart Recorder (12 cm or 5 in.)
$\$ 45$
$\$ 25$
$\$ 40$

- 845

RECORDERS \& PRINTERS
 Compact strip chart recorder
 Model 680

High accuracy, fast response

General specifications

Writing mechaniom: ink.
Pen lift: electric, controlled by local switch or remote contact closure.
Power: $115 / 230$ V. $60 \mathrm{~Hz}, 22$ VA.
Welght: nel. $5 \mathrm{~kg}(11 \mathrm{lb})$: shipping 7.6 kg (19 lb).
Dimensione: $165 \mathrm{~mm} \mathrm{H} \times 197 \mathrm{~mm}$ W $\times 219 \mathrm{mmD}\left(61 / 2^{\circ} \times 7 M^{*} \times\right.$ $8 \% /{ }^{\prime \prime}$).
Accessory kil supplied with each Instrument-

Ink Writing:

1. Slidewire cleaner, slidowire lubriegnt, remote pen lift connector, spare pen. pen cleaning wire. four cartridges each of red ink and blue ink.
2. One roll of graph paper.
3. Power Cord $2.1 \mathrm{~m}(7 \mathrm{f})$.
4. Fuse, 1/4 Amp 125 V SB
5. Instruction Manual.

Options Price
001: With installed $5 \mathrm{k} \Omega, 0.1 \%$ lincarily retransmitting potentiometer
002 With ink event marker installed $\$ 40$
003: With installed high-low limil switches $\$ 105$
008: With $16 / 1$ inslead of $60 / 1$ speed reduces $\$ 25$
000: With remole chart drive switch $\$ 25$
010: For 50 Hz operation N/C
014: Glass door with lock $\$ 50$
018: Disposable pen Lips N/C
H01 I mV span added (H01-680)
1.2 mV span added (HO I .680 M)

555
$H 02100 \mathrm{k} \Omega$ inpui resistanci, all spans $\$ 90$
Nole: Options H0) and H02 nol compatible.
Model number and name
680M Strip chart recorder (metric) \$1025
680 Strip chan recorder (English) \$1025
OEN discoun's gar lable.

7130A

7131A

The Model 7130A is a 10-inch, two-pen recorder, the 7131A is a 10 . inch, one-pen recorder. Spans and chan speeds are sclected by opcions.

7130A and 7131A Specifications

Performance specifications

Input ranges: single span, I mV ihru 100 V (specified option).
Type of input: single ended. floating.
Maximum allowable source reslstance (Fs): 10 ks .
Normal mode relection (at llne trequenoy): $>40 \mathrm{~dB}$
Common mode rejectlon: $>120 \mathrm{~dB}$ al de $\&>100 \mathrm{~dB}$ at line「requency.
Response lime: <1/i sec.
Ovarahool: < 2% of full scale.
Accuracy (ineluding Ilnearity and deadband): $\pm 0.2 \%$ of full scale at $25^{\circ} \mathrm{C}$.
Deadband: $\pm 0.1 \%$ of ful scale.
Chart speeds: specd delemined by oplion choice.
Chart speed aceuracy! $\pm 0.08 \%$ plus line frequency accuracy
Zero sel: leli hund, adjustable ± 1 full scalc (right hand optional).
Environmental (operation): $0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}, ~ 95 \%^{\circ} \mathrm{RH}\left(40^{\circ} \mathrm{C}\right)$.
General specifications
Wriling mechanlam: disposable ink pens (thermal writing option).
Grid widih: 25 cm or 10 in .
Chart length: 30 meters or 100 ft .
Pen lift: manual (electric or independent optionsl).
Dimensions: 178 mm high, 432 mm wide. 340 mm deep $\left(7^{\prime \prime} \times 17^{7 \prime} \times\right.$ (31/8").
Power: $7130 \mathrm{~A}, 7131 \mathrm{~A}: 115 / 230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 120 \mathrm{VA}$. $71308,7131 \mathrm{~B}: 115 / 230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}, 120 \mathrm{VA}$.
Weight: nel, $12.3 \mathrm{~kg}(27 \mathrm{lb})$. Shipping, $17.4 \mathrm{~kg}(38 \mathrm{lb})$.
Accessory klis: wo-channel (7130A). 07130-60055; one-channcl (7131A), 07131-60109; thermal writing (7130A/7131A). 07130-60068. Span: musi specify one for each channel: spans may be different. The front scale is determined by choice of English or metric chart speed. The 500 series options are for the lower channet of the 7130 A only.

	Option			Option			
	Upr	Liver			Upr	Lwr	
Span	Chal	Chal	Price	Span	Chal	Chn!	Price
1 mV	001	501	\$165	1 V	008	508	N/C
5 mV	002	502	165	5 V	009	509	N / C
10 mV	003	503	115	10 V	010	510	N/C
50 mV	004	504	115	50 V	011	511	N/C
100 mV	005	505	115	100 V	012	512	N/C
500 mV	006	506	115				

Chert speads: must specify one basic speed.

Speed	Optlon	Prlce	Speed	Optlon	Price
6 in. $/ \mathrm{min}$	016	$\mathrm{~N} / \mathrm{C}$	$15 \mathrm{~cm} / \mathrm{min}$	022	$\mathrm{~N} / \mathrm{C}$
$4 \mathrm{in} / \mathrm{min}$	017	$\mathrm{~N} / \mathrm{C}$	$10 \mathrm{~cm} / \mathrm{min}$	023	$\mathrm{~N} / \mathrm{C}$
$1 \mathrm{in} / / \mathrm{min}$	018	$\mathrm{~N} / \mathrm{C}$	$5 \mathrm{~cm} / \mathrm{min}$	024	$\mathrm{~N} / \mathrm{C}$
$1 / 2 \mathrm{in} . / \mathrm{min}$	019	$\mathrm{~N} / \mathrm{C}$	$3 \mathrm{~cm} / \mathrm{min}$	025	$\mathrm{~N} / \mathrm{C}$
$1 / 4 \mathrm{in} / \mathrm{min}$	020	$\mathrm{~N} / \mathrm{C}$	$15 \mathrm{~cm} / \mathrm{hr}$	026	$\mathrm{~N} / \mathrm{C}$
$1 \mathrm{in} . / \mathrm{hr}$	021	$\mathrm{~N} / \mathrm{C}$	$3 \mathrm{~cm} / \mathrm{hr}$	027	$\mathrm{~N} / \mathrm{C}$

Speed reducers:

Option Price			Opllon Price		
60: I Speed Reducer*	028	S45	4:1 Speed Reducer**	030	$\$ 45$
10: I Speed Reducer*	029	$\$ 45$	2:1 Speed Reducer**	031	$\$ 45$

- Ine slowest speed resolifing from the asolition of a speed reduce must nol de less than $254 \mathrm{~cm} / \mathrm{hf}$ ($1 \mathrm{in} / \mathrm{me}$)

Mulliple speeds	Optlon	Price
4 spoed: $1 / 4,1 / 2.1 .2$ in./min. plus extern input	046	\$163
4 speed: $0.625,1.25,2.5,5 \mathrm{~cm} / \mathrm{min}$ plus extcrialinput	049	5165
Options requiring optlon power supply	Optlon	
Option Рower Supply	041	\$45
8 chrt spds. I. 2, 4, 6 in. $/ \mathrm{min}$ \& $\mathrm{hr}+$ ext inpt	045	\$195
8 chrt spds: $2.5,5,10.15 \mathrm{~cm} / \mathrm{min} \& \mathrm{hr}+$ ext inpl	048	\$195
Remote Speed Change*	032	\$20
Remole Chari On-Off	033	\$20
Remote Pen Lift*	036	\$45
Righs Hand Evenl Marker,Ink (nol compatible with oplion 054)	037	\$45
Right Hand Eveni Marker. Thermal (musl order oplion 054)	038	\$100
Len Hand Event Marker*. (not compatible with option 054)	537	\$43
	mzum	

 vilizge $+1,5$ \& mini

Olher Optlons:

Upr Chnl Lwr Chrl
Relransmilling Polentiometers

040	540	$\$ 5 S$
044	544	$\$ 115$
007	507	$\$ 30$
	014	$\mathrm{~N} / \mathrm{C}$
	015	$\mathrm{~N} / \mathrm{C}$
	034	$\mathrm{~N} / \mathrm{C}$
	042	$\$ 75$
	052	$\$ 10$
	053	$\mathrm{~N} / \mathrm{C}$
	054	$\$ 200$
	054	$\$ 140$
	056	510
	050.060	$\mathrm{~N} / \mathrm{C}$

Limil Swildes
Inpul Filier ($1-500 \mathrm{mV}$)
Righı Hand Zero Hard. Scale 10 to 0
Right Hand Zero Soft, Scalc 10 to -0.5
Independent Mech. Pen Lift (7130 only)
Rack Slides
Rack Mounting Brackets
Capillary Ink Pen \& Cariridge
Thermal Writing: Model 7130A**
Model 7131A".
Rear Control Connector
050. 060
$50 \mathrm{~Hz} \& 60 \mathrm{~Hz}$ Operation

- Recommended lor pen speeds below I menes pee second

Analytical option comblnatlons: the following two options are for analycical applications such as chromalography and include I mV span each channel, right hand sofl zero, front pancl deteetor switch on the 7I3IA, and lwo chan speeds as indicaled.

	Optlon	$\mathbf{7 1 3 0}$	$\mathbf{7 1 3 1}$
2 speeds: ($1 / 2$ and $1 / \mathrm{in} . / \mathrm{min}$)	090	$\$ 435$	$\$ 275$
2 speeds: (1 and $1 / 8 \mathrm{in} . / \mathrm{min}$)	091	$\$ 435$	$\$ 275$
			Price
Model number and name		$\$ 1420$	
$7130 A$ OEM Two-Pen Resorder		$\$ 985$	
7131 OEM One-Pen Recorder			

7132A

The Hewlell-Packard Models 7132A Iwo-pen and 7133A one-pen Strip Charl Recorders are laboratory instruments equipped with sisndard reatures that qualify them to accommodate your laboratory or scientific upplication needs.

The 7132A and 7l33A are equipped with multi-range altenuators providing eleven inpul ranges from I mV to 100 V full scale in a $\mathrm{i}-5-10$ sequence. Borh models have eight chart specds of $2.5,5,10.15$ $\mathrm{cm} /$ minule and $2.5,5,10,15 \mathrm{~cm} /$ hour ($1,2,4,6$ inches per minule and 1. 2, 4, 6 inches per hour). Disposable ink pens are slandard. These pens provide a clesr, continuous irace, and are casily replaced.

Modular conseruction facilitates easy semoval of the servo module for inspection or maintenance of the drive system. slidewire, or pen hfe. The elimination of slip clutches in the servo moduke contributes to quict, riliable operation. In addition, should the pen go off scale. the amplifier gain is atomatically roduced. preventing noise or danage to the equipment. A steppce motor chart drive eliminates mechanical shifting of geurs.
The chart magarinc may be adjusted 10 any of three angles to provide a comfortuble writing surface. Chart paper may be automatically rolled up or fed out of the recorder. A convenient from panel indicator lets you know when ihe paper supply is low.

In addution to multirange capability, the Models 7132A and 7133A offer as standard fealures: Eight Chart Speeds, Disposable Pens, Rack: Mounting Brackets, Remote Pen Lin, and Remote Chart On/Off.
Options include: Metric Calibratron, Right Hand Zcro (Hard), Right Hand Event Marker, and 50 or 60 Hz Operation.

7132A and 7133A Specifications

Performance specificallons
Input rangeg: cleven ranges from I mV to 100 V full scale in $\mathrm{J} .5-10$ sequence with overlapping vernier.
Type of inpul: single ended. Hoaling.
Inpul reslstance: 1 megohm on all ranges.
Maximum source reslstance: $10 \mathrm{k} \Omega$ (10 within rated response).
Normal mode rejection (al llne trequency): greater than 40 dB .
Common mode rejection: greater than 120 dB de and 100 dB ac.
Accuracy: ± 0.2 " $25^{\circ} \mathrm{C}$. Temp Coefficient $\pm 0.01^{\circ}$, per ${ }^{\circ} \mathrm{C}$.
Renge accuracy: $\pm 0.2 \%$ ol full scale $\pm 0.2 \%$ of dellecion (includes linearity and deadband) a $25^{\circ} \mathrm{C}$. Temp Coefficient ± 0.01 応 per ${ }^{\circ} \mathrm{C}$.
Deadbsind: 0.1% of full scale.
Response time: less than 0.5 second.
Overshoot: less than 2% of full scale.
Chart speeds: $2.5,5,10,15 \mathrm{~cm} / \mathrm{min}$, and $2.5,5,10,15 \mathrm{~cm} /$ hour (1,2, 4. 6 inches/minule, and 1, 2. 4,6 inches/hour).

Chart speed accuracy: $\pm 0,08 \%$ plus line frequency accuracy.
Zero set: provides itree full scales of offsel.
Environmental (operating): 0 to $55^{\circ} \mathrm{C}$. less than 95% relative humidey ($40^{\circ} \mathrm{C}$).

7133A

- Disposable pens

General specifications

Wrlting mechanism: disposable ink pens (ihermal writing opion).

Grid width: 25 cm (10 inches).

Charl length: 30 meters (100 It).
Pen lift: solenoid operated with remole capabilities.
Power: $115 / 230 \mathrm{~V} \pm 10 \%$. 50 or $60 \mathrm{~Hz}, 120 \mathrm{VA}$.
Dimensions: 178 mm high, 432 mm wide, 340 mm deep ($7^{N} \times 17^{\circ} \times$

13\%")

Welght: net, 12.3 kg (27 lb). Shipping, $17.4 \mathrm{~kg}(38 \mathrm{lb})$.
Supplles Iurnished with each InsIrument:
I. Accessory kil:

Disposabic Pens - Blue (Package of 3)	$07130-62500$
Disposabic Pens - Red (Package of 3)	07130-62510
Fuse, 75 amp. 250 V , Slow Blow	2110.0379
Plastic Kic Box	1540-0149
Slidewire Lubricant	5080-3635
Slidewiro Cleaner	5080-3605
Flexible Tubing, $0.032 \mathrm{ID}, 0.4 \mathrm{fI}$	0890-0340
Pen Cluaning Astiembly	17999-15126
Syringe for Pen Cleaning	17999.09423
Operating and Service Manual	$07132-90000$
One soll or Chars Paper	
Chart Peaper, English	9280-0264
Chart Paper, Melric	9280-0265
Chart Paper. Thermal - English	9280-0288
Chart Paper. Thermal - Metric	9280-0289
Power Cord (2,1 meters or 7 (1)	8120-1378
Ink Cartridge, Black (Tor Event Markur)	07130-60002
Rack Mounting Brackels	07130-65070

Options

Price
001: melric calioration. Provides chare speeds of 2.5.5.
10 , and 15 cm per minule, and 2.5. 5. 10 , and 15 cm per hour.

N/C
014: Right Hand Zaro (Hard). Positive voltage input causes pen to deflect from right to leh. N/C
037: Righ1 Hand Event Marker (not compalible with Op1 054).
$\$ 50$
038: Thermal Event Marker (Op1 OSA required). $\$ 100$
537: 7132A Only. Left Hand Event Marker (Noi Available with Thermal Wriling, Oplion 054).
$\$ 50$
050: 50 Hz Line Power
N/C
060: 60 Hz Line Power
N/C
054: Thermal Wriling. Model 7132A (recommended
for pen speed below $5^{\prime \prime} / \mathrm{s}$).
$\$ 200$
054: Thermal Writing. Model 7133A \$140
Model Number and Name
7132A Laboratory Two-Pen Recorder \$2100
7133A Laboratory One-Pen Recorder \$1550

Model 7155日

－Under 30 pounds with internal battery
－ 12 centimeter chart width
－Operates at $-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

The Hewlett－Packard 7155 日 is a 12 cm portable strip chart re－ corder designed especiafly for field applications while maintianing lab－ oratory specifications．It is a rugged，light－weight instrument weigh－ ing under 30 pounds with the rechargeable ballery installed．The stan－ dard unit operates on external de or ac from 48 to 440 Hz ．The op－ tional internal baltery，which operates for nine hours on a single charge，may be selected．The insirument operales within HP Class A temperature range $\left(-28^{\circ} \mathrm{C}\right.$ to $+65^{\circ} \mathrm{C}$ ）a first in the sirip chan re－ cording field．

This unit is provided with 16 calibrated spans，seven charn speeds． the totally clectronic transmission that eliminates the need for me－ chanically shifing the gears，and a sealed jelled electrolyte battery that allows operation in any orientation．Additional standard items in－ clude the disposable pen．front plexiglass cover，three chart magazine till angles，and easy access to PC boards for serviceability．

7155B Specifications

Performance specifications
Imput ranges： $0.1 \mathrm{mV} / \mathrm{cmi}$ thru $10 \mathrm{~V} / \mathrm{cm}$ in 1.2 .5 sequence with overlapping vernies（ 12 cm full scale）．
Type of Input：single ended，noating．
Input realstance：I megolsm．
Maximum allowable source resiotance： $3 \mathrm{k} \Omega$ for rated response． Common mode rejection： 120 dB de and 80 dBa ac．
Full scale response times 0.6 sec to wishin rated accuracy．
Overshoot ；\％of full seale maximum．
Accuracy．$\pm 0.4 \%$ of full scale（includes linearity and deadband）at $25^{\circ} \mathrm{C}$ ．Temp Cocficient $\pm 0.01 \%$ per ${ }^{\circ} \mathrm{C}$ ．
Range accuracy：$\pm 0.4 \%$ of full seale $\pm 0.2 \%$ of deflection（includes linearity and deadband）at $25^{\circ} \mathrm{C}$ ．Temp Coc介licient ± 0.0 ）$\% /{ }^{\circ} \mathrm{C}$ ．
Chart epeeds： $30,10,3,2.5,1$ minute $/ \mathrm{cm}: 30$ and $10 \mathrm{sec} / \mathrm{cm}$ ．
Charl apeed accuracy：$\pm 1 \%$ ．
Environmental（operaling）；$-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}<95 \%$ relative hu－ midity（ $40^{\circ} \mathrm{C}$ ）．

General specifications
Writing meohanism：dispossble ink pens．
Grld widih： 12 cm ．
Chart length： 21 melers（ 70 fi ）．
Perlift：mechanical．
Weight：net 14 kg （ 30 lb ）with battory option installed．
Power：external ac（ 48 to 440 Hz .85 V to 130 V or 172 V เo 260 V ）． External de（ 10.5 10 $36 \mathrm{~V}, 0.5$ ump lypical 0.9 amp maximum independent of vollage）．

Supplies turnished

Part Number	Description
07155－90001	operating and service manual
9280－0278	chart paper， $21.3 \mathrm{~mm}(70 \mathrm{n})$
8120.1538	power cord， 2.3 m（7．5 ti）
07155－60090	accessory kil，includes：
1251－2814	DC connector
2110－0012	0.5 A SLBL fuse
5080－3635	slidewirc lubricant
5080 －3605	slidewire cleaner
07155－60014	3 red disposable pens
07155－60015	3 red evens marker pens（if ordered）

[^12]
RECORDERS \＆PRINTERS
 Two and four－channel oscillographic recorders Models 7402A，7404A，\＆17400A series preamps

7402A

The Hewletl－Packard Models 7402A and 7404A are rectilincar，low pressure ink wriling oscillographic rccorders，which，when used with interchangeable 17400＾Series Preamplifiers，measure and record ane to four input signals against tinue．The 7402A Recorder is portable and records on cither two 50 mm channels or a single 100 mm channel．＂The 7404 A is a four channel recorder，but will also record on two 80 mm channels．

Clear traces that dry immediately on contact with the paper are pro－ duced by the pressurized ink system of these units．The pen is con－ structed with stainloss steci with a tough carbide lip．Pens will last the life of the inserument．Four chare speeds are provided on the 7402． ． while 12 are available on the 7404 A．Remote control of the chart specd is either by contacl closure or TTL．

The 7402A may be equipped wilk a Len Hand Evenl Marker（Op－ tion 001），Right Hand Event Marker／Timer（Option 008），or Left and Righe Hand Event Marker／Times（Option 003）．It may be actuated by a front panel pushbution labeled MARK or by remote contact clo． sure or TTL through the zear terminal strip．On Option O03．a I SEC toggle switch provides one second timing sequences；Option 008 pro． vides marks in second or minule sequences．The 7404A records event marks in all four channols．Three channels are actuated by remote wontact closures or TTL through the rear teminal strip．The fourth． installed in Channel 1 （Left Edge）provides automatic mark－per－sec－ ond or mark－per－minule sequences when the front panel sec－mark－min pushbution is sel to SEC or MIN postion．A mark may be recorded when the MARKER／TIMER pushbutton is pressed．Additionally，it can be actuated by a remote marker command thrinugh a rear panel connector or by remote contacl closure or TTL．

Oscillographic recorders with plug－ins can be used to measure pa－ rameters such as vollage，pressure，flow，force，displacement，and tem－ perature with respect to time．These recorders can be used in applica－ tions such as line production，eroubleshooling，or physical measure ments．

17400A High gain

This plug－in is equipped to handle all normally＇encountered de sig． nal sources．A unique error indicator is included to sigtal overdriven inpuls．It provides I $\mu V /$ div senstivily．I megohm input resistance． guarded and thoated inputs，and calibrated zero suppression．

17401A Medium galn

Stable and solid，this de－coupled preamplifier provides the basic sig－ nal condiliontng required to cover the majority of applications．The oplonal calibrated zero suppression supports $1 \mathrm{mV} / \mathrm{djv}$ maximum sensitivity balance－10－ground inpuls．
－Interchangeable plug－ins

17402A Low gain

As an oconomical unis，no compromises are made in basie perfor－ mance．The single－ended input is availathle through a conventional rear conncelor as well as convenient front panel binding posts．Eigho calibrated ranges are provided from $20 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} /$ div．

17403A AC Carrier

LVDT，RVDT．and strain gauge basod devices are just some of the ac and de（passive）transducers compatible with the plug－ins．The 7402 A with the 17403 A supplies 2.4 kHz .5 V ac excitation 10 trans－ ducers and bas standard calibrated zero suppression．Option 0）1，a plug．jn electronics board，must be installed on the 7402A．On existing 7402A．use Part No．07402－60252．

17404A DC Bridge

This plug－in supplies de excitation voltage to the transducer and re． ocives the returning eransducer output．Front panel selection of seven input sensitivity ranges from $0.1 \mathrm{mV} /$ div to $10 \mathrm{mV} / \mathrm{div}$ are provided．

7402A，7404A，17400A Series plug－ins specifications

7402A General specificallons
Number of channels：two analog channels．One event marker／imer （oplional）：one event marker（optional）．
Chart descriptlon： 50 mm vide chatrmels with 50 div full sealc．Time lines every 1 mm ．Charl Jengh 84 m （ 275 ft ）．
Chart speods： $1,5,25,125 \mathrm{~mm} / \mathrm{s}$ cuntrolled by front panel，rear panel TTL or contact closure．
Chart spead accuracy（al $25^{\circ} \mathrm{C}$ ）：± 0.5 名 plus power line frequency $^{\circ}$ variation．Temp coell $0.08 \mathrm{C} /{ }^{\circ} \mathrm{C}$ ．
Chart weave：$\pm 0.25 \mathrm{~mm}$ maximum．
Zero：adjustable 10 ± 30 div cither sude of grid center．
Writing system：bluc－black ink with rectilincar prescotation： 55 ct replaceable with throw－away cartridge．
Envlronmental（operaling）： $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$ and up $109{ }^{\circ}$ 尔 relative hu－ midity from $25^{\circ} \mathrm{C} 1040^{\circ} \mathrm{C}$ for mm / s speeds（ 80% relalive humidity for mm／mis．）
Power： $115 / 230 \mathrm{~V}$ ac ± 10 复 60 Hz I 40 VA ．
Wolght： $18.2 \mathrm{~kg}(40 \mathrm{lb})$ with 217400 A ＇s \＆paper．Shipping 26.9 kg （59 lb）．
Dimensions： 284 mm H． 253 mm W， $384 \mathrm{~mm} \mathrm{D}\left(111_{\mathrm{m}^{\circ}} \times 9 / \mathrm{k}^{\mathrm{n}} \times\right.$ （51／＊＂）．

7404A General speciileations

Number of channels；fouramithg channels．Four event markers：one with timer．All event markers standerd．
Chart degcription： 40 mm wide chanmels with 50 div full scale．Time lines cuery 1 mm ．Chast length 84 in （ 275 ft ）．

Two and four-channel oscillographic recorders

Chart speeds: $5,10.25,50,100,200 \mathrm{~mm} / \mathrm{s}$ and $\mathrm{mm} / \mathrm{min}$ conirolled by frent panel, rear panci TTL or contacl closure.
Charl speed accuracy (at $25^{\circ} \mathrm{C}$): same as 7402A.
Charl weave: sume is 7402^.
Zero: same as 7402A.
Wriling system: sanic as 7402A.
Environmental (operaling): same as 7402A.
Power: $100 / 115 / 200 / 230 \mathrm{~V}$ ac $\pm 10 \% 60 \mathrm{~Hz} 300 \mathrm{VA}$.
Weight: $31.4 \mathrm{~kg}(69 \mathrm{lb}$). Shipping 43.2 kg (95 lb).
 151/").

17400A with 7402A and 7404A
Input ranges: $1,2,5,10,20,50,100,200,500 \mu \mathrm{~V} / \mathrm{div}, 1,2,5,10,20$. $50,100,200,500 \mathrm{mV} / \mathrm{div} / 1,2,5 \mathrm{~V} / \mathrm{div}$. Conimuous vernier belween ranges.
Type of input: differential, floated and guarded. Inpuls thru rear conneclor.
Maxlmum allowable Input (conlinuous): 500 V dc on $10 \mathrm{mV} / \mathrm{dv}$ range and above. other ranges 120 V dc or 120 V ac rms.
Inpul resiatance: I Megohm (nin.)
Common mode rejectlon: 150 dB dc and 140 dB st line frequency with I $\mathrm{k} \Omega$ source imthalance. 90 dB dc and 80 dB at 60 Hz on 10 mV /div range and above.
Maximum allowable common mode voltage: $\pm 200 \mathrm{~V} d c$ max volsage.
Frequency response: for 10 divisions deflection -3 dB a 110 Hz on $10 \mu \mathrm{~V} /$ div range and above.
Rise time (typlical, 10 to 90% of full acale deflection): 7.5 m 5 , Overshoot: liss than 2% of full scalc.
Accuracy (on calibrated range, al $25^{\circ} \mathrm{C}$, Includes linearlly): $\pm 1 \%$ of full scale. Temp Coefl $0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to interchange unit without recalihriation.
Range accuracy (al $25^{\circ} \mathrm{C}$. includes linearliy): $\pm 1 \%$ of fult scale $\pm 0.2^{\text {\% }}$ of reading. Temp Cocff $0.06 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. Allow's for ability 10 interchange unit withoul recalibsation.
Zero suppression: $1.10,100 \mathrm{~V}$ on $10 \mathrm{mV} / \mathrm{div}$ ringe and above; ot her ranges $1,10,100 \mathrm{mV}$. Continuous calibrated vernier between suppressiun steps.
Zero suppression accuracy: $\pm 0.5 \%$ of suppression $\pm 0.5 \%$ of full scalc. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$.

17401A with 7402A and 7404A
Inpul ranges: 1, 2, 5, 10, 20, 50, 100, 200, $500 \mathrm{mV} / \mathrm{div} ; 1,2,5 \mathrm{~V} / \mathrm{div}$. Continuous sernice between ranges.
Type of input: balanced to ground. Inputs thru rear connector.
Maximum allowable input (conilnuous): 230 V rms on 500 mV . /div range and above: other ranges 120 V rms.
input resistance: I Mugohm (min).
Common mode rejectlon: greater than 50 dB de to line irequency with 100 ohm source imbalance.

Maximum allowable common mode vollage: 250 V dc or peak ac on $500 \mathrm{mV} / \mathrm{div}$ and above. other ranges 15 V dc or peak ac.
Frequency response: 7402A - For 10 div dellecion - 3 dB al 140 $\mathrm{Hz}: 7404 \mathrm{~A}$ - Fror 10 div deflection - 3 dB all 150 Hz .
Rlse lime (Typleal, 10 to 90% of full seale deflecilon): 7 ms .
Overshool: less than 2% of full scale.
Accuracy (On callbrated range, af $25^{\circ} \mathrm{C}$. includes linaarlty): $\pm 1 \%$ of full scale. Temp Coeff $0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability 10 interchange unit without recalibration.
Range accuracy (At $25^{\circ} \mathrm{C}$, includes Ilnearlty): $\pm 1 \%$ of full scale $\pm 0.2 \%$ of seading. Temp Cotil $0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to inter. change unit without recalibralion.
Zero suppression: (optional) $0.2 .2,20 \mathrm{~V}$. Continuous calibratcd vernier between suppression sleps.
Zero suppression accuracy: ± 0.5 最 of suppression $\pm 0.5 \%$ of full scalc. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$.
17402A with 7402A and 7404A
imput ranges: $20.50 .100 .200,500 \mathrm{mV} /$ div: I. 2. $5 \mathrm{~V} /$ div. Continuous vernier belween ranges.
Type of input: single ended. Inputs thru front or rear connector.
Maxlmum allowable inpul (continuous): 230 V rms on 200 ml /div range and above: other ranges 120 V ms.
Inpul resistance: I Megohm (min).
Frequency response: 7402 A - For 10 div deflection - 3 dB al 140 Hzi 7404A - For 10 div deflection -3 dB al 150 Hz
Rise time (Typleai, 10 to 90% of full acale deflection); 7 ms .
Overshoot: less than 2 围 of full scale.
Accuracy (On callbrated range, at $25^{\circ} \mathrm{C}$, Includea linearity): $\pm 1 \%$ of full scale. Temp Coc $\int 50.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to inlerchange unit withour recalibration.
Range accuracy (At $25^{\circ} \mathrm{C}$, includes Innearlty): $\pm 1 \%$ of full scale $\pm 0.2 \%$ of reading. Temp Coeff $0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to interchange unit without recalibration.
17403A with 7402A and 7404A
Input ranges: $0.1,0.2,0.5,1,2,5,10,20.50 \mathrm{mV} / \mathrm{V}$ full scalc. Continyous vernier belween ranges. Also provides division of above sensilivilies by 100 .
Type of input: differenial, floaling.
Maximum allowable Input (contlnuous): 50 V rms at 2.4 kHz .
Input reslstance: 100 k at 2.4 kHz .
Common mode rejectlon; 120 dB de to line frequency with $\mathrm{l} \times \mathrm{h}$ source imbalance.
Maxlmum allowable common mode vollage: $\pm 200 \mathrm{~V}$ de or pcak ac.
Frequency response: 7402 A - For 10 div deflection -3 dB al 140 $\mathrm{Hz} ; 7404 \mathrm{~A}$ - For 10 div denlection -3 dB at 150 Hz . For Preamp only - oulpul available on resar of rocorder. Filler swileh to $50-3 \mathrm{~dB}$ a 50

Hri. rolloff 40 dB /decade. Filter switch to $200-3 \mathrm{~dB}$ al 200 Hz : rolloff $40 \mathrm{~dB} /$ decadc. Filter switch to A VG - Time constant $1.0 \mathrm{~s} \pm 10 \%$ de to 0.16 He rollofi $20 \mathrm{~dB} / \mathrm{decade}$.

Rlae lime (Typleal. 10 to 90% of full scale deflection): pramp filter switch to 50 or $300 ; 7.5 \mathrm{rms}$. Preamp filler switeh to $\Lambda V G$; I s. Overshoot. less than 2% of full scale.
Accuracy (On calibrated range, at $25^{\circ} \mathrm{C}$, includes linearity): $\pm 0.6 \%$ of full scale at $25^{\circ} \mathrm{C}$. Temp Coeff $0.06 \% /{ }^{\circ} \mathrm{C}$.
Range accuracy (At $25^{\circ} \mathrm{C}$. includes Ilnearliy): $\pm 0.6 \mathrm{~F}_{\mathrm{N}}$ if full scalc $\pm 0.2 \%$ of ruading. Temp cocif $0.06 \% .^{\circ} \mathrm{C}$.
Zero suppresston: ten turn control from 0 to 100% of full scate.
Zero suppression accuracy: 0.5% of seting $\pm 0.5 \%$ of full scale.
Drift (zero Ine referenced to Inpul): $\pm 0.2 \mu \mathrm{~V} / \mathrm{V} /$ wee't (includes excilation drif).
Source reslstance: compensated by front patmel adjustment.
Balance controls: R Balance $\pm 5 \mathrm{mV} / \mathrm{V}$. Temp Coelf. $\pm 0.3 \mathrm{mV}$ $/ V^{\circ} \mathrm{C}$. C Balance $\pm 7 \mathrm{mV} / \mathrm{V}$. Temp Coeff $\pm 1.8 \mu \mathrm{~V} / \mathrm{V} /{ }^{\circ} \mathrm{C}$ Quadralure rejeclion: 40 dB at 2.4. Quad. Tol. - 2:1.
Transducer excilation: full Bridge - 5.0 V ms $\pm 5 \% .2 .4 \mathrm{kHz} \pm 3 \%$. Half Bndge - One half full bridge excitation.
Excifatlon load reslstance: 100 ohms min. (Unlimited output shon circuit duration.)
17404A with 7402A and 7404A
Input ranges: $0.1,0.2 .0 .5 .1,2,5,10 \mathrm{mV} /$ div with overlapping vernier between ranges.
Type of Input: differeniial, Moating and guarded.
Maximum allowable input (conlinuous): 17 V de or peak ac. Input resiatance: 100 k (min).
Common mode rejection: 100 dB dc and 80 dB at line frequency wilh I k source imbalance.
Maximum allowable common mode voltage: $\pm 165 \mathrm{~V}$ de or peak ac.
Frequency response: 7402A - For 10 div deflection - 3 dB al 140 Hz 740AA - For 10 div deflection - 3 dB al 150 Hz . Amplifier only (oulput available on rear or recorder). -3 dB al 3 kHz .
Rise lime (Typleal, 10 to 90% of (ull scale deflaction): 7 ms . Overshoot: less than 2 愛 of full scale.
Accuracy (On callbrated range, at $25^{\circ} \mathrm{C}$, includes Itnearity): $\pm 1,05$ of full scale al $25^{\circ} \mathrm{C}$ (cxcludes excitation supply errors). Temp Coefl. $0.06 \% /{ }^{\circ} \mathrm{C}$.
Range accuracy (At $25^{\circ} \mathrm{C}$, Jncludes linearlty): $\pm 1.0 \%$ of full scale at $25^{\circ} \mathrm{C}$ (excludes excitalion supply ereors). Temp Cooff $0.06 \% /{ }^{\circ} \mathrm{C}$.

Drlft (Zero line reterenced to input): $\pm 0.2 \mu \mathrm{~V} / \mathrm{V} /$ week (includes excilation drift).
Source reslstance: $1 \mathrm{k} \Omega$ max.
Balance controls: unloaded bridge completion board. Froni pancl balance and cal conirols (balance up to S V).
Transducer excltatlon: 5 V dc $\pm 1.0 \%$.
Exclation load resistance: 50 ohms min. \{Unlimited oulpul short circuit duration.)
7402A Options

Price

001: Event marker (left hand)

\$75

003: Both event marker and event marker/imer for is intervals.
$\$ 175$
004: 50 Hz power line operation
N/C
005: Paper take-up (external)
008: Rack mount adapler \$55
008: Event marker/timer for minutes and sceonds (not compatible with Options 001 or 003)
$\$ 135$
009: 60:1 speed reducer \$160

010: Hard cover (nor compatible with Opion 005 or 006)
$\$ 30$
011: 2.4 kHz oseillator for use with 17403A $\$ 40$
7404A Options
004: 50 Hiz power line operation N/C
005: Paper take-up (external) $\quad 5150$
006: Rack thount adapter $\$ 75$
010: Hard cover (nol compatible with Option 005 or 006)
\$75
Model number and name
7402A Mainframe (less plug-ins) $\quad \$ 2050$
7404́A Mainirame (less plug-ins) $\$ 4400$
17400A High Gain Preamplifier $\quad \$ 785$
17401A Medium Gain Preamplifier 5275
17401A.Option 001 (Zero suppression) add $\$ 140$
17401^ Low Gain Preamplifier $\$ 170$
17403A AC Canticr Preamplifier $\$ 730$
17404 A DC Bridge Amplifier $\$ 730$

Models 7414A, 7418A \& 8800 series signal condilioners

- Versatile configuration
- Hot tip thermal writing

7414A

7418A

The Hewlect Packard Models 7414A 4-channel, and 7418A 6 and 8-channel Oscillographic Recurders provide permanent reproducible records of mulsichanncl, reat-ime, low frequancy data. They can be combined in a single benchtop package, a mobile carl, or in an upright cabinet. The urill selceled. depending upon channel needs, represent a unique combination of reliability, high performance, and flex. ibility. A compliment of the 8800 Series Plug-In Signal Conditioners result in a system capoble of meeting many measurement requirements.
Thermal writing lips, featuring long stylus life and rectilinear pre. sentations. are provided. A 500 -sheet, 2 -fold chart paper pack loods easily, allows for convenicnt data revitw, and storage capabihty. Two event merkers are supplite. One is activated by either a one-second or one-minute front panel timer button, the other by the cvent button. Both markers can be aclivaled remotely.

7414A, 7418A, 8800 Series Plug-In Specifications

7414A General specifications

Chart speeds: $0.25,0.5,1.0,2.5,10,25,50,100 \mathrm{~mm} / \mathrm{s}$. Speed regulation $\pm 1 \%$. Paper weave less than 0.5 mm . Speod selected via fromi pancl pushbullons.
Llmiling: electrical limiting keeps stylus within a range of 1.5 nim beyond edge of chamnel.
Markers: event - local or remole conirol (menopolar), located on right side, between channels 3 and 4 . Timed - I min or I sec interval (monopolar), localed on lefi side. between channels I and 2.
Charl paper: four 40 mm wide channels each with 50 div: time lines every 1 mm ; heat sensitivity Z -fold Permapaper(1) with green grid lines avgilable in packs of 500 sheers, each 10 cm (12 in.).
Paper loading: no threading required.
Remote operation: rear pancl connecior provides for charl drive and event marker.
Power: $115 / 230 \mathrm{Vac} \pm 10 \%, 60 \mathrm{~Hz}, 350 \mathrm{VA}$ (includes plug-ins). 50 Hz optional.
Dimenslons: heigh, 29 cm (11 in.): width, 48 cm (19 m.) for standard rack. Depith. 57 cm (23 in .). Projection, 6 cm (3 in .) from rack front.
Welght: nel, 50.5 kg (112 lb). Shipping. 59.5 kg (132 lb).

7418A General specifications

Chart speeds: $0.5,1,2.5,5,10,25,50,100.200 \mathrm{~mm} / \mathrm{sec}$. Speed regulation $\pm 1 \%$. Paper weave less than 0.5 mm . Speed selected via fromt panel pushbutions.
Remote operallon: rear panel connector provides for charl drive and event marker. optional exira markers. Remote connector supplies - 20 V.

Power: $115 / 230 \mathrm{~V}$ ac $\pm 10 \% .50 \mathrm{~Hz}$. Recorder only 575 VA : system plug-ins 695 VA .
Dlmenslons: height, 29 cm (11 in .); widih, 48 cm (19 ln.) for standard RETMA cquip rack. Depth 57 cm (23 in ,). Projection 6 cm (3 im.) from front of rack.
Walght: $50 \mathrm{~kg}(110 \mathrm{lb})$ including óriver amplifiers.

8801A

independent of gain; 5 MSt on mV range; noating and guarded. Rise lime (10 dlv, $10-90 \%, 4 \%$ overshoot): $5 \mathrm{~ms} .6 \%$ avershool. Calibration (reterred to Input): $200 \mu V \pm 1$ in internal on $\mu \mathrm{V} / \mathrm{div}$ range; $200 \mathrm{mb} \pm 1 \%$ internal on $\mathrm{mV} /$ div range.

Zero suppresslon: $\mu \mathrm{V}$ ranges $\pm 1, \pm 10, \pm 100 \mathrm{mV} ; \mathrm{mV}$ ranges $\pm \mathrm{I}$, $\pm 10, \pm 100 \mathrm{~V}, 10-\mathrm{T}$ por sets precise values of zero suppression voltages; accuracy ± 1 尔 suppression range.
Output nolse, max (less trece width): 1.5 mm p-p at $1 \mu \mathrm{~V} / \mathrm{div} 0.1$ div, p-p min gain.
Zero dpift, 20\% to $40 \%, 103$ to 127 V (lees Irace width): temp μV range $1 \mu V / 10^{\circ} \mathrm{C}$ referred to inpuL ± 0.26 div $/ 10^{\circ} \mathrm{C}$ for 0 outpul \& $\pm 0.65 \mathrm{div} / 10^{\circ} \mathrm{C}$ for f oulpul. mV range. $1 \mathrm{mV} / 10^{\circ} \mathrm{C}$ referred to inpul. ± 0.26 div $/ 10^{\circ} \mathrm{C}$ for 0 oulput. Line vollage $0-0.07 \mathrm{div}$; is 0.35 div .
Common mode rejeollon and tolerance: $\mu \mathrm{V}$ range, max source unbal of J k : 160 dB mirn at de. 120 dB min at 60 Hz mV runge, max source unbal of $500 \mathrm{k} \Omega ; 100 \mathrm{~dB}$ min at $\mathrm{dc}, 60 \mathrm{~dB}$ min al 60 Hz dc .300 $\vee \mathrm{pk}: 60 \mathrm{~Hz} 1 \mu \mathrm{~V} / \mathrm{div} .10 \mathrm{~V}$ rms: $2 \mu \mathrm{~V} / \mathrm{div}, 20 \mathrm{Vms}$; $5 \mu \mathrm{~V} / \mathrm{div}, 50 \mathrm{~V}$ rms: $10 \mu \mathrm{~V} / \mathrm{div}$ and $10 \mathrm{mV} / \mathrm{div}, 100 \mathrm{~V}$ rms: $20 \mu \mathrm{~V}$ 10 $5000 \mu \mathrm{~V} /$ div and 20 mV to $5000 \mathrm{mV} / \mathrm{div}, 200 \mathrm{~V}$ rms.
Oulput linearity (lese trace width): I mV range 0.35 div, others 0.25 div after calibrating for zero error at center scele and +20 div.

8805A/B with 7414A and 7418A

Inpul ranges: XI, 2, 5, 10, 20, 50, 100, 200; accuracy $\pm 2 \%$.
Maximum callbrated senshivity 日nd max le Input: $10 \mu \mathrm{~V}$ rms/div (gain 10,000 rms ac 10 dc); 100 ml rms .
Input circuil and Input frequency range: imput impedance $8805 \wedge$ approx. $10 \mathrm{kQ} ; 8805 \mathrm{~A} 1 \mathrm{\mu} \Omega \pm 10 \%$ single-ended. Min load resistance across excilation loon. Maxs impedance in setics with input (iransducer output impedance) 5 k ?. Excitation - floating source 5 V rms nominal at $2400 \mathrm{~Hz} \pm 2 \%$. Internal full bridge - half bridge switch grounds C.T. of cucitation for use with half bridge ransducer. Rlse time (10 div, $10-90 \%, 4 \%$ overshoot): 5.6 ms .
Callbralion (relerred to inpul): $2 \% \pm 0.02 \%$ of transducer fs oulput. Adjust by Cal Factor conirol: accuracy $\pm 55 \mu \mathrm{~V} / \mathrm{V}$ out of $10 \mathrm{mV} / \mathrm{V}$. 880 SB switchable Cal voltage $102 \%, 10 \%, 50 \%$ or $100 \mathrm{Fi} \pm 1 \%$ of fs. Outpul irequency responae (-0.5 dB al 50 dly): 50 H /.
Zero suppression: 0-100\% of traniducer full load rating, for transducers having Cal Factor up to $10 \mathrm{mV} / \mathrm{V}$ at full load, $10-\mathrm{T}$ pot with calibration dial; accuracy - I dial div $\pm 0.55_{0}$ of suppress range. Zero Supp Polarity switch, Separate R Bal control allows bucking of inphase unbal to $\pm 3 \mathrm{mV} / \mathrm{V}$ rugardless of Cal Factor.
Oulput nolse, max (leas trace width): approx. 0.2 dju, p-p.
Zero drilt, 20% to $\mathbf{4 0 \%}, 103$ to 127 V (less trace width): temp $0.45 \mathrm{div} / 10^{\circ} \mathrm{C}$; Line vollage - 0.25 div .
Common mode rejectlon and tolerance: quadrature rejection and tolerance: $>40 \mathrm{~dB}$. Tolerance error: $< \pm 2$ lif is when quadralure voltage equal 10 twice in-phase signal required for center to odge de. flection on chart. C Batance control permils bucking of transducer'\& quad unbalarice of up to $\pm 5 \mathrm{mV} / \mathrm{V}$.
Output Ilnearity (Jese Irace width): 0.4 div after calibrating for zero error al center scale and +20 div.

g806B with 7414A and 7418A
Input ranges: sig irput - 0.5, 1. 2.5. 10. 20. 50. 100. 200. 500 $\mathrm{mV} / \mathrm{div}$: $\pm 1 \mathrm{k}, 50 \mathrm{~Hz}$ to $10 \mathrm{kHz} ; \pm 2 \%, 10 \mathrm{kHz}$ to $20 \mathrm{kHz}: \pm 3 \%, 20$ kHz to 40 kHz , Ref valigge - 31020 V rms. 2010133 V ms
Maximum callbraled aenshivity and max fs inpul: 0.5 mV mas/div (gain 200 rms ac to dc) 25 V rms.
Inpul circull and Inpul trequency renge: signal Input: - eransformer isolated, floating point and guarded; resistance approx. I M Ω. Reference Input: differential, lransformer coupled; resistance approx. $500 \mathrm{k} \Omega$ each side 10 ground, may be used single ended. $50 \mathrm{H} \mathrm{\%}$ to 40 kHz in 6 bauds with variable frequcucy plug-in; $60 \mathrm{~Hz}, 400 \mathrm{~Hz}$ and 5 kHz lixed frequency phase shifter plug-in: special order phase shiner plus-ips 50 Hz to 40 kHz .
Rige ilme ($10 \mathrm{dtv}, \mathbf{1 0 . 9 0 \%}, \mathbf{4 \%}$ overghoot): 5 ms (5 kHz rel).
Callbration (reterred to input): 1 V mos intemal at carfics reference frequency: $\pm 1 \% 50 \mathrm{~Hz}$ to $10 \mathrm{kHz}: \pm 2 \%, 10 \mathrm{kHz}$ to $20 \mathrm{kHz}: \pm 3 \% 20$ $\mathrm{kH}<1040 \mathrm{kHz}$.
Zero suppresslon: none. Phase shifter plug-ins allow conirol of reference phase over 360°. Fixed frequency: 0° co 90° dial: 2° gradua. lions: any of 4 quadrants by pancl switches; dial accuracy within $\pm 3^{\circ}$. V ariable frcquency: adjusi ithru 360°.
Oulput nolse, max (less Irace widih): $7 \mu \mathrm{~V} \times$ sq rool of frequancy response, refirred to inpul.
Zero drlit, 20° to $40^{\circ} \mathrm{C}, 103$ to 127 V (less trace widtn); (tmp: 0.5 div $/ 10^{\circ} \mathrm{C}$. Line volage: 0.25 div.
Common mode relection and tolerance: $C M$: $>40 \mathrm{~dB}$ up 1010 xHz 500 V sms, max. Quadrature tolerance: oqual to amplitude of a is. in-phase signal.
Outpul Ilnearity (less trace wldih): 0.4 div afecr calibraling for zero error at center scale and +20 div .

B8078 with 7414A and 7418A

Input ranges: $0.02,0.05,0.1,0.2,0.5 .1 .2,5.10 \mathrm{~V}$ rms/div. $\pm 2 \%$ (midband). Scale expansion: XI, 2, S, 10, 20, 士2\%.
Maximum callbrated sensiflvity and max is Input: $1 \mathrm{mV} \mathrm{mms} / \mathrm{div}$ (gain 100 rms ac 10 dc). $20 \mathrm{mV} \mathrm{mms} /$ div with KI scale expansion 500 V rms.
Inpul clrcult and lnpul frequency senge: approx. I Mn resistive in pargllel with 10 pF and siray cable capacitsnce; floating and guarded. Standard model: 330 Hz to 100 kHz : Opl 00I: 50 Hz 10100 kHz .
Rlse lime $\{10 \mathrm{div}, 10-90 \%, 4 \%$ overahoot $\}: 11.2 \mathrm{~ms}$. Opl 001: 70 ms . approx. 10% overshool.
Calibratlon (retarred to input): I V internal $\pm 1 \%$; approx. 500 Hz .
Oulput Irequency response (-0.6 dB at 50 div): $54 \mathrm{~Hz}(3 \mathrm{~dB}$ al 10 div). Opt $001-9 \mathrm{~Hz}$.

Zero suppression: up to 100% of fis on any range can be suppressed: 10-T pot with calibrating dial. Scale expansion: 5. 10, 20, or 50 of is can be expanded to cover full charl.
Ouiput nolse, max (lees Irece width): basclinc offsci/naise: 2 mV tms feferred 10 inpul +0.025 div \times scale expansion.
Zero drift, 20° to $40^{\circ} \mathrm{C}, 103$ to 127 V (less trace width): temp 0.03 div $/ 10^{\circ} \mathrm{C} \times$ scale expansion +0.35 div $/ 10^{\circ} \mathrm{C}$: at constant ambient 0.005 div/hr \times seale expansion. Line vollage 0.005 div \times scale
expansion +0.1 div.
Common mode relectlon and tolerance: 60 dB min at $60 \mathrm{~Hz}: 40 \mathrm{~dB}$ min at 400 Hz with up to 10 k source unbalance: $\pm 500 \mathrm{~V} \mathrm{pk}$.
Output Inearily (letes Irace widh): 0.55 div $+0.05 \mathrm{div} \times$ scale expansion, 330 Hz 105 kHz ; Opl 001: 60 Hz 105 kHz , after calibrabion for zero error at lower and upper ends of printed coordinates.

8808A with 7414A and 7418A

Inpuit ranges: 50 dB span: botiom scale $-80,-70,-60,-50,-40$. $-20,-10$, and 0 of below) V (i.e., $100 \mu \mathrm{~V}, 320 \mu \mathrm{~V}, 1,3.2,10,32,100$. 320 mV and IV). 100 dB span: bollom scale $-80,-70,-60$. and -50 dB below IV.
Maximum calibraled sensitivlty and max is input: $100 \mu \mathrm{~V}$ rms sine wave corresponds to botiom scale oulput, -80 dB below I V 320 V rms.
Input clrcuit and Input frequency range: single ended, resistance I Mn min. 5 Hz 10100 kHz for $<3 \mathrm{~dB}$ dwn from mudband lavel on "Slow" reponse range; 500 Hz to 100 kHz on "Fasl" response range. Rlse time ($10 \mathrm{dlv} .10-90 \%, 4 \%$ overghoot): fast: $20.5 \mathrm{~ms}(875 \mathrm{~dB} / \mathrm{s})$. Slow: $2 \mathrm{~s}(9 \mathrm{~dB} / \mathrm{s})$.
Callbrallon (referred lo input): internal from oscillator at approx. $500 \mathrm{~Hz}-80 .-30$. and $+20 \mathrm{dBV}=\mathrm{dB}$ ref. 10) $\mathrm{V}(100 \mu \mathrm{~V} .32 \mathrm{mV}$ and $10 \mathrm{~V})-80+20 \mathrm{dBV}$ internally adjustable: -30 dBV accuracy ± 0.25 $d B$ (al IIS V line al $25^{\circ} \mathrm{C}$).
Oulpul nolge, max (less trace widih): 50 dB range: 0.8 div. p-p. 100 dB range: 0.4 div, $p-p$ (max noise at botlom of recording charl).
Oulput lineanty (less trace widih): departure from log characteristic 50 dB : 1.25 div . 100 dB : I div. ather calibraling for zero crror at low'er and upper ends of printed coordinales.

8809A with 7414A and 7418A

Inpul ranges: continuously adjustable from 20 to $50 \mathrm{mV} / \mathrm{div}$.
Maximum calibraled senaitivlly and max fs input: $30 \mathrm{mV} / \mathrm{div}$ (\&ain 3.33). $010+2.5 \mathrm{~V}$ or $010-2.5 \mathrm{~V}$.

Input clrcult and Input trequency range: switch sclected: $1 \leq 00 \Omega$ $\pm 2 \%$ or $100 \mathrm{k} \Omega$ min. incremental; single ended.
Rise time (10 dlv, $10-90 \%, 4 \%$ overshoot): 5 ms .
Callbratlon (relerred to input); $600 \mathrm{mV} \pm 2 \%$. internal.
Oulput frequency response (-0.5 de at 60 div): 50 Hz .
Oulput nolge, max (lese trace widih): O.I div. p-p.
Zero drift, 20° to $40^{\circ} \mathrm{C}$, 103 to 127 V (lese trace wldth): lemp: 0.4 $\operatorname{div} / 10^{\circ} \mathrm{C}$ at 30 mV sensilivily. Linc vollage: 0.3 div.
Common mode rejection and tolerance: 50,000: I at dc.
Outpul linearity (less trace width): 0.4 div after calibraling for zero error al center scale and +20 div.

g920A with 7418A

Sensitivily: 0.05 V/div (Amplifier Gain 2).
Maximum fs input: 250 V (edge 10 edge).
Inpul ranges (attenuation): $0.05,0.1,0.2,0.5,1,2,5 \mathrm{~V} / \mathrm{div}$. Altenualor accuracy \pm 符.
Input circuit: single ended, i MR min.
Frequency response: de $10<0.5 \mathrm{~dB}$ down at 50 Hz ($50 \mathrm{div}, \mathrm{p}-\mathrm{p}$). dc to $<3 \mathrm{~dB}$ down al 100 Hz ($10 \mathrm{div} \mathrm{p}-\mathrm{p}$).

Rise time（10 div，10－90\％，4\％overshoot）：＜6 ms．
Outpui Inearlty（less irace width）：lincar within ± 0.25 div after sel－ ling mechanical zero of stylus to within \pm ）div of chart center and edlibrating for zero error at center scale and ± 20 div．
Drift， $20^{\circ}-40^{\circ}, 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$（less trace width）：lempi $<0.5 \% / 10^{\circ} \mathrm{C}$ ．Line voltage：$< \pm 0.2 \mathrm{div}$ ．
Calbralion：I $V \pm\left.\right|^{\text {rial }}$ calibration volage in cech channcl．plus I common IV ± 1 多 calibruion volage for all channels．
Tomp rating：operalsog： $0^{\circ} 10+55^{\circ} \mathrm{C}$ ；storagc：-40° to $75^{\circ} \mathrm{C}$ ．

8821A with 7418A

Senslilvily： 0.001 V ／div（Amplifier Gain 100）．
Maximum ts input： 250 V （cdge to edge）．
Input ranges（atienualion）： $0.001,0.002,0.005,0.010 .0 .020 .0 .050$ ， $0.1,0.2,0.5$ ．1．2． $5 \mathrm{~V} /$ div．Atsenuator accuracy（dc） $1 / 2 \%$ on 0.00110 $0.050 \mathrm{~V} /$ div ranges： 1% on 0.1 to $5 \mathrm{~V} /$ div ranges．
Input clreuit：balanced．loating and guarded， $9 \mathrm{M} \Omega$ constont for all gain sectings（ $0.001100 .050 \mathrm{~V} / \mathrm{div}$ ）： $4.5 \mathrm{M} \Omega$ each side 10 ground （ 0.110 $5 \mathrm{~V} / \mathrm{div}$ ）．
Common mode rejection： 100 dB at $60 \mathrm{Hx}, 0.001 \mathrm{~V} /$ div sensitivily，
I k Ω souroc umbalance，decreases 1066 dB at $0.05 \mathrm{~V} / \mathrm{div} .66 \mathrm{~dB}$ at 60 Hz 0.01 10 $5 \mathrm{~V} /$ diy sensilivity，I k k source unbalance．
Common mode lolerance：$\pm 20 \mathrm{~V}$ on 0.001 ro $0.05 \mathrm{~V} /$ div ranges（ 6 most sensitive）：$\pm 250 \mathrm{~V}$ on 0.1 to $5 \mathrm{~V} /$ div ranges（ 6 least sensitive）．
Frequency response；dc $10<0.5 \mathrm{~dB}$ down at 50 Hz （ 50 div p－p）．de $10<3 \mathrm{~dB}$ down al 100 Hz （ $10 \mathrm{div} \mathrm{p}-\mathrm{p}$ ）．
Rlse lime（10 div，10－90\％， 4% overshoot）：$<6 \mathrm{~ms}$ ．
Oufpu（ linearity（less trace width）：same as 9820 A ．
Drift， $20^{\circ}-40^{\circ} \mathrm{C}, 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$（leas trace width）：same as 8820A．
Callbratlon：$+0.02 \mathrm{v} \pm 1$ 峦 on 6 most sensitive ranges．Simulates +2 $V \pm 2 \%$ at input on 6 least sensitive ranges．
Temperature rating：same as 8820A．

7414A Options

001：Rack mount（include slides．mounting hardwarc： delete case）
008： 50 Hz operation
012：I channel decreasc：exireme RH channel deleled． blank panel instal；not compatible with Op1 015
015：External Event Marker，installed between channel 2 and 3：not compalible with Opt 012
025： 50 Hz speed reduchion， $60: 1$（opt 008 required）
026： 60 Hz spoed reduction，60：1
054：Insialled in mobile cart．Includes paper makcup draver
7418A Options
001： 6 ehannel Hot－Tip Therm Recorder only＂（in－ cludes rakeup ray）（＂For plug－in prcamp．Opl 003 Power Supply required to operate 8800 Plug－In Preamps．For Bank Amps，select I of oplions 031－034）．
002：Rack mount kil
003：Bench top configuration
004：63－in．Cabinet（includes 7－in．d́rawer）
005：42－in．Cabiner（includes 7 －in．drawer）
006：21－13．Porlable carl（includes opl 002）
008： 50 Hz operation
009： 230 V ac operation
014：Exiernal Eveni Marker between Channels 4 \＆ 5
015：External Eveni Marker belween Chanacls 5 \＆ 6

Pree
N／C
N / C
lese $\$ 225$
$\$ 40$
$\$ 320$
less $\$ 620$ $\$ 205$
$\$ 260$
$\$ 1350$
$\$ 1350$
$\$ 950$
N / C
N／C
$\$ 90$
$\$ 90$

025： 50 Hz speed reduclion 60：I（opl 008 required）
$\$ 310$
026： $60 \mathrm{H} /$ speed reduclion $60: 1$
$\$ 310$
030：8848A plug－in preamp power supply（required for operation of 8800 Preamps）
$\$ 1170$
031：8820A 8－channel bank amp（nol compatible with opl 001 ）when ordering separsicly，ordes 8820 A for 6 channels，sec opl 033
$\$ 1650$
032：8821人 8－channel benk amp（not compaible with opl 001）when ordering separately．order 8821A for 6 channels，soc opi O34
$\$ 2780$
033：8820A 6－channel bank amp（nol compalible with
7418A 8－channel）when ordering separalely．order 8820A opl 002
$\$ 1650$
034： 8821 A 6－channel bank amp（not compatible with 7418 A 8－channel）when ordering separalels，order 8821A op： 002
$\$ 2575$
88014，8802A．8803A \＆8809A Options
001：Bench lop unit with power supply \＆poriable case
8003A Opilons
001：Bench lap unit with power supply \＆portable cast；\＄555

8805A \＆8905日 Options

001：Bench 10p unit with power supply \＆portable case $\$ 535$
002：Hammonic filter kit（required when 267，268，270，
or 12808 Iransducers are used）
ss068 Optlons
001：Bench top unit with power supply \＆portable case $\$ 490$
002：Variable frequency phase shifter piug－in． 50 Hz to
40 kHz
$\$ 260$
$\$ 205$
003：Calibrated phase shifter plug－in， 60 Hz
004：Calibrated phase shifer plug－in， 400 Hz
005：Calibrated phasc shifter plug－in， 5 kHz
$\$ 165$
9807a Options
001： 50 Hz to 100 kHz signal filier $\quad \mathrm{N} / \mathrm{C}$
002：De plug－in
003：Bencli top unit with power supply \＆poriable case
N / C

8808A Options
001：Bench top unit with power supply \＆porlable case $\$ 460$
8820A Options
002：2－channei reductions N／C
8821A Options
002： 6 channel bank amp
less \＄205
Model number and name
Price
7414A 4－channel oscillographic recorder $\$ 5300$
7418A 6 to 8－channel okcillographic recorder $\$ 7000$
8801A Low gain preamplifier
8802A Medium gain preamplifier
8803A High gain preamplifier
8805A Carrier preamplificr
880 SB Carrier preamplifier
8806B Phase sense demodulator preamplifer $\$ 620$
8807A Ac／de canverter preamplifier $\$ 855$
8808A Logaritbmic preamplifier
\＄690
8809A Signal coupler preamplifier \＄140
8820A Dc bank amplifier $\$ 1650$
882IA Dc bank amplifier \＄2780
th RECORDERS \& PRINTERS
Portable instrumentation tape recorder Modiel 3960̄Ā

\author{

- 48 dB FM signal to noise ratio
 - 38 dB unfiltered DIRECT signal to noise ratio
 - DC/peak AC monitor meter
 - 16:1 time base expansion and contraction
 - DC calibration voltages provided
 - Operated from $115 / 230 \mathrm{~V}$ ac and $12 / 38 \mathrm{~V}$ dc
}

The 3960A Portable Instrumentulion tape Recorder is a combinacion of a superior electromechanical tape drive assembly plus high perfomanee cloctronics. Siandard reatures such as the DC/Peak AC Monitor Meter and the DC Calibration Vollage Source make this instrument non-dependent on other lest cquipment when used in the ficld. Optional lealures such as 'Voice Annotation.' 'Tape Speed Servo.' 'Remotc Controllability' and the 'Tape Loop Adapler' make it adapiable 10 most data acquisition and reduction applications.

3980A Specifications

Transport specifications

Tape width: $1 /$ inch.
Reel size: slandard 7-inch plastic reels.
Heads: 4-lrack Record and A-rrack Reproduce.
Tape speeds; $19 / 10,33 / 4$. IS jps. For olher speed combinations, soc Spued Oplion Table.
Capstan drlve: DC molor with phasclock servo.
Tape spaed accuracy: $\pm 0.2 \%$.
Thme base error (TBE): measured in accordance with IRIG 118-73. These specifications applicable only with Option 040.

Tape Speed (lips)	TBE (microseconds)	Yape Speed (Ips)	TBE (milaroreconds)
15	± 4	$1 / 14$	± 15
$71 /$	± 5	$15 / 1 n$	± 25
$3 / 4$	$\pm 7 / 2$		

Flutter: measured in accordance with IRIG 118-73.

$\begin{gathered} \text { Tape Spted } \\ (i p s) \end{gathered}$	Passband (Hz)	$\begin{aligned} & \text { Fluther } \\ & (\% ~ p-p) \end{aligned}$	$\begin{aligned} & \text { Tape Spetd } \\ & \text { (iDs) } \end{aligned}$	Passband (Hz)	$\begin{aligned} & \text { fivtief } \\ & (\% g-p) \end{aligned}$
15	0.2-2500	0.35	1/1/	02-312	050
$73 /$	0.2-1250	0.35	1.5	0.2-250	0.55
3 14	0.2-625	0.40	$15 / 16$	0.2-156	0.70
3	0.2-500	0.45			

Operating modee: Forward and Reverse Record, Forward and Reverse Play. Fast Forward, Fasl Rewind. Siop.
Start and slap ilmas (typical):

Tape Speed: (ips)	15	$34 / 4$	$13 / 18$
Stan: (seconds)	2.00	0.90	0.25
Slop: (seconds)	0.25	0.25	0.25

Rowind lime (typlca1): 2300-ft reel іл 130 seconds. Braklng: fail-safe mechanical differential brakes.
End-of-tape-sensing: reels stop at end of tape.
Reel revolution counter, 4 -digit revolution counter.
Remote control: sec Option 050.

FM electronics specifications:
(Optioñ A01 ihrough A04)
Passband, aignal-to-nolee ratio and distortion:

$\begin{aligned} & \hline \text { Tape } \\ & \text { Speed } \\ & \text { (lps) } \end{aligned}$	$\begin{aligned} & \text { Carrier Center } \\ & \text { Frequeney' } \\ & (\mathrm{kHz}) \\ & \hline \end{aligned}$	Passband (H_{7})	S/H Rallo (dB)	Oistortion (\%)
15	27.00	0-5000	48	1.5
7\%	13.50	0-2500	48	1.5
3\%	6.75	0-1250	48	15
3	5.40	0-1000	48	1.5
14,	3.38	0-625	48	1.5
14,	2.70	0-500	47	2.0
$15 / \mathrm{m}$	1.69	0-312	44	2.0

(1) Signal measured al 108 ol updee passbsana.

Flutter compensation: standard on all models. Switched on and off with slideswitch behind front access door.
Llnearlly: $\pm 1 \%$ of p-p outpuifor best straight line through zero.
DC drlt: $\pm 0.1 \%$ of peak-to-peak output per ${ }^{\circ} \mathrm{C}$.
Input level: 1 V paak-to-pcak to 30 V peak-10-peak.
Input Impedance: $50 \mathrm{k} \Omega$, shunted by Z 00 pF maximum.
Outpul level: 0 to 5 V peak-to-peak (adjustable).
Outpul Impedance: 140 ohms maximum, single-ended,
Direct electronics specifications
Passband, algnal-to-noise ratlo and disiortion:

$\begin{aligned} & \text { Yape } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Tape Speed } \\ & \text { (ips) } \end{aligned}$	Passband $(\pm 3 d 8)$	$\begin{aligned} & \text { S\|gnal/Roise } \\ & \text { Ratio } \end{aligned}$
$\begin{aligned} & 3 M \\ & 888 \end{aligned}$	15	$70 \mathrm{~Hz}-60.00 \mathrm{kHz}$	38
	715	50 Hz - 30.00 kHz	38
	341	$50 \mathrm{~Hz}-15.00 \mathrm{hHz}$	38
	3	$50 \mathrm{~Hz}-12.00 \mathrm{kHz}$	38
	1/2	$50 \mathrm{~Hz}-7.50 \mathrm{hHz}$	38
	14.	$50 \mathrm{~Hz}-6.00 \mathrm{kHz}$	38
	15/10	$50 \mathrm{~Hz}-3.75 \mathrm{kHz}_{2}$	38

-Referescas io a 500 Hz gne wave with a maimum al is THD
Input level: 0.1 V ims to 10 V mms.
Input Impedance; $50 \mathrm{k} \Omega$, shunted by 200 pF maximum.
Output level: 0105 V peak-io-peak (adjustable).
Outpul impedance: 140 ohms maximum, single-ended.

Signal monitoring

Peak reading meter: in Record, meter reads in percenlage of full devialion (40 年) or drive level on tape. In Reproduce, meler reads output voltage. On meter. 100% (0 dB) output corresponds 105 V peak-to-peak. Red calibration marks provided for IV mes.

Meter modes: meter has two modes: In PEAK mode it reads peak of absoluic value. including any de components. In DC mode il reads de component of signal.
Meler acouracy; better than $\pm 1 /$ d 8 for signals with 50 to 100% duty cyble; better inan $\pm 1 \mathrm{~dB}$ for 1 to 50\% duty cycle.

DC calibration source

Vollages: $\pm 10 . \pm 5, \pm 2.5$. or $\pm 1.4 \vee$ de

Pecord control

Combinalion Record [Jisable Switch/Level Control for each channel. In OFF position, no signal is fed to rucord heid. Any combination of tracks can be recorded, including one (rack al a lime.

General specifications

Size: $425 \mathrm{~mm} \times 381 \mathrm{~mm} \times 187 \mathrm{~mm}\left(16^{3 / 4^{m}} \times 15^{\circ} \times 71 \mathrm{~m}^{\circ}\right)$.
Welght: $22.7 \mathrm{~kg}(50 \mathrm{lb})$.
Power requirements: $115 / 230 \mathrm{~V}$ ac $\pm 10 \%, 48-440 \mathrm{~Hz}$
Enviranment
Temperature: Operating $-0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$.
Alitude: Operating - $15,000 \mathrm{fl}$: Nonoperating - $25,000 \mathrm{f}$.
Humidity: 10% in $95 \%\left(+25^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$, noncondensing.
Shock: 30 g maximum (11 ms) nonoperding.

Speed optlons

Option No,	Description	Price
001		\$140
002	13/1m, 12 h , and 71/2 ips	\$140
003	13/16.1/3, and 15 ips	\$140
004	15/10, 33/4, and $7^{12} \mathrm{ips}$	\$140
005	18/10.71/2, and 15 ins	\$140
006	13 . 37%, and 71 mps	\$140
007	1\%, 3\%, and 15 10s	\$140
008	14, 7\%/ and 15 ps	\$140
009	334, 7\%, and 15 ips	\$140
010	1\%, 3, and 15 ios	N/C

Data electronic oplions

Optlon No.	Descrlption	Price
R01	One Channel F.M. Record/Reproduce	$\$ 450$
A02	Two Channel F.M. Record/Reproduce	$\$ 900$
A03	Three Chamnel F.M. Record/Reproduce	$\$ 1350$
A04	Four Channel F.M. Record/Reproduce	$\$ 1800$

Direct recordirepraduce electronics
(equallzed for 3M8日B):

Option No.	Descrig1ion	Price
$\mathbf{6 0 1}$	One Channel Direct Record/Reproduce	$\$ 425$
$\mathbf{6 0 2}$	Two Channel Direcl Record/Reproduce	$\$ 750$
$\mathbf{6 0 3}$	Three Channel Direcl Record/Reproduce	$\$ 1075$
$\mathbf{6 0 8}$	Four Channel Direcl Record/Reproduce	$\$ 1400$

Direct record/reproduce electronlcs
(equallzed for 3M150),

Opton No.	Descrigllion	Price
H01	Ore Channel Direct Record/Reproduce	$\$ 440$
H02	Two Chanrel Direct Record/Reproduce	$\$ 780$
$H 03$	Three Channel Direct Record/Repreduce	$\$ 1120$
H0d	Four Channel Direct Record/Reproduce	$\$ 1460$

Direct record/reproduce electronics
(equalized for 3M203 or ampex 641):

Oplion Ro.	Description	Price
$\mathbf{1 0 1}$	One Channel Direct Record/Reproduce	$\$ 450$
$\mathbf{J 0 2}$	Two Channel Drect Record/Reproduce	$\$ 800$
$\mathbf{1 0 3}$	Three Channel Drecl Record/Reproduce	$\$ 1150$
$\mathbf{J 0 4}$	Four Chamrel Direct Record/Repredtce	$\$ 1500$

 A01 through 204.

Miscellaneous options

021: Inverter $D C / A C .12 \mathrm{~V}$ dc input: cannol be installed in 3960A with Oplion 040 . When ordering separately, order P/N 13061A
022: Inverter DC/AC, 28 V de input, cannol be installed in 3950A with Option 040. When ordering separately, order Part No. 13061 B
023: Voice Channel Amplifier, including microphone When ordering separatcly, order Part No. 13063A
024: Tape Loop Avapter. When ordering separately order Parl No. 13062 A
025: Rack Mount Kit. When ordering separately, order Parl No. 13065A
026: Rack Slide Kit. When ordering separately, order Part No. I3068A, This option deletes the stamdard uute case. adds prolective eover. For siandard 19 inch rack.
027: Rack Slide Kit. When ordernig separately, order Part Ne. I 3068 . This oplion deletes the standard outer case adds proteclive cover. For H P تibinets.
028: Remote ON/OFF Jool swich. When ordering separately, order Par No. 13060 A
029: Transit Case. When orderifts separately. order Parl No, 13066A
030: HP Med White Paint
040: Tape Speed Servo: for controlling lime base from recorded reference on lape. This option requires at least one channel of Dirocl Record/Reproduce Elecironics for recording and reproducing the referenec. Cannol be installed in 3960A with Option 010 or Ophions 021 and 022
050: Remote Control: provides capability of remorely switching 3960A functional conerols Forward Play, Re verse Play, Record. Rewind. Fasi Forward, and Slop
060: Limited Remolc Control; provides capahility of remolely switching 3960A controls Play, Record, and Stop only
070: Overlap Capability: Permits conninuous record ing by overlapping data being recorded on Ist 3960A 10 2nd 3960 A (requires opl 050)

369QA Transport Assembly (for $13 / 1 \mathrm{~h} .3 \mathrm{~J} / \mathrm{h} .15 \mathrm{ips}$ standard speeds)

Alphanumeric, 20 column thermal printer

- Silent operation
- Optional scanner and clock
- Alphanumeric

HP-IB 5150A, option 004
General
The 5150 A Thermal Printer is a versatile instrumentation printer designed to accept and record up to 20 columns of data from most HP digital instruments. Because it uses a thermal pronting (echnique, 11 is extraordinarily quiet while in operation. Two input interfaces ate available (one must be specified with the order) to allow data input from the HP Interface Bus (use Option 001) or Írom BCD-coded sources (use Option 002). Other options which add to the flexibility of this printer are the Option 003 Scanner, which can sequentially address and interrogate up to 13 instruments on the HP-IB, and ihe Option 004 Clock, which can be used with either the HP-IB or BCD In. terfaces.
Opition 001 HP-IB interface
With Option 001 installed, the prinice can accept up to 20 ASCl characters per line via the HP-IB. Inputs are interpeeted according to the 64 member upper-case ASCII character sel. With this interface. the printer can also serve as an "addressable listener" in a controllerbased HP-IB system.

Option 002 BCD interlace

With Option 002 installed, the printer will accept 10 columns of TTL-ievel BCD data, Tivo Option 002's may be instulled for 20 -column prini-out from one or two sources. The standard 16 -member character set consists of 0 through $9,+,-, V, A, R$. and \{blank|. Special character sels which draw from the GA-character upper-case ASCII sel may also be specified.
Option co3 scanner
With both Options 001 and 003 installed. the printer can log data from up to 13 menstruments on the HP-IB. Operation is asynchronous; that is, the printer wall addrest the lowest address instrument, wail for data. print. then go to the next instrument.

Option 004 clock

Used with either the H.P-IB Inturface or BCD Interlace. this option gives the printer two additional capabilifies: it can control the elapsed (ame belween successive data printouts. a nd it can print the time of day immediately following each data printoue. When used with the Op. tion 003 Scanner, the elock conirols the elapsed time between the initistion of successive scans.

Prinling rate: 3 lines per second
LIne Spacing: approximatcly 6 lines per inch $(2.5$ lines per col)
Paper advance mechanism: direct drive. slepping molor
Paper: thermal sensitive. in rolls or far-folded (one roll suppliced)
Operalling environment: $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ timperalure: $95{ }^{\circ}$ 多 relative humidily (85 器 R H with fan-folded patper)
Power: 100, 120, 220, or 240 volis. 48 to 440 Hz (50 or 60 Hz only for Option 004), 100 VA
Dimensions: half-rack module, $216 \mathrm{~mm} \mathrm{~W} \times 178 \mathrm{~mm} \mathrm{H} \times 356 \mathrm{~mm}$ D ($\left.81 / 2^{N} \times 71 / 2^{N} \times 141 / 1^{\prime \prime}\right)$
Welght: approximately $7 \mathrm{~kg}(16 \mathrm{lb})(5150 \mathrm{~A}+1$ option)
HP-IB interlace (Option 001)
Columns: 20
Printed characler set: 64 ASCП characters (columns 2, 3, 4, and 5 of ANSI X3.4-1968, excepl " 4 " in column 5. row 14)
1nput Logle Levelss TTL (low <0.4 V. High > 2.5 V)
Data format byte-serial with storage. compatible with HP-iB.
Inhlbit (outpul): holds NRFD line of HP Interface Bus low following receipt of either CR or LF (selectable) until print is completed. This interval is approximately 250 ms minimum, or ihe duration of Option 004 Clock data print interval with clack in Hold mode.
ECD Interface (Option 002)
Columns: 10 (20 columns with iwo Oplion 002's inslalicd)
Character get: 0 through $9.4,-, V, A, R$, and (blank).
Input Logic Levels: TriL (low $<0.4 \mathrm{~V}$, High $>2.5 \mathrm{~V}$)
Data formal: parallel BCD (8421); switch selecls + or -(ruc logic
Prini command: pos. or neg. TTL (ransilion: $2 \mathrm{k} \Omega$ inpul impedance.
Inhibil (output): + or --, same levels as above: remains al iruc level until print is completed (approximately 250 ms nuinimum) or during Option 004 Clock data print interval with clock in Hold mode.
Scanner (Option 003)
Instruments scanned: 1 to 13
Cycle time of scan: limiled by the slowest of (a) response of insiruments scanned, (b) 3 samples per sccond, or (c) Dala Print Interval selUng ол Opion 004 Clock.
Compatlbilfy: HP Interface Bus (utilizes ASCII code)
Identifler: labels data line of each instrument with letters A-M.
Protect loalure: bypasses non-responding imsirument diler 3 sec.
Clock (Option 004)
Data print interval: sclectable by front panel switches: minimum, Is. $2 \mathrm{~s}, 10 \mathrm{~s}, 20 \mathrm{~s}, 3 \mathrm{~min} .2 \mathrm{~min}, 10 \mathrm{~min}, 20 \mathrm{~min}, 1 \mathrm{hr}, 2 \mathrm{hrs}$. Print interval will be that of input device if it is slower than the selected interval.
Tlme print Interval: seleciable by front panel switch. samc intervals as above (intervals shorier than data interval prevented).
Fime print format: selectable by froni panel switch- issiatbled, same as data, or separale line from data.
Dleplay: six-dignt, seven-segment LED display of hours, minules, soconds (00:00:00 to 23:59:59); seltuble via from panel switches.
Time base: line frequency (50 or 60 Hz selectable by jumper)
Operating supplies/accessories
Price
562Å-16C General purpose BCD Interface Cable \$85
9281.0401 Roll of paper. 76 meters $\quad \$ 2.20$
$9270-0431$ Fan-fold paper. 76 meter padd $\$ 3.80$
$05150-60002 \mathrm{HP}$-IB Interface Kit $\quad \$ 210$
OSI50-60005 BCD Interface Kit \$18s
05150-60008 Scanner Kil
$\$ 210$
10533A BCD Interface Cable for 5300A
$\$ 225$
I0631A Interface Bus Cable, I meter $\$ 60$
10631 B Interface Bus Cable, 2 meters \$65
10631C Interface Bus Cable, 4 meters
$\$ 75$.

Options

001: HP-iB Interface add $\$ 200$
002: BCD inlerface add $\$ 125$
003: Scanner
add $\$ 250$
004: Clock add $\$ 350$
005: BCD Inerface Cable (562A-16C)
add \$8s
907: Front Handle Kil

Specifications

- 10 lines/sec.
- 10 columns of data
- 4-line ± 8421 BCD

Description

General

The Hewlett-Packard Model 5055A Digital Recorder provides a high-performance economicol melhod of making permanent records of digital dasa. It prinis up 1010 columns of data from d-linc BCD dita sources at rates up to 10 lines/see. Printing is asynchronous; i.e. the print cycle starts the instant the external print command is received and requires only 100 ms under any condition. The eight inch eabinet width allows for cither bench use or side-by-side rack mounting, using the HP Adapter Franc, 5060-0797. The cades offered are ± 8421. seloctable by a rear panel switch. Each column has an individual print wheel with 16 characten- 10 numeric and 6 non-mumeric. Special wheets can be ordered at minimal cost. The 5055A is supplied complete for 10 columns of printed data and accepts TTL compatible integraled circuil logic levels. Leading zeros are suppressed when the printer is used with HP instruments which have blanking.

Reliablity

Reliability is enhanced by design simplicity: i.e. there are an unusualiy smell number of moving parts in the printer. The printer mechanism, manufactured by Hewlent-Packard, is a modified version of a mechanism whose reliability and serviceability has been demonstrated in other H.P printers for many years.

Ink or pressure senshive printing

The 5055A prints in ink on regular paper or on pressure sensicive paper. For ink prining. the mechanism includes a continuously rataling ink roller-inherently more reliable than a start-stop ribbon mechanism. Paper loading is casy from the fsont, and when the peper runs out an ałarm lamp lights and recording stops automatically. An output signal is provided for inhibiting the data source.

Versatile

Each column has an individual print whoel which can be changed independently of the other 9 wheels if a different character set is desined. This can apply 10 as many columns as desired. Spesial prime wheels can be faclory installed or may be ficld insialled al a laler diale. Boih can be done at a nominal cose.

Specifications

Printing

Accuracy: identical to input device used
Print cycle tlme: 100 ms .
Prinilng rate: 10 linesj́sce maxinuum, usunchronous
Line spacing: fixed. 4 to 5 lines per inch.
Printing: ink roller or pressure stensilive paper. Pressure sensitive puper is recommended for operation under exireme temperalure.
Print wheels: 16 positions, numerals 0 to $9,+,-, V, A, \Omega, "$ special whels available.
Column capaclty: supplied complete for 10 -column operation.

Electrical

Data input: parallel entry, BCD ± 8421 (selected by sear pancilswiteh) Blanking: Hewletl-Packard counters with blanking will give insignificant zero suppression when błanked digits oulpulis (IIII), May be defealed with rear panel switch.
Logle levela: high state $\geq+2.4 \mathrm{~V},+5 \mathrm{~V}$ maximum (open input line results in high state): low state $\leq+0.4 \mathrm{~V}$ (1.6 mA max., low), 0 V minimum.
Prinl command: line l-low to high Iransition causes print (nominal IkS input impedance): linc 2-high to low transition causes print (rominal 400 n input impedance). Voltage levels are same as logic levels above, and a minimum pulse widh of $0.5 \mu \mathrm{~s}$ is required.
Inhlblt voltage: $(+)$ inhibit $=$ mansition from ($\geq 0 . \leq 0.4 V$) 10 ($\geq 2.4 \mathrm{~V}$. $\leq 5.0 \mathrm{~V}$) upon receipl of prinl conmand. Remains at high statc untsl paper advance occurs, approximatcly $85 \mathrm{~ms}(<\mathrm{mA}$ in low stalc). $(-)$ inhibit $=$ inverse of $(+)$ inhibit.

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ with pressure sensitive paper, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Inpul connector: amphenol 57-40500-375. HP Part No. 1251-0087. 50 -pin female. Maling input cable connector: amphenol lype 5i-10500-375. HP Part No. I25I-0086. SO-pin male.
Front panel controls: power switch, power on indicator light, manual print pushbution, manual paper advance pushbuiton, out-ofpaper light, standby/operale switch. (Paper loaded from front,)
Power: Ils or $230 \mathrm{~V} \pm 10 \%, 60$ or 50 Hz (lwo-speed molor pultey incorporated), approximately 25 W idle, 55 W at 10 lines/see.
Dimensions: cabinet $203 \mathrm{~mm} \times 154 \mathrm{~mm} \times 406 \mathrm{~mm}\left(8^{\prime \prime}\right.$ wide. $6 \frac{1}{3} 2^{*}$ high, $16^{\prime \prime}$ deep)
Welght: nel, 10 kg (18.5 lb) (approximately). Shipping, 8.9 kg (22 lb) (approximately).
Operating supplies/accessories: Price
9260-007! Ink roller (black)
$\$ 16.50$
9281-0386 Standard paper (250 ' pad $\$ 2.25$
$9281-0387$ Pressure sensitive paper ($305^{\prime} \mathrm{pad}$) $\$ 3.85$
5060-0797 Rack adapler frame
\$24.00
10533A Interface Cable for 5300A
$\$ 195.00$

Options

001: 50 Hz line operacion
no charge
002: 562A-16C inpui cable inlerconneels with 3450B, 3480C/D, 5326A/B/C. and 8443A
5055A Digital Recorder \$1750
Supplied with Ink roller ($9260-0071$), one pad standard paper (9281-0386) and one pad pressure sensitive paper (9281-0387). Esch pad provides wo loadings of recorder.

- 20 lines/sec.
- Up to 18 columns of data
- 4-line $\pm 8421,+4221$ BCD
- Storage option
- Ink or pressure sensitive printing

5050B. option 055

Description

Compatibie
This recorder is compatible with a wide range or Hewlett-Packard solid state and integrated circuit instruments and a wide variely of orher equipment. It prints up to 18 columns of 4 line BCD data from one or iwo sources up to 20 lines/see.

Versatile

The user can casily change code to $+8421,-8421$. or +4221 by an inexpensive substitutable code disc, and can change print wheels 10 have a different code and/or character set in each column. Character suppression allows suppressing a character in each column.

Storage

An oplional data storage fealure is available at extra cost to reduce the time required 10 transfer data 10 the recorder. This means that the data source is inhibited for only aboul 0.1 ms out or a prinn cyele of 50 ms duration, compared to being inhibited during the complete print eycle without storage.

Specifications

Printing

Accuracy: identical to input device used.
Prlat cycle time: 50 ms .
Printing rale: 20 lines $/ \mathrm{scc}$ ond, max. (asynchronous)
Line spacing: adjustable, 3.5 to 4.5 lines/inch
Printing: ink soller or pressuce sensilive paper. Pressure sensitive paper is recommended for operation under extreme temperatures.
Print wheels: I6 positions, numerals 0 hrough 9, -. +, Z, V, П, ": special whecls available at minimal cost.

돈ectrical

Inpul requirements without data storage: parallel entry. BCD (± 8421. +4221). "I" state must differ from " 0 " statc by $>4.5 \mathrm{~V}$ but $<75 \mathrm{~V}$.
Input requiremente with deta storage: parallel entry, BCD، "I" slate must differ from " 0 " state by $>1.3 \mathrm{~V}$ bul $<35 \mathrm{~V}$. Inpul drive $\geq 100 \mu \mathrm{~A}$. Data must be on lines when print command occurs and remain until rcleasc of holdoff ($85 \mu s$ aner print command).
Transfer time: 50 ms withoul storage. 0.1 mx with storage.

General
Operating temperature: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ with pressure sensitive paper. $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Power: IIS or $230 \mathrm{~V} \pm 10 \%, 50$ to 60 Hz , about 100 W idif. 190 W at 20 lines $/ \mathrm{sec}$. 50 Hz model with 20 prinis/second also available.
Dlmenalons: cabinet: $426 \mathrm{~mm} \times 226 \mathrm{~mm} \times 467 \mathrm{~mm}$ ($16 y^{\prime \prime}$ wide. $81 / 0^{*}$ bigh, $181 / k^{*}$ deep).
Woight: net. 18 kg (40 lb). Shipping, $24 \mathrm{~kg}(53 \mathrm{lb})$.

Option 055 clock for 5050B printer

General: the Option 005 Clack provides a compact, convenient and versatile method for recording time-with 0.1 second resolu-Lion-along with other data measurements being recorded by the 5050B Primer. In addition Option 0SS serves as an automatic measur-ing-recording system programmer by allowing printing at preselecled sime intervals.
High resolution: easy to rad display tubes indicate time to 23 hours. 59 minutes. 59 seconds. In the printout there is a seventh digit availsblc for indicating lenths of a second.

Specifications

Time base: selcectable to be 50 Hz 80 Hz or external. Extornal requires 10 pps neqative pulse.

Print interval

Interinal: selectable 10 be 1s. 10 s . I min.. 10 min.. or 1 hour between prints.
Extemal: rates up to 20 prints per second.
Time of masarement accuracy: lime recorded may be 0.1 l less than correct time \pm line accuracy.
Vlaual Indication: 6 in-line digital display qubes indicate to 23 hours, 59 minutes. 59 scoonds.
Printed output: seven digits indicate to 23 hours, 59 min ., 59.9 s .
BCD oulput code: +8421 or -8421 selectable. Outpul adaptsble to other recorder codos.
Print format: time printable in any recorder column.
Clock sal: 4 switches electronically set clock to desired initial ume.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$. 50 Hz or 60 Hz .
Wolght: nel. $1.4 \mathrm{~kg}(3 \mathrm{lb})$
Operating suppllea: Price
$9281-0386$ Slandard paper (1 pad)
$\$ 2.25$
9281-0387 Pressure sensilive paper (1 pad) $\$ 3.85$
Cpions
001: 842! " 8 " state pasitive code disc no charge
002: 842 " "" state negative code disc no charge
003: 4221"." stale positive code disc
All three code dises are supplied with cach 5050 B at no charge. However, one of the above options must be specified so the 5050B ean be delivered with the desired disc installed.
010: 50 Hz operation
add $\$ 25$
015: Motor Control
020: Column Boards (one required, in addition to basic instrument, for each (wo columns to be operated)
032 Input cable, onc per data source
050: Storage for 20 columns
\$150 ea.

051: Slorage for 10 columns add $\$ 250$
055: Clock (ractory installed) add $\$ 1100$
(Price of kit for field installation availabie on request.)
061: Package for 5360 A
add $\$ 1950$
g08: Rack Flange Kii
add S15

Introduction

The digital electronic frequeacy counter has come a long way since the first versions appeared over two decades ago. Once the luxury of large metrology labs and some crystal manufacturers, the frequency counter is now common-place is laboratories, on producsion lines, as a service tool and in aunomatic instrumentation sysiems. Moreover, counters have become increasingly more versatile and more powerful in the measurements they perform, thereby finding much wider appljcations. When Hewlet1-Packard introduced the 524A is 1952 it was considered a milestone; the counter could measure frequencies up 1010 MHz , or the time between two electrical events to n resolution of one ten bitlionth of a sceond, 100 as. Twenty years later, HP's product line features counters that can measure the frequency of a 10 mV signal at 18 GHz completely automatically, or can resolve cime to one billionth of a second (100 psec). the same time it taker light to cravel one inch!

Basic counter measurements

The basic measurements which counters are cilpable of performing are described in this section.

Frequency

This fundamental measurement is performed by cotalizing the number of inpue cycles or everts for a precisely known period of time. The total count that results is proporcional to the unknown frequency, and logie circuits internal to the counter position the
decimal point such that the display directly indicates the inpul frequency. The time referonce is usually derived from a precision quarz oseillator internal to the counter.
Using this basie technique allows measuremeris to 500 MHz to be made. Several methods are avaihable, however, to exiend this frequency range to 18 GHz and more. These are described in more detail below.

Perlod

The inverse of frequency, this capability is somelimes offered to provide the user with high resolution, low frequency measurements. In digital systems a period measurement represents the average bit 10 bit time of the input signal.

Totalize

This measurement is similar to frequency except that the user now controls the time over which the measurement takes place. With digital systems bocoming more prevalent, this fundamental measurememt assumes considerable importance. The HP S345A, with its ability to totalize at a 500 megabit rate, represents the state of the arl at this time.

Ratio

The ratio beiween two input irequencios is a measurement that is also offered by some counters. The major application for ratio is measurement of harmonically related signals.

Scaling

Some counters offer the capability of providing a digital output signal whose fre-
quency is a scaled or divided version of the in. put frequency.

Time interval

The measurement of the time between swo events or the time between two points on a conmon event, commonly referted to as time interval, is of major importance and is used in a wide variety of applications.
The 2 nanosecond single shot measurement resolution of the HP 3345A represenes today's state of the art. Uitilizing an analog interpolation scheme, however, allows the HP 5360A Computing Counter 10 oblain a 100 picosceond resolution. HP also pioneered the concept of cime interval averag. ing, whereby for tepetitive inpuls substantial improvement in resolution over she single shot measusement ean be obtained.
Time interval averaging is offered in five HP counters (5345A: 5328A; 5327A/8: $5326 \mathrm{~A} / \mathrm{B}$ and S308A). Also availabic for precision time interval measufements is the new 3363A Time Interval Probes box usable with any time interval counter. The 5363A has a ± 10 vole dynamic range as well as a built in calibration leature and digitally sel Irigger voltages 10 eliminate the major uncertainties essocialed with TI measuraments. The 5363A is fully programmable via the HP Interface Bus for systems applicalions.

All manner of time interval measurements are discussed in detall in Application Note AN 19! "Time Interval Measurement With an Electronic Counter" available on requesi from any Hewlett-Packard sales offico.

Application Note 172: The Fundamen-

 tals of Electronic Frequency CountersThis forty-four page application note describes in delail the measurements mentioned above. In addition, the key considerations in making frequency and time measurements, plus the major characteristics required of a counter for certain applications are also described. For those readers who require more than the brie' resume above, this application note is available on request at any Hewlett-Packard sales office.

The contents of application note 172 are as follows:

Introduction

Fundamentals of Elecrionic Counters
More About the Basic Frequency Counter
Inpul Considerations
Oscillator Characteristics
Sources of Mcasurement Error
Prescaling - Increasing the Frequency Response
Normalizing and Presct Counters
Period Measuring Frequency Counters
Time Interval
lepul Consideralions
Trigger Level
Measurement Accuracy
Increasing Accuracy and Resolution
Mierowave Frequency Measuremenis
Heteradyne Conversion
Transfer Oscilialor
Some Examples of Component Tectanology
The major types of electronic counters
Whie counters can potentially offer all the measurument capabilities described above. they essentially fall into four classes: frequency counters; universal counters; microwave counters and reciprocal counters. These are described below.

Frequency countere

These counters offer the basic capability of frequency measurement and in addition sometiones provide some or all of the other measurements described above except lime interval. HP has a wide range of counters Lhat fall into this class including: a) the 5380 low cost bench series, a family of three counters
Table 1. Frequency countere summary

$\begin{gathered} \text { Model } \\ \mathrm{Ha} \end{gathered}$	Fregamey Bnt	$\begin{aligned} & \text { Mumbrime } \\ & \text { of } \\ & \text { digh } \end{aligned}$	$\begin{aligned} & \text { lime } \\ & \text { Bus } \end{aligned}$	$\begin{array}{\|c} \text { Other } \\ \text { Iunctions } \end{array}$
5300a/53014	10 MHI	6	3×10^{-3}	1
53260	50 MHz	1	$3 \times 10-7$	MPA, 1.8
53814	80 MHz	7	3×10^{-1}	
33824	COS MHT	8	3×10^{-1}	
3383 A	520 HHL	9	3×10^{-7}	
3300 4.53038	300 NHz	5	3×10^{-1}	
53220	565 NHz	1	3×10^{-1}	MPA, P. i
5300A/53054	1100 NHz	6	3×10^{-1}	
5341800003	1500 MHz	10	1×10^{-1}	
53414	4500 NHz	10	1×10^{-1}	
S2uin	18000 NHE	8	3×10^{-7}	

Table 2. Universal counter summary

Model No.	Frequency Kange	Time Interval Resolution		Time Base	Other Fanctions ${ }^{a}$
		Single Shol	Averaging		
5300A/5304A	10 NHz	100 msec.	-	3×10^{-7} per Month	P. MPA, I, R
5300A/5302A	50 MHz	100 nsec	-	3×10^{-7} per Month	MPA. 1.8
5326A/5326B	50 MHz	100 nsec	50 dsec	3×10^{-1} per Munth	P, MPA. I, R, V
5300R/5308A	75 MHz	100 nsec	100 psec	3×10^{-1} per Month	P. MPA, T, R
5328A	100 MHz	$\begin{gathered} 100 \mathrm{nsec} \\ \text { or } 10 \mathrm{nsec} \end{gathered}$	10 osec	3×10^{-7} ger Month	P. MPA, T, R, E, V**
5345A	500 MHz	2 nsec	2 psec	5×10^{-10} Der Day	P. MPA. I. R
5328A 001 030	512 MHz	$\begin{gathered} 100 \mathrm{nsec} \\ \text { or } 10 \mathrm{nsec} \end{gathered}$	10 psec	3×10^{-7} per Monlh	P, MPA, T, R, E, V*
5327/ / 53278	550 MHz	100 asee	50 psec	3×10^{-7} per Monlh	$P, M P A, T, R, V$

featuring $80 \mathrm{MHz}-7$ digil. $225 \mathrm{MHz}-8$ digil and $520 \mathrm{MHz}-9$ digil instruments; b) the 5300 portable, battery operated snap-on scrites with the 5303B snap-on covering S25 MHz and the 5305 A 1100 MHz counter: and c) the 5326 C 50 MHz and 5327 C 550 MHz rack-mounted high stability programmable instruments.

Univarsal counters

These instruments provide lime interval capability in addition ta the other measuremenus provided by the frequency counter. The 5302A snap-on is a perfect example of such an instrument fealuring 50 MHz frequency, 100 nsec time interval plus period. ratio and totalize. A nother nember of the same family. the 5308A is ideally suited as a general purpose bencb instrument, for in addition to the 5302A capabilities the S308A offers lime interval averaging, totalizing (with electronie stari, and stop) and frequency to 75 MHz . The 5304A snap-on is especially oriented towards time interval featuring adjustable hold off. The $5326 \mathrm{~A} / \mathrm{B}(50 \mathrm{MHz}$) and 5327A/B (550 MHz) are rack-mounled programmable instruments with useable time inlerval resolutions to 50 psec via averaging. The $5328 \mathrm{~A}(100 \mathrm{MHz})$ and 5328 A Oplion 030 (512 MHz) are high performance rack mount insuruments programmable (Option OII) via the HP Interface Bus. Time interval averaging gives resolution to 10 psec on repecitive signals and Option 040 also has 10 nsec one shat resoluion. Finally, the 5345A offers a

500 MHz bandwidit, with totalizing. ratio and period capability to this speed (50 psec). plus 2 nsec single shol time interval and 2 psec time interval averaging! This exiremely powerful instrument fuatures plug-in nexibility (see page 242), and a reciprocal firequency measurement mode (see below).

Alcrowave countere

As Applicarion Note 172 describes, the (wo techniques of microwave measurement, hetcrodyoe and transfer. cach offer their own advantages: with flac former having higher resolution per unit measurement lime and beiter FM tolerance, and the laticr having a wider Irequency range and beller sensilivily. The $5354 \mathrm{~A} \& \mathrm{GHz}$ helerodyne converter is a plugin to the 5345A and features extremely bigh resolulion, wideband FM tolerance and the ability 10 measure pulsed RF for pulse widths down to 50 nsecs. Application Note 173 discusses aulomalic pulsed RF measurement in deluil. The 5341A is also a heterodine lype mierowave counter with 4.5 GHz frequency range. Conversely the 5340A is a Iransfur ascillator/type counter that can measure frequency from 10 Hz to 18 GHz via a single input at -35 dBm senstivityl in fact the H $0-5340 \mathrm{~A}$ is guaranteed to 23 GHz at -15 dBm sensilivity. Application Nole AN 190 discusses making frequency measure. ments to 40 GHz with counter accuracy using a 4 GHz Microwave Counter logether with readily available microwave senerators and mixers.

Table 3. Mlcrowave counter summary

Model No.	Frequency Range	Technique	Ilme Base	Sensilivity	Number of Digils
5354A*	4 GHz	Aulo Helerodyne	5×10^{-10} per Day	$-10 \mathrm{dBm}$	11
534)A	8.5 GHz	Aulo Helerodyne	1×10^{-7} per Month	-20 d8m	10
5254C/5255A/5256A**	to 18 GHz	Manual Helerodyne	3×10^{-9} Der Day	$-13 \mathrm{dgm}$	8
5257A**	18 GHz	Manual Iransfer Osc	3×10^{-9} per Day	$-7 \mathrm{dBm}$	8
5340A	18 GHz	Auto Transler Osc	3×10^{-7} per Month	$-35 \mathrm{dBm}$	8

[^13]
Reclprocal counters

A special class of frequency counters, referred to as reciprocal counters, are also available from Hewlet-Packard. The disUnction between these and conventional counters is that the latter provides 1 Hz resolucion in one second, whereas the resolution of the reciprocal counter is proportional to the frequency of the internal counted clock. The four instruments available ure summarized in Table 4 below. Note that both the 5360A and 5345A are plug-in insiruments and hence the high mainirame resolving power offered by both apply 10 any of the compatible plog-ins. These two insiruments also have pulsed RF measurement capability via an extemal gate mode. In addition the 5345A includes a unique frequency averag. ing mode that allows high resolution measurements on repelitive pulser even if pulse width is 50 nsecs.

HP Intertace bus
The more recenily introduced counters (and other HP digital instruments) have a digital input/oulpul structure which is compalible with the interface bus which ls Hew-lell-Packard's implementation of the IEEE Digital Inlerface Slandard 488-1975. HP Destiop Calculators in the $9820 / 21 \mathrm{~A} / 30 \mathrm{~A}$ Scries and Minicomputers in the HP 2100/ 21 MX Series are also compatible with the interface bus, making it possible to expand the capabilities of the individual instruments
even into areas of real time data reduction and control. Interfacing is available for interconnocting up to 14 compalible devias on one I/O slot. The HP 59310A Computer Interface serves for minicomputers and the HP 59405A HP-1B Calculator Interface ioterconneets up to 14 deviees using ane I/O slou and one ROM. At this lime, compatible instruments are the 5345 A . 5340 A . 534 LA . 5328A, and 5312A (for 5300B system). Accescories in the 59300A Scries and the 5150A Thermal Printer are also compalible.

Table 4. Reciprocal frequency counters

Model No.	Frequency Range	Measurement Resolution	Humber ol Digits	Mime Base	Senstivity
$5300 \mathrm{~A} / 5307 \mathrm{~A}$	2 MHz	3×10^{-5}	6	3×10^{-7} per Month	10 mV mis
5323 A	20 MHz	1×10^{-2}	7	3×10^{-7} per Month	100 mV mms
$5360 \mathrm{~A} / 5365 \mathrm{~A}$	320 MHz	5×10^{-10}	12	5×10^{-10} per Day	20 mV ims
5345 A	500 MHz	2×10^{-9}	11	5×10^{-10} Der Day	20 mV ims

Table 5. Counter selection gulde

Classificalion	Descripilon		Frequency	Funetlons*	Time Base	Price	Page	
$\begin{aligned} & \text { 5381A, } 5382 A \\ & 85383 A \\ & \text { Low Cosl } \end{aligned}$	Tradituonal HP quality and rellability at new low prices		To 520 MHz	F	$\begin{aligned} & 3 \times 10^{-6} / \mathrm{Mo} \\ & 0 \mathrm{ptional} \\ & 1 \times 10^{-7} / \mathrm{Mo} . \end{aligned}$	$\begin{aligned} & \text { Froin } \\ & \$ 275 \end{aligned}$	265	
5300 Series Economic. Portabla	Selech from 8 plug-ons to meet present needs. Move up in functions or trequency range when needed. Baltery pack, O to \AA converterand HP Interlace Bus output modila extend versatulity.		To 1100 MHz	$\begin{gathered} \text { F.P. MPA, TI. } \\ \text { II AVG. T. R. } \\ V . E \end{gathered}$	$\begin{aligned} & 3 \times 10^{-9} / \mathrm{Mo} \\ & 1 \times 10^{-5} / \mathrm{Mo} \end{aligned}$	$\begin{aligned} & \text { Fiom } \\ & \$ 585 \end{aligned}$	256	
5326/27 Sertes Universal Counters	A family of six universal counters thal can include sub namosecond the interval averaging, a buill in DVM, buist treguency measurements and systems ophons.		T0 550 MHz		$\begin{gathered} 3 \times 10^{-3} / \mathrm{Mo} . \\ 0 \text { optional to. } \\ 1.5 \times 10^{-8} / \mathrm{Mo.} \end{gathered}$	$\begin{aligned} & \hline \text { From } \\ & \$ 1550 \end{aligned}$	251	
5328A Universal Counter	A new high perlormance universal counter with sub nanosecond lime interval averaging capabilily thal can include hugh frequency measuremeni. DVM or HP Interlace Bus options.		T0 512 MHz	$\begin{gathered} F_{1} P_{1} M P A_{1} T I \\ Y \\| A Y G_{1} T_{1} R, \\ V, E \end{gathered}$	$\begin{gathered} 3 \times 10^{-7} / \mathrm{Mo} \\ 0 \text { oplional } \mathrm{lo} \\ 1.5 \times 10^{-8} / \mathrm{Mo} . \end{gathered}$	$\begin{array}{\|l} \hline \text { From } \\ \$ 1300 \end{array}$	252	
5245 Series General Purgose Plug-in Counlers	Two mainframes and 9 plug-ins provide unmalched versalitity. Plug-ins provide up to 18 GHz frequency, 10 nsee time interval and voltage capabilties.		T0 18 CHz	F. P,MPA,YI	$\begin{aligned} & 1 \times 10^{-9} / \mathrm{Mo} \\ & \left(<3 \times 10^{-9} / \mathrm{Day}\right. \end{aligned}$	$\begin{array}{\|l\|} \hline \text { From } \\ \text { ssent } \end{array}$	247	
5345 Series High Performance Plug-ln Counlers	A new serias of high performance mainfreme and plug-ins, orovidiag 500 MHz direct count, 2 nsec lime interval, and 4 GHz aulomatic pulsed RF ineasurements.		T0 18 GHz	$\begin{gathered} \text { F, P, MPA, IV, } \\ \text { YIVG. I, } \\ E \end{gathered}$	$\begin{aligned} & 1.5 \times 10^{-3} / \mathrm{Mo.} \\ & \left(<5 \times 10^{-16} / \mathrm{Day}\right) \end{aligned}$	$\begin{array}{l\|} \hline \text { From } \\ \text { } \mathbf{3} 3850 \end{array}$	242	
534085341 Aulomatic Counters	groad band. high sensitivily, microwave trequency mes. surements $10 \mathrm{~Hz}-1.5 \mathrm{GHz}: 10 \mathrm{~Hz}-4.5 \mathrm{GHz}_{2}$ and $10 \mathrm{~Hz}-$ 23 GHz .		T0 23 GHz	F	$\begin{gathered} 0 \text { ptional lo } \\ 1.5 \times 10^{-8} / \mathrm{Mo} \\ \left(<5 \times 10^{-} 10 / \mathrm{Day}\right. \end{gathered}$	$\begin{aligned} & \text { Fiom } \\ & \text { } \$ 2850 \end{aligned}$	266	
5360 Compuling Systerns	Most accurale irequency measurements available plus lime interval measurements to 100 psecs.		T0 18 GHz	F, P, MPA, II	$\begin{aligned} & 1.5 \times 10^{-8} / \mathrm{Mo} \\ & \left(<5 \times 10^{-10 / D a y)}\right. \end{aligned}$	$\begin{aligned} & \hline \text { K10m } \\ & \$ 7700 \end{aligned}$	250	
Miscerlaneous	5210A 20 MHz Analog Frequency Meler \& FM discimination. 5323 A 20 MHz High Resolution Frequency Counler					$\$ 1050$	256	
${ }^{\text {CLegend }}$ for Functions								
$\begin{array}{ll} \text { f } & =\text { Frequency } \\ \mathbf{p} & =\text { Period } \\ \text { MPA } & =\text { Mulliple Period Average } \\ \text { II } & =\text { Time Inlerval } \end{array}$		$\begin{array}{ll} \text { II AVG } & =\text { Time Interval Ave } \\ \mathrm{I} & =\text { Tolalize } \\ \mathrm{R} & =\text { Ralio } \\ V & \text { Vollage } \\ \mathrm{E} & \text { Electronically Cor } \end{array}$	Ied Yotalize					

500 MHz plug-in counter

Model 5345A

- 500 MHz Direct Counting
- 20 mV Sensitivity DC to 500 MHz
- 2 nsec Single Shot T.I. Resolution
- Averaging to 2 psec resolution
- Pulsed RF and Microwave Measurements
- Programmable for systems applications via HP-IB

The 5345A Electronic Counter represents the most advanced general purpose instrument in the Hewlett-Packard Counter Product line. Utilizing state of the art monolithic bipolar integrated circuit technology especially designed and manufactured as Hewlett-Packard, this instrament provides unsurpassed pover, versatility and fexibility in frequency and cime measurements.

Major maindrame features

Frequency: direct from DC to 500 MHz - Reciprocal lechnique providas high measurement resolution.
Time Interval: resolution of 2 nsec single shol.
Averaging: new modulated clock rechnique gives true averages under all conditions. T.I, resolution extended to 2 psec. Frequency av. craging improves RF pulse measuremenes similarly.
Totallze: to 500 megabil ratc on both A and B inputs $A \pm B$ functions also available.
Ratlo: From DC 10500 MHz on both inputs
Fully programmable: provides great flexibility when used with calculators and computers
Plug-In vereatility: two plug-ins presently available (soc page 245) with an on-going $R \& D$ program to extend this number. in addition the 10590A plugein adapier allows all the existing 5245 plug-ins to be uscd.
Stgnal Input circults
slonal conditioning: fully optimized front end includes swivichable

Figure (1) Input Switches
$50 n / 1 \mathrm{M} \Omega$ input impedances, $\mathrm{DC} / \mathrm{AC}$ coupling, and slope selection that assures triggering on any waveform.
Senslifity, dynamic range: high.ly sensitive wideband amplifiers as-

Eigure (2) Typical Amplifier Sensillvity
sure measurements on even the lowest level sinusoidal and digital signals. The inpuls also 「eature an extremely vide linear dynamic range of -2 10 +0.5 V that grearly increases measurement versatility. espceially on digital input signals.

Frequency measurements

Reclprocal capability: one of the advantages of measuring period

Figure (3) Measurgment Resolution
and computing the frequency is that measurement resolution is independent of input frequency and at the maximum to whict the instrument is capable of resolving. Tbus for example, a I MHz input can be resolved $102 \times 10^{-9}(=.002 \mathrm{~Hz})$ in one second. whereas the conventional counter provides i Hz resolution, some 500 times less.
Measurement apeed

Mode of Operallon	Readins oer Second
Normal Operation (Max sample rate)	10
Externally armed	500
Extemally gated	500
Compuler dump	9,000

The extremely high resolution obbained in one second can be traded for measuremeni speed. For example a $100 \mu \mathrm{sec}$ gate time provides a resolution of 2×10^{-3} yel the measurements can now be roade 5000 times a second. thus making the S34SA an invaluable tool in high spoed data acquisicion sysiems.
Ext. gated capsbility: via the rear panel gate control input: this capability allows the operator to determinc at what point in real time and for how long the measurement is to be made. This capability ac. sentially replaces the front panel "sample rate" and "gate time" controls.

Figure (4) Extemal Gate Control

The major application is in the measurement of pulsed RF signals. Frequency averaging: the minimum pulse width for which the inpat frequency can be measured is 20 ns . The single shot measurement resolution is 2×10^{-9} divided by the GATE TIME. This resolution can be improved up to 1000 times by a unique mode of operation known as frequency averaging that is buil ino the mainframe. The only requirement being that the signal is repetitive.

Figure (5) Frequency Avaraging to Increase Resolution
In addition 10 greally enhaneing narrow pulse memsurentent capabii). ity. the frequency averaging mode also allows higher resolution on pulse profile measurements.

Time interval

Preclalon measurement; the single shot time interval measurement resolution of the 5345A is 2 nsecs, which is the time it takes light 10 travel approximately 2 feel-the 5345A is an extremely high resolving time measuring device.
Trigger level: quantitative high speed time interval measurements are provided by the 5345A since the user can simply determine where triggering occurs even on complex waveforms. The methad of determination invoives measuring the DC levels at which triggering occurs. These DC levels are available at rear panel BNC's.

The ability so determine trigger level, together with the high sensitivity and wide dynamic range of the inputs greatly enhances the versatility and power of the 5345 A in time interval measurentenes.

Figure (6) Using EXT GAIE to Measure TM
Ext gate capability: external gating adds even more versatility to the time inlerval measurements of the 5345 A , as measurements such at that shown in figure (6) indicate.
Time interval averaging: for referitive inputs a successive number of measuremems may be automatically averaged by the 5345A, obtaining up to 1000 times improvement in resolution (2 psecs). This averaging mode may be used irrespective of whether the instrument is in the convenitional or exi. gate mode of operation.

Totalize

High apeed: the 5345A has the ability to 10 talize to a 500 megatil
rate through either or both A and B inputs. Coupled with the high sensitivity and full signal conditioning of both channels, this capability enables measurements to be made on most modern digital systems.

Figure (7) Selecting a Portion of a Pulse Traln
Ext gate capablity: using the cxternal gated mode allows the user to sclect only the dexirod portion of the input pulse train for measurement.

$A \pm B$ Modes

The A - B mode is used for comparison tests between high speed reference and test signats applied to the two mainframe inputs.

Figure (8) Comparison Measurements
Any difference between the total number of events accumulated in each channel is indicated by the 334SA display after the measurement is completed.

The primary application for the $A+B$ mode is in the measurement of NRZ signals. By setting the " A " trigger slope to " + " and the B slope 10 " - " allows all transitions and hence bits of the NRZ signal to be counied. Thus 1 gigabit N/RZ waveforms can be measured.

This mode of operation does not indroduce any limitations-maximum impul rate is 500 megabits on either channel and external gating may be used.

Ratio

This measurement represents the ratio of the number of events oceurring through chamnel B divided by the number occurring through channel A. The major features are: a) that the measurement or comparison between the two signals occurs during the same real time duration (similar io the $\mathrm{A} \neq \mathrm{B}$ totalize modes); and, b) the frequency or bil rate of cither channel can vary from DC to 500 MHz . These feawres allow this measurement to be extremely useful in digital systems and synthesizer check out.

Digital IVO

Option 011 provides complete digital input-oulpul capability (except slope and level control) to the 5343A. Dighal outpul is a bit parallel, byte serial ASCII coded format and the $\mathbb{1 / O}$ structure conforms to the Hewlet1-Packard Interface Bus (HP-IB) standard. This option is particularly recommended for a bench top caiculator conirolled environment.

Option 012 is similar to Option Oll, but includes programmable control of slope and level. Option 012 is recommended for a computer controlled environment.

The model 59310A Interface Kit provides a complete operational package for use with the HP 2100 Series Computers. Similarly, other interface kits allow the user to interface the 5345 A Option 011 or 012 and other HP-IF compatible devices to the 9820,9821 ind 9830 Series HP Calculators. This powerful calculator counter combination is described in more detail on pages 517 and 518 .

5345A Condensed specifications

Frequency/period measurements
Range: 0.0005 Hz to 300 MHz
Accuracy: $\frac{ \pm 2 \times 10^{-9}}{\text { gatc lime }^{-3}} \pm$ (rigger error* \pm time basc error
Gate time: 1000 steonds to 100 nanoseconds in decade steps; < 50 ns in MIN position.

Time interval/time interval average

Range: 10 nsec to 20.000 sec
Minimum time belween trigger polnts: 10 nsec
Trigger pulse width; I nsec minimırm width input al minimum) vollage inpul
Accuracy:
Time Interval: \pm trigger crror** $\pm 2 \mathrm{~ns} \pm$ time base crrar
Time interval averaging:
$\pm \frac{\text { trigger error** } 2 \text { nsec }}{\text { finicrvals avcraged }} \pm 0.7$ nste \pm lime base accuracy
nos affeced by hamonics of clock frequency.
Resolution:
Time Interval: 2 nser
time inlerval average:

signal-to noise ratio

- "For any mave akape, Migever etrot is less man

$$
0.0025 \mu \mathrm{~s}
$$

$\pm \frac{0.00 \beta}{\text { Signal Slope }(7)}$

Ratio 8/A

Range: both channels accepl dc to 500 MHz
Accuracy; \pm L.S.D. \pm ingger error*
Starlsiop
Range: both inputs de to 500 MHz
Modes: $\mathrm{A}, ~ A \pm B$ detennined by rear panel switch
scalling
Range: dc to 500 MHz
Scalling factor selectable by GATE TIME sering. Scaling factor equals GATE TIME seting/ 10^{-9} seconds.
input: inpec signal through channcl A
Output: outpul frequency equals inpul frequency divided by sealing factor. Rear panel BNC supplics 80% duty cycle TTL comparible pulses.
input channels A and B
Range: 0 to $500 \mathrm{MHz} d c$ coupled 50Ω and i $\mathrm{M} \Omega: 4 \mathrm{MHz}$ to 500 MHz ac coupled, 50Ω; 200 Hz to 500 MHz ac coupled. I MR
Impodance, selectable. : Mת strunted b) less than 30 pF or sons (nominal).
Senalivity: XI, 20 mV mns sine wave and 60 mV peak-to-peak pulse. X 20.300 mV rims sine wave and 1.2 V peak-10-peak pulse
Trigger level: continuously adjustable to more than cover the DYNAMIC RANGE
Output: rear panel BNC connectors bring out CHAN A TRIG LEVEL and CHAN B TRIG LEVEL for convenieni DVM monitoring. Accurate to $\pm 15 \mathrm{mV}$

Common input

In this mode the signal is applied to channel A
Range: ac coupled 50Ω. 4 MHz to 500 MHz ; ac coupled i $\mathrm{M} \Omega$. 300 Hz 10500 MHz
Impedance: SOfl remains 50Ω; $1 \mathrm{M} \Omega$ bocomes $500 \mathrm{k} \Omega$ shumied by 00 pF
Senslidity: $50 \Omega: 40 \mathrm{mV}$ rims: $1 \mathrm{M} \Omega$: No change
Dynamic range: $500 \pm 1.0 \mathrm{~V}$ times attenuator selling. I $\mathrm{M} \Omega$: No change.

General

Display: II digit LED display and sign. Annunciator dispiays ksec to nsec, k to $n, \mu \mathrm{~Hz}$ to GHz . Decimal point is positioned with DIS-

PLAY POSITION control or posstioned after the frst. second or third most significant digit if DISPLAY POSTTION is in AUTO. Lcading zeros are suppressed.
Overfiow: asterisk is illuminated when display is overnowed
Sample rale: continuously variable from $<0.1 \mathrm{sec}$ to $>5 \mathrm{sec}$ with front pancl control. In HOLD position the last reading is maintuined until the counter is rescl.
Exlernal arm Input: counter can be drmed by a -1.0 V signal applied 10 the rear pancl 5053 input.
External gate input: same conditions as for EXT ARM
Gale Oulput >I voli into $50 n$

Time base

Stendard high stablility time base: Crystal Frequency, 10 MHz
(10544 A)
slablilty:
Agling rate: $<5 \times 10^{-10}$ per day
Shor term: < $\times 10^{-11}$ for 1 sec average
Tomperature: $<7 \times 10^{-9} .0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Option 001: Crystal Frequency. 10 MHz
stabllily
Agling rate: $<3 \times 10^{-}$per month
Short term: <2 $\times 10^{-9}$ (ms for) sec
Temperature: $<2 \times 10^{-4}, 25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ $<5 \times 10^{-6} .0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$
LIne voltage: $<1 \times 10^{-8} . \pm 10 \%$ from nominal
Soll tert: a 100 MHz signal is internally applied
External frequency standard input: inpul vollage $>1.0 \mathrm{~V}$ rms into I $\mathrm{k} \Omega$ required from source of $1,2,2.5$. 5 , or $10 \mathrm{MHz} \pm 5.0 \times 10^{-x}(\pm 5 \times$ 10^{-6} for ept. 01). Input can be sine or square wave.
Frequency Standard Oulpul: >IV rais into 500 al 100 MHz sinc wavc.
Operating temperalure: $0^{\circ} \mathrm{C} 105^{\circ} \mathrm{C}$
Power requiremente: $100 / 120 / 220 / 240 \mathrm{~V}$ rms $+5 \%-10 \% 48$ to 66
H_{2} maximum power 250 VA .
Welght: 17 kg \{ 37 lb)

Options and Accessories

Price
Oplion 001: Room Temperature Time Base
Opllon 002: same as 5345 A bul with no inpul amplifi. ars. Signal must be applied through plug-in.
less $\$ 400$

Optlon 010: Digital output only. HP Interface Bus format. talk only. Useful with 59301A ASCII-to-Parallel Converter and 5050B or 5055A Digital Prinicrs.
Option 011: Digital Inpul/Oulpul same as Oplion 010.
Compatible with HP Interface Bus and allows S345A to be remotely programmed.
Optlon 012:. Digital 1/O similar to Option 011. Inclodes slope and level conirol.
K13-59992A: includes statc machine esster as an aid for trouble-shooting the arithmetic processor
10595A Baard extender klt: useful for Iroubleshooting plug-in boards whilc in operation.
10597A Replacement bosid kit
10590A Plug-In adapter: adapts 5245 series plug-ins to 5345. Sec next page
K15-59992A Standby power unlt: plug-in to mainlain oscillator operation for prolonged periods withoul line vollage.
Reference iiterature available:
HP Joumal, Vol. 25-10, Junc 1-74
AN 173 Recent Advances in Pulsed Microwave Measurements
AN I7AA Scries of Applicalion Notes on Counter/Cal. culator Applications
5345A Dala shoel
I.D. 990337 D Color Video Tape. Applications and demonstrations
5345A Plug-in Counter

- Fully automatic to 4 GHz
- Pulse measurements
- Frequency averaging

5354A

- Count a group of events between A and B
- Frequency sum and difference measurements

5353A

5354A Automatic frequency converter

The 5354A trimblates not only the microwisve signal but all its modulation directly to the 500 MHz window of the counter (via the helcrodync acchnique) it allows signals with a large amount of FM to be easily characteriesd.

Perhapi wen more powerful is its ability to bake direct measurements on the carriers of very narrow microwave pulses. Pulse measurements can be easily automited for the first time.
Aange: is MHz to $4 \mathrm{GI} \%$.
Sensitlvity: $-10 \mathrm{dBm}(70 \mathrm{mV} \mathrm{ms})$ auto mode, $-20 \mathrm{dBm}(22 \mathrm{mV} \mathrm{mms})$ Manual/Pulse mode $10+20 \mathrm{dBm}(2.2 \mathrm{~V}$ rns)
Input slgnal capabillty: CW signals. Pulsed microwave signals. Signals with very high FM content.
RF Pulse width: determined by counter GATE TIME selling
FM Sensitulty: overlap at band edges $\pm 10 \mathrm{MHz}$
Maximum deviation all band center
$\pm 250 \mathrm{MHz}$, above 1 GHz and belew 500 MHz
$\pm 125 \mathrm{MHz}$. hetween 500 MHz and $\mid \mathrm{GHz}$
Operating modes: Aulomatic and Manual
Automatie: measures lowesi frequency signal of sufficient amplitude to trigger counter,
Manual: measures signal within selected band. Signals of sufficient amplifude between 15 MHz and 525 MHz will also be counted.
Acqulsition time
Automatle mode: CONT, WAVE, < 2 mis, PULSED R.F., <1s.
Manual mode: when proper band has been selected CONT. WAVE < 5μ sec: PLLSED R.F. < 20 nsec.

Option 011: semote control via HP Inicriace Bus and L.O. \pm I.F.
$\$ 200$
5354A Automatic Frequency Converter $\$ 3250$

5353A Channel C plug-in

The 5353A Channel C Plug-In consists of a third input so the 5345 A Counter. When the plug-in counting capability is combined with the mainframe gating capability suddenly it becomes quite easy to make frequency sum and friquency difference measurements.

For high speed digita applications, the greatest bencfit the plug-in offers is the ability to counl a specific group of events white ignoring others. This measurement is required in many applications such as computer peripherel lastirg and digital communications systems. It is secomplished in the events C buween A and B mode by applying a starl signal to CHAN A and a stop signal to CHA N B while applying the dala to be counted to CHAN C.
Range: de coupled: 010500 MHz ac couplod: 10 MHz to 500 MHz impedance: si) Ω (nominal), or) Mn shunted by less than 30 pF Sensitlvify: Variable to 20 mV rms sinc wave and 60 mV peak-10-peak pulse. Allenuetor setings are XI and X20.
Modes of operalion: Frequency C \& A; Frequency C - A : Period C; Frequency C : Ratio C/A: Average Events C, A 10 B : Evenis C، A 10 B .
Eventa accuracy: Pjus or minus one courl worst case
Optlon 011: Digital Input. Full compatibiłity with HP
Interface Bus. Provides for digial conerol over all func-
tions excluding amplificr.
5353A Channel C plug-in $\$ 875$

10590A Plug-in adapter

The 10590 A allows the uscr to interface any of the 5245 series of plug-ins (excep: the 5264A) to the 5345A (sec page 254 for details on these plug-ins). The major application is to exicnd the frequency range to 18 GHz via the 5255A, 5256A and 5257A plug-ins. In addition the adspter is "intelligent" in that it detects the plug-in being used and automatically adjusts the 5345 accordingly.

Time interval probes
 Model 5363A

- Solves major T.I. problems
- Precisely defines trigger points
- Greatly improves dynamic range

HP-IB programmable Time Interval Probes

Pepoatable measurements

The 5363A provides the necessary inpul signal conditioning 10 allow a precision time interval counter to make highly accurate and repeatable measurements on lime varying waveforms. No longer are count-

ers restricted to "event" type measurements. Counters such of the 5345A. 5328 A and 5360 A can now be adapted to make measurements sweh as rise lime. fall time, slew rate, propagation delay and phase jinter analysis.

Trigger point calloration

A unique seheme of Trigecr Point Calibration is used instead of hysteresis compensation to assure that the value selected on the digital dials or via the HP-IB is the actual triggering point rather than some unspecinicd "best extimate" of the trigerer point or the center of the hysieresis window.

20 V dynamic range with 10 mV resolution

Greally improved dynamic range allows the trigger point to be selected in 10 mV increments from $\sim 9.99 \vee 10+9.99 \mathrm{~V}$ covering the range of mose commonly used logic circuits. The use of atenuators on traditional T.I. counters to extend their sange increases the effective hysteresis wincoow by the same altenuation amount. This prevents trigger points close to the top or bollom \{i.e. 10% or 30% points) of the wavelorm from being selected and sometimes creates "holes" where certuin trigger points cannol be sclected at all. The wide dynamic range of the 5363 A overcomes these problems.

Minimized circuit loading

Aclive high impedance, low capacilance probes minimize circuit loading and pulse distortion while permitting test points to be monjtored without the need for built-in pulse trimsformers or impedance matching devices. Each probe contains both a start and a stop channel so that a rise time into a device can be measured with one probe. the rise time oul of the device with the other and ithe propagation delay thru the device ean be measured between the probes.

Systematic timing errors eliminated

Delays through proties, cables and the inherent differsential delays inside the counters timing channels (je.,. $<700 \mathrm{ps}$ in 5345 A) limit the absolute accuracy of the time interval meanurement to some un-

- Equalizes system timing errors
 - Active probes minimize circuit loading
 - Measures to zero time interval

known but fixed amount.
The 5363 A calibration procedure equalizes out such system delays and allows the counter and probes to be see for 0.0 ns when u coumter with a minimum T. 1 . range is used (such as HP 5345 A or 5328 A) a fixed offel of 10.0 ns can be switched in allowing the counter to measurc down to zero timé inierval.

Automated operation

Under calculator control the HP-IB option allows the probes and a counter to perform a wide variety of sutomated waveform analysis. In the lab of production line complex measuremenss or go-no-go decisions can be made with push butoo simplicity. For further deiails refer to the 5363 A Teclinical Data Shwet and AN 191 on Time Interval Measurements.

Specifications

Dynamic range: +9.99 V to -9.99 V
Voltage resolution: 10 mV
Time resolution: depends on counter used (typ. 10 ps with S34SA T.I. Avg).
impedance: $1 \mathrm{M} \Omega$ shunted by 10 pF
Effectlve bendwidth: 350 MHz (or 1 ns rise lime)
Minlmum lime Interval: 0.0 ns
Minimum pulse width: input signal muse remain below and above trigger point for at least 5 ns (í.e., max repetiltion rate of square wave $=100 \mathrm{MHz}$)
Absolute accuracy $\pm 105 \pm \frac{\text { Trigger Level Aceuracy** }}{\text { input slew rate at trigger point }}$
$=$

Trigger Level Accuracy": $= \pm 8 \mathrm{mV} \pm 0.15 \%$ of trigger point setling $\pm 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Differential Trigger Level Acouracy*: used when both trigger points are sill to the same voltage. Actual trigeer poimis will be within $\pm 3 \mathrm{mV} \pm 0.3 \%$ of crigger point setting
Max Inpul voltage: $30 \vee$ peak
Linear operating range: $\pm 10 \mathrm{~V}$
Output to counler: separale stan and stop channels. $-0.510+0.5 \mathrm{~V}$ into son, <2 ns rise time
Trigger level outpuls: trigger point setting $\pm 75 \mathrm{mV}$
Delay compensalion range: 2 ns adjusiablc aboui 0.0 ns or 10.0 ns
Power: $100,120,220$ or 240 V ac $+\mathrm{s}-10 \%$: 48 to $440 \mathrm{~Hz}: 30 \mathrm{VA}$ max
Weight: 16.2 kg (7 ib .6 oz.)
Dimenslons: rack heigh 88.9 mm (3.5 in.): half rack width module 212 mm (8.38 in .): depth 248 mm (13.6 in .) Probe length 122 cm (4 f,) Environmental: operaling temperature $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Optlon 011: HP-IB programming of all functions excep(delay adjust vernier (which can be measured in a system).

- Atler alibration.

Recommended Counters
Price
s34SA Eloctronic Counter: 2 ns single shot T.1.. True T.A. averaging

5328^ Opl. O40 Universal Counter: 10 ns single shor
T.I., True T.I. Averaging
$5360 \mathrm{~A} / 5 \mathrm{J79A}$ Compuling Counter. I ns T.I. accuracy.
0.1 is resolution for single shot events
options and accessories
Oplion 011: HP-IB Programming (Includes one
(10631A HP-lB Cable)
Option 908: Rack Flange Kit add $\$ 10$
10229A Hook Tip
10218A BNC to Probe Adapter
1250-0655 BNC Tee 10 Probe Adapler
10100 C son Fecdthru termination for non-50n T.I. counter
10821A Accessory Kit with 2 cach of above plus adaplers
5363A Time Interval Probes

- Highest performance in general purpose counters
- Wide selection of plug-ins provide unmatched versatility
- Extremely high reliability proven from over forty million hours of field operation

5245L

The 5245 L has gainud unprecudenied popularity due to its high performance, Jexibility and ycars of proven stability. Even though its periformance has been recently upsiaged by the 5345A, the 5245L is still considered the standard of the industry for instruments of this ype with more $524 S L$ counters in operation today than all other plugin counters combined.
The 5245 series consists of a family of mainframes and a scries of plug-ins. The plug-ins provide frequency messurement to 18 GHz . high sensitivity, lime interval and presel c:apability. The wide thoice of mainframes and plug-ins means that virtually any mearsurement lask performable by counters can be accomplished by appropriate stlec. lion within this family.
The 5245 series of counters are nol only leaders in terms of pertisrmance and versatilily, they are unsurpassed in the indubtry for ruggedness. wide operating lemperature range. and field-proven reliability.

The following is a description of the 5245L mainitrame. The other mainfiames are similar to the 5245 L . The main differences are dellneated in these condensed specifications. Refer to the 5245 series data sheet for complete delails and specifications on all mainframes and plug-ins.

Specifications

5245 L .
Frequency measurements
Aange: de 1050 MHz
Gate tme: I μs to 10 seconds in decade sleps
Accuracy: \pm l counl \pm lime base accuracy
Perlod avergge measurements
Range: de 101 MHz for single periad; de 10300 KHz for muliple period

Perlods averaged: 1 period to 10 periods in ducade stcps
Accuracy: ± 1 count \pm lime base gacuracy \pm trigger error'
Malnframe measuremenl tunctions: frequency, period. period av.
erage, ratio, scaling
Slgnal Inpul
Sanalifivity: 100 mV mms
Couplling: AC and DC
Impedance; I MS in pirallel with appros. 25 pf all ranges
Attenuatlon: stepathenuator provides nominal semsitivitios of .I. I. and 10 V mos 〈SFNSITIVITY switch〉
Trigger Level: continuously adustable over $\pm 3 \mathrm{~V}$ multipliod by
the setline or the SENSITIVITY switch
Compatbla 5245 serles plug-Ins: all
L version: 1 MHz oxcillator. aging rate $<2 \times 10^{-1} / \mathrm{mo}$.
Display: 8 digits
Operalling temperalure range: $-20^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$
Walght net, 14.4 kg (32 lb) with blank plug-in pancl
Dlmensions: 133 mm high, 425 mm wide, 416 mm deep $\left(51 / 4^{4}, 161 / \mathrm{m}^{4}\right.$. $\left.16 \% / \%^{\prime \prime}\right)$

52481

Frequency range: dc 10150 MHz
Malnírsme measurement tunctlons: frequency, period, puriod av. erage, ralio, scaling
Compatible 5245 series plug-Ina: all
L verstion: 1 MHz ascillator, aging rate $<2 \times 10^{-9} / \mathrm{mo}$.

Options

Price
908: Rack Flange Kit
Model number and name
5245L 50 MHz . Electronic Counter
$\$ 4300$
5295 L 150 MHz Rlectronic Counter
55000
 ratio and 100 miv rms amplituter, inror tecreases as signal to mise ratio increases

5253B

5257A

S262A

5254 C

5255A

5256A

The 5245 series of plug-ins adds greatly to the versatility of the $\$ 2.45$ series of plug-in counters. In addition, these plug-ins enhance the measurement capability of the 5345A Electronic Counter and the 5360A Computing Counter by the use of plug-in adapters which provide an interface between the plug-in and the $\$ 345 \mathrm{~A}$ and 5360 A mainirames. A compatibility summary for presently available plug-ins is shown below, followed by brief descriptions of the individual plug-ins. Refer to the 5245 series data sheet for complete details and specifications for all the plug-ins.

Plug-in compatibility summary
5345A compatbility (using 10590入 plug-in) adapter) .ll except the 5264A
5360A compstlbility (using 10336A plug-in sdapler): sll except the
526SA. 5267A. 5262A. 5264A.
5245L/M compalibility: all
5248L/M compatibility: all
5246L compatibility: all except the 5264A.

Specifications
 Price

52538 Heterodyne converter
Frequency ranger 50 MHz to 512 MHz
Senditivity: -13 dBm la +13 dBm
Mlying frequencles: 5010500 MHz in 10 MHz steps
Inpul coupling: ac
Accuracy: msintains counter accuracy
Inpul Impedance: 50 ?

5254C Heterodyne converter
Frequency range: 150 MHz 103 GHz
Sonsilivity: $-11 \mathrm{jBm} 10+13 \mathrm{dBm}$
Mixing frequencles: 0.15 to 3 GHz in 50 MHz sleps
Input coupling: ac
Accuracy: maintains counter accuracy
Inpul Impedance: 50 :
Auxillary outpul; $1 \mathrm{MHz}-50 \mathrm{MHz}$

5267A

5265A

5261A

5255A Heterodyne converter

Frequency range: 3 GHz to 12.4 GHz
Sensitivlty: $-7 \mathrm{dBm} 10+10 \mathrm{dBm}$
Mixing Irequencles: 2.8 to 12.4 GHz in 200 MHz sieps Input coupling: de
Accuracy: mainlains countur accuracy
Input Imperdance: 50!!
Auxillary input: $1 \mathrm{MHz}-200 \mathrm{MHz}$ al 5 mV sensitivily
Auriliary oulpui: $1 \mathrm{MHz}-200 \mathrm{MHz}$

5250A Heterodyne convener

Frequency range: 8 GHz to 18 GHz
Sensitdulły: -7 dBm $10+10 \mathrm{dBm}$
Mxing trequencles: 8 to 18 GHz in 200 MHz stops Input coupiling: de
Accuracy: maintains counter accuracy
Input Impedance: 50 ?
Auxillary input: $1 \mathrm{MHz}-200 \mathrm{MHz}$ al 5 mV sensilivity Auxillary output: $1 \mathrm{MHz}-200 \mathrm{MHz}$.

5257A Trangler oscillator

Frequency range: 50 MHz to 18 GHz
Inpul signal: CW, pulsed RF or FM modulaled
Sensilivily: -7 dBm . 50 MHz to $13 \mathrm{GHz} ;-4 \mathrm{dBm}, 15$
GHz to 18 GHz
APC lock range: approximalely $\pm 0.2 \%$ of input frequency
Pulse carrler frequency measuremenls: minimum pulsc width: $0.5 \mu \mathrm{sec}$. Mininum repctition rate: 10 pulses per second
Inpuf Impedance: 50n
VFO atabllty: iypically 1×10^{-9} per minute afler 2 hours

5262A TIme interval unit

Range: $1 \mu \sec 1010^{x} \sec \left(t o l 0^{\circ}\right.$ sec with 5246 L)
Resolution: $0.1 \mu \mathrm{sec}$
Inpul sensitivity: 100 mv rms
Start-Stop: independent or common channels
Trigger slope: positive or negatuve on Siarl and Stup channels. independenily selected
Trlgger amplliude: both channels adjustable from $-25010+250 \mathrm{~V}$ prak
Input ropetition rate: better than 2 MHz
Inpul impedance: from 10k/10 pF a $\times 0.1$ multiplics selling to $10 \mathrm{M} \Omega / 20 \mathrm{pF}$ at $\times 100$ setling

5267A Time interval unit
Range: 100 nsec to $10^{4} \sec$ wilh $5248 \mathrm{~L} / \mathrm{M} ; 1 \mu$ ince to 10^{*} see with $5245 \mathrm{~L} / \mathrm{M}$; $1 \mu \mathrm{sec}$ to $10^{\circ} \mathrm{sec}$ aith 5246 L
Resolution: 10 nsec with S248L/M only; 0.1 μ rec otherwise
Input seneltlyity: 100 mV mms
Starl-Stop: independent or common chanmels
Trlgger slope: positive or negative on Slars and Slop channels, independenly selocted
Trigger amplitude: boih channcls adjusiable from -300 to +300 V priak
Inpul repetlition rate: $5 M H z$., max
Inpul Impedance: $1 \mathrm{M} \Omega / 35 \mathrm{pF}$

5265A Digital voltmeter

$\$ 1090$
Voltage ranges: 10 V .100 V and 1000 V full scale Resolution: $100 \mu \mathrm{~V}$
Accuracy: $\pm 0.1 \%$ of reading. $\pm 0.01 \%$ of full scalc for rcadings <1/10 of fulf scale
Sample rate: 5 per second
Input realbiance: 10.2 MS on all ranges
Pange selectlon: manual
Noles rejectlon: 30 dB at 60 Hz , increasing at 12 dB per oclave

52614 VIdeo amplifier

Bandwidth: 10 Hz to 50 MHz
Inpul sensitivity: 1 mV
Input impedance: I MO/IS pF
Auxillary oulpus: 40 dB gain max inso $50 \Omega ; 300 \mathrm{mV}$ rms max oulpul undistorled into 50S: source impedance 50 H

Computing counter system

Models 536̄̂à \& 5375A - 5379A

5379A

5375A

The Compuling Counter is a general purpose precision digital inserament with built-in arithmette cepability. As a measurine device the Computing Counter provides unequalled precision. For example, is can measure the lime between two events to a resolution of 100 picoseconds, sbout the lime it takes light to travel one inch.
The Computing Counter's onique mensurement ischnique employs extensive use of digital computation. Thus the mainframe contans an arithmeric unit which is an inherent, indispensable part of the measurcment cycle. The arithmetic eapability of the machine has been made available to the user ria several programming devices. This allows the system to be programmed to setive cquations where measurements are the variables, in real time. This capability enormously increases the power of the Computing Counter System.

Key specifications include a de to 320 MHz direct count frequency range, measurement resolution of I part in 10^{10} per second of gate lime. and ± 100 psec single shot time interval resolution using the 5379A Time Interval plug-in. A detailed description of the Computing Counter System and complete specifications are contained in the Computing Counter data sheel, available upon request.

5379A Time interval plug-in

With the 5379A Time Interval Plug-In, the Computing Counter becomes a high precosion and versatile time interval meter. Measure ments cen be made down to zero and even "negative" umes by virue of a unique arming scheme. Single shat cvents can be measured with ± 100 psac resolution and an accuracy of ± 1 nsec. By programming the Computing Counter from any of a number of programming devices (such as the 5375A Keyboard). the average of a number of measurements can be displayed to resolutions better than 5 psee.

5375A Keyboard

The 5375A provides the Computing Counter with the capabitity to add, sublract, multiply: divide and perform square root, loganihm and exponential functions. Decision capability and branching are possible also. Electrical outputs are made available for limit testing and peak to peak measurements.

10536A Plug-In Adapter

The 10536 A Adapler is a versatte accessory which allows nine of the 5245 series plug-ins 10 be used in the Compulting Counter. Frequency range can be excended io 18 GHz with these plug-ins.

Model number and name	Price
5360A. Computing Counter	$\$ 8300$
Option 908: Rack Flange Kit	add $\$ 10$
5379A Time Interval Plug-In	$\$ 1200$
5375A Keyboard	$\$ 1800$
10536A Plug-In Adapter	$\$ 450$

5327B

Description

The six models of the Hewleu-Packard 5326/5327 family offer vefsatile, high precision counters to measure Irequency, time intervals, or voltage. The $\$ 326$ series covers the frequency range to 50 MHz the 5327 series measures to 550 MHz . In addition, the $5326 / 5327$ family ofers the following features to make your measurements simpler, easier to sel up, and more accurate:

8 diglt display: 8th digit added as standard to give high resolution measurements without overflow.
Burat and CW measurement special gating circuils star a count only when your input signal is present. You can measure a frequency burst as easily as a CW signal.
One shot ilme interval measurements: from 0.1 usec to $10^{\mathrm{x}} \mathrm{sec}$.
Tlme interval averaging: resolution better than 100 ps for intervals as short as 150 ps with repeliuve signals.
Builh-in DVM: set trigger levels with ease, plus measure external DC voluger.
Perlod, ratio, totalize and scale measurements: extra problem solving eapability for your special requirements.
Hlgh sensitivity inpul channela: for measuring the frequency of low level signats dewn to 5 mV to 50 MHz and 25 mV to 550 MHz .
Fused ingut protection: for 550 MHz channels to prevent expensive damage for accidental overloads.
Syatems compabibility: BCD output standard. plus a choice of two remote programming options to suil your application.
Oven osciliator option: aging rate $<5 \times 10^{-30} /$ day for precision applications.
Front panel trigger lights: to show when the counter is triggering properly on the input signal.

The builk-in DVM
Both the 5326 B and the 5327 B include a build-in DVM. With the buile-in DVM, you can actually sel trigger levels with digital accuracy. The functions READ A and READ B monitor the internal tripger level setinges for the A and B channels. The values are shown direcily on the display. Of course, the imegrating DVM ean atso make accurate external voltage measuroments, Thus a single instrument can do the job of two. For systems applications, this nicans there is only onc instrument to program and a single set of outpots for all measurements.

Systems compatibility

Each member or the $\$ 326 / 5327$ Camily can be effecively used as a fast efficient systems instrument. BCD outpul is included as a standard Feature. Options 002 and 004 provide remate programming of the counter controls. The 10542A Remole Programming Interflace joins option 00410 a slandard 40 bit output register for the HP 2100 series computers.

Model number and name:	Price
5326A Timet/Counter	$\$ 1750$
5326B Timer	
5326C Mulufunction Counter	$\$ 250$
5327A Timer/Counter	$\$ 1600$
5327B Tinier/Counter/DVM	$\$ 2300$
5327C Multifunction Counter	$\$ 2700$
Options	$\$ 1995$
002: Remole Programming	
004: Full Remole Prog. (5326A/B, 5327A/B only)	$\$ 80$
011: High Stability Oven Oscillator	$\$ 325$
Accessorles:	$\$ 450$
10S42A Remote Programming Interface	$\$ 700$

5326/5327 Family selection gulde

Model	Descripllon	Ггяquency Ranye	Period Averrare Totalize/Reilio Scalling	Trie Interval Mime interval Aversping	$\begin{gathered} \text { DVh } \\ \text { (DC Vollage) } \end{gathered}$
5326C	Muit-Function Counler	50 MHz			
5326A	Universal Timer/Counler	50 MHz			
5326B	Universal Timer/Countar/DVM	50 MHz			
53210	Musti-Funcllan Countop	550 MHz			
5327A	Universal Fmer/Counler	550 MHz			
53278	Universal Timer/Counter/OVM	550 MHz	ATMM1	SIMUTMUM11\%	人11511M1M15

- "armed" measurements
- 100 ns or 10 ns time interval
- T.I. averaging to 10 ps resolution
- DVM options
- HP-IB intertace option

HP-IB

Description

The 5328A. thru the use of the latesi technology (such as a ROM conirolled measurement cycle) and a modular design. provides you with the oplimum in universal counter price/performance. Optional modules allow you to tailor the performance of the 5328 A to meet your particular measurement needs. In many instanees, however, the standard 5328A oners all the capability you're cver likely to need: Burat and CW measurements to 100 MHz special gating circuils slart a measurcment only when the input signal is presem, allowing burst frequencies to be made as easily as CW mejsurements. The option 030 channel C extends this capability 10512 MHz .
Single ghot time inlerval measurements: the standard univirsal module's 100 ns single shol revolution mects or exceeds the requiscments for a wide range of applications such as mechanical and electromechanical deviec (iming <relays). lime or Night measurements (balusises). sonar ranging. radio ranging and navigation.

Time Interval averaging: resolution better than 10 ps (10-11 seconds) for repelitive time intervals as shor as 100 ps .
Period, Perlod average, Ratlo, Totallze, Scale: cxira problens solving power lor your special requirements.
Armed measurementsi versatile arming modes (controlied by a rear pancl swi(ch) allow real (ime control over when a measuremen begins. Useful for measurcments such as frequency burst profile und frequency sweep linearily.
Thgger lights: urigger light blinks when channel is triggering; light is ON when inpul is above Irigger level; OFF when input is below erigger level. Simplifies trigger level adjustmenis.
High periomance marker outputs: marker outputs (operational to $100 \mathrm{MH} \%$) indicate where channe) is (riggering in real time for oscilloscope monitorng applications. Provides measurement reedback to the operator for getatiy simplified measurement set-ups.
These fostures and capabilities make the 5328A on excellent choice

Summary of characteristles

Hadel Ho.	Description	Features
5328A	Universal Counter	frequency lo 100 MHy ; 100 ns single shot T.l.: I. 1 averasing.
		Pariad: Period Avger ratio; Islakze
Opl. 010	High Slability Time Base	Oven oscillalor with aging rate $+5 \times 510^{-10} /$ day
Opl 011	HF.IB Interlace	Allows 5328A to ourput data and be conlrolled via the HP Interlace Bus.
Opt 020	DVM	Single ended DVM Ior lagger level and exleral vollage measurements.
Opl 021	High Perlormance DVM	Floating OVM fod trigget level and high accuracy exlen nal vollage measuremenls.
001.030	Channel C	Firequency measurements to 512 MHz 9 digit display.
$\text { Opi. } 040$	High Perfarmance Universal Module	Same as slandard 5328A bul with 10 as single shol Y l.; improved T.L averaging improved T.I. accuracy; measuremenis with delay. T.I. A -8 marker: hysteresis compensation; switchable inpul impedance (I MN/50n).

for general purpose lab use, electronic service. and production test. For more demanding applications, a variety of options offer extended performance al a modesl incteasc in price:
High stability time base (Opl. 010)
The standard time base for the 5328A is a room temperalure 10 MHzcrystal providing a long term aging ratc of less than 3 parts in 10° per month. The option 010 oven oscilator offers excelfent short term and temperature stability which can contribute to bigher measureroent accuracy. The low aging rate of $\leq 5 \times 10^{-10} /$ day permits ro duced intervals between time base calibrations.

HP Interface bus for systems use (Opt. 011)
The option OII HP-IB Interface brings the full capability and power of the HP Interiace Bus. The 5328A can accept program code words over the HP-1B which remotely program various front and rear panel controls. In addition, measurement results may be output over the bus so HP-1B compatible instruments, calculators, or computers.

Remotely programmable controls include FUNCTION selection, RESOLUTION selecion. ARMING. SAMPLE RATE (max. or manual), RESET, measurement modes, outpul modes, and display modes. Setecton of mput amplifier signal conditioning is a manual operation.

Digital voltmeters (Opt 020, 021)

The unique combination of an inegrating digital volimeler with a universal counter produces a superb general purpose measuring instrument. By using a voltage to frequency conversion lechnique. the ineremental cost of adding DVM capability to the 5328A is very low.

Two DVM optians are available: the option 020 DVM with singleended input and the oplion 021 High Performance DVM with Hoating inpul. You can use these DVM's 10 measure channel A and B arigger levels and external voltoges. Since a built-in DVM greatly simplifies time interval measurement set-ups, it is highly recommended that one of the DVM options be selected, particularly if time interval measurements are one of your major applications.

512 MHz channel C (Opì 030)

The option 030 Channel C module provides a thirs input for direct count measurements up io 512 MHz with is mV rms sensitivily, thereby making the 5328A ideally suited for use in a wide varicty of communications measurements. Typical applizations include servicing. maintaining, calibrating, and monitoring communiestions transmitters and receivers such as found in two way radio. radio and television broadcasting, mobile radio. and common cacricr multiplexing and Iransmission. The option also adds a 9 th digit to the mainframe display for use in all C channel measuremenes (FREQ C. RATIO C/A. and EVENTS C, $A \div B$).

High pertormance univergal module (Opl. 0s0)
The option 040 universal module provides extended performance for time interval measurements and "delay". "Delay" allows you to disable the inpuls from Iriggering for selected periods of time ($20 \mu \mathrm{~s}$ to 20 ms). This feature is usefil for ignoring high amplitude noise such as from chattering relays or ignoring slop pulses in multiple ssop T.I. measurements.
The oplion 040 High Performance Universal module generales a 100 MHz clock to give 10 ns single shot resolution. This resolution is useful in applications such as computer/peripheral ciming measurements, logic timing measurements, RADAR ranging, and oplical ranging.

For improved time interval averaging performance, the option has input channels which are adjusted for delay matching to better than 2 ns. Addntionally, the opt. 040 uses a jittered clock in T.I. A VG. Гunction to give averaging also for those cases when the input repetition rate is synchronous with the coumer's internal lime base.
Selectable impedances ($50 n$ for fast signals in a SOn environment; I $M \Omega$ for reduced circuit loading or use with scope probes), a T.L. $A \rightarrow B$ marker outpul, and hysteresis compensation provide for easicr time interval measurement scl-ups. The $\mathrm{T}, \mathrm{I}, \mathrm{A} \rightarrow \mathrm{B}$ marker, which is high during the time interval measured by the counter and is delayed by less than 20 ns, is extremely useful in oscilloscope monitoring applications.
Retrofit kits are available for all the options to allow you to upgryde the performance of your 5328A in response to your changing measurement requirements.
The following condensed specifications highlight some of the important performance characteristics of the 5328A and its uptions. Completc specifications and delailed applications informathon are available in the 5328A datu sheet.

Condensed specifications

Input characteristica
Channel A and B (standard and oplion 040)
Sonsilivity: 25 mV rms, $0-40 \mathrm{MHz}$ (de coupled)

$$
20 \mathrm{~Hz}-40 \mathrm{MHz} \text { (ac coupled) }
$$

50 mV rms, $40 \mathrm{MHz}-100 \mathrm{MHz}$
Min. Pulse width: 5 ns. 140 mV p-p
Couplling: ac or dc, swisct seleciable
Impedance: $1 \mathrm{M} \Omega<40 \mathrm{pF}$ (swith selectable I $\mathrm{M} \Omega$ or 50 n nominal with Opl. 040)
Trigger Level: variable over ± 2.5 volts times altenuator selting wilh 0 volt presel position.
Trigger Slope: independent selection of + or - slope

Model 5320A (cont.)

Atrenuators: XI, X10,XI00 (XI,X2,X20 with Opl. 040)
Dymamic Range: 25 mV 101 V ims X attenuator seting for $0-40$ MHz ; 50 mV io 500 mV rms \times atenuator setuing for $40-100 \mathrm{MHz}$.

Channel C (oplion 030)

Sensilluity: 15 mV rms, $5 \mathrm{MHz}-512 \mathrm{MHz}$
Coupling: dc
Trigger Leval: OV. Sixed
Impedance: 50 nominal
Maximum Inpul: 5 V rms
Input Protecilon: fused
Frequency measurements
Frequency A (standard and optlon 040)
Range: $0-100 \mathrm{MHz}$ direct counl
Reeolution: I M.Hz 100.1 Hz in decade steps
Accuracy: \pm I count \pm timebase error
Frequency C (option 030)
Range: $5-512 \mathrm{MHz}$ direct count
Hesolutlon: I MHz 100.1 Hz in decade steps
Aceuracy: ± 1 count \pm timebase error
Period Measurements
Perlod A (standard and option 040)
Range: $0-10 \mathrm{MHz}$
Resolution: 100 ns to 1 s in decade steps (10 ns to 0.1 s with opt. 040)

Accuracy: \pm I count \pm timebase error \pm trigger error ${ }^{-}$
Period Average A (stondard and oplion 040)
Renge: $0-10 \mathrm{MHz}$
 al counter, for any wayeshape, tripger errot is less than

$\pm 2 \times$ peak noise voliage

signal slope

Resolution: 100 ns 100.01 ps in docade steps (10 ns to 0.001 ps with opt. 040)
Accuracy: $\pm \mathrm{I}$ count displayed \pm timebasc error

$$
\text { - } \frac{\text { lrigger error* }}{\text { no. periods averaged }}
$$

Time interval measurements
Time Interval A to \mathbf{B} (Blandard and oplton 040)
Renge: 100 ns to 10^{8} s ($10 \mathrm{~ns} 1010^{\prime} \mathrm{s}$ with option 040)
Resolution: 100 ns to 1 s in decade steps (10 ns 100.1 s with option
$040)$
Accuracy: \pm counl \pm limebase crror \pm ligiggor error*
Time interval average A to B (atandard and option 040)
Range: $0.1 \mathrm{~ns} 10 \mathrm{lO} \mathrm{s}(0.1 \mathrm{~ns}$ to 1 s with opl. 040)
Resolution: $\frac{ \pm 100 \mathrm{~ns}}{\sqrt{\text { no. intervals averaged }}} \pm 10 \mathrm{ps}$

$$
\left(\frac{ \pm 10 n s}{\sqrt{\text { no. intervils }} \frac{t v e r a g e d ~}{c}} \pm 10 \mathrm{ps} \text {, with opt. 040 }\right)
$$

Accuracy: $\frac{ \pm 100 \mathrm{~ns} \pm \text { trigger error }}{}{ }^{2} \quad \pm 4 \mathrm{~ns} \pm$ timebase ersor:

$$
\left(\frac{ \pm 10 \mathrm{~ns} \pm \text { (riges error"* }}{\sqrt{\text { no. intervals averaged }}} \quad \begin{array}{l}
\pm \mathrm{ns} \pm \text { lime base error. } \\
\text { with opt. } 040)
\end{array}\right.
$$

The opt. 040 has a "jittered" clock in time interval averaging for those cases when the inpul is coherent with the 5328A's clock frequency.)
Minimum pulse width: 25 ns (10 ns with opl. 040)
Minimum dead time: 150 ns (40 ns with opl. 040 and maximum repelition rate of 10 MHz) ("dead time" is the time between the preceding time interval's stop event and the cuerent time inicrval's stayt eveni).
Ratio measurements
B/A and C/A (standard and option 040)
Range: A: $0-10 \mathrm{MHz}$
B. $0-100 \mathrm{MHz}$

C: $5-512 \mathrm{MHz}$

Digital voltrieler measurements
DVM (option 020 and 025) rigger ievels of input channels A and B and external voltages may be measured. \dagger

Maximum Sensilivity: Meas. $\operatorname{lime}(\mathrm{N}=$):	Opi. 020	Opt. 021
$10 s\left(N=10^{\circ}\right)$	1 mV	$10 \mu \mathrm{v}$
I $\leq\left(N=10^{6}\right)$	1 mV	$100 \mu \mathrm{v}$
$0.1)\left(\mathrm{N}=10^{\circ}\right)$	2 mV	1 mV
$10 \mathrm{~ms}\left(\mathrm{~N}=10^{2}\right)$	20 mV	10 mV
$1 \mathrm{mss}\left(\mathrm{N}=10^{3}\right)$	200 mV	100 mV
Range:	$010 \pm 125 \mathrm{Vdc}$	$\begin{aligned} & \pm 10 . \pm 100 . \pm 1000 \vee \mathrm{dc} \text {. } \\ & \text { and Autorange } \end{aligned}$
Accuracy: (20 min. warm-up)	$\pm 0.5 \%$ reading $\pm 4 \mathrm{mV}$	$\begin{aligned} & \pm 0.03 \% \text { reading } \pm 0.004 \% \\ & \text { range: lor } 1000 \mathrm{~V} \\ & \text { rangc: } \pm 0,087 \% \text { reading } \\ & \pm 0.004 \% \text { range } \end{aligned}$
Input Terminals:	Single ended	Floating pair
Input Impedance:	10 MS	10 Ms
Narmel Mode	$>60 \mathrm{~dB}$ at 60 Hz	$>80 \mathrm{dBar} 50 \mathrm{~Hz}$ or
Aejeclion Ratlo:	$(50 \mathrm{~Hz}) \pm 0.2 \%$	greater with filter on
Effectlve Common		$\mathrm{DC} .>120 \mathrm{~dB}$
Mode Rejection Ratlo 1 k П unbalance):		$A C:>120 \mathrm{~dB}$ for mustiples of 60 Hz (50
		Hz) with lilter an
Maximum input:	$\pm 500 \mathrm{~V}$	HI to $\mathrm{LO}: \pm 1100 \mathrm{~V}$ al ranges: LO to chassis ground: $\pm 500 \mathrm{~V}$
Trigger level	2 mV display	1 mV display.
Messurements:	resolution	resolution; rrigger level
		reading automatically
		raultiplied by selting of
		altenuglor switeh if
		using option 040 uni-

PPerformance: 60 days $3 t 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and RH < $80 \mathrm{O}_{\mathrm{h}}$

Totalizing and scalling measurementa
Start A (standard and option 040): the number of counts at the A input are totalized for $N=1$ on the resolution switch. For $N>I, \Lambda / N$ is cotalized and the scaled outpul (A / N) is available at the Timebase Out rear panel connector.

Range: $0=100 \mathrm{MHz}$ for $\mathrm{N}=1$

$$
0-10 \mathrm{MHz} \text { for } \mathrm{N}>1
$$

Events C.A 10 日 (otandard and option 040): the number of events at the C inpul are totalized during the synchsonized time interval (l.e., a multiple of 100 ns , or 10 ns for opt. 040) delined by inputs 10 channel A and B.

Accuracy: ± 1 count of $C \pm$ trigger error* of A and $B \pm$ freq. of C
$\times 120 \mathrm{~ns}(\pm 1$ coumi or $C \pm$ rigger error* al A and $B \pm$ frog. of $C X$
12 ns with ops. 040)
Messurements with delay (option 040): delay mode is activated by inner concentric knob on Level A control of option 040 Universal Module (red LED indicates delay is activated). In delay mode. Channel A triggers and is then disabled from Iriggering again until the delay times out (disabled state occurs within I $\mu \mathrm{s}$ after (riggering). Channel B is continuously disabled until the delay imes out. Alter the delay, both A and B are enabled. The delay time may be measured by placing the counter in T.l. $A \rightarrow B$ and the Universal Module in check (CHK).
Delay range: 20 us 1020 ms continuously adjusiable
Minlmum Dead Time: I μ s between stop and next starl (T.1, average meusurements only)
Meaningful functlona' Freq. A. Per A. Per Avg A. T.I. A \rightarrow B. T.I. Avg $A \rightarrow B$, Ralio $C / A . S t a r A$, Events $C . A \rightarrow B$
HP.IB Interface (optlon 011): Provides digital output of measurement data ('lalker') as well as input for remole progran control ("listener'").
Programmable Functions: function, resolution, sample rate (max, or manual consrol), arming, display modes, measurement modes, oulpul modes, and reset commands

HP-IB commands: responds to the following bus commands (see HP-1B Users Guides for definitions) - Unlisten, Untalk, Local Lock. oul Device Clear, Serial Poll Enable, Scial Poll Disable, Go so Local. Selected Device Clear. and Group Executive Trigger.
Service Request (SRQ): if enabled, indicates end of measurement
Maximum data outpul rate: SOO readings/sec

Gemeral

Display. 8 digit (9 wilk opi. 030) LED display
Blanking: suppresses display of unwanted zeros to left of most significant digit
Storage: holds reading between samples; can be overridden by rear panel 5wilch.
Sample rate: variable from less than 2 ms between measurements to HOLD which holds display indellnitely.
Gate output: rear panel output, TTL levels; high when counter gate open
Timebase outputi rear panel oulpul; TTL levels
Check slgnal: with function switch in CHECK, counter should display $10 \mathrm{MHz} \pm 1$ count. (With opt. 040, place function switch in Frog A and universal module in CHECK (CHK) - counter should display
$100 \mathrm{MHL} \pm 1$ count)

Tlmebase:

Standard erystal
Aging rate: $<3 \times 10^{-2} /$ month
Temperalure: $<2.5 \times 10^{-\pi} 0^{\circ}$ to $50^{\circ} \mathrm{C}$
LIne Vollage: $<1 \times 10^{-3}$ for $10 F_{\text {c change }}$
OpL 010 oven oscillator
Aging rale: $<5 \times 10^{-10} /$ day after 24 -hour warm-up
Short termi < 1×10^{-10} rms $/ \mathrm{sec}$
Temperalure: $<7 \times 10^{-9} 0^{\circ} 1050^{\circ} \mathrm{C}$
LIne voliage: $< \pm 5 \times 10^{-9}$ [or 10% variation
Warm-up: $< \pm 5 \times 10^{-1}$ in 20 min .
Ext- freq. etd. input: 30 kHz to 10 MH 2 signsal of amplitude $>1.0 \mathrm{~V}$ mins into) $\mathrm{k} \Omega$. Maximum input: 5 V p-p. Correct reading obtained only with 10 MHz input. Other inputs give scaled readings. For opt. 040 only, the following constraints apply: ext. Freq. sid. must be 10 MHz for Period Avg., T.l. Avg. Period ($\mathrm{N}=1$), and T.I, $(\mathrm{N}=1)$.
Trigger Llghts; light is ON when input is above trigger level: OFF when input is below trigger level; Bl.INKING when channel is trig-

Marker outpuls: inveried channel A and channel 8 Schmitt arigger outputs available on front panel; 0 to -199 mV levels into $50 n$; $<20 \mathrm{~ns}$ delay. (With opt. 040, inverted channel A Schmitt Irigger and T.1. A \rightarrow B marker oulputs (0 to -50 mSV) available on front panel - T.I. $A \rightarrow B$ is high during the time interval measured by the counter). Outputs protecied from inadvertently applied voltage to $\pm 5 \mathrm{~V}$ de.
Arm: rear panel swith turns anming ON or OFF. With arming OF the measurement is armed by an input other than the input involved in the measurement. The following are amed by an event at B: Freq A, Period A, Period Aug A. Freq C. DVM, Ralio C/A; the following aro armed by an event al C: T.I. B, T.l. Avg $A \rightarrow B$, Evenls $C . A \rightarrow B$, Ratio B / A.
Operaling Temperature: 0° to $50^{\circ} \mathrm{C}$
Power Requirements: $100 / 120 / 220 / 240 \mathrm{Vms},+5 \%,-10 \%$ (switch sclectabie), $48-66 \mathrm{~Hz}$: 150 VA max.

Optlons and accessories	Price
OpL. 010: High Stability Time Base	$\$ 525$
Opt. 011; HP-IB Interface	$\$ 350$
Opt. 020: DVM	$\$ 200$
Opt. 021: High Performance DVM	$\$ 500$
Opt. 030: Channel C	$\$ 400$
Opt. 040: High Performance Universal Module	$\$ 350$
Option 907: Front Handle Kit	add $\$ 15$
Option 908: Rack Flange Kit	add $\$ 10$
Option 909: Rack Flange \& Front Handle Combina.	
Lion Kit	add $\$ 20$
$5328 A$ Univergal Counter	$\$ 1300$

5300 Measuring system

The 5300 measuring syseem marks a new era of high performance and versaility for low cost counters.

Features Include

100 ns Time interval resolution and time inierval averaging
Up 108 digits
Auto ranging
Uniqque time interyal hold off
Expandable with interchangeable modules
Oplional FCC lype approved TCXO lime bose
Portable-batiery operation with all modules
Compact and rugged
High relyability MOS/LSI circuiry and LED display
Designed for quick \& easy owner-servicing
Output via BCD. HP Interface Bus (HP-IB), or D to A converters

Description

Large seale integration and solid state display lechnology have helped to produce a uniqualy versatile and capable counter at a surprisingly low cost. Easy to use and reliable, this counter does what is imporiant-solves your measurement problems while saving your money. Versalility and onliobsoleseence come from modular construction. Take your choiec from two mainframes and seloet the snap on module thal you need now. Expand the capability later with more modules, if and when you need them. You can expand the capability of your 5300 Meusuring system to match your expanding needs and budger. Hewlet1-Packord is engaged in an on-going progran 10 develop expanded capabilities for the 5300 as whown by the "new modules" just added in this calalog. An optional ballery pack provides portable cord-frec operation of any of the modules, climinating power problems and ground loops. The new plug-between digital to analog converter gives you an analog output that can drive a strip chart recorder, providing hard copy of any of the 5300 System's measurements. You can now easily obtain hard copy recordings of frequency drifts. time interval shifts, ratio changes, ohms varations, amd even totalized Itevels from the 5300 system and its plug-betwein D to A converier. The BCD outpul and HP-IB module lets you interface digjally with olher instrumens and systems. This is versatility that truly avoids obsolescence and optinizes your instrument dollars.

Unique beneflts

Snap-logether modularity allows you to match the display/mainframe capabilities with the functional module of your choice to maich your preseni needs. Additional modules can be added as your mes. surement nueds and budget expand. inchuding the selection of three eenter modules which allows you to add a hattery, a D to A Converier. or an HP.IB outpul to your system when and if you need them. Frequencies up to 1.1 GHz call be measured with this portable precision frequency counter. Single time intervals can be measured with 100 ns resolution. Time interval averaging over up 1010^{4} intervals allows you much greater resolution than ever available before in a counter of this price sunge.

Auto rangling

Auto ranging is included in many of the functions, enhancing the ease of operation by dutomatiedly selecting a correet gate time to fill the display. Any frequency within the range of the 5301A, 5302A. 5304 A . 5307A and 5308A may be counted with the counter"s logic circuits automatically selecting the correet gate time up io 1 second for maximum resolution without excceding the display range. In the 5302A and 5304 A auto ranging is also provided for the Period A versge function to select the number of periods 10 be averaged. The high performance 5308a Universal Counter provides autoranging in the Frequency. Period Average, Ratio, and Time Interval average modes, a first for counters in any price range.

Tlme Interval holdof

Time interval holdort is a unique feature of the 5304A Time/Counter modulc. This featurc allows you 10 add a fixed delay between the stare of a time interval measurement and the enabling of the stop channel. Thus any electrical pulses or irregularives in a waveshape that occur belween the desired trigger points can be ignored. Even the delay itself can be measured with the 5304A.

5300A 6 DIGIT MARHFGAME						2410 p8 258				
595088 digiy malimfame						\$460 p2 258				
53IBA 8AПEAY PACK						1275 pe 264				
53118 digial io amalog converter						5350 of 263				
5312A ASCII IATERFACE						\$350 M1 263				
Model	Frequency MHz	Period	Period Average	Time Interval	Mime Interval Average	Totalize	Ratio	Multimeter ACY, DCV. ת	High Resolution Reciprocal	
5301 A	10									\$ 175 pg 259
5302A	50									\$ 325 pg 259
5303B	525									\$ 825 阬 260
5904 A	10									\$ 385 pg 280
5305A	1100									\$1100 pg 261
5306 A	10									\$ 550 pg 261
5307A	2									\$ 375 pg 262
5308 A	75									\$ 450 pg 262

Typical Configurations

5300B, 5310A. 5305A

5300A, 5311B, 5306A

5300B. 5312 A , 5308A

Frequency Measurement Sysiem For Mobile Communications Go Anywhere Portability

Trend Reconding System For Voltage. Rexistance, and Frequency Graphic Copy For Visual Andysis

Data Acquisition System For Meesurement And Recording Of Dala Reduction Of All Measurements

High resolution
High resolution at low frequencies is provided by the 5307 A counter module. This easy to use counter maka period average measurement, inverts it and displays the resull as a frequency, thereby providing the high resolution of a period measurement and the ease of use of a frequency measurement automatically.

Digital and analog ouiput

Digital output is available in BCD format (standard in 5300A mainframe) or ASCll format via the HP Interface Bus (to be used with 53008 mainframe) to provide interfacing with digital printers or with deskiop calculators and other data processing equipment. Analog output for long term monitoring with strip chast teconders is provided by a digial to analog converser. This provides the capability to generate hard copy sesuls of any of the measurements made by any of the 5300 modules.
Battery pack
A snap between battery pack provides a truly portable, light weight. go-anywhere measuring system for any of the 5300 Systems.

Serviceability

Reliability and easy servicing have been major design criteria for all of the 5300 modules. The small number of components and the use of modular design techniques allows problems to be easily traced to funetional blocks. A check function is built into most of the functional modules so allow immediate checking of the basie counter circuits from the froms panel. A user oriented service support package is avsilable that provides plug-in cards with automatic diagnostic routines that allow the 5300 mainframes to troubleshoot themsetves.
Features like tbese make the net cost of owning either a 5300A or 5300B Measuring System leas than that of conventional counters.

5300 A/B systems (conl.)

5300A and 5300B measurement system maintrame

The mainframe unils provide the systern with power, reference frequency. display. counting logic and timing control.
The 5300A has a six digit, dot matrix display. standurd time base. external ume base inpul und BCD output as a standard rear panel output. The 5300日 has an 8-digit 7-segment display, standard lime base or optional TCXO time base, external time base input and no digilul out. put from the rainframe. Sec mainirame/plug-on display chan below for number of display digits with a particular mainframe and plug-on combination.
TIme-base
Standard cryatal Irequency: 10 MHz

Stability

Agling rate: <3 Paris in 107/mo
Temperature: $< \pm 5$ Parts in $10^{\circ}, 0^{\circ}$ 10 $50^{\circ} \mathrm{C}$
Typically: $< \pm 2$ Parts in $10^{\circ}, 15^{\circ} 1040^{\circ} \mathrm{C}$
Line voltage: < \pm I Part in 10^{\prime} for 10% Line Variation
Oscillstor output: 10 MHz , Approximately I V mas at rear panel BNC. 100Ω source imporance
External input:) MHz to 10 MHz , IV ims inio 2000
Option 001: High stability time base (5300B Only)
Fiequency: 10 MHz

Stability

Aging rate: < 1.2 part in $10^{\circ} /$ ycar
Temperature: $< \pm 5$ parsis in $10^{\circ} .0^{\circ} 1050^{\circ} \mathrm{C}$
Une voltage: < ± 5 parts in 10^{*} for 10% line variation
Oseillator output: 10 MHz approximately I V rms at rear pariel BNC. 2000 source impedance
Extemal input: 1 to $10 \mathrm{MHz}, 1$ V rms into 5000

Gemeral

Dlsplay: 6 Digit. Dot Matrix (5300A) or 8 DigiL 7 Segment Matrix (5300 B)
Solid stare LED display (Gallium A rsenide Phosphide Light Emilting Diodes) including decimal point and annunciator units.
Overilow: LED Light indicates when display range is exceeded.
Dlsplay slorage: holds reading between samples
Sarnple rate: Sample rate consrol adjusts the delay from the end of one measurement to the start of a new measurement. Continuously variable from less than 50 msec to greater than 5 seconds. HOLD position: display can be held inderinitely. Reset: Front panel pushbutton switch reses all registers and initiales new measurement. Resel input by contact closure to ground or TTL eype low level also available on rear panel connecior (5300 A only).
Operating temperature: 0° io $50^{\circ} \mathrm{C}$
Power requirements; 115 or 230 vols $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 25 \mathrm{VA}$ maximum (depends on plug-on module). Mainframe power withoul

plug-on nominally 5 watts. Battery operation: with 5310A rechargeable battery pack (sec 5310 A specifications).
Digltal output (5300A only)
Digital serial, 4-bia BCD parallel available at rear panel connector.
Code: 4-line 1-2+18 BCD. "1" state low. TTL eype logic levels.
Decimal point: decimal point code (Binary "IIII") automstically inserted at correct digit position.
Print command: positive step. TTL output
Holdoff: contact closure 10 ground or TTL low level, inhibits stan of new messurement cycle.
Conneclor: 20-pin PC convector. Mating connector Viking 2VHIO/ IJN or equivalene.
Paralel data output: available from Printer Interface. See 10533A specification.
Note: digital output for 53008 Mainframe is provided by 5312A ASCII Module.
Welght: net. $1.5 \mathrm{~kg}(3 / 1 / \mathrm{lb})$. Shipping, $2.5 \mathrm{~kg}(5 / / \mathrm{lb})$
Dlmenslons (with snap-on modulc): Height. $89 \mathrm{~mm}\left(3 \%{ }^{\circ}\right)$, Width. $160 \mathrm{~mm}\left(61 /{ }^{\prime}\right)$. Depch. $248 \mathrm{~mm}\left(9 \mathrm{k}^{\prime}\right)$
Mainframe/plug-on compotibility

Plug-on	Dlsplay Digite	
with 5300 A	with 5300 B	
S301A	6	7
S302A	6	7
S303B	6	8
S304A	6	7
S3SA	6	8
S306A (Frequency)	6	7
(ACV, DCV, OHMS)	5	5
S307A	6	6
S308A	N/A	8

Acceseriles

Price
Dlgital Recorder Interface: (for use with 5300A, BCD output) See 10533A Specifications, Page 259.
Service support package: Contains an interface card and 4 diagnostic cards for easy rouble shooling of 5300 A or $5300 \mathrm{~B}, 10548 \mathrm{~A}$. Page 269.
Leather carrying case: Holds 5300A or 53008, snap-
on module and 5310 A battery pack plus accessories 18019A.

Aack mount kits:

10851A Single$\$ 40$

10852A Double 540

10954 Doublait plut ber $\$ 40$
540

10854 A Double/with plueg-beiween

Model number and name
5300 A 6 digit mainirame
5300 B 8 digit mainframe (new)
OPT 001 TCXO (5300B only)

- 10 MHz
- Auto ranging
- External gate

5301 A 10 MHz frequency counter module

Inpur
Range: 10 Hz to 10 MHz .
Senalitylty (min): $25 \mathrm{~m}^{\prime}$ mms sine wave 50 Hz .101 MHz .50 mV rms sine wave $10 \mathrm{~Hz}, 1010 \mathrm{MHz} 150 \mathrm{mV}$ p-p pulse at minimum pulse width, 50 ns . Sensitivity variable to 2.5 V rms.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 30 pF .
Overload Protactlon: 500 V (dc + peak ac), 250 V rms, de to 400 Hz , 10 V rms al 10 MHz .
Trigger Levol: selectable positivo, negative, or zero volts

Frequency meaburement

Range: 10 Hz to 10 MHz
Qate times: manually sclected O.I. I, or 10 seconds AUTO position selects gate time to 1 second for maximum resolution.
Accuracy, ± 1 count \pm time base socuracy
Open/close (totalizing)
Range: 10 MHz max count rate.
External gate: gate signal by contact closuro to ground or TTL low.

General

Chock: counts internal 10 MHz reference frequency.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power requirements: including mainframe, nominally 8 watts.
Weight: ret, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping, $1.5 \mathrm{~kg}(34 \mathrm{lb})$
Dimenslons: see Mainframe

Price:

10533A Recorder interface speclifications

The 10533A acoessory provides an interlace between the 5300A measurement system mainframe and a standard parathelinput recorder such as the HP SOSSA. The interiace module provides conversion from the 5300A serial data outpul to a standard parallel format. Output format: 10 parallel digis: 6 data 1 decimal point, 1 overflow, I exponent and I exponent sign.
Code: 4-line 1-2-4-8 BCD; "1" state low, TTL levels.
Decimal polnt: noating decimal point automatically inserted at eorrect digit position. Coded "1111" ("*" on slandard HP 5055A print wheels). Inlernal jumper wire removes decimal point from data format if desired.
Overflow: coded " $1 / 11$ " ("*") printed in first printer column when 5300A overflow light is on.
Exponent: $\pm 0, \pm 3, \pm 6$ corresponding with 5300 A measurement units.
Prini command: negative step, TTL. levels.
inhlibl input +2.0 V or higher prevenis the 5300 A from recyeling. Power requirements: 100 mA as 5 volts, provided by 5300 A mairsframe.
Price:

[^14]- 50 MHz universal counter.
- Automatic or manual gate selection.
- 100 nsec time interval resolution.

5302 A 50 MHz universal counter module

Input channels A and B
Renge: channel A: 10 Hz to 50 MHz . Charnel B: 10 Hz to 10 MHz Sensilivity (min): 25 mV ms sine wave 50 Hz to $1 \mathrm{MHz}, 50 \mathrm{mV} \mathrm{rms}$ sine wave 10 Hz to 10 MHz . 100 mV rms sine wave at 50 MHz .150 mV p-p pulse at minimum pulse width, 50 ns . Sensitivity variable to 2.5 V rms.
Impedance: 1 M shuned by less than 30 pF .
Overload proteclion: 500 V (de + peak ac). $250 \mathrm{~V} \mathrm{rms}$,de to 400 Hz a 10 V rms above 10 MHz .
Trigger level: selectable positive, negative, or zero volts.
slope: aulomatically switched to trigger on positive slope for positive pulse and negative slope for negative pulse. Positive slope for sinusoidal inpus.
Marker outpute: rear panel BNC, TTL low level while gate is open.
Frequency
Range: channel A: 10 Hz to 50 MHz , presealed by 10 :
chanael B: 10 Hz to 10 MHz
Qale times: manually selected $0.1,1$, or 10 seconds. AUTO posilion selects gate lime to i steond for maximum sesolution.
Accuraoy: ± 1 count \pm time base accuracy
Time interval
Ranga: 500 nsec to 1000 seconds
Inputi channels A and B
Resolution: 100 ns to 1 ms in decade steps
Acourscy: ± 1 count \pm lime base securacy \pm irigger error*
Perlad
Range: 10 Hz to 1 MHz
Input: channel B
Resolullon: 100 ns 101 ms in decade steps
Accurscy: ± 1 count \pm time base accuracy \pm trigger crror ${ }^{*}$
Period average
Aange: 10 Hz to 1 MHz
Input: channel B
Perlods averaged: 1 10 10^{\prime} mutomatically selecied.
Frequency counted: 10 MHz
Accursey: \pm l count \pm tine base accuracy \pm triggor crror*
Fatio
Display: $F_{A} / F_{\text {g }}$ times multiplier (N),$N=10$ to 10^{\prime}, selectable in decade stops
Range: channel A: 10 Hz to 1 MHz , Channel B: 10 Hz to 10 MHz
Accurecy: \pm caunt of $F_{B} \pm$ trigger error of F_{A} "
Open/close (totalixing)
Range: 10 MHz max
Input channel B opening and closing of gate initiated by front panel pushbution switch.
General
Check: counts intemal 10 MHz reference frequency.
Operating lempersture: 0° to $50^{\circ} \mathrm{C}$
Power requirementa: including mainframe, nominally 10 watts
Welght: net, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping, $1.5 \mathrm{~kg}(3 \mathrm{H} / \mathrm{lb})$
Dimenslons: see Mairframe
Price:

ELECTRONIC COUNTERS

5300A/B System (cont.)

CW or burst to 525 MHz

- Automatie gain control and fused input
- FCC type approved

5303B Frequency counter module

This counter module was especially designed for servicing and calibrating mobile communications equipment and AM \& FM broadeast equipmen. An automalic gein control (AGC) amplifier has been provided on the 80 MHz channel. This provides ease of use by compensating for input level variations and rcjecting noise up 1050% of the peak-to-p cak level of the input signal. The front end circuitry of the 525 MHz channel is fusc protecied against high input signal levels that would normally cause expensive frontend damage. The addition of the battery pack makes this an ideal portable instrument for the lab or the field.
Input channel A (CW or burst)
Range: DC to 525 MHz . prescaled by 8
Senaltivity (llxed):
100 mV rms sine wave. de 10500 MHz
125 mV rms sine wave, 500 MHz to 525 MHz
Signal must pass through zero.
impedance: 50 n
Overload prolectlon: sVrms (inpur circuitry fuse protected)
Input channel B (CW or burst)
Fenge: 50 Hz 1080 MHz . direct
Sensifivity (automatic):
25 mV mos sinc wave. 100 Hz to 50 MHz
50 mV rms sine wave, 50 Hz to 100 Hz and 50 MHz 1080 MHz
Sensitivity is adjusted automatically by AGC (autonatic gain con(rol).
Effective up to input clipping Ievel of $10 \mathrm{Vp-p}$.
Impedance: 1 M ! shunted by less than 40 pF
Overlosd protactlon: 250 V rms, 50 Hz to 10 KHz declining to 10 V rims above 10 MHz
Frequency measurement
Resolution: (selectable): 1. $10,100,1000 \mathrm{~Hz}$
Accuracy: \pm ! digit \pm time base accuracy
General
Chack: counts internal 10 MHz reference frequency,
Overtow. light indicales display exceeded.
Operailing temperature: $0^{\circ} 1050^{\circ} \mathrm{C}$
Power requirementa: including mainframe, nominally 10 wats
Walght: ncl. $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $1.5 \mathrm{~kg}(31 / \mathrm{lb})$
Dlmenalona: see mainframe.

Price:

\$825
Option 001: High stability time base (for use with 5300.A) Frequency: 10 MHz
Stability
AgIng rate: <l. 2 parn in 106/year
Temperature: < ± 5 parts in $10^{\prime}, 0^{\circ}$ 10 $50^{\circ} \mathrm{C}$
Line voltage: $< \pm 5$ parts in 10^{x} for 10% line variation
Oscillator output: 10 MHz , approximately 1 V mm al rear panel BNC. 200 s sourec impedance
Exiernal Input ito 10 MHz I V rmsinto 500 n
Price:
'For any wiveshade, Inggor andor a less than
0.005μ
${ }^{4}$ Signal Siope (V/ $\left.\mu \mathrm{z}\right)$


```
- Matched input amplifiers
- Time interval hold-off
- 100 nsec time interval resolution
```


5304A Timer/counter module

mpù channels A and B
Range: DC coupled: 0 to 10 MHz , AC coupled; 100 Hz to 10 MHz . Senstivity (mln): 25 mV rms sine wave to $1 \mathrm{MHz}, 50 \mathrm{mV}$ mis sine wave to $10 \mathrm{MHz}, 150 \mathrm{mV}$ p-p pulse al minımum pulse width. 40 nsec. Sensitivity can be decreased by 10 or 100 times using ATTENUATOR switch.
Impedance: 1 M Ω shunted by less than 30 pF .
Overload proteclion: 250 V mis on X 10 and X 100 attenuator set. tings. On XI altenualor selting 120 V rms up to 1 kHz , decreasing to 10 V rms at 10 MHz
Trigger level: PRESET position centers triggening about 0 volts. or conlinuously variable over the range of $-1 \vee 10+1 \vee$ iimes attenuacor selling.
Slope: independent selection of Iriggering on positive or negative slope.
Channel Inpuls: common or separate lines.
Qale output: rear panel BNC. TTL low Isvel while gate is open.
Time interval
Range: 500 ns $1010^{4} \mathrm{sec}$
lnput: channels A and $\mathrm{A}_{\text {; }}$ can be common or separate.
Resolution: 100 ns to 10 ms in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error*
Time inlerval holdoff front panel concentric knob which inserts variable delay of approximately $100 \mu \mathrm{~s}$ (0 100 ms between START (channcl A) and enabling or STOP (channel B): may be disabled. Elecirical inpuis during delay lime are ignored. Delay may be digitally measured in CHECK and TIME INTERVAL positions. Delay output: rear pancl BNC. TTL low level during delay ume.

Period average

Range: 10 Hz to 1 MHz
Inpul: channel A
Perlod averaged: I to 10 a a tomatically selected.
Frequency counted: 10 MHz
Accurscy: \pm) count \pm lime base accuracy \pm Irigger error**

Frequency

Range: 0 to 10 MHz
Input: channel A
Gate Nmes: manually selueted 0.1 , 1 , or 10 seconds. A LITO position sclects gate time to I second for maximum resolution.
Accuracy: ± 1 count \pm lime base accuracy

Open/close (totalizing)

Range: 10 MHz max
Input: channel A Opening and elosing of gate initiated by frone pancl pushbution switch.

General

Check: insests internal 10 MHz reference frequency mo channels A and B.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$
Power requirements: including mainframe. nominally 10 waths.
Woight: net, $0.9 \mathrm{~kg}(2 \mathrm{lb}$. Shipping, 1.5 kg ($31 / \mathrm{lb}$).
Dimensions: sec mainframe
Price:

- 1100 MHz
- 25 mV rms sensitivity
- Fused input

5305A 1100 MHz frequency counter module

Input channel A (CW or burst)
Range: 70 MHz to 1100 MHz , prescaled by 16
Sensilivity:
10 mV to 500 MHz
25 mV 101100 MHz
Signal must pass through zero.
Sens!tivily can be varied continuously up to 5 V mos by adjusting sensitivity concrol.
Sensitivity can be set automatically by use of ACC (Avtomaxtic Gain
Controll mode. Counter automatically isanfers to AGC mode when-
ever amplifier is over driven, for added amplifier protection. Transfer of contrul lights front panel indicator.
Overioad protection; $5 V$ rms (1npul circuitry fusc protected) Fuse is located in BNC conncetor, accessible from front panel.
Input channel B (CW or burst)
Range: 50 Hz to 80 MHz 1)irect
Sensiltulty AGC (Automatle Gain Control):
25 mV ems sine wave, 100 Hz to 50 MHz
50 mV ms sine wave, 50 Hz to 100 Hz and 50 MHz to 80 M Hz Sensitivity is adjusted automaticilly by AGC.
Effective up 10 inpul clipping level of 10 V p-p.
Impedence: $1 \mathrm{~m} \Omega$ shunted by less than 40 pF
Overload protection: 250 V sms 50 Hz to 10 kHz doclining to 10 V rms above 10 MHz
Frequency measurement
Resolution (selectable):
.I. I, $10,100,1000,10000 \mathrm{~Hz}$ corresponding to $10,1,0.1,0.01$. $0.001,0.0001 \mathrm{Sec}$ Gare Times on the 80 MHz Channel and $160,16,1.6$. $0.16,0.016,0.0016 \mathrm{Sec}$ Gate Times an the 1100 MHz Channel
Accuracy: ± 1 digit \pm time base accuracy
Display: $\mathrm{Hz}, \mathrm{kHz} . \mathrm{MHz}$ wilh posilioned decimal point

General

CHECK: counts internal 10 MHz Reierence Fruquency,
Operation temperalure: 0° to $50^{\circ} \mathrm{C}$
Power requlrements: AC operation: 115 or $230 \mathrm{~V} \pm 10 \mathrm{Fi}_{\text {i, }} 50$ lo 400 Hz through 5300 A or 5300 B mainframe (nominally 10 wath ineluding mainframe).
Welght: nec. $1.3 \mathrm{~kg}(2 \% \mathrm{lb})$. Shipping. $1.8 \mathrm{~kg}(4 \mathrm{lb})$
Dimenslons: sec mainlrame.
Price:
$\$ 1100$
Option 001: High Stability Tinse Basc (for use with 5300A)
Frequancy: 10 MHz

stablity

Aging rate: < 1.2 parl in $100 /$ ycar
Temperalure: < ± 5 parts in $30^{\prime}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$
LIne vollage: < ± 5 parts in 10^{8} for 10% line variation
Oscillator output: $10 \mathrm{M} / \mathrm{h} / \mathrm{approximately}$ i V rms at rear panel BNC. 200Ω source impedance
External input: 1 to 10 MHz I V rms into soon! High stability lime base is also available in the 53008 mainfreme und ean be used with other modules.
Price:

5306A Digital multimeter/counter module
OC voltage

Range	Accuracy (60 days. $\left.23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<80 \% \mathrm{RH}\right)$	Sensillyity
10 V	$\pm\left(0.63 \%\right.$ of reading $+0.0033^{\circ}$ ol range $)$	$100 \mu \mathrm{~V}$
100 V	$\pm(0.03 \%$ of reading $+0.003 \%$ ol range $)$	1 mV
1000 V	$\pm\left(0.097^{\circ}\right.$ of reading $+0.03 \%$ of range $)$	10 mV

Temperature coefficient: $\pm 0.002 \%$ of reading $/{ }^{\circ} \mathrm{C}+0.0002 \%$ of range $/{ }^{\circ} \mathrm{C}$)
Sample times: normal, 0.5 sec: Fast, 0.05 ste
input floating pair. $10 \mathrm{M} \Omega$ resistance, all ranges
Effective common mode rejection ($1 \mathrm{k} \Omega$ imbalance): DC: >80 dB: 50 Hz or $60 \mathrm{~Hz} \pm 0.1 \%:>80 \mathrm{~dB}$
Normal mode relection: 50 Hz or $60 \mathrm{~Hz} \pm 0.1 \%:>50 \mathrm{~dB}$
Maximum input high to Low: 1100 V dc all ranges
Low to Guard: $\pm 200 \mathrm{~V}$ de or peak ac
Guard to Ground: $\pm 500 \mathrm{~V}$ dc or 240 V rms at 50 or 60 Hz
$A C$ voltage

Range	frequency	Accuracy (60 days, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<80$ \% RH)
10 V	40 Hz 10.10 kHz	\pm (0.98\% of reading +0.02 \% of range)
	10 kHz 10100 kHz	\pm (0.98\% ol reading $+0.10 \%$ ol range)
100 V	40 Hz 10500 Hz	\pm (1.5% of reading $+0.05 \%$ of range)
1000 V	40 Hz 10500 Hz	$\pm(1.5 \%$ ol reading $+0.05 \%$ of range)

Temperature coefficient
10 V and 100 V range: $\pm\left(.05 \%\right.$ of reading $+.003 \%$ of range $/{ }^{\circ} \mathrm{C}$)
1000 V range: $\pm\left(0.5 \%\right.$ of reading $+.003 \%$ of range $\left./{ }^{\circ} \mathrm{C}\right)$
Input Impedance: $10 \mathrm{M} \Omega$ shunted by $<75 \mathrm{pF}$ maxinsum
Maximum Input voltage: (sec DC voltage specilicstion)
Eflecilye common mode rejection (t kil lmbalance): DC: >80 $\mathrm{dB} ; 50 \mathrm{~Hz}$ or $60 \mathrm{~Hz} \pm 0.1 \%$; $>50 \mathrm{~dB}$ (10 V range)
Ohms

Sange	Acaurscy (60 days, $23^{\circ} \mathrm{C}, \pm 5^{\circ} \mathrm{C}, ~<80 \% 8 \mathrm{CH}$)	Sensilivity
$10 \mathrm{k} \Omega$	\pm (0.5% of reading $+0.003 \%$ ol range $)$	0.1Ω
100 kr	$\pm(0.5 \%$ of reading $+0.003 \%$ of ranae)	10
10 Mg	\pm (0.75 , ol reading $+0.003 \%$ of range)	100Ω

Temperature coofficlent: $\pm\left(0.0002 \%\right.$ of range $\left./{ }^{\circ} \mathrm{C}\right)$
Current through unknown: I mA on $10 \mathrm{k} \Omega$ renge: $100 \mu \mathrm{~A}$ on 100 kil range: $1 \mu \mathrm{~A}$ on $10 \mathrm{M} \Omega$ range
Overioad prolection: 10 k (arange: 240 V rms for 1 min . 140 V ms continuous (warning lamp indicates overvoltage) $100 \mathrm{k} \Omega .10 \mathrm{M} \Omega$ ranges; 240 V misis continuous

Frequency

Range: 40 Hz to 10 MHz
Senailivity (min): 50 mV rms to 1 MHz : 125 mV rms to 10 MHz
Trigger ievel: automatically adjuses to 40% of peak ievel of input
Ovarioad protection: 1000 V rms. On 10 V range: 240 V rms from 40 Hz 10400 kHz , $10^{\circ} \mathrm{V} \mathrm{Hz}$ from 400 kHz to 10 MHz
Qate times: normal: I sec, Fast: 0.1 sec
Aceuracy: ± 1 count \pm time base uccuracy
Power requirements: including mainframe, nominally 12 walts
Weight: net, $1.1 \mathrm{~kg}(2.3 \mathrm{lb}) .5$ bipping, $1.7 \mathrm{~kg}(2.6 \mathrm{lb})$
Price:

ELECTRONIC COUNTERS

5300A/B System (cont.)

- High resolution at low frequencies
- 10 mV rms sensitivity
- 100 Hz and 10 kHz low pass filters

5307A High resolution counter module

5307 A is a period average measuring, frequency indicating (reciprocal) counier. that provides very high resolution measurements in a minimum of hime: (i.e. 60.0000 Hz in $<1 / 2$ second). The CPM mode converts Hz so counts/minute.
Input
Range: Hz mode: 5 Hz to 2 MHz . CPM mode: 50 to 10 M counts/ minute (0.8333 Hz to 166 kHz).
Sonsitivity (Min.):

$$
\begin{array}{lrr}
10 \mathrm{mV} \text { rms } & 5 \mathrm{~Hz}-1.2 \mathrm{MHz} & 120 \mathrm{CPM}-10 \mathrm{MCPM} \\
25 \mathrm{mV} \text { rms } & 1.2 \mathrm{MHz}-2.0 \mathrm{MHz} & 50 \mathrm{CPM}-120 \mathrm{CPM}
\end{array}
$$

Pulses:

For low-duty cycle pulses (<15\%).
15 mV peak for 250 nsec pulses.
100 mV peak for 100 nsec pulses.
Basie sensitivity can be varied continuously up to 2.5 V mss by adjusting sensitivity control.
Altenuator: $\div 1$ or $\div 100$ effectively raises basic inpul sensitivity by a factor of $100(10 \mathrm{mV} \rightarrow 2.5 \mathrm{~V} 101 \mathrm{~V} \rightarrow 250 \mathrm{~V})$.
Low pase filters: (3 dB Point)

100 Hz	10 kHz
60 dB	40 dB

Max. Allenuation
Roll-off
Impedance:
No fillers
100 Hz fillers $\quad 1 \mathrm{M} \Omega$ shunled by series of $100 \mathrm{k} \Omega$ and $0.015 \mu \mathrm{~F}$
10 kHz filer $\quad 1 \mathrm{M} \Omega$ shumied by series of 100 k 9 and 150 pF
Coupling: AC coupled amplifier.
Overload protection: 200 V ms below $10 \mathrm{kHz} ; 2 \times 10^{6} \mathrm{~V} \mathrm{~Hz}$ ms to $0.4 \mathrm{MHz}: 5 \mathrm{~V}$ rms above $0.4 \mathrm{MHz}: 300 \mathrm{~V}$ rms with $\div 100$ attenuator
Trigger leval: selected positive or negative for oplimem riggering from sinusoidal inputs or 4 pulses.

Frequency measurememt

Periods averaged: automalically selected for maximum resolution. Two periods are averaged for signalk op 10100 Hz . Periods averaged increase decade for decade up to 200,000 periods averaged above 1 MHz .
Measurement time: varies from 312 msec for a display of 17000010 815 osee for a display of 999000 . Hold-off adjustable from $.35 \mu \mathrm{sec}$ to $3.5 \mu \mathrm{sec}$ and 1 msec 1010 msec .
Accuracy: $\pm 3 \times 10^{-3 *} \pm$ lrigger errorat \pm time base crror.
Display: Hz_{z} mode: Hz and MH , with automatic decimal point. CPM mode: M witb automatic docimal point.

General

Check: measures internal reference frequency. Displays 1.00000 MHz in Hz mode. 100000 M in CPM mode.
operating temperalure: 0° to $50^{\circ} \mathrm{C}$
Power requiremente: including Mainframe, nominully 10 watts. Weight: nel, 0.9 kg (2 lb). Shipping, 1.5 kg ($3 \mathrm{l} / \mathrm{lb}$).

Price:

$\$ 375$
" $\pm 3 \times 10^{-3}$ is due to reciprocation wheme and is wins cise
*) For any wave shape, trigger error (μs) is less than
0.005 p 5

For period average this is less than $\pm 0.3 \%$ ol one period \div periods averaged for sifenats mith 40 dB ar better yelral-to-ncity retió.

- 75 MHz
- Time interval Averaging
- Auto Ranging or Manual Operation

5308A Universal counter/timer module

Input (channels A and B)
Range: DC coupled; 0 to $75 \mathrm{MH} \%$, AC coupled: 20 to 75 MHz .
Sensilivity: (min) 25 mV rms to 10 M Iliz, 50 mV rms 1075 MHz 150
mV p-p pulse at pulse widit of 10 nsec.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 40 pr
Overload protection: XI: 125 V rms 10400 kHz declining to 10 V
rms ul $75 \mathrm{MHz} \mathrm{X10:250} \mathrm{~V}$ rms to 4 MHz declining 1013 V rms at 75
MHz .
Trigger Level: variable over the range of $\pm 2.0 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$.
Slope: independent selection of eriggering on + or - slope.
Aear outpula: gate. Irigger levels and time basc/scaling.

Frequency

Range: 0 to 75 MHz . Channel A or Channel B
Gate TImes: 8 selociab) fimes from 1 s to 10 S
Aceuracy: ± 1 counl \pm time base accuracy

Frequency ratio

Display: $\mathrm{Fa} / \mathrm{Fb}$, 1 to $10 \times$ periods selectable manual or auto.
Range: channel A: 0 to 75 MHz , Channel $\mathrm{B}: 01010 \mathrm{MHz}$
Accuracy: \pm) count of $\mathrm{Fa} \pm$ irigger ersor of Fb ."
Period
Range: 0 Hz 105 MHz , Channel B
Resolutlon: 100 asce to 10 sec
Accuracy: \pm) coum \pm lime base accuracy \pm ingger errorac
Display: $\mu \mathrm{s}$, or s with positioned decimal point.

Period average

Range: $0-10 \mathrm{MHz}$; 100 nsec 1010 sec). Channe) B
Porlode averaged: 1 - 10^{x} selectable manual or automatic
Accuracy: ± 1 count \pm time base accuracy \pm trigger error**
Time interval
Range: 200 nsec to $10^{\circ} \mathrm{sec}$. 25 ns minimum pulse width
Inputs: separate A and B or Common B
Resolution: 100 nsee 1010 sec
Acouracy: ± 1 count \pm time base accuracy \pm trigger errer"*
Dlepley: $\mu \mathrm{s}$, ks or s with pusilioned decimal poine
Time interval average
Range: I ns 1010 s , dead time between intervals 200 ns
Inpule: channels A and B separate or common B
Intervale avareged: I to 10^{8}, seleclable manual or automatic
Accuracy: \pm lime basc accuracy ± 5 пs
$\pm \frac{\text { Trigger Erroc* } \pm 100 \mathrm{~ns} \text {] }}{\sqrt{\text { TMervals Averagod }}}$

Totalize

rotalizes Channcl A white Cbannel B is fow. totalizes Channel A between pulses on Channel B.
Range: 75 MHz in X! Position, 10 MHz in $\times 10^{\mathrm{N}}$ posivions.
Accuracy: ± 1 count \pm trigger crror" ${ }^{*}$ on Channel B
General
Auto posiltion: automatically sels time base to give muximum resolu-
tion within 1.1 second measurement time for Frequency. Frequency
Ratio, Period Average, and Time Interval Average.
Operating lemperafure: 0° to $50^{\circ} \mathrm{C}$
Power requiremente: including 5300 B , nominally is watis.
Weight: net, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $1.5 \mathrm{~kg}(31 \mathrm{lb})$
Note: compatible with 5300 B only.
Price:

- Three modes of operation
- Battery compatibles
- Column selective

5311B Digital to analog converter module

The 5311B Digital to Analog Converter conveniently snaps in-botween the mainframe and plug-on module of any 5300 sysicm. It provides high resolution, expanded seale analog outpul of any of the 5300 system measurements. With the 5311 B you can seled any three consecurive digits, or the right-hand two of the mainlrame display for conversion to analog outpot. This makes it possible to focus on just that part of the display that contains the important information. Now your stripchart recorder can give you a permanent record of any functional measurement made by any 5300 measurement system. Easy to use, just snap it in place. The 53118 can also be used with the 3310A battery pack to provide a ragged, portable, go-anywhere monitoring system. Three modes of output makes it possible to tailor the outpul to the application.

Operating modes

Three modes selectable by switch on front panel.
Normal mode: analog output is directly proportional to digital inpul. Digital 000 produces zero oulput: 999 produces full scale output. Plus/minus mode: digital 000 produces center scale oulput; -999 produces zero outpul: 999 produces full scale oinpul.
Ofteet mode: S00 produces zero outpul; 000 produces midscale output; 499 produces full scale output. This gode effectively adds 500 to digital input to sequire half scale offsel. Compatible with all mainframes and plug-on modules.

Mode		Output	
	010 50\% or Scale	50% ol Scole	50% to 100\% of Scale
Normal	010499	500	50110999
Flus/Minus	-999 to -001	000	00110999
Oftsel	50010999	000	00110499

Output selection

Manal pushbuttons to select any three consecutive digits or the last two digits of the Mainframe display.

Output ranges

Porentiometrie Recorder Outpul: 0.1 V . 1.0 V . or 10 V full scale into $>20 \mathrm{k}$ a. Dual banana plugs.
Galvanometer Recorder Output: 1 mA futl scale into $<1.5 \mathrm{k} \Omega$ phone jack.

General

Accuracy: $\pm 0.25 \%$ of range $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ on potentiometric output, $\pm \mathbf{2 0 n A} /{ }^{\circ} \mathrm{C}$ on galvanometer output after calibration for appropriate range.
Callbrations zero and full seale calibration switch and adjustments on rear panel.
Transler ilme: <5 mes
Operating lemperature: $0^{\circ} 1050^{\circ} \mathrm{C}$
Power requirementes nominally 1 watt
Weight: net, $0.8 \mathrm{~kg}(1.7 \mathrm{lb})$. Shipping. $3.4 \mathrm{~kg}(3.0 \mathrm{lb})$
Dimensions: Digital-to-Analog Converter plugs between Mainframe and plug-on module. Increases height of instrument by 38.4 mm (I. 5 іл.).

Price:

- Expanded digital output
- ASCII format

5312A ASCII (HP-IB) interface module

The ASCII Interface Module snaps in borween the 5300B and any plug-on module. It provides digital Output capability via the HP Interface Bus. This is an easy to implement method of interfacing any 5300 system that utilizes the 8 -digit $\$ 300 \mathrm{~B}$ mainframe with any HP-1B compatible printer.
The 5312A outputs fifteen bits of information in the following format.

Overflow indieator

General

Sample rate: controlled by mainframe front panel control or by selting rate of resel command (when in listening mode. counter can be reset by sending "inilialize" command).
Tranater time: 20 Milliseconds
Transfer rale: maximum of 40 reading/Sec depending on capabiljties of plug-on.
Indicator lighte: indicales if instrument is in Talk or Listen Modes. Self teat mode: checks functioning or basic interface.

Samplos of digital output from 5300 measuring system utilizing the 5312 A HP-1B converter and the 5150A thermal prineer. Note the indication of function, decimal position, exponent and overflow when required.
Programmability: froot panel conirols are not programmable Noter the 5312A is not compacible with the 5300A mainframe which contains ils own BCD Digital Outpul.
Price:

11096A High Irequency probe

10533A BCD Serial to parallel interface

5310A Battery pack module

Provides battery power 10 5300A mainframe and snap on modules From rechargeable nickel-cadmium cellis.
The 5310A Battery Pack is casily inserted between the 5300A or 5300 B mainframe and any functional modulc. providing a iruly portable measurement system. Low vollage strobbed solid state displays and the MOS/LS! IC design of the mainirames make eflicient hatery operation possible. The Irom pancl warning Light indieates a low battery condition. Any 5300 sysicm with the battery inserted will automatically switch over to batiery operation in the event of power Fialure, providing extra reliability for unattended operation. Flosting operation is also possible with the S310A Battery Pack, thus avoiding ground loups.
Battery capaclty: 48 watthours, nominal. Minimum 3. typically 5 hours of continuous operation at charging and operating temperature ($20^{\circ} 1030^{\circ} \mathrm{C}$).
Recharging time: 18 hours from minimum level (indicated by Low Voltage Indicator) to full charge.

Battery voltage: 12 Vdc

Low voltage Indicator: solid state warning light begins to glow at approximately 90% discharge.
Line fallure prolection: allows instrument to be operated in LINE position with automatic switch-over to battery power if line voltage fails. Batceries receive trickle charge in LINE position to mantain charge.
Operating temperatura: operating: $0^{\circ} 1050^{\circ} \mathrm{C}$. Chargine: 0° to $40^{\circ} \mathrm{C}$. mainirame not operating.
Power requlrements: chacging power via mainframe, nominal 75 watis
Waight: net, 2.3 kg (5 lb). Shipping, 2.9 kg ($61 / \mathrm{Ib}$).
Accessories furnlshed: shoulder carrying sirap
Dimensions: ballery pack plugs between 5300 A or 5300 B mainframes and any plug-on module. Increase height of instrument by 38.4 mm (1.5 in .)
Price:
\$275

10548A Service support package

The unique HP 10548A Service Kit provides an easy and cfficient means of trouble shooting the 5300A or 5300B mainframes. The four diagnostic cards. shown in use above. contain 16 self running tesis ihat locate problems to the component level. Complete diagnostic flow charts in the manuals provide further step by slep procedures. When failures are diagnosed, repair is simple. All components are easily accessible by merely removing a single screw and snapping out the main PC board.
Price:

11096A High frequency probe

Allows the 5306a to makc high frequency ac voltage measurcments. This probe is used for ac voliage measuremenis of 0.25 voil to 30 volts over a frequency range of 100 kHz to 500 MHz with an accuracy of $\pm 5 \%$ from 100 kHz to 100 MHz and $\pm 2 \%$ 10 500 MHz over 10° to $30^{\circ} \mathrm{C}$. Three probe tip accessories are supplied to extend the probe's versatility.
Price:

5383 A
Frequency range: 10 Hz to 520 MHz
Senalivily
$1 \mathrm{MR} 25 \mathrm{mV} \mathrm{mms}-20 \mathrm{~Hz}$ to 10 MHz
50 mV rms -10 Hz 1050 MHz
$50 \Omega 25 \mathrm{mV} \mathrm{mms}-20 \mathrm{~Hz}$ to 100 MHz
50 mV rms - 20 Hz to 520 MHz
Input Impedance; selectable: I $\mathrm{M} \mathrm{B}_{1}<40 \mathrm{pF}$ or 50Ω
Input attenuatlon: I M $8 \times 1, \times 10: 50 \Omega \times 1-$ fuse protected
Accuracy: ± 1 count \pm Limebase error
Resolvion: direct count: I Hz in 1 second
Gate Ilme: 0.1 second, I second, 10 seconds
Display: 9 LED Digits, nonsignificant zero blanking
Dieplay test: RESET function (aclivated with GATE TIME switch)
illuminates all segnents of all digits.
Rear panal Input: sensitivity: 250 mV rms
Ratlo: Rear Paned Input, 100 kHz to 10 MHz
External Irequency etandard: Rear Panel Input, 10 MHz
Tlmebane output
Frequency: 10 MHz timebase
Voltage: 200 mV p-p into son load
Control: active with Rear Panel Internal/External switch is intermal position.
Timebase

Frequency: 10 MHz

Aging: < 0.3 ppm/month
Temperalure: $\pm 2.5 \mathrm{ppm} 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Line voliage: $\pm 0.5 \mathrm{ppm}$ for $\pm 10 \%$ line change
TCXO Option
Optlon 001 (available for 5382A and 5383A)
Temperature Compensaled Crystal Oscillator Timebase
Frequency: 10 MHz
Aging: $<0.1 \mathrm{ppm} 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
LIne vollage: $\pm 0.1 \mathrm{ppm}$ for ± 10 年 line change
Note: Timebase output available for both 5382A and 5383A with Opuion OOI. Rear panel inpul not available.
5380 Family general data
Overtlow: LED lamp indicalor when most significant digil overflows
Reset: manual selection of reser oocurs when GATE TIME switch is belween three normal positions.
Packege: rugged, higb sirength melal case
Operating temperature: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Power requirements: $100,120,220,240 \mathrm{~V}$ rms ($+5 \%,-10 \%$) 48-440 Hz: 20 VA maximum
Welghl: net: 2.2 kg (4.75 lb): Shipping: $2.8 \mathrm{~kg}(6 \mathrm{lb})$
Dimenslons: $98 \mathrm{~mm} \mathrm{H} \times 160 \mathrm{~mm} \mathrm{~W} \times 248 \mathrm{~mm} \mathrm{D}\left(3.5^{\circ} \times 6.25^{\circ} \times\right.$ $\left.9.75^{\prime \prime}\right)$

Model number and name	Price
5381A Frequency Counter	$\$ 275$
5382A Frequency Counter	$\$ 495$
5383A Frequency Counter	$\$ 795$
Oplion OO1 TCXO (5382 A and 5383A oniy)	add $\$ 100$

Automatic microwave counters

Models 5340A \& 5341A

- Single input 10 Hz to 18 GHz
- Automatic amplitude discrimination
- High sensitivity -35 dBm
- Optional extension to 23 GHz
- Superior AM and FM tolerance
- Exceptional reliability

The 5340A Erequency Counter grovides a modern, easily used, more versatile instrument for the direel measurement of frequencies from 10 Hz hrough 18 GHz via a single input connector. Utilizing new microwave samplers incorporated in advanced phase-lock loops. this counter excels in virtually every specification parameter. It is therefore suited 10 a wider range of applications than ever before possible for a fully automatie microwave counter.
The exceptional sensitivity of this instrument enhances measurement in the microwave field. where signals are commonly low level and many limes are connected via directional couplers or lossy devices. Wide tolerance of AM, FM, and residual noise insure accurate measurement of microwave carrier frequencies despite the presence of these deviations. Automatic amplitude discrimination allows the 5340A to choose the largest sigral in a spectrum (250 MH le to 18 GHz) and measure only that signul's frequency, ignoring all others.

Access to the HP Interface Bus via Option 011 provides a particularly flexible sysiems interface. The ability to program octave range via this input allows reduction of acquisition time to typically less than 25 msec. Application Note 181-I describes the use of a calculatorcontrolled measurement system buile around the HP Interface Bus for microwave component testing.

5340A Specifications

Stgnal input
Input 1
Range: 10 Hz to 18 GHz
Symmetry: sinewave or squarewave input (40% ducy factor, worst case)
Sensllivity: $-30 \mathrm{dBm}, 10 \mathrm{~Hz}-250 \mathrm{MHz}$ (direct count); -35 dBm , $250 \mathrm{MHz}-12.4 \mathrm{GHz}:-25 \mathrm{dBm}, 12.4-18 \mathrm{GHz}$
Dynamic range: $37 \mathrm{~dB}, 10 \mathrm{~Hz}-250 \mathrm{MHz} ; 42 \mathrm{~dB}, 250 \mathrm{MHz}$ to 12
$\mathrm{GHz} ; 32 \mathrm{~dB} .12 \mathrm{GHz}$ co 18 GHz
Impedance: 50Ω
VSWR: <2:I, $10 \mathrm{~Hz}-12.4 \mathrm{GHz} ;<3: 1.12 .4-18 \mathrm{GH}$ z
Connector: Precision Type N
Coupling: de to load, ac 10 instrument
Damage level: $+30 \mathrm{dBm} \pm 7 \mathrm{~V}$ de (lolal power nol to exceed) whtt)
AcquLsition lime: <150 ms mean iypical
Inpul 2
Range: $10 \mathrm{~Hz}-250 \mathrm{MHz}$ direct count
Sensifivity: 50 mV rms. 150 mV p-p puises to 0.1% duny faclor: minimum pulse widit 2 ns
Impedance: $1 \mathrm{M} \Omega$ shunted by $<25 \mathrm{pF}$
Connector: type BNC female
Coupling: ac
Maximum input: 200 V rms, $10 \mathrm{~Hz} 10100 \mathrm{~Hz} ; 20 \mathrm{~V}$ rims, 100 Hz to $100 \mathrm{kHz}: 2 \mathrm{~V} \mathrm{rms}, 100 \mathrm{kHz} 10250 \mathrm{MHz}$

Autornatic amplitude discriminatlon: Automatically sclects the
strongest of all syglials present (within 250 MHz to 18 GHz phase-lock range), providing signal level is: 6 dB above any signal within 200 $\mathrm{MHz}: 10 \mathrm{~dB}$ above any signil within $500 \mathrm{MHz}: 20 \mathrm{~dB}$ above any signal, $250 \mathrm{MHz}-18 \mathrm{GHz}$.
Maximum AM modulation: Any modulation index as tong as the minimum voliage of the signal is not less than the sensitivity spocificalion.
Time Base
Crystal frequency: 10 MHz .

Slablility

Aging rate: $< \pm 3 \times 10^{-7}$ per monit
Shorl term: $<5 \times 10^{-10} \mathrm{rms}$ for 1 second averaging lime
Temperature: $< \pm 2 \times 10^{-6}$ over the range of $0^{\circ} 1050^{\circ} \mathrm{C}$
Line varlation: $< \pm 1 \times 10^{-7}$ for 10% line variation from nominal
Output frequency: $10 \mathrm{MHz}, \geq 2.4 \mathrm{~V}$ square wave (TTL compalible) available from rear panel ENC.
External time base: requires 10 MHz approximately 1.5 V p-p sine wave or square wave into $\mathrm{i} \Omega$ via reas panel BNC. Switch selects either internal or external lime base.
Optional time base (Opiton 001) aging rate: $< \pm 5 \times 10^{-10}$ per day afics 24 hour warm-up for less than 24 hour off-time.

Generaf

Accuracy: ± 1 count \pm time base error
Resolution: front panel switch selecis : $\mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}$. I $1 . \mathrm{Hz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, or 1 Hz
Dleplay: eight in-line long life display 1 ubes with positioned decimal point and appropriate messurement unils of $\mathrm{kHz}, \mathrm{MHz}$, or $\mathbf{G H z}$.
Self check: counls and displays 10 MHz for resolytion chosen.
Sample rate: controls lime between measurements, Cortinuously' adjusiable from 50 msec typical to 5 seconds. HOLD position holds display indefinitely. RESET button resets display to zero and activales a new measurement.
Operating temperalure: $0^{\circ} 1050^{\circ} \mathrm{C}$
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48-66 \mathrm{~Hz}, 100 \mathrm{VA}$

Welght

Net: $11.3 \mathrm{~kg}(25 \mathrm{lb})$
Shlpping: 14.1 kg (31 Jb)
Dimenglone: $425 \mathrm{~mm} \mathrm{~W} \times 467 \mathrm{~mm} \mathrm{D} \times 88.2 \mathrm{~mm} \mathrm{H}\left(16 \frac{1}{\mathrm{~m}^{2}} \times 131 \mathrm{~m}^{2} \times\right.$ 312/12")

Options	Price
Option 001: High Stability Time Base	$\$ 500$
Option 002: Rear Panel Connectors	$\$ 105$
Option O1I: Remote Programming-Digital Output	$\$ 390$
Option HIO: Frequency Extension to 23 GHz	$\$ 150$
Option 908: Rack Flange Kil	add $\$ 10$

- Automatic or manual band-selection
- Wide FM tolerance
- Optional 1.5 GHz range
- Fast acquisition time
- High sensitivity
- Fully automatic diagnostics

6341 A

The new 3341 A Frequency Counter performs execptionally fast measurements of Trequency up to 4.5 GHz . Using a unique HP-do signed microwave switchable filter, its automatic helerodyne medsurement technique insures high tolerance of FM on the measured sig. nal. In the normal mode of operation, the 53414 will automatically measure and display the lowesi CW signal within its sensitivity; in the manual mode, the operator can choose to search within any of ten Frequency bands which cover the counter's full range. Also at the operstor's command, a convenient routine provides "qualificrs" in the display for complete diagnostic information concerning both the measured signal and the counter's insernal operation.

The high sensitivity (-15 aHm in automatic mode, -20 dBm in manual) of the 5341 A makes it ideal for measurement of low-level signals in the testing of UHF and microwave components and equipment. An extremely fast acquisition time ($100 \mu \mathrm{sec}$ in manual mode) makes this counter the oplimum chate for systems applicstions,

Option 003 limits the frequency range of the 5341 A to 1.5 GHz al a considerably reduced cost. Option 011 connects the 5341 A to the highspeed HP Interface Bus for data output and complete programmability, including the ability to remotely select the manual search bands.

5341A Specifications

Signal input
 Inpul 1

Renge: 50 MHz 104.5 GH .
Impedance: 504 nenninal
Connector precision Type N
Sensilivity: -15 dBm (AUTO operating mode): -20 dBm (MAN-
UAL operating mode)
Maximum input +206 Bm
Damage level: +30 dBm
Operating modes: AUTO: counter autamatically selects and displays lowest frequency within its sensitivity ragec; MANUAL:
Measurement band is selected manually, and counter measures
within a 525 MHz range above displayed band number (in the 500
MHz and 750 MHz bands, counter measures within a 250 MHz range).
Measurement lime: acquisition lime + gale time
Acquistion time: $600 \mu \mathrm{~s}$ (AUTO operating mode); $100 \mu \mathrm{~s}$ (MANUAL operating mode)
FN tolerance: 30 MHz peak-lo-peak worst casc. Tolerates 500
MHz peak-lo-paak ($0-500 \mathrm{MHz}$ and $1.0-4.5 \mathrm{GHz}$) and 250 MHz
peak-to-peak (500 MHz to 1.0 GHz) in center of bands.

Input 2

Range: 10 Hz to 80 MHz
Impedance: $: \mathrm{M} \Omega$, shunled by 50 pF
Connector: type BNC femate
Coupling: ac

Senaltlvity: 10 millivales
Maximum input: 5 valts peak-1o-peak
Damage level: 400 volis dc; 250 volts sms ac, 10 Hz 10100 kHz . decreasing 6 dB per octave to 80 MHz

Time base

Cryatal irequency: 10 MHz

Stability

Aging rate: <1 $\times 10^{-7}$ per month
Temperature: $< \pm 1 \times 10^{-6}$ over the range $0^{\circ} \mathrm{C}$ io $50^{\circ} \mathrm{C}$
Une variation: $\left\langle \pm 1 \times 10^{-1}, \pm 10 \%\right.$ from nominal
Oufput frequency: $10 \mathrm{MHz}, \geq 2.4 \mathrm{~V}$ square wave (TTL compatible) available from rear panel BNC.
External time base: requires 10 MHz approximately $1.5 \mathrm{~V} p-\mathrm{p}$ sinc wave or square wave into I k Ω via rear penel BNC, Switch selects either internal or external time base.
Optional tlme base (Optlon 001) aging rate: $< \pm 5 \times 10^{-10}$ per day after 24 hour warm-up for less than 24 hour off-time.

Qeneral

Accurecy: ± 1 count \pm time base error
Fesolution: front panel switch selects $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}, 1$ $k H z, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, or 1 Hz .
Display: ten-digit seetionalized LED display and appropriate measurement units of $\mathrm{kHz}, \mathrm{MHz}$, or GHz .
Solf check: counts and displays I GHz for resolution chosen.
Sample rate: continuously adjustable from 40 msec 1010 seconds and HOLD.
Operating temperature: $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$
Power: 115 or 230 vols, with $+5 \%$ to -10% tolerance, 48.66 Hz .104 VA.
Remote programming and digltal output: optional (Oplion 011) via 24-pin, series 57 Mieroribbon connector. Program and output information are 7 -bit ASCll code.

Welght

Net: $10.5 \mathrm{~kg}(23 \mathrm{lb})$
Shlpping: $13.2 \mathrm{~kg}(29 \mathrm{lb})$
Dimenalons: 425 mm W $\times 467 \mathrm{~mm} \mathrm{D} \times 88.2 \mathrm{~mm} \mathrm{H}\left(16 \mathrm{~m}^{\prime \prime} \times 13 \mathrm{y}^{\circ \prime} \times\right.$ 313/92")

Options	Price
Option 001: High Stability Time Base	$\$ 500$
Option 002: Rear Pancl Connectors	$\$ 105$
Option 003: 1.5 GHz Frequency Range	Sess $\$ 1000$
Option 01I: Remote Programming-Digital Oulput	$\$ 390$
Option 908: Rack Flange Kit	add $\$ 10$

General information

Hewletr-Packard offers Frequency Standards and clocks which provide aceurate fre quency, lime interval and timekeeping eapabilities. Further, Hewhett-Packard standards provide means for comparing these quantiies against national standards such as the National Bureau of Standards (NBS) and the U.S. Naval Observatory. Unils of frequency or time cannat be kept in a vaull for ready reference. They must be generated for each use, hence be regularly compared against rec. ognized primary standards.

Frequency Standard and clock systems manulactured by Hewlent-Packard are used for control and calibration at observatorics. national centers for measurement standards. physical research laboratories, missile and satellite tracking stations, communication systems, radio navigation systems, manufac turing plants and radio monitoring and ransmilting stations.

Types of frequency standards

At the present time, three types of lre. quency standarờs are in common usc. These are:

1. The serium atomic beam conirolled os. cílator.
2. The rubidium gas cell controlied oscillaror and
3. The quartz crystal oscillator.

Hewlett-Packard is the only manufacturer of all three lypes of frequency standards. Or these three standards. the first is a primary frequency standard and the last two are sec. ondary frequency standards. The distinction between a primary standard and a secondary standard is that the primary standard does not require any other relference for calibration: whereas the secondary standard requires ealibrations both during manulacturing and at intervals during use depending on the sccuracy desired.

Cesium beam frequency standard

Cesium beam standards are in use wherever the goal is a very high accuracy primary frequency standard. In fact, the NBS frequency standard itself is of the cesium beam lype. The cesium beam standard is an atomic resonance device which provides access to one of nature's invariant frequencies in accard with the principles of quantum mechan. ics. The cesium standard is a lrue primary standard and requires no other relerence for calibration.

The HP Model 5061A and the new 5062 C are portable cesium beam standards proved capable of realizing the cesium reansition frequency approaching levels of accuracy and long term stability achieved by large-scale laboratory models. Recont beam tube improvements have made the short-term stabil-

TA8L\& 1

Slandard	Prindpal construclion leature	Principal advantage
Cesium Atomic Beam Resona. tor Controlled Osiclilator.	Alomic beam \|nteraction with lields-m:Immum dislurbances ol resonating aloms due to collislons and exiraneous influences.	High inlrinsic reproducibility and lofg-lerm slablity, Desle: mated as primary standard lor definition of the inlerval.
Rubidum Gas Cell Resonator Controlied Oscillalor.	Gas buflered resonance cell with optically pumped stale seleclion.	Compacl and Ilghl weight. Hign degree ol short.term stabilly.
Quarta Crysal Oscillator.	Plisooelectrically artive quart crystal with electronic slabillyalion	Very compact. light and rug. ged. Inexpensive.

ily comparable to that of the Rubidium Frequency Standard. With this improved performance cesium standards now have the capability of rapid measurement to high precision along with the excelient long term stabilly nocessary for Limekeeping.

Rubidium frequency standard

Rubidium frequency standards fcalure a high order of both short-lerm and long-term frequency stability. These are both important in certain fields such as deep-spacc communications, satellite ranging, and dopples radar.

Rubidium slandards are similar to cesium beam standards in that an alomic resonant element prevents drift of a quartz oscillator through a frequency lock loop. Yet the rubidium gas cell is dependent upon gas mixture and gas pressure in the cell. 11 must be calibrated and then in is subject to a small de. gree of drif, The drin is lypically 100 times less than the best quartz crystal standard.

Quartz crystal oscillators

Quartz oscillators are used in virually every frequency control application including atomic standards. The excellent shorterm slability and spectral purity of the quartz oscillators used in Hewlett-Packard atomic standards coneribute to the high qual. ity of the outpul signal of these standards. For less demanding applications where some long-term drift can be rolefated, quartz oscillators are used as independent frequency sources. The quariz oseillator designs have improved over the years to provide a relntively low cost, small-size source of frequency.
However, an inherent characteristic of crystal oscillators is that their resonant ferequency changes with time. After an initial aging period of a few days 10 a month. the
ratool-change of Prequeney or aging rale is almost constant. Over a long period the accumulated drift could amount to a serious erros, and periodic frequency checks are needed co maintain an accurate quartz crystal frequency standard.

Stabllity

Stability is specified in two ways, long term stability refers 10 slow changes in the average frequency with time due to secular changes in the resonator and is usually expressed as a ratio, $\Delta f / \mathrm{f}$ for a given period of time. For quarce oscillators this is oflen termed "aging ratc" and specified in "parts per day." Rubidium standerds being more stable are specified in "parls per month." On the other hand. Cesium Beam Standards are primary units with no systematic drift. Therefore, the frequency of these primary standards is guarantecd to a spocified accuracy.
Short term stability refers to changes in frequency over a time sufficiently short so that change in frequency due to long term effects is negligible.
Short-term stabillty is usually specified as the rms average of a number of measurements each over a specifiod period of time. The longer the averaging time used, the more any deviation is obscured since the average must approach the mean or nominal oulput frequency in the long run. Hewlett-Packard specifies the short-term stability of its standards in accordance with the definition dcveloped by the National Bureau of Standards and olbers." Mcasurements conforming 10 this definition can be cearily made with availabic lest equipment inclurting the H^{P} 5360A Computing Councer. Figure 1 is a somparison of the shori-perm stability of various frequency standards.
 1966. Dage z?l.

Figure 1. Short term stability of varlous standards.

Spectral purity

Speerral purity is the degree to which a signal is coberent, or, expressed in another way. a single frequency with a minimum of sideband notise power. It is very desirable to have high spectral purity in a standard signal. This is expociasly imporiant in applications where the standard frequency is multiplied to very high or microwave frequencies so that the frequency spectrum of the signal will be reasonably narrow.
The signal and its frequency spestrum are analogous to a frequency modulated wave where the total power is constant. If the firequency multiplying device is broadband, the ratio of the tolal sideband power to the signal power increases as the square of the multiplying faclor. With frequency multipliestion the signal-lo-noise ratio will be degraded of dB per uctave and 20 dB per decade.
Hewlet1-Packard oscillators are designed 10 give exceptional spectral purity. One method of indicating spectral purity is with a phase noise plot. Figure 2 shows the performance of the HP 5061 A . Opt. 004 Cesium Beam Atomic Frequency Standard.

Frequency slandards and clocks

Frequency standards and clocks have no fundamental differences - they are based upon dual aspects of the same phenomenon. Time and frequency are intangible quantities which can be measured only with respect to some physical quantily. The basic unit of time the socond, is defined as the duration of 9,192,631,770 periods of 1runsition within the cesium atom. Conversely an unknown fre-

Quency is determined by counting the number of cycles over the period of a second. The Master Clock at the U.S. Naval Observatory. one of the world's most accurate clocks, is made up of an ensemble of more than a dozen Hewlet1-Packard eeslum bean frequency standards. The USNO direcily controls tbe distribution of precise time and time interval (frequency) Trom Naval radio slations, LORAN-C (opcrated by U.S. Coast Guard). Omega and Satellite Navigation Sysstems. Hewlett-Packard portable cesium standards, "flying clocks," are used to periodically check the synchronization between these stations and the Master Clock.
Hewlett-Packard cexium beam standards are widely used to drive precision clocks because of the exuemely good long-teron stability and reliability of this primary standard. If a quartz oscillator or other secondary standard is used, it must be evaluated for rate of drị̂ and be corrected periodically.

Time scale

The time interval of the atomic cime scale is the International Second, defined in October 1967 by the Thirteenth General Conference of Weight and Measures. Since January 1972 the frequency ofise between UTC and Atomic Time has been zero and the UTC time scale is kept in synchronism with the rotation of the earth to within ± 0.7 second by step-lime adjustments of exactly 1 second. when needed.
The U.S. National Bureau of Standards (NBS) and USNO provide the oflicial basis for Standard Times fos the United States. The UTC signal is broadeast from the NBS stations WWV and WWVB and by several other stations throughout the world. (Soce Hewlett-Packard Application Nole 52-I. Fundamentals of Time and Frequency Standards, Tor a list of stations broadeasting time signals).

Standby power supplies

Minimum down-time, important for any system, is vital to a time standard. Its worth depends direcily on continuity of operation. Noninterrupled operation is also important to uhtra-precise quartz oscillators.
Hewlett-Packsrd standby power supplies ensure continued operation despite line insersuptions, and operate over a range of ac line voltage to supply regulated de to operate
feequency standards and frequency dividers and clocks. The batleries in the supplies assume the full load immediately when as power fails.

Figure 2. 5061A Phase Noise

Hewlett-Packard time and frequency standard

The Hewlett-Packard House Standard at the Santa Clara Division consists of an ensemble of four Hewleth-Puekard Cesium Beam Standards including three HP $5061 A^{\prime}$'s with Oprion 004 High Performanee Tubes. The output is comlinsally compared in phase with the U.S. National Bureau of Standards Frequency Standard (NBS FS) al Boulder. Colorado by reception of NBS standards station WWVB.

The standard is also compared to the U.S. Naval Observalary Master Clock In Washington. D.C. by means of Loran D and TV Line 10 measurcments through the USASTRATCOM satellite system. The frequency uncertainty of the standard is within a few pars in 1015 with respect to the standards maintained by the NBS and the USNO.

Time is maintained relative to the Naval Observatory and the National Burcau of Standards master clocks to an accuracy of better than ± 2.5 microseconds. This accuracy is verified with Flying Clock trips from the Naval Observatory to boilh Hewlet1-Paekand Santa Clara Division and Hewlet-Packard Geneva. Both locations have been designated U.S. Naval Observatory Time Reference Stations.

Atomic frequency standards

Mōdela 5061A, 5062C, 5065A

- 5061A:
- Primary standard, 1×10^{-11} accuracy
- Proven rellability
- World-wide usage
- 5061A , option 004: Accuracy $\pm 7 \times 10^{-12}$
- Accuracy $\pm 7 \times 10^{-12}$

Settability $\pm 1 \times 10^{-13}$
Short term $5 \times 10^{-12}(1 \mathrm{sec}$ avg $)$

5061A

Introduction

Hewlett-Packard Acomic Frequency Standards have become the world-wide standards for frequency and ume keeping since tbe fintroduction of the 5060^ Cesium Standard in 1964. With the introduction of the 5062 C the user now has a choice of four different frequency standards to satisly a wide variety of applications:

1) S06IA Cesium Beam Frequency Standard. This standard with an ascuracy of \pm) $\times 10^{-11}$ was introduced in 1967 to replace the 5060 A . The high accuracy and excellent reliability of these units have gained world-wide aeceplance of HP frequency slandards.
2) 5061A with Oplion 004 High Performance Cesium Beam Tube. With the unique design features in this improved Cesium Beam Tube. the 5061 A gccuracy is $\pm 7 \times 10^{-12}$ and shori term subility is im proved by a facior of 10.
3) 5062C Cesium Beim Frequency Reference. This new unil with its small cesium beam tube is designed for on-line system applications where a rugged primary standard is required.
4) 5065A Rubjdium Frequency Standard. This insinument fealures excellent long and shor term stability performance at spproximately one half the cost of a cesium standard.

These units are described in detail on the following pages and the specifications are combined in a lable to facilitate the comparison and selection of the best unit to sult the uscr's application.

Primclpies of operation

The basic block diagram of both cesium and rubidium standards is the same (see Figure I). The outpul of the 5 MHzCrysial Oscillator is

Figure 1. 8lock diggram of aiomle srequency standaros.
multiplied and synthesized to the atomic resonance frequency $6834+$ MHz Cor Rubidium and $9192+\mathrm{MHz}_{\mathrm{H}}$ for Cesium). This signal is phase modulated to swoep through the atoroic resonanoc frequency causing the beam intensity in the cesium lube or transmitted light through the
rubidium cell to vary. The output signal is amplified and through a phase detector controls the frequency of a low noise 5 MHz quanz crystal oscillator. This oscillator provides the 5 MHz output. Dividers produce 1 MHz and 100 kHz outpuls.

The invariant resonance frequency of the cesium aloms passing through the microwave cavity maineain the output frequency of the ecsium standard constant to extremely high accuracy. The accuracy is in part a function of the mierowave cavity lenglh and is highest in the 506)A with the long eavity of the high performance beam tube.

In the rubidium standard a buffer gas is required to reduce collisions between the rubidium atoms in the gas cell and the resonant frequency varies slighty with pressure of the buffer gas. As a result, the rubidium stanoisrd has so be calibraced and the frequency drifus slowly with lime because of small changes in gas pressure and other effects within the rubidium ocll and lamp. Offsetting this disadvantage are: 1) high signal-to-noisc ratio of the rubidium cell output which results in excellent short ierm stability and; 2) a lower cost standard because of the simpler rubidium eell and assucialed electranies.

Each of the instruments has front panel conerols, a circuit chock switch and meter for monitoring performance. These and other controls are protected by a panel door. Front panel lights indicate any inlerruption of continuous operation and that the crystal oscillator is locked to the atomic resonance.
Applications: Siarting with their initial usage as reference standards in nationsl laboratories the applications of HP atomic standards have expanded to include use in operational systems such as the LORAN C and OMEGA navigation transmillers, satellite 1racking and guidance stations. very long base line interferometers, ravigalion receivers based on direct distance measurement (LORAN Rho-Rho). geophysical survey positioning systems and communications systems. Precise liming for frequency control is required for some secure communica. tion systems and to improve efficiency of PCM and spread speetrum systems.
Cesium standard accurecy: The cesium beam standard is a primary frcquency standard. A cesium beam lube carefully consirucied along with the required supporting electronics will, when independently aligned, put out the correct frequency within very narrow limits. The frequency spread of the output for over 250 independenily aligned 5061λ standards with the standard beam lube is shown in Fig. ure 2. It ean be seen from this data that the frequency perturbations in the slandard bean lube are so small thul all the units ate wilhin $\pm 5 \times$ 10^{-12} of each other and of the NBS frequency. The one sigma standadd deviation is 1×10^{-12} between units. This performunce is intrinsic to the 5661 A and is achieved without calibration. The absolule accuracy. inirinsic reproducibility and absence of any perceptible long. lerm drif or aging are imporianl advantages of cesium standards and assure that the outpur frequency of a cesium standard is always within the spocified aocuracy.

E21-5061A

Figure 2. Frequency of independenty allgned 5061A Cesium Eeam Standards with standard beam rube.

s0g1A Cesium beam standard

The first Hewlett-Packard Cesium Beam Standard, the 50601, was introduced in 1964. This was followed in 1967 with the improved 5061 A and in 1973 with the high performance beam lube option for the 5061 A . Over this 11 year period the aceuracy and reliability of Hewleth-Packard cesium standards has been demonstrated and these standards have become the world-wide standard for frequency and time keeping. The 5061A has provision for an optional digital divider and reliable, easy-to-read LED clock (Option OO1) and for a battery with $1 / 2$ hour standby power capacity with autoroatic charging (Option 002).
Rellability and Warranty: over 25 million operational hours have proven the performance and reliability of Hewiett-Packard cesium beam standards in various world-wide applications. The units have provided dependable microsesond accuracy in aircraft, ship and fixed environments.
A threcoyear warranty on the SOGIA and the standard cesium beam tobe is provided as a result of proven field reliability over an extended period. This warranty includer replacement of the cesium bearn lube if it should fait within the warranty period. Typically, beam tube life has been in excess of four years.
5061 A with Optian 004, high performance cesium beam tube
The Hewletl-Packard Model 506 IA primary frequency standard with the new Option 004 cesium beam lube offers increascd slability and accusacy in the instsument which has become the worldwide standard of frequency and time keeping since its introduction in 1967. Improvements in magnetic shiclding, ruggedization and environmental
performanee will pormit improved performance and expansion of navigation and communication sysiems that have been made practical by the SO6IA.
The design concept of the high porformance beam tube includes unique HP designed dual beam opties with bigher beam intensity 10 accomplish better short term stabilly and greater immunity to effects of shock and vibration. A 50 percent increase in resonance cavity length witbout change in the overall beam cube size contributes to better accuracy and sentability becouse of the bigh Q of the nerrower res. onant line width. This sube retains the unique cesium standard feature of virtually no long term instability or aging.

The intrinsic accuracy is improved $10 \pm 7 \times 10^{-12}$ which provides an excellent relerence standard without need of calibration. If desired, as in many timekeeping applications, two or more units may be calibrated to determine the difference in rate or may be adjusted to the same frequency. With the improved settability specification of $1 \times$ 10^{-13} small changes in frequency are accomplished rapidly and accurately. A provision for degaussing the lube without adversely affecting the instrument operation allows removal of any residual magnetic field in the tube. This is important in achieving the settability pefformance.

The short term stability specification is improved by a factor of 1 en with the new lube. The $5 \times 10^{-12}(1 \mathrm{sec}$ avg. $)$ perfornance compares very favorably with that of pubidium type standards which are noted for their excellent short term stability. An important advantage from the better short term slability is the capability to make measurements 101 sigma precision of 1×10^{-12} in about one minute compared to the two hours required previously. The S061A with the Option 004 High Performance Tube has the same high reliability as the SO61A with the stendard tube. The new high performanee tube is warranted for 14 months (10000 hours) and is designed to have the same long life as the slandard tube.

10653A/B/C Retrofil kit

The high performance beam tube may be installed in place of the standard tube in existing HP 5060A or 5061 A Cesium Standards. The 10653 Kit includes the new tube and the parts neceessary for installation. Further information on the 10653A/B/C Retrofit Kit is available from HP Sales Offices.

10838A Degausser

The Model 10638A Degausser is designed for use with the Option 004 High Performance Bean Tube to achieve settability of $\pm 1 \times 10^{-11}$ and reproducibility of $\pm 3 \times 10^{-12}$. The degausser removes residual magnetic fields in the beani ube which slowly docay and cause a small frequency change. The degausser should be used when initially setting up the 5051A with Option 004 or alter the instrument has been moved or adjusted.

10810A/B LED clock kii

The LED Clock readout is available as a retrofit kit to replace the mechanical clock used in earlier models of the S061A and in the 5065A Rubidium Siandard.

E21-5061A Flying clock

The E21-5051A consists of a 5061A Cesium Beam Standard with Option 001 LED Clock and a K02-5060A Power Supply joined together to make one portable unis. The power supply, which ean be operated fram 6 or $12 \mathrm{~V} \mathrm{dc}, 24$ to 30 V dc , or $115 / 230 \mathrm{~V} \pm 108,50$ to 400 Hz . will previde approximately 7 hours standby power (from sealed nickel-cadmium batteries) for the 5% IA Cesium Beam Standard.
This wide cange of operating power capabilities enables the E21s061A to operate on local power in virtually any country in the world. Operation is approved aboard commercial aiscraft. The seven hours of standby capability nake it possible to travel where there is no power available and, of course, allow the E21-5061A to conveniently be transported between power sources and operated in almost any air or surface vehicle as a "flying clock" (see Hewlett-Pack ard Journal, August 1966 and December 1967).
The Ophion 004 lube, because of the improved shielding, offers a significant increase in accuracy under the varying earth's magnetic ficld conditions experienced by flying clocks and is a desirable addition to the E21-5061A. In addition, the better short term stability permis more accurate and rapid comparison of standards. The Option 002 Battery may also be added to increase standby capability.
hb) FREQUENCY \& TIME STANDARDS
Atomic frequency standards
Models 5061A, 5062C, 5065A (cont.)

- Primary frequency/time reference:
- Fast warm-up
- Rugged, reliable

5062C

5062 C Cesium beam frequency reference (New)

The Model 5062 C Cosium Beam Frequency Reference is a rugged and compact precision oscillator designed for use in surface and airborne systems such as shipboard navigation systems and air Iranspori communications systems. It combines the precision of a laboratory primary standard with the rugged, compact features required for online system operations in the exirene environments sometimes oncountered in ships and aircraf.

Features important for system operation are the expanded operating lemperature range ($-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$). 20 minute warm-up, frequency accuracy of within ± 3 parts in $10^{\prime \prime}$ (including temperature and magnetic field effects) with negligible leng-term drift and no need for calibration.

The basic design of the Model 5062C is patterned afier that of che Howlen-Packard Model 5060A and the 5061A Ccsium Bcam Clocks. but this rugged unit in 25% smailet in size. Yel, space is provided for an optional clock and standby batterics. Other features suct as special outpuif froquencies or a sime code generator may be added. The key 10 the smaller size is a newly developed, small, rugged ecsium besm cube. This tube. approximately six inches long and four inches diameter, includes all the feotures of the sixteen inch tube used in the HP 5061 A to insure high accuracy and stability plus long life. In addition, multiple cesium beams assure accuracy under the shock, vibration and acceleration encountered in operating systems.

Now, compact electronics compliment the small beam lube in accomplishing the 5062C design. Plug-in keyed printed circuit cards assure ease of mainlenance. Particular allention has been given to bolt the electronics and meehanical design to the temperature, shock and vibration encountered in system applications. The resulting ruged design assures slable opetation under extreme environmental conditions. The 5062 C meets many of the requirements of MJL-E-I6400 specification for ship and shore equipment. These include the wide opsrating lemperature range, the 400 pound hammer blow specifizd by MIL-S-901 and the Type I shipboard vibration of MIL-STD-167-1 ($4-50 \mathrm{~Hz}$).

With minor circuil additions the rugged. commercial. design of the 5062 C mects the operating requirements of military specificition MIL-F-28811 (EC). The nomendulure. 0-1695/U has been assigned to this version of the instrument which is identified as the 5062C. Option 010 . The added fealures are described below.
Rellability: tbe unit incorporates conservatively designed circuits to insure reliability. Similar designs in the sobia Cesium Buam Standard have demonstrated mean time between failures (MTBF) in ex-
cess of 25,000 hours in laboratory environments.
Extensive lesting of the $5062 C$ under vibration and temperature cxeremes assures reliability of the insirument.
Ease of mainenance was included along with reliability and ruggedness as design goals of the 5062C. The front pancl circuit monitoring switch and meter permit checks for proper operation and monitoring of eritical functions. In the event of a malfunction, sroubleshooting is simplificd by well marked test points on the circuit cards and mother boards. Board exienders permit access to individual boards while operating. The circuil boards are keyed in assure that they are properly localed. The few board adjustments are readily accessible when the instrument covers are removed. The 5062C is supplied with pival slides for casy access when the unit is rack mounted All these feacures simplify roubleshooting and minimize mean time to sepair (MTTR) in the event of failure.

Opllons: the S062C is designed to include elock and battery options and space is available to add other features required to meet system requirements. Special oulput frequencies, time code generators, and additional buffered outputs may be added. The following standard options are available:
Optlon 001 Digltal clack: this option adds a front panel LED display of hours, minutes and seconds. A digital divider gencrates one pulse-per-second from 5 MHz . This master pulse may be synchronized to a reference pulse. The digital clock and the clock 1 PPS are adjustable in phase with respect to the master pulse in 0.1 microsecand steps.
Oplion 002 standby battery; the sealed gelled-electrolyic battery provides a minimum of one hour slandby at $25^{\circ} \mathrm{C}$ affer full charge. The batiery is automatically recharged after use. When extemal power fails, the standby batlery assures continuous autput without internuption.
Optlon 003 Dighal clock and standby battery this option combincs Oplion 001 and 002.
Optlon 010 Time-code generator: this option includes the Option 001 Digital Clack and Option 002 Standby Ballery along with other special features required to meet the operaling requirements of the 0 1695/U Frequency Standard. Cesium Beam in accordance with Military Spacification MIL-F.288II(EC). These include a lime code generator, four one-pulse-per-minure outpuls, addisional S MHz outputs, added RF1 shiclding and special rear panel and muting connectors. The rugged design of the 5062 C meets the environmental sequirements of the military spocificalion.

- Long term drift rate <1 $\times 10^{-11 / m o}$
- Short term stability $<5 \times 10^{-13}$ (100 sec avg)

5065A Rubldium frequency standard
The HP Model 5065A is an atomic-lype secondary frequency standard which uses a rubidium vapor resonance cell as the stabilizing element. As a result, it has long term stability of better than 1×10^{-31} per month which exceeds that of high quality quartz oscillator frequency standards by 50 to 100 times. Furthermore, it has exeellent sbort term stability. These featores coniribute to its desirability as a colterent signal source. as a master oscillator for radio and radar systems where special requirements for ssability and/or narrow bandwidth muss be met, as a precision time keeper where the better performance of a cesium beam primary standard is nol required, and as a house fro quency standard for improved accurscy with fewer NBS calibrations compared to that required with quarty standards.
Front panel controls and eireuit check meter of the 3065 A are protected by a panel door. The magneric field conirol provides fine frequency adjustment with which the frequency can be sel to a preession of better than 2×10^{-12} without reference to a charl. The 5 MHz low noise quartz osciljator is phase locked to the atomic frequency and provides the standard 5 MHz .1 MHz and 100 kHz outputs. The circuit chock meter wilh selector switch monitors key voltages and currents for routine maintenance readings, calibralion procedures. and fauls finding.
The SO6SA is designed for assured operation - to give the user conIidence that the standard output signals are correct and locked to the atomie frequency. Logic within the onit maintains power in a "conlinuous operation" light on the fromi panel. If operation is interrapted, even momentarily, for any reason the light goes out and stays out until manually resel an imegrator limit light warns when the frequedey correcting servo loop is spproaching the limit of its dynamic range.
The HP Model 5065A is contained in a small sized package and is lightweight in comparison to a cesium beam standard. Addilionally the rubidium resonance cell is much more frequency stable than quaric oscillators while subjected to shock and vibration. Jts environmental specifications include temperature, shock, vibration, EMC. humidity, and magnetic field effects.
Ratlablity and warranty: the most significant module in the HP 5065A in terms of performance is the Rubidium Vapor Frequency Reference (R VFR). This temperature controlled, magneticully shielded unit includes the Rb gas coll and a photo sensitive delector designed for maximum possible reliability. Field experience. including
several million hours of operation, have demonstrated this reliability and the module is now warranted for a period of ibree years. This increased warranty prolects the owner in the event of random failure.

The Option OOI Digital Clock has an eusy to read I.ED time-of-day display. The olive black upper panel provides a dark background around the readout for excellent contrast and readability. Initial clock setting is accomplished by means of pushbuttons casily accessible by removing the top cover. The LED display offers high reliability, frecdom from errors due to mechanical shock, and periormanec over the full environmental range of the 5061A. A sync button on the digital divider permits automatie synchronizalion or this I PPS pulact 10 an extemal pulse. The clock I PPS is adjustable in decade steps from 1μ s to 1 s , with respeel to the synchronized reference, with 6 thumbwheel switches. A screwdriver adjusiment allows fine continuous adjustment over a range of $\mathrm{J} \mu \mathrm{sec}$.

To conserve battery power, the display is not illuminated when ar power is not available. A STANDBY READ pushbutton below the display is used for readout when operating on the internal battery or extemal de.
The LED clock readout is avaikable as a retrofil kit, HP Model 10810A/B. 10 replace she meehanical clock in earlier models of the 5065A. Contact your Hewletr-Pockard sales onfice for full details.

The Option 002 Standby Battery provides the 5065 A with a minimum of 10 minutes standby power at $25^{\circ} \mathrm{C}$. Switchuver from line to battery is automatic so there is no interruption of operation if ac line power should fail. A front panel ac interruption light warns when ac power has failed or has been disconnected. Fast or float charging rates may be selected when ac power is available.

The Option 003 combises the Option 001 Clock and Option 002 Battery and should be specified if both Options 001 and 002 are required.

E21~5065A Portable time standard

E21-5065A Portable Time Standard is a complete system for procision timekeeping and for cransporting time from one location to another. It consisis of the 5065A Rubidium Standard with digital clock and divider (Option 001) and the K02-5060A. Power Sopply with 6 or more hours standby capability. The component units are held together by side bars, and the inlerconnecting cables are protected by a back cover.

Atomic frequency standards

Models 5061A, 5082C, 5065A (cont)

Specifications

Instrument:			50618 Opllon 004	5061A	5062C	5065 ${ }^{\text {a }}$
Type ol Slandare:			cesium	Cesium	Cesium	Rubidium
hocuracy: maintarned in magnelic field to 2 gauss and over lemperaluse cange of:			$\begin{aligned} & \pm 7 \times 10^{-12} \\ & 01050^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 1 \times 10^{-11} \\ & 01050^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 3 \times 10^{-11} \\ & -28^{\circ} \mathrm{C} 10^{\circ}+65^{\circ} \mathrm{C} \end{aligned}$	
			$\begin{aligned} & \pm 3 \times 10^{-1211} \\ & 1.5 \times 10^{-10} \\ & 5 \times 10^{-12} \\ & 2.7 \times 10^{-12} \\ & 8.5 \times 10^{-13} \end{aligned}$	$\begin{aligned} & \pm 5 \times 10^{-1711} \\ & 1.5 \times 10^{-10} \\ & 5.6 \times 10^{-11} \\ & 2.5 \times 10^{-11} \\ & 8 \times 10^{-17} \end{aligned}$	$\begin{aligned} & \pm 1 \times 10^{-11011} \\ & 4 \times 10^{-40} \\ & 7 \times 10^{11} \\ & 2.2 \times 10^{-11} \\ & 7 \times 10^{-12} \end{aligned}$	$\begin{aligned} & \pm 1 \times 10^{-11} / \text { monih } \\ & 1.5 \times 10^{-10} \\ & 5 \times 10^{-12} \\ & 1.6 \times 10^{-12} \\ & 5 \times 10^{-13} \end{aligned}$
SSE Phase Nolse Signal (1 $\mathrm{H}_{2} \mathrm{BW}$) otisel from signal: $\begin{array}{cc} H z \quad 10^{-3} \\ & 10^{-2} \\ & 10^{-1} \\ & 0 \\ & 10^{1} \\ & 10^{2} \\ & 10^{3} \end{array}$			$\begin{aligned} & -28 \mathrm{~dB} \\ & -48 \mathrm{~dB} \\ & -68 \mathrm{~dB} \\ & -96 \mathrm{~dB} \\ & -120 \mathrm{~dB} \\ & -125 \mathrm{~dB} \\ & -140 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -8 \mathrm{~dB} \\ & -28 \mathrm{~dB} \\ & -48 \mathrm{~dB} \\ & -82 \mathrm{~dB} \\ & -120 \mathrm{~dB} \\ & -125 \mathrm{~dB} \\ & -140 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -6 \mathrm{~dB} \\ & -26 \mathrm{~dB} \\ & -46 \mathrm{~dB} \\ & -7 \mathrm{~dB} \\ & -114 \mathrm{~dB} \\ & -134 \mathrm{~dB} \\ & -16 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -25 \mathrm{~dB} \\ & -52 \mathrm{~dB} \\ & -72 \mathrm{d8} \\ & -93 \mathrm{~dB} \\ & -120 \mathrm{~dB} \\ & -126 \mathrm{~dB} \\ & -140 \mathrm{~dB} \end{aligned}$
Reproduciblity			$\pm 3 \times 10^{-12(3)}$	$\pm 5 \times 10^{-12}$	$\pm 1 \times 10^{-11}$	
SeHabllity (Ireguticy):			$\pm 1 \times 10^{-13(3)}$	$\pm 7 \times 10^{-13}$	$\pm 2 \times 10^{-17}$	$\pm 2 \times 10^{-12}$
DC Magnolic Fleld Stabiity:			$\begin{aligned} & \pm 2 \times 10^{-13} \\ & 2 \text { Gauss Field } \end{aligned}$	$\begin{aligned} & \pm 2 \times 10^{-12} \\ & 2 \text { Gausis lielo } \end{aligned}$	$\begin{aligned} & <2 \times 10^{-12} \\ & 2 \text { Gauss fielo } \end{aligned}$	$\begin{aligned} & <5 \times 10^{-12} \\ & 1 \text { Gáuss field } \end{aligned}$
Harm-ug:			At $25^{\circ} \mathrm{C}$ 30 Min.	Al $25^{\circ} \mathrm{C}$ 45 Min.	$\mathrm{Al}-28^{\circ} \mathrm{C}$ 20 Min .	$\begin{aligned} & \text { At } 25^{\circ} \mathrm{C} \\ & 1 \times 10^{-10} \mathrm{I} \mathrm{hr} . \\ & 5 \times 10^{-11} 4 \mathrm{hrs.} \end{aligned}$
Sinusoldal Outants: Outpul Yohzze: Harmanic Oistortion: (below rated output) Hon-Harmonic relaied output (below rated oulpul) Under whrathon or AC Mas Field: SIenni-la-Phase Nossa Ratlo in 30 kHz nolsa BW (1 and 5 MHz):			$5 \mathrm{MHz} 1 \mathrm{MHz}, 100 \mathrm{KHz}$ Front \& Rear BNC I V into 50 ohims			
			$\begin{aligned} & >80 \mathrm{~dB} \\ & >80 \mathrm{~dB} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >40 \mathrm{~dB} \\ & >80 \mathrm{~dB} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >30 \mathrm{~dB} \\ & >80 \mathrm{~dB} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >40 \mathrm{~dB} \\ & >80 \mathrm{~dB} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$
Environmental						
Temperature, operalling with Optlon 001, 002 and 004"s Fres. change from $25^{\circ} \mathrm{C}$			$\begin{aligned} & 01050^{\circ} \mathrm{C} \\ & <5 \times 10^{-12} \end{aligned}$	$\begin{aligned} & 01050^{\circ} \mathrm{C} \\ & <5 \times 10^{-12} \end{aligned}$	$\begin{aligned} & -28^{\circ} 10+65^{\circ} \mathrm{C} \\ & <2 \times 10-11 \end{aligned}$	$\begin{aligned} & 01050^{\circ} \mathrm{C} \\ & <0 \times 10^{-11} \end{aligned}$
Temperature, non-operaling without options: Opilion 001: Oplion 002 and $010^{(t)}$			$\begin{aligned} & -40^{\circ} \text { to } 75^{\circ} \mathrm{C} \\ & -40^{\circ} \text { to } 75^{\circ} \mathrm{C} \\ & -40^{\circ} \text { to } 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \text { to } 75^{\circ} \mathrm{C} \\ & -40^{\circ} \text { to } 75^{\circ} \mathrm{C} \\ & -60^{\circ} \text { to } 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -62^{\circ} 1075^{\circ} \mathrm{C} \\ & -40^{\circ} 1075^{\circ} \mathrm{C} \\ & -40^{\circ} 1060^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} 1075^{\circ} \mathrm{C} \\ & -40^{\circ} 1075^{\circ} \mathrm{C} \\ & -40^{\circ} 1050^{\circ} \mathrm{C} \end{aligned}$
Humidity, operating. 95\% up to			$80^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
Athude, operatinc: Max. frequency change:			$\begin{aligned} & 80,000 \mathrm{Ft} \\ & 2 \times 10^{-12} \end{aligned}$	$\begin{aligned} & 40,000 \mathrm{FL} \\ & 2 \times 10^{-12} \end{aligned}$	$\begin{aligned} & 50,000 \mathrm{Ft} \\ & 5 \times 10^{-12} \end{aligned}$	$\begin{aligned} & 40,000 \mathrm{Fl} \\ & 5 \times 10^{-11} \end{aligned}$

NOTES:

(1) For life of bean tube.
(2) Short-term slabslity far the 50614 with both standsed and migh performance lubet it given for the hormal tood lime constanc. for improved shanthen slability in controlino envionments the long lime consiant may be used
(3) With IO53BA Degnusset
(4) 5062 c emty.

Conslets of: 5065A with Oplion $O 01$ and K02.

$\times 1515 / 6^{\prime \prime} \times 211^{\prime \prime}$) (includes handles).
5060A Standby Power Supply.
Welght: 50 kg (110 lb)
Woight: $.2 \times g$ (3 lb)
Dimensions: $425 \mathrm{~mm} \times 314 \mathrm{~mm} \times 546 \mathrm{~mm}$ (16)/4"
Dimenslone: $130 \mathrm{~mm} \times 77 \mathrm{~mm} \times 279 \mathrm{~mm}\left(51 /{ }^{\circ} \times\right.$
$31 / s^{*} \times 11^{\prime \prime}$)

Models IOSA and B Quarz Oscillators provide stale-of- he-ari performance in precision frequency and time systems because of their excellent long and short term stability characteristics, spectrally pure oulputs, uncxcelled relisbility, and ability to operate under a wide range of environmemal conditions. They fill a need for a small and economical yel highly stable precision quartz ascillator for frequency and time standards. Both models can be operated from the ac line: the 105B has a buill-in 8 -hour standby batery for uninterrupled operslion should line power fail. Boith have 5 MHz . 1 MHz , and 100 kHz buffered sinusoidal oulpuls with excellent shor term stability (5 parts in $10^{12} \mathrm{rms}$ for I s aversging lime) and aging rate (<5 parts in 10^{20} per day).
The 105A/B reatures rapid warm-up. Typically, the oscillator will be within I part in $10^{\prime \prime}$ of the previous frequency in 30 minutes after an "off" period or 24 hours. The basis of these oscillators is an extremely stable 5 MHz 5 h overione quariz crysial developed by Hewlest-Packard. New lechnologiss in the crystal mounting and packaging have resulted in a cleaner crysial which in turn has a lower aging rate. The crystal, oscillator and AGC circuit are all enclosed in u proporionol oven which reduces the temperature elfects on these components and circuils.

The $68 \mathrm{~mm} \times 68 \mathrm{~mm} \times 137 \mathrm{~mm}\left(2.7^{\prime \prime} \times 2.7^{\prime \prime} \times 5.4^{\text {m }}\right)$ package containing the oven enclosed crystal oscillator with AGC circuit and buffer amplofier are available separasely as a component oscillator, the K07-105A. for use in equipment where a high quality 5 MHz source is required. Details are available from Hewlet1. Packard sales offices.

Particular care was taken to provide a specirally pure 5 MHz output which. when mukiplied high into the microwave region, provides signals with spectra only a few eyeles wide. Spestra icss than I Hz wide can be oblaincd in X -band (8.2 to 12.4 GHz). The stability and purity of the 5 MHz vulput make it suitable for doppler measurements. microwave spectroscopy. and similar applications where the reference frequency must be multiplied by a large factor.

Specifications

Outputs: 5 MHz I MHz 100 kHz : I V rms into 502 front and rear conncelors.
Clock outpul: 1 MHz or $100 \mathrm{kHz}: 0.5 \vee$ rms into $\mathrm{I} \mathrm{k} \Omega$. rear connector. Normally supplied wired for $] \mathrm{MHz}$ output.

Frequency stabilliy:

Aging rate: $<5 \times 10^{-10}$ pcr 24 hours.

Short-term slablity: for 5 MHz output only

$r(\sec)$	$\sigma \Delta 1 / 1(2, r)$	$\sigma \Delta 1\langle 2,7\rangle \sec$
10^{-2}	15×10^{-10}	1.5×10^{-12}
10^{-1}	1.5×10^{-11}	1.5×10^{-12}
10^{0}	5×10^{-12}	5×10^{-12}

Temperature: $<2.5 \times 10^{-9}$ total change $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Load: $\pm 2 \times 10^{-11}$ open to shart circuit. 50n R. L or C load change.
Supply vollage: $\pm 5 \times 10^{-11}$ for $22-30 \mathrm{~V} \mathrm{dc}$ from 26 V dc reference and for $115 / 230 \vee \pm 10 \%$.
Warm-up (al $25^{\circ} \mathrm{C}$): to within 1×10^{-9} of previous frequency in $15 \mathrm{~min}, 1 \times 10^{-x}$ in 20 min . 1×10^{-9} in 30 min .
Distortion ($5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$) below raled output:
Harmonle: $>40 \mathrm{~dB}$.
Non-harmonic: $>80 \mathrm{~dB}$.
Signal-io-nolse ratlo: for I and $5 \mathrm{MHz}>90 \mathrm{~dB}$ in a 30 kHz noisc BW (5 MHz , sutput filter $0 W$ is approximately 100 Hz).
Frequency adjustments:
Fine: $S \times 10^{-8}$ range with digital dial reading parts in 10^{10}.
Coarse: 1×10^{-6} front panel screwdriver control.
Phase locking: external $+5 V_{10-5} V$ allows $>2 \times 10^{-8}$ irc.
quency control for locking to external source.

Environmental:

Temperature, operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Temperature, slorage: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}\left(+50^{\circ}\right.$ for 105 B$)$.
Allitude: 15.24 km (50 000 n. .)
Shock: MIL-T-21200 (30 Gs).
Vibralion: MIL-STD-167 and MIL-T.2I200.
Electromagnelic compatbillty (EMC): MIL-s-6181D.
Slandby supply capacity: model 105 B only. 8 hours al $25^{\circ} \mathrm{C}$ ambient temperatures.
Powar requirements: $115 / 230 \mathrm{~V} \pm 10 \%, 50-400 \mathrm{~Hz}$ al $17 \mathrm{~W}(70 \mathrm{~W}$ warm-up) for 105A. For 105B add it for loat charge and 12 W for fast charge. 22-30 V de al 6.4 W (10.3 W warm-up).
Dimenslons: 88 mm high $\times 425 \mathrm{~mm}$ vide $\times 286 \mathrm{~mm}$ deep ($31 / 1_{12}{ }^{2 \prime} \times$ $168 / /^{\prime \prime} \times\left(144^{\prime \prime}\right)$.
Welght: 105 A - net. 8 kg (16 lb). Shipping. $10.5 \mathrm{~kg}(23 \mathrm{lb}) .105 \mathrm{~B}-$ net. $11 \mathrm{~kg}(24 \mathrm{lb}$). Shipping, 14 kg (31 lb).

Options

Price

Option 908: Rack Flange Kit

[^15]- Excellent spectral purity
- Low power
- Fast warm-up

The 10544A Quarly Crystal Oscillator was developed by HewlectPackard to meet the needs for compact, high stability oscillators for use in test equipment and systems. Its excellent short-term stability and high spectral purity is especially dexirable in applications where muluplication and synthesis ape used to generate microwave frequencies. Rugged construction and high quality components assure high reliability and optimum periomance. With the extremely low aging rate of this oscillator a significant cost savings can be realized by the end user because of the reduced frequency of calibration needed to stay within FCC aceuracy requirements.

The crystal for the oscillator is supported in a new rugged mounting in a cold-welded, high bake oul enclosure. The housing around the erystal enclosure is massive with high thermal conductivity which contributes both to rapid warmup snd excellent temperature stability. The oscillator. AGC amplifier and oven control circuits are all inside a thermally insulated oven. Rigid plastic foam with extremely low thermal conductivity is used to provide thermal insulation and firm mechanical suppori for the oven enclosure.

Low priced and compact, the 10544A uses an efficient thermistor control of the heater current duty cycle to mannain the oven temperature. The oven heater may be operated over the range of 15 to 30 V whilc the oscillator and oven controller require a regulated 11.0 to 13.5 \checkmark source. A simple extcrnal iC regulator may be used if the necessary vollage is not available.

The 10544A is ideally suited for use in communication and navigation systems. synthesizers, time-code generators, counters and spec. trum analyzers. The 10 MHz oulpul frequency is a convenical stariing point since it is casily divided or mulliplied.

A serewdriver adjustment through the top of the oven enclosure permils frequency adjustment oves a range of $2 \times 10^{-n}(20 \mathrm{~Hz})$. yct the control is sensitive enough to allou adjestment to better than 1×10^{-3} (0.01 Hz). Frequency can also be conirolled elecironically over a I Hz range with an externally applied voltage.

High rellability
Rugged

- Compact

Specifications

Output: $10 \mathrm{MHz}{ }^{1}$, I V rms $\pm 20 \%$.
impedance: 1000 ohme
Frequency stability:
Aging rate ' : $<5 \times 10^{-10} /$ day; $^{1} 14^{\prime} 1.5 \times 10^{-1} /$ year
Short term stability:

A veraging time

aging lime	$\Delta 1 / 1$	Averaging lime	$\Delta 1 / \mathrm{f}$
1 ms	5×10^{-0}	1 s	1×10^{-11}
10 ms	5×10^{-10}	10%	1×10^{-11}
100 ms	5×10^{-11}	1005	$2 \times 10^{-}$

Temperature: $<7 \times 10^{-9}\left(01071^{\circ} \mathrm{C}\right):<1.5 \times 10^{-8}\left(-5510+71^{\circ} \mathrm{C}\right)$
Load: < $5 \times 10^{-10}(\pm 25 \%$ load change)
Warmup ': $<5 \times 10^{-5}$ in 20 min . $\left(25^{\circ} \mathrm{C}\right.$, at 20 Vdc)
Oven voltage ': $<1 \times 10^{-10}$ ($\pm 10 \%$ change)
Circult voltages: $<5 \times 10^{-10}(\pm 1 \%$ change)
SSB phase nolse ratlo (1 Hz tw)
Offeat from carrier:
1 Hz 83 dB
10 Hz 120 dB
100 Hz 140 dB
1 kHz 145 da
10 kHz 145 dB
Distortlon below rated oulput harmonic $\mathbf{>} \mathbf{2 5} \mathbf{d B}$;
Nonharmonle $>80 \mathrm{~dB}$
Frequency adubiment
coarse (18-lurn control): $>2 \times 10^{-6}$
Ine (EFC): $>1 \times 10^{-1}$

Connector: Is pin PC Board

Vollages required: oven, $20-30 \mathrm{Vdc},-5510+71^{\circ} \mathrm{C} ; 15-30 \mathrm{Vdc}, 0$ $10+71^{\circ} \mathrm{C}$. 3 wat1s al $25^{\circ} \mathrm{C}$. Círcuits, $11.0-13.5 \mathrm{~V}$ regulated de. 20 mA . Case size: $72 \times 52 \times 62 \mathrm{~mm}\left(2.8^{4} \times 2^{\prime \prime} \times 2.4^{\prime \prime}\right)$
Weight 0.31 kg (11 oz.)

Quenlity	Price
1104	$\$ 590$ each
5109	$\$ 565$ each
101024	$\$ 545$ each
251049	$\$ 500$ each

Larger quantity discounts available.
(1) Frequencies from 43 to 12 MHe avaliable on spetisl order.
(2) For osciltator off-time less than 24 hours.
 minutes.
(4) A 10% voltage change wint cause a ingevenct change of $<1 \times 10^{-1} 100<2$ min

Distribution amplifier

Model 5087A

- Versatile with 3 input and 12 output channels
- Low noise, high stability, and isolation

The Hewletr-Packard Madel 5087A Distribution Amplifier provides the isolation and flexibility required for distribution of the output of high quality frequency stindards. Low distortion and execllent isolation make it ideal for providing multiple outputs from atomic or crystal frequency siandards. The 3 inpul channels will accept 10 MHz , $5 \mathrm{MHz}, 1 \mathrm{MHz}$ or 100 kHz in any combination. The number of outputs for each channel is selectable up to a total of 12 outpuis. The output levels are individually adjuslable from 0103 V rms. All input and outpul levels are monitored on a fromt panel meter.

The Distribution Amplifier features plug-in modular consiruclion. short circuit isolation. exceptional phase stability, low noise and crosstalk, and uninterrupted switchover to standby de in cvent of ac power failure.

The shielding around each input and outpul plug-in amplifier assures minimum noise and crossialk. The uned outpue amplifiers provide clean signals and high channel-10-channel isolation.

The instrument is designced for maximum versatility and can be supplied to mext a wide variety of special requirements. The standard configuration ol inpul and output amplifiers is shown in Figure 1.

Several olher commonly usitd confugurations are also available and spocial combinations of the various inpul and outpul modules can be supplicd. Input and output amplitiars can be added or the conliguraion easily changed al any lime.

Figure 1، 5087A Distribution Amplifler with Opllon 031, Standard Conflguration input and output ampliliers.

Specifications

inpuns

(Up to three, rear panel BNC)
Frequencies: $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ or 100 kHz .
Level; 0.3 to 3.0 V rms. 50 ohms.

Outputs

(up 1012 rear panel BNC)
Frequencles: 10 MHz , $5 \mathrm{MHz}, 1 \mathrm{MHz}$ or 100 kHz .
Level: $0-3 \mathrm{~V}$ inco 50 ohms (screwdriver adjustment).
Hammonic detetortion: $>40 \mathrm{~dB}$ below rated output.
Non-harmoric distortion: $>80 \mathrm{~dB}$ below raled output.

Isolation
 Load (open or shorl on any olher channel)
 Amplitude change: 0.1 percent
 Phase change: <0.1 ns at \leq or 10 M Hz
 $$
<0.5 \mathrm{~ns} \text { al } 1 \mathrm{MHz}
$$
 $$
<5.0 \mathrm{~ns} \text { al } 100 \mathrm{k} . \mathrm{Hz}
$$

Injected signal: I V signal up to 50 MHz applicd to any output excepi 10 MHz , will be down more than 60 dB in all other outpuls; 10 MHz oulpul channel will be down more than 50 dB .
SSB phase nolse (5 MHz): >14S dB below signal in 1 Hz BW ior frequencies $>1 \mathrm{kHz}$ from carrier.
Short term stabllity degradation (5 MHz): $<1 \times 10^{-1 i}$ in 10 kHz band. (1s average).

Environmental
Temperature: MIL-E-16400, Class 4.
Operating: $0-50^{\circ} \mathrm{C}$: storage: $-62^{\circ} 10+75^{\circ} \mathrm{C}$.
stability
Amplitude: $\pm 0.5 \mathrm{~dB} .0^{\circ} 10.50^{\circ} \mathrm{C}$.
Phase: $<0.1 \mathrm{~ns} /{ }^{\circ} \mathrm{C}$..$S$ and 10 MHz .
EMC: MIL-STD-461A.
Humldity: 95% al $40^{\circ} \mathrm{C}$.
Vibration: MIL-STD-167.
Altitude: Up to 30,000 fl.
8hock: MIL-T-21200, Class I and MIL-E-5d00 (30 Gs).

General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 20 \mathrm{VA}, \mathrm{max}$, or $22-30 \mathrm{~V} \mathrm{dc}$. 500 milliamperes, max.
DImenslons: $88 \times 425 \times 285 \mathrm{~mm}\left(315 / 32^{m} \times 16 \%^{\prime \prime} \times 111 / 4^{\prime \prime}\right)$.
Welght: typical, Oplion 03I - Nel 7 kg (IS lb).
Options

Price

Normal conflgurations (input and output amplifiers)
Option 031: 5 . I and 0.1 MHz inputs and 4 oulpuls al
each frequency
Option 032: Single 5 MHz inpul and 12 outpuls $\$ 890$
Option 033: Single 10 MHz inpul and 12 oulpuls
Option 034: Single 5 MHz input. 4 each oulputs at 5,1
and 0.1 MHz
Special conflgurations
input preamplifiers (up to 3 total):
Opion Oad: Inpul Preamplifier (0.1 to 10 MHz) $\$ 30$
Option 005: 5 to 1 MHz Input Divider
Option 006: I to 0.1 MHz Input Divider
Option 011: 5 to 10 MHz Input Doubler
Oplion 013: 10 to 5 MHz Inpul Divider
Option 014: 10 to 1 MHz lnput Divider
Outpul ampliflers (up to I2 total):
Option 001: 5 MHz Output Amplifier
Oplion 002: I MHz Oulput Amplifier
Option 003: 0.1 M Hz Outpul Amplifier
Opsion 012: 10 MHz Outpui Amplifier
Oplion 908: Rack Flange Kit
5087A: Distribution Amplifier Mainframe
-

FREQUENCY \& TIME STANDARDS
 Standby power supplies
 Models 5085À \& K02-5060A

- 12 Amp-hr capacity
- Sealed nickel-cadmium cells
- Used in "flying clocks"

The HP Modeis 5085A and K02-5060A Slandby Power Supplies furnish de power to keep frequency or time standard systems operating during extended interruptions of ac line power. For applications where it is essential to maintain continuous operation and avoid loss of precise time, the use of a standby power supply is an atsolute necessity. These units are designed for use with the Hewlet-Packard Cesium Bearn Standards, Rubidium Vapor Standards, Quarsz Oscillators and other equipment which will operate from 26 V de. No switehing is used in transferring power foom line to battery operation and back again thus assuring uninterrupted operation.

HP K02-5060A

The K02-5060A is a very versatite unit which was designed specirically as a portable power supply for the \$061A and \$065A "Flying Clocks" where it is necessary to operate from a wide range of power sources along with the standby capatility 20 mainisin continuous operation where no external power is available. A special inverter permits operation from a 6 or 12 V de car batiery in addition to the $115 / 230 \mathrm{~V} 3 \mathrm{c}$ and $24-30 \mathrm{~V}$ dc capability. The 12 ampore-hour standby batteries are the sealed, niekel-cadmium type and thus spill-proof. Mounting hardware is available to attech the K02-5060A to either the 5061A or 5065A Standards to make a porrable slandard, the E21506IA or E21-506SA.

HP 50a5A

The HP 5085A is intended for installations where 115 or 230 V ac is avnilable. Vented nickel-cadmiun batterius with an 18 ampere-hour guaranteed eapacity (dersted from 25) are used. They provide about 10 hours of standby power for the 5061a Cesjum Slandard or 5065A Rubidium Standard (at average ambiem temperature or $25^{\circ} \mathrm{C}$).

Front pancl lights indieate mode of operation, report fuse failure. and ac inierrupl. A float-charge switch permits rapid recharge after an as power failure.

K02-5060A Specifications

input and oulput voltagee:

Inpui

6 or 12 V dc
115 or $230 \mathrm{Vac}, 50-400 \mathrm{~Hz}$
$24-30 \mathrm{Vdc}$
Standby battery, $26 \pm 4 \mathrm{~V}$ de available at all times.
$A C$ and both de inpuls may be connected simulianeously.
Oulput current: 0.5 A ac. 2 A dc.
Slandby capacity: 12 ampere-hours at $25^{\circ} \mathrm{C}$, 7 hours standby when used in E21-5061A. 6 hours in E21-5065A.

- 18 Amp-hr capacity
- Vented nickel-cadmium cells

Recharging: 1.6 hours recharging time required for each ampere hour of discharge.
Alarm indieator: external power failure.
Panal meters: voltmeter, ammeter indicating voltage and current of 4 internal batteries and load.
Battery: Tour paralleled rechargeable battery packs each conluining 20 senled nickel-cadmium cells. Packs may be removed individually without interfering with power supply operation.

Temperature

Operating: 0 to $50^{\circ} \mathrm{C}$.
Storage: -40 to $60^{\circ} \mathrm{C}$.
Dimenslons: 425 mm wide $\times 177 \mathrm{~mm}$ high $\times 416 \mathrm{~mm}$ deep $\left(16 \%^{\circ} \times\right.$ $611 / y^{2} \times 16 y^{2}$).
Weight: net, 30.5 kg (67 lb)
Accessories furniahed: ac and dc inpul and oulpul cables.

5085A Specifications

Output voltage: $24 \pm 2 \mathrm{~V}$ de al rated current.
Outpul current: 2 amperes (2.5 A for 30 min .).
Standby capacity: ($3125^{\circ} \mathrm{C}$) 18 amp-hrs. after 48 bours charge.
Alsmin Indleators: panel lamps indicate: (1) FUSE FAILURE. (2) AC POWER, (3) AC INTERRLPT, (4) CHARGE.
Remote alarm provislons: SPDT relay contacls provided al rear terminals for operating remote alarm from separate power system.
Panel metere: batlery voltage and charge/discharge current.
Power requiremente: 115 or $230 \pm 100^{\circ} \mathrm{V}$ ac, 50 to $400 \mathrm{~Hz}(2.0 \mathrm{~A}$ max. at 115 V line).
Batlery (supplied): vented niekel-cadmium 25 ampere-hour capacity derated to 18 ampere-hours. Periodic maintenance required.
Additional (external) battery provision: rear connector.

Temperature

Operating: 0 to $50^{\circ} \mathrm{C}$.
Storege: $-401075^{\circ} \mathrm{C}$.
Dimenslons: 425 mm wide $\times 177 \mathrm{~mm}$ high $\times 416 \mathrm{~mm}$ deep ($16 \% \%^{\prime \prime} \times$ $6^{3} /{ }^{1 / 5} 5^{\circ} \times 16^{1 / 4}$).
Welght: net, 34.1 kg (75 lb). Shipping, 45.9 kg (101 lb) including battery. Option 001 (no batteries) is 22.8 kg (50 lb) less.

Accessorles furnished:

AC Power Line Power Cable, 6 f . long. DC Outpul Connector. Instrument Extension Slides (for sid. $2 \AA^{\prime \prime}$ decp rack).

Model number and name	Price
3085A (complete with batteriex)	$\$ 2100$
Option 001, without batleries	$\$ 1460$
K02-5060A	$\$ 3700$

General information

Introduction

The present range of professional pulse and word gencrators offered by Hewlett-Packard is the result of years of experience in the design and manufacture of such insiruments. The range is divided into three: a series of dedicated pulse generators from simple to sophisticated; a plug-in pulse generator system, the 1900 system and a growing line of word generitors.

The complete product line extends from the simplest, most economical model with a limited number of variable parameters to the most complex model with all variable parameters, very fast Iransition times and a wide varicty of output configurations. This cnables you to choose a pulsc genersior exacely suited to your neads. For very special combinations, the 1900 system with its plug. in modules provides the customer with a Lailor-made system.

Logical design

Experience gained in the design of instrumeni froni pancls has enabled Hewlett-Packard to produce pulse and word generators wilh logical and simple front pancl hayouts that greatly improve easc of operation and minimize the risk of incompatible control selungs. On many of the Hewlett-Packard pulse generators the horizontal parameters are ad-
justed by horizontal conirols and the vertical parameters by verical conirols. In addition. the physical relationship of the timing controls to each other minimizes the risk of incompatible pulse setlings.

50 ohm source impedance

All Hewiett-Packard pulse and word gen. erators have a 50 ohm source impedance: a feature which plays a very importidnt part in producing clean output pulses. Signal refleccions from the eircuit under test ase effecLively absorbed by the 50 ohm source thus avoiding the rellections that can occur with high impedance sources.

Independent parameters

All variable pulse paramelers on HewleilPackard pulse generators can be adjusted completely independenily of each orher. This means that if, for example, pulse offsel is varied, the amplitude is not affeced and if Iransition times ase varied. pulse width is not affected. In nddition, all pulse paramelers are completcly specificd including complece specifications of pulse perturbations, thus you know exacily what pulses to expect from your generatos and can accurately measure distorlion coused by the circuic under lest.

Pulse stability

A further feature is the extremely low juter
on all pulse timing parameters. This is very importan! when worksing with digital logic because it is essential that clock and data pulses mainsain a fixed time relationship to each other to prevent incorrect strobing of gates, decodurs, shift registers.

Word generators

Hewlelt-Packard word gencrators provide the complex clock/data patieros necessary for testing digital circuitry under normal or worst case operating conditions. The 8016A is particularly suitable for digital applicacions becausc of ils pulse shaping capabilitien. Boit the 8006A and the 8016A have a re. mole progtamming facility which enables you 10 use them as part of an automatic test system.

Applications

Hewletl-Packard has a pulse or word generator to fit mosi applications. The following applications areas are typical.

Olgital logic applicatlons

The digical logic applicalions area is very large, covering logic families from MOS 10 ECLIII. MOS devices are being used in increasing quantitits due to their Jow power consumption and high packing densily. Thes: devices require a phasced clock system lo drive them with voluges ranging from -27 V (high threshold MOS) $10+16 \vee$ (CMOS).

Cireuits using MOS devices can be lested using the 191SA output plug－in in a 1900 sys－ （cm（ $\pm 50 \mathrm{~V}$ oulput）or the 8015A（up 1032 V with both channels combined）．A further ad－ vantage with the 8015A is the pulse bursi op－ tion which enables a preset number of pulses to be oulput for shin register lesting．This pulse burst option is also available on the 8011 A ．
At the other end of the digital logic range， ECL．III．with propagation delays of $1-2 \mathrm{~ns}$ ，is the fastest logic family on the market at pres－ cnt．The 8082 A ，with variable transition times down $10<1$ ns and a maximum repetition rate of 250 MHz ，is ideally suited to lesting ECL III．Alternatively，the 1920A ouipul plug－in used in a 1900 syslem provides pulses with transilion times of＜350 ps．

The 8016A word generator is ideally suited to leating LS1 integrated circuits．With its variable word lengths from one 256 bit word to cight 32 bit words and the variable delay facility on each channel，the lesting of LSI shift registers．encoders，decoders becomes simplicity itself．The 8016A can even be used as a replacement for a ROM enabling differ－ ent bit patierns to be generated without hav－ ing to change the ROM．

Communlcations applications

Another important applications area for Hewlet－Packard pulse generators is in test－ ing both analog and digital communications systems．Commuñicationts links can be tested
by iransmitting bit pateerns along the link using one word generator and checking the received partern using a second word getera－ tor：the 1930 A formatting plug－in in the 1900 system can be used in this application． Pseudo－random－binary sequences and vari－ able length words are also used for commu－ nications testing and can be provided by the 8006A．8016A，1925A，1930A or 3760A．The 3760A has been designed specifieally for com－ munications applieations and provides vari－ able lengih PRBS and WORD patterns over a wide frequency range．A second dala out－ put delayed 8 bits with respect 10 the main data outpul is optionally available．The 3760 A may also be used with the 3761A Er－ ror Deicetor to make bit－by－bit error rate measurements．

Dedicated pulse generalora

	Puter feretalon											Wand manision		
Medel Na ．	2144	80024	80048	80058	80078	20108	20114	80128	80138	30154	8082n	8006A	8016A	3760A
Hels rat riala（MH2）	1	10	10	20	100	10	20	50	50	50	$2{ }^{2} \mathrm{D}$	10	50	150
Outbul Yinto $50 n$	± 100	$\pm 5 / 10$	± 5	$\pm 5 / \pm 10$	± 5	$25 ; \pm 00$	± 15	± 10	± 16	± 16	25／LCL	＋25／－5	¢CL／TL	3？
$\begin{aligned} & \text { Simulthneous } \\ & \text { oulput } \end{aligned}$				$+\cdots-$		$\pm \pm$			＋，－	$\pm \pm$	$\pm \stackrel{ \pm}{ \pm}$	土．土	8	？
Inamition Utria	$<15 \mathrm{~m}$	$\begin{aligned} & 10 \mathrm{~ns} \\ & 1023 \end{aligned}$	$<1.5 \mathrm{~ns}$	$\overline{\text { रll }} 1$ 1023	$\begin{aligned} & <2 \text { ns to } \\ & 250 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { <ाC } \mathrm{E} \\ & \mathrm{~m} 1 \mathrm{~s} \end{aligned}$	＜10 0^{4}	$\begin{aligned} & 5 \mathrm{~ns} 10 \\ & 0.5 \mathrm{mg} \end{aligned}$	＜2．）ns	$\begin{aligned} & <6 \mathrm{~ns} \\ & 1605 \mathrm{~s} \end{aligned}$	$\begin{gathered} <1 \mathrm{~ns} \\ 100.5 \mathrm{~ms} \end{gathered}$	10 \％	$2 \mathrm{~ns} / 2.5 \mathrm{~ns}$	＜1．$\square_{\text {II }}$
Wiath	$\begin{aligned} & \text { SD AS } 10 \\ & \text { to It } 10 \end{aligned}$	$\begin{aligned} & 30 \times 5 \\ & 6035 \end{aligned}$	$\begin{aligned} & \hline 0 \text { to } \\ & 1 \text { rix } \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \mathrm{~ms} \\ & 1 \mathrm{a} 3 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3 \mathrm{nt} \mathrm{in} \\ & 30 \mathrm{mis} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~ns} \\ & 1071 \end{aligned}$	$25 \mathrm{~ms} 10$ 100π	$\begin{aligned} & 10 \mathrm{~ns} \\ & 30 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 10 \pi 5 \\ & 1015 \end{aligned}$	$\begin{array}{r} 10 \mathrm{ks} \\ 10: 3 \\ \hline \end{array}$	$\begin{aligned} & 2 \mathrm{ns10} \\ & 0.5 \mathrm{~ms} \end{aligned}$		$\begin{gathered} 10 \mathrm{~ns} \\ 101 \mathrm{~s} \end{gathered}$	
Ofther （Y into BNa）			± 2	± 2	$\begin{gathered} \pm 4 \\ \text { symut } \end{gathered}$	± 2	symm，	$\begin{aligned} & \pm 25 \\ & s y m m, \end{aligned}$	$\begin{aligned} & \pm 25 \\ & 5 \mathrm{y} 7 \mathrm{~mm} \end{aligned}$	4.8	± 2			± 3
souare meve modis				－		－	－	－	－	－	－			－
Doliy control	－		－	－	－	－		－	－	－	－		－	
Double duls	－		－	－	－	＊		\bullet	－	－	－			
Ginted aulpul	－	＊	－	－	－	1				－	－	－	－	
Lut tigol	＊	－	＊	＊	－	＊	－	－	－	\bullet	－	－	\bullet	－
bifled formattinit （Hord peneration）												$\begin{aligned} & 1 \text { Imo } 16 \mathrm{Dit} \\ & \text { ane } 32 \mathrm{git} \end{aligned}$	$\begin{aligned} & \text { cinnt } \\ & 37 \text { bit } \end{aligned}$	$\begin{gathered} 0 m-10 \\ \text { th } \end{gathered}$
RY／MRI formath												－	－	－
psendorantion binari corumoce												－		$\left.\begin{array}{\|c\|} \hline 2^{n}-1 \text { with } \\ n=3-10 \text { of } 13 \end{array} \right\rvert\,$
Remota comial										aphianal		Ophonal	Optional	
Pulisa buesi							Optronal			Optiomal				
Sriectable coirce impedance		－		\bullet			－	－	－	－				－
Norma／Coinglement				－	＊		－	－		\bullet	－	＊	＊	＊

1900 Pulse generator systemi plug－ins

Made Me．	Rate		D－15］	Disital		Ouiput pulve chaping				
	1505λ	19061	12084	1825	19301	1915A	1914	1917／	1920 A	L2214
Has，cep，rite（mik）	25	125	\％ 3	50	10	35	100	23	25	175
Oulpul Yime 500	>3	＞3	＞3	>2	＞2	± 50	$\begin{aligned} & \pm 5 \text { compl } \\ & \pm \$ \text { cumpl. } \end{aligned}$	± 10	± 5	± 5
Tramilifin Hime	＜3ns	$<3 \mathrm{n}$	45 ns	＜ 4 n	d 15	$\begin{gathered} 7 \mathrm{~ms} \\ 101 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 23 \pi \\ & 10250,45 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~ns} \text { to } \\ & 30 \mathrm{C}, \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & <350089 \\ & <40505 \end{aligned}$	$<2 \mathrm{~ns}$
Wlath	$<10 \mathrm{al}$	く5 5	＜10 0	P4／NPL	R2／NR2	$\begin{array}{r} 15 \mathrm{~ns} \\ 1040 \mathrm{~ms} \end{array}$	$\begin{gathered} 5 \mathrm{~ns} \\ 101 \mathrm{~ms} \end{gathered}$	$15 \mathrm{~m} 10$	$\begin{gathered} 010 \\ 10 \mu \end{gathered}$	$\begin{aligned} & 4 n s t o \\ & 15 \mathrm{~ms} \end{aligned}$
Ofinet（V Into 500］）						41.5	± 23	± 25	± 2	± 5
Outpul complanenl				－			－			－
Oeliy contoot			Vat．							
Navance／Double pulu			－							
Gited output	－	－								
Ert tric，input	－	－		－						
Dictul formulths （Word emerathan）				$?-16$						
kL／MR2 Iemal				＊	－					
MRY simpint						－		－		＊
Preudo－isndom bliary canuema				－	－					
Qill urior delection					＊					
Proprammeble	Options1	Ootional	Optionis	\＄18．	Stad	Oplital		Optlonal	Oploina	Oplinnal

- Repetition rate 0.1 Hz to 20 MHz
- Designed for easy operation
- Positive/negative/symmetrical output

Introduction

The 80ilA is a versaite, reliable, low cost pulse generator. This compact instrument features an uncomplicaled design using high quality components to ensure long, dependable service. Ease of operacion is a natural result of the logical and simple front panel layoul. These qualities, and the variety of pulse formats available, make the model 8011 A a very cost-effective solution to pulse problems encountered in a variety of siluations.

Pulse burst option

For anyone working with counters. shift registers, memories or logic in general, 801IA option 001 offers a new approach to driving. troubleshooting or analyzing logic designs. With this original option, the 801IA can generate preciscly any number or pulses fram 1 to 9999. independent of pulse rate. The number of pulses required in the burst is set on thumbuheel switches. All other putsc parameters are set on the front pariel as normal.
The buist can be staricd either by external electrical trigger ar by pressing the single bursi pushbuiton. Synchronous irigger pulses occur for the duration of each burst. At the end of a burkt, cxira pulses can be generated individually by pressing the single pulse button. Thus. circuits can be clocked to a desired state at their operational elock rate and then analysed under static conditions.

Applications

The 801 IA proves itself with iss wide range of amplitudes to cover CMOS and the commonly used logic families as well as linear circuits. Students and engineers alike will find the clear and unclutiered front panel tayout makes this a very easy pulse generator to use. With the pulse burst option, model 801 ía is a powerful 1000 in the problems or logic design and troubleshooting. This compact instrument features a simple design with adjusements reduced to a minimum so that routine recalibration is a quick and easy operation. Reliability is assured by the high quality components mounted on a gold plated printed circuit board and a shorl circuit proof output prevents accidental damage. Also, rigorous testing in hostile conditions (such as 95% relative humidity al $40^{\circ} \mathrm{C}$) has proved that model 8011 A will meet specifications when operated at remperatures between $0^{\circ} \mathrm{C}$ and $5 s^{\circ} \mathrm{C}$.

- Normal/complement switch
- Switchable 50 ohm source
- Square wave mode for rapid pulse set-up

Specifications

Pulse characteristics

(50 ohm source and load impedances)
Trangition times: <10 ns fixed.
Overshoot, ringing and preshool: < $\pm 5 \%$ of pulse amplitude. May increase 1010% at counler-clockwise positions of amplitude vernier. Pulse width: 25 ns 10100 ms in four ranges. Vernier provides continuous adjustment wishin each pange.
Width fitter. $<0.1 \%+50 \mathrm{ps}$ of any width setting.
Maximum duty cycle: $>50 \%$ (100% using pulse complement).
Maximum output: 16 V . with internal 50 ohms and external high impedance or with internal high impedance and external 50 ohms. 8 V with 50 ohms source and load impedances.
Attenustor: three step attenuator provides the ranges $0.25 \mathrm{~V}-\mathrm{I} \mathrm{V}-4 \mathrm{~V}$. 16 V . Vernicr provides continuous adjustment within each range.
Source impedance: $0.25 \mathrm{~V}-\mathrm{I} V-4 \vee$ ranges. 50 ohms $\pm 10 \%$ shunted by $30 \mathrm{pF} .4 \mathrm{~V}-16 \mathrm{~V}$ range, 50 ohms $\pm 10 \%$ or high impedance, switch selectable.
Polarity: positive, negative or symmetrical switch selectable.
Format: normal or complemene switch selcelable.
Repetitlon rate and trigger
Repetition rate: 0.1 Hz 1020 MHz in 5 ranges. Vernicr provides continuous adjustment wilhin each range.
Period jifter: $<0.1 \%+50$ ps of any pariod selling.
Square wave: 0.05 Hz to 10 MHz .
Trigger output: de coupled 50 ohm (1yp) source delivering $Z+1 \mathrm{~V}$ across 50 ohm load (can increase to +5 V).
Trigger pulse width: $20 \mathrm{~ns} \pm 10 \mathrm{~ns}$.

Exiernally controlled operat ${ }^{i}$

External input
Inpul impedance: 50 ohms $\pm 10 \%$.
Maximum Input $\pm 5 \mathrm{~V}$.
Trigger polarily: positive.
Sensitivity: IV.
Manual: front panel pushbutton for generating single pulse.

External triggering

Repetition rate: 0 to 20 MHz In square wave, outpul frequency is half input frequency.
Trigger source: manual or external signal. Min external signal width 10 ns.
Pulse burst mode (aption 001): preselccied number of pulses gencrated on receipl of erigger.
Burst trigger source: external signal or manual. Min external sig. nal width 25 ns.

General

Operating temperature range: $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$.
Power: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ or $240 \mathrm{~V} .+5 \%,-10 \% .48 \mathrm{~Hz}$ to 440 Hz , 70 VA max.
Welght: nel. $4 \mathrm{~kg}(9 \mathrm{lb})$. Shipping. 6.5 kg (14.6 lb).
Dlmensions: 200 mm wide $\times 142 \mathrm{~mm}$ high $\times 300 \mathrm{~mm}$ deep ($7.9 \mathrm{in} . \times$ 5.6 in . $\times 11.8 \mathrm{in}$.).

Options and Accersorles Price
003: pulse bursi
I5179A adapter frame. Rack mounting for two units \$85
B011A Pulse Generator

Models 8012B \& 8013B

- Variable transition times down to 5 ns
- $\pm 10 \mathrm{~V}$ amplitude; selectable source impedance
- Ideal for testing TTL.

The 8012B and 8013B are at the top of their class for versatility, ease of operation and wide range of application. They provide the ideal solution to almost all digital logic testing problems with fixed 3.5 ns transition times on the 8013日 and variable transition times down to 5 ns on the 80128. The well-composed layout of the front panel controls (horizontal sontrols for horizontal patameters, vertical conirols for vertical paramelers) enables output pulses to be set up quickly and accurately with minimum risk of incornpatible seltings. Both models feature normal and complement oulputs and a switchable internal $\mathbf{5 0}$ ohm source.

Specifications

Putse characteristics

Parametar	8012 B		80138	
	lait load IN	Int load Out	Int. load in	Int. load OUT
Yransiliton Uines	$5 \mathrm{~ns}-0.5 \mu \mathrm{~s}$ 4 tanges, vernier separate conitrol withir ranges up ratios of 100:1	$\begin{aligned} & 6 \mathrm{~ns}-0.5 \mu \mathrm{~s} \\ & \text { provide } \\ & \text { 1 both edges } \\ & 0 \text { max. } \\ & 1: 100 \text {. } \end{aligned}$	3.5 ns lixed	5 ns fixed
Source impedance	$\begin{aligned} & 50 \text { obms } \pm 10 \% \\ & \text { shunted by } \\ & \text { yypically } \\ & 20 \text { pf } \end{aligned}$	$>50 \mathrm{ohms}$	$\begin{aligned} & 50 \text { ohms } \pm 3 \% \\ & \text { shunted by } \\ & \text { typically } \\ & 20 \text { pi } \end{aligned}$	> 50 ohms

Parimeter	80128 / 80138	
	Internal losa in	Internal load OUS
Overshool, ringing	$< \pm 5 \%$ of pulse amplitude	May lincrease to $\pm 10 \%$ when amplitude is between $0.4 \mathrm{~V}-4 \mathrm{~V}$
Morimum oulput	5 V across 50 othms, 10 V across open circuil. Shorl cct. protection.	30 V across 50 ohms, Short tcl. proteclion.
dhenuator	4 -step, reduces oulpul to 0.2 V	4. step, reduces outpol 100.4 V .
DC ollisel	$\pm 2.5 \mathrm{~V}$ actoss 50 ohms. Independen of amplitude setlings.	ac offel switched off.

Linesrly (8012B): for transition times $>30 \mathrm{~ns}$, maximum straight line deviation is 3% of pulse amplitude.
Preshool: < $\pm 5 \%$ of pulse amplitude.
Pulae width: < 10 ns to 1 s in liour ranges. Vermier provides continuous adjustment within ranges.
Width jitier: $<0.1 \%+50 \mathrm{ps}$ on any width setting.
Maximum duty cycle: $>75 \%$ from 1 Hz to 10 MHz , decreasing to 240% at 50 MHz . Up to 100% in COMPL modo.

- Fixed 3.5 ns transition times
- 10 V amplitude; selectable source impedance
- 2 outputs

Polarily: 8012B; positive or negative selectable, NORM/COMPL/ SYM selectable: 8013 B , one positive + one negative channel, NORM/COMPL selectable.
Pulse delay: < 35 ns to 1 s (with respect to trigger output) in four ranges, vernier provides continuous adjustment within ranges.
Delay Jitier: $<0.1 \%+50 \mathrm{ps}$ on any delay sctting.
Repetition rate and trigger
if Hz to 50 MHz in four ranges, continuous adjusiment within ranges.
Perlod jitier; $<0.1 \%+50$ ps on any rate setting.
Square wave: 0.5 Hz to 25 MHz in four ranges. Duty cycle $50 \% \pm 5 \%$ up to 1 MHz , tolerance increases $10 \pm 15 \%$ at 25 MHz .
Trigger output: $>+1 \mathrm{~V}$ across $500,16 \mathrm{~ns} \pm 10 \mathrm{~ns}$ wide.
External triggering
0 to 50 MHz ; for square wave nuiput, frequency divided by factor 2 .
Trigger Input: sine waves $1.5 \vee p-p$ (about zero) or pulses $>0.8 \mathrm{~V}$ ei-
ther polarity, $>7 \mathrm{~ns}$ wide. Maximum input $\pm 7 \mathrm{~V}$.
Impedance: $50 n \pm 10 \%$ dc coupled.
Delay: $25 \mathrm{~ns} \pm 8 \mathrm{~ns}$ leading edge trig. inpul to trig. output.
Manual: pushbution for single pulse.

Gating

Bynehronous gating: gating signal turns generator "on". Last pulse is completed even if the gate ends during pulse.
Gate input: de-coupled; voltage at open connector approx, +1.8 V . Shorting current $\leq 12 \mathrm{~mA}$. Input impedance approx. 160Ω.
Gate input slgnal: voltage $>+1.5 \mathrm{~V}$ or resistor $>1 \mathrm{k} \Omega$ to ground eaables rep. rale generator. Yoltage $<+0.8 \mathrm{~V}$ or resistor <160 n disables rep, rate generator. Inpur TTL compatible, gax. $\pm 5 \mathrm{~V}$.

External width and $A Z$

External width: output pulse width determined by width of drive input signal. Amplitude, transition times selectable. Trigger output independent of external width input signal.
RZ mode: external drive inpun switched to delay generator. Period determined by period of drive inpul signal. Delay, amplitude and width setectable.
Input elgns: $>+\mid$ V, $>7 n s$ wide. Max ± 5 V. 500 de coupled.

General

Opersting lemperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}+5 \%,-10 \%, 48$ to $400 \mathrm{~Hz}, 100 \mathrm{VA}$ max.
Wolght: nel, $4 \mathrm{~kg}(8.8 \mathrm{lb})$. Shipping. $6.5 \mathrm{~kg}(14.6 \mathrm{lb})$.
Dlmensions: 200 mm wide. 142 mm high. 330 mm deep $\left(7.5^{\circ} \times 5.6^{\circ}\right.$ $\times 13^{\prime \prime}$).

Accessories:

Price
15179A adapter frame. Rack mounting for two units
Model number and name
8012B Puise Generator
$\$ 995$
80138 Pulse Generator
\$825

Versatile source, unique level controls

Model 8015A

\author{

- 50 MHz repetition rate - Counted burst option, 0-9999 pulses
 - 2 output channels
 - 16 V amplitude and offset
 - Ideal for MOS, TTL and analog applications
}

The 8015 A is a 50 MHz dual channel pulse generator wilh variable Iransilion limes, designed for optimum flexibility in the control of any pulse parameter. Each of the two independent output amplifiers ean generate $\pm 16 \mathrm{~V}$. A unique way of avoiding the usual offisel and amplitude adjustarent problems is provided by two independent pulse level sliders; with the aid of a calibrated seale the slider positions determine the pulse "high" and "low" Ievels.

In addition to control of pulse timing and amplitude paramelers, is is possible to delay the pulse from channel 8 with respect to the pulse from channel A. For unalyzing critical timing conditions or generating 2-phase clocks this 8 Delay mode offers continuous pulse delay between the two channcls.

It is also possible to parallel both output amplifiers using $\mathrm{A}+\mathrm{B}$ mode, which doubles the outpul current and enables a maximum outpul swing of 30 V (within a $\pm 16 \mathrm{~V}$ window). The combination of $\mathrm{A}+\mathrm{B}$ mode and B Delay mode logether with variable transition umes and individual selection of Normal/Complement Format for each oulpul permits complex waveforms to be generaled, waveforms such as throelevel signals, specinal codes or simulated biomedical signals.

A range of options extends the 8015As usefulness and offers new solutions to applications problems. Gencration of an exact number of pulsos, for exampla is difficult to achieve by the usual techeiques, With the pulse burst option (002), however, it is possible to generate an exact number of pulses (predecermined by thumbwheel iwitehes) at rep. rates up to 50 MHz . This is achieved by means of a buill-in presea counter. A pulse burst can be initiated by an external signal or pushbutton control thus enabling continuous, multiple or single burst operation.

Direct acoess to the linear output amplifiers (option 004) permits any TRL or even low level analog signal to be converted to MOS/CMOS levels. While one output delivers the normal pulse generator signal, the other can be used to amplify a PRBS/word generator oulpul signal forming a lest set for full parametric testing of MOS/CMOS shift registers, memories etc.

A safc and simple way to drive TIL devices is to use a separate TTL output with fixed levels, while all other parameters remsin variable coincident with channel A oulput. This TTL output, available as option 005 , requires no external termination because the internal 50 ohm source impedanot ensures pulse fidelity when connected to the lest circuit.

A partucular probiem with CMOS devices is that the input clock/data amplitudes must never exceed the power supply volitage or the CMOS eircuil will be destroyed. This means that if the supply voltage is varicd as part of a paramulric test, the clock/data levels muse be adjusted first. An option that completely eliminates this problem is the 8015A upper oulput level Iracking option (006). This option enables the CMOS clock/dato signals to track the CMOS power supply voltage. Thus when carrying oul CMOS parametric lests at varying supply vollages. the signal upper levels automatically track the supply voluage and device safely and proper inpul levels are ensured. The test circuit is safe even if the power supply is switehed off.
The 8015A can be used as parn of an automatic lest system using the remote control option (003). This option enables the range and vernier sellungs for the pulse period, delay, width, Iransition times and output levels to be remolely controlled. Range control is achieved by contact elosure to ground using TTL compatible levels. Vernier con(rol is achicved by voltage or current or resistor. Remote or local centrol of each parameter is selected using the appropriate front pancl range switch. Both upper and lower signal levels of each outpul channel can be conisolled independently.

Specifications

Pulse characterigtica

Trarrition Imes: 6 ns 100.5 in four ranges (sec lable). Common for leading and irailing edges wishin each range up to maximum ratios of 100:1 or $1 / 100$.
Non-IInearlty: Iransitions > 30 ns : < 5% of pulse amplitude.
Overshoot and ringing: $\pm 5 \%$ of pulsc amplitude, possibly increasing $< \pm 10 \%$ at minimum amplitude.
Preshoot, droop: <5\% of pulse amplitude.
Pulse widih: <10 ns to 1 s in four ranges.
Widlh jiter: $<0.1 \%+50$ ps for any width selting.
Maximum ouppul: $\pm 16 \mathrm{~V}$.
Maxlmum duly cycle: $>75 \%$ from 1 Hz to $1 \mathrm{MH}_{2}$, deereasing to $\geq 50 \%$ al 50 MHz . Square wave; $50 \% \pm 5 \%$ from $1 \mathrm{~Hz} 101 \mathrm{MHz}, \pm 15 \%$ al 25 MHz .
Pulse delay: 20 ns (+25 ns fixed) to 1 s . in fous ranges,
Delay jitter: <0.1\% +50 ps for any delay selling.

Hode	Source/Load Impedance	Jransifion Times	Upper Level Yoltage $\left\langle\mathrm{U}_{\mathrm{UL}}\right.$)	Lower Level Voliaze (V_{LL})	Uppes Level Current (1_{00})	Lower Level Cuirenl ($\mathbf{V}_{\mathbf{L}}$)	$\begin{gathered} V_{u t}-V_{u} \\ \operatorname{Max}_{\mathrm{ax}} \mathrm{Nin}^{2} \end{gathered}$	$\underset{\text { Mar }}{\mathrm{Iut}_{u} \cdot \mathrm{l}_{\mathrm{L}}}$	$\begin{aligned} & \text { Mzx. Rep. } \\ & \text { Rate } \end{aligned}$
Asepl	$\begin{gathered} 50 \Omega / 50 \Omega \\ 50 \Omega / \mathrm{k} \Omega \text { or } 1 \mathrm{kN} / 50 \Omega \end{gathered}$	$\begin{array}{r} -6 \pi s-0.5 \mathrm{~s} \\ 8 \pi 5-0.5 \mathrm{~s} \end{array}$	$\begin{gathered} +8 V t 0-7 V \\ +18 V t 0-14 V \end{gathered}$	$\begin{gathered} +7 V 10-8 v \\ +14 V 10-16 V \end{gathered}$	$+320 \mathrm{~mA} \mathrm{10}-280 \pi \mathrm{~A}$	+280 mA lo - 320 mA	$\begin{gathered} 8 V 1 V \\ 16 V 2 V \end{gathered}$	320 mA 40 mA	50 MHz 40 MHz
$A+8$	$50 \Omega / 50 \Omega$ $50 \Omega / 1 \mathrm{k} \mathrm{\Omega}$ or $1 \mathrm{hn} / 50 \Omega$	$\left\lvert\, \begin{aligned} & 15 \mathrm{~ns}-0.5 \mathrm{~s} \\ & 15 \mathrm{~ms}-0.5 \mathrm{~s} \end{aligned}\right.$	$\begin{aligned} & +16 V t o-14 V \\ & +16 V V_{0}-12 V \end{aligned}$	$\left\lvert\, \begin{aligned} & +14 \mathrm{~V} 10-16 \mathrm{~V} \\ & +12 \mathrm{~V} 10-16 \mathrm{~V} \end{aligned}\right.$	+640 mA $10-560 \mathrm{~mA}$	+ $560 \mathrm{~mA} 10-641 \mathrm{~mA}$	$\begin{array}{ll} 18 \mathrm{~V} & 2 \mathrm{~V} \\ 30 \mathrm{~V} & 8 \mathrm{~V} \end{array}$	680 mA 80 mA	$\begin{aligned} & 20 \mathrm{MHz} \\ & 20 \mathrm{MHz} \end{aligned}$

Fepetition rate and trigger
Repetilion rate: 1 Hz to 50 MHz in rour ranges (sar table)
Perlod jitier: <0.1爵 +50 ps for any rep. rate scting.
Square wave: 0.5 Hz to 25 MHz .
Double pulse: 25 MHz max. (simulates 50 MHz).
B Deley: 20 MHz max. Channel B pulse delayed on channel A pulse by amount set on delay controls.
Trigger oulput: de couples. \sin (lyp.) source impedance. delivering $\geq 1 \vee$ across son load. 9 ns ± 5 ns wioth.
Externally controlled aperation
External input: $50 \mathrm{R} \pm 10 \%$ or $5000 \pm 10 \%$, de coupled.
Maximum input: $\pm 7 \vee$ (50Ω input), $\pm 25 \vee$ (5000 input).
Trlager polarity: positive or negative slope selectable.
Threshold level: +1 V to -1 V (50Ω input impedance) or +10 V to -10 V (500n input impedance).
Sensitivity: 50 in input impedance, sinewaves 1 V p-p. pulses $\pm 0.5 \mathrm{~V}$: 5008 inpul impedance, sinewaves $10 \mathrm{~V}-\mathrm{p}$, pulses $\pm 5 \mathrm{~V}$.
Minimum pulse wldth; 5 ns in Ext. Trig., 20 ns in Bursl mode.
Delay: < 50 ns between trigger inpul and trigger output.
Manual bution: push to activate input.
External triggering: manual or 0 to 50 MHz signals, < 30 ns delay be tween rigger input and trigger output.
External wldth: oulput pulse widit and rate determined by width and ratco of drive signal.
Synchronous galing: gating signal urns on repetition rate. Lasi pulse completed ceven if gate ends during pulse. Max. repetition rate: 40 MHz .

Optlons

Optlon 001 single output: single channel version (deletes chasnel B) Option 002 pulse burs!
Number of pulses: I-9999
Burst trigger source: extermal signal or manual.
Repetition rate: 0 to 40 MHz
Minimum time between bursts: 200 ns
Trigger: all spccifications as for EXT INPUT cxcept minimum width: $\geq 20 \mathrm{~ns}$.
Opllon 003 remote control
Timling rangea:
pulsc period
pulse delay controlled by contact closure to ground.
pulse width TTL compatible - logic " 0 ": 1 in $=-2.4 \mathrm{~mA}$
iransilion times

$$
\begin{aligned}
& \operatorname{logic} " 1 ": \\
& \operatorname{lin}_{\text {in }}=-6 \mathrm{~mA} \\
& V \text { in }=0 V
\end{aligned}
$$

Tlming verniers:

pulse period
pulse delay
pulse width
transition times

Time max.	Time min.
-1 D)A	-0.1 mA
OV	9 V
08	90 ks

Absolute maximum input current Ilmits: 0 mA to -1.1 mA
Absolule maximum input voltege ilmits: +10 V to 0 V Oulput levala:

Input conitrol vallage	Output level
Upper level conliol sel to max $+(+8 \mathrm{~V})$	+8 V
$0(0 \mathrm{~V})$	0 V
max $-(-7 \mathrm{~V})$	-7 V
Lower level conliol sel to max $+(+7 \mathrm{~V})$	+7 V
$0(0 \mathrm{~V})$	0 V
$\max -(-8 \mathrm{~V})$	-8 V

[^16]Minimum difference between upper level and lower level con-
trol voltage:) V (for I V oulpul swing)
Absolule maximum inpul voltage: $\pm 20 \mathrm{~V}$
Input impedance: $10 \mathrm{k} \Omega \pm 5 \%$
Setiling time to within 5% of final value: $400 \mu \mathrm{~s}$

Option 004 direct output amplifter access
Inpul impedance: 50 ohms $\pm 5 \%$
Operation: asymmetrical
Input voltage for max, output: 2.5 Vp -p (bascline 0 V, top +2.5
V).

Absolute maximum input vollage: $\pm 5 \mathrm{~V}$.
Qain: continuously variable between 0.8 and 6.4 by level controls
(Zs = 50 ohms, no load).
Frequency response (-3 dB): $\mathrm{Zs}_{s}=50$ ohms, no load -
0 to 50 MHz

$$
Z_{s}=50 \mathrm{ohms}, 50 \text { ohm load }-
$$

01080 MHz
Polarlty: inverting for NORM, non-inverting for COMPL.
Note a BCLAY mode cannot be used with this uptron.
Optlon DOS extra TTL output
Logle 1 level: 4.5 V min.
Logic 0 level: 0.2 V max. (20 mA sink current)
Source Impedanee: 50 uhms
Pulse delay: zero, coincident with channel A.
Pulee output: normal/complement as sclecled by channel A.

Option 006 upper output leval tracking
Input voltage: +2 V to +16 V
Absolute max. Input voltage: +20 V
Absolute min. input voltage: 0 V
Inpul Impodance: $10 \mathrm{k} \Omega \pm 5{ }^{\circ}$
Upper level accuracy: $\pm 5 \%$ of control voltage.
Lower leval accuracy: $0 \mathrm{~V} \pm 250 \mathrm{mV}$
Settiling time to $\pm 5 \%$ of final value: $400 \mu \mathrm{~s}$

General

Operating lemperalure range: $0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}$.
Power: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ or $240 \mathrm{~V},+5 \%$ - $10 \%, 48$ to 440 Hz 180 VA maximum.
Weight: net, 11 kg (24.26 lb). Shipping, 12 kg (26.46 lb).
Dimenelons: 426 mm wide. 145 mm high, 380 mm deep, ($16 \% \mathrm{in} . \mathrm{X}$ syisin in, $\times 15 \mathrm{in}$).

Optlong and accessories 001 ': single channel version	$\begin{aligned} & \text { Price } \\ & \text { less } \$ 400 \end{aligned}$
002*: pulse burst	add \$450
003*: remoic comirol	add $\$ 895$
004: direct output amplilier access	add \$135
005: cxtra TTL output	add \$165
008*: upper outpul levol tracking	add \$110
907: Fromt Handle Kit	add \$15
908: Rack Flange Kil	add \$10
909: Rack Flange \& Fronı Handlc Combination Kit	add \$20
8015A Pulse Generalor	\$2250

8015A Pulse Generalor
$\$ 2250$

Very fast \& variable transitions, 1 ns to 0.5 ms Model 8082 A

- <1 ns variable transition times
- 250 MHz repetition rate
- Ultra-clean 50 ohm source
- Switch-selectable ECL levels
- $\pm 5 \mathrm{~V}$ outputs

The 8082A is the top of the Hewlett-Packard pulse generator produet lìne. 115250 MH . repectition rate, variable aransition times down to I ns and low renclance 50 ohm souree enable $1 t$ to meet the stringent demands of today's fust logic families. Although a highly sophisticated instrument, the 8082 A is still extremely casy to operate because of is logical front pancl layout and switch seleclable ECL outpui levels.
The low reactance 50 ohm source impedance of the 8082 A helps provide a clean pulse where it's needed - at the inpul of the device to be tested. When operating without an external termination, the low reaclance of the 8082 A 50 ohm suurce absorbs 98% of reflections from signals of up to $\& \mathrm{~V}$ amplitude leaving only 2 E signal distortion.
Custom-made hybrid IC's are used extensively in the design of the 8082A. These IC's, manufaclured by HP, eliminate the need for fans. reduce the power consumption and contribute to the 8082A's high reliability.

Specifications

Pulse characteristics

(50Ω source and load impedance)
Transition límes: <1 ns-0.5 ms (10\% 1090%) in 6 ranges. < 750 ps (20\% to 80\%), Leading/trailing coges controlled scparately on fastest range. independently variable over I:10 ratio on other ranges.
Overshool and ringing: $S \pm 5 \%$ of pulse: amplitude may increase to $\pm 10 \%$ with amplitude vernier CCW,
Preshoot: $\leq \pm 5 C_{i}^{\prime}$ of pulse amplitude.
LInearlty: linerrity aberration for both slopes $\leq 5 \%$ for transition limes $>5 \mathrm{~ns}$.
Output: maximum amplitude is $5 V$ from $50 n$ into 50Ω. Maximum outpul volage is $\pm 5 \vee$ (amplitude + offser).
Offer: $\pm 2 \mathrm{~V}$, into 50 O .
DC-zource impedanca: $500 \pm 5 \%$.
Reflection coerficlent: rellection is 2 多 (ypical for steps with $\{$ ns rise time applied to oulpul connector on all amplitude ranges except 5 V range. On the 5 V range. the reflection may be 15 cic.
Output protectlon: cannot be damaged by open or shors circuits or application of exl $\leq \pm 6 \mathrm{~V}$ or $\pm 200 \mathrm{~mA}$ independent of control setLing 5 .
Altenuator: iwo separate three slep-allenuators reduce the outpuls io
1 V . Vermier is common for bolh outputs and reduces the outpul 100.4 V minimum. A further position provides ECL-compalible ourpuls < $-0.9 \vee$ to $-1.7 \vee$ typ. open circuit).
Timing
Repetflan raite: 250 MHz to IkHz in 6 ranges.
Perlod |ltter: <0.1\% of setling +50 ps.
Delay: $2 \mathrm{~ns}-0.5 \mathrm{~ms}$ in 5 ranges plus typ. 17 ns fxd, with respect to trigger outpur. Duty cycle $>50 \%$.

Delay jitter: <0.1\% of selling +50 ps .
Double pulse: up to $125 \mathrm{MH} /$ max. (simulates 250 MHz).
Pulse width: $<2 \mathrm{~ns}-0.5 \mathrm{~ms}$ in 6 ranges.
Widih jitter: $<0.1 \%$ of selting +50 ps .
Width duty cycle: >50\%.
Square wave: delay and double pulse are disabled, max. Rep. Rale 250 MHz . Duly cycle is $50 \% \pm 10 \%$ up $10100 \mathrm{MHz} 50 \% \pm 15 \%$ for $>100 \mathrm{MHz}$.
Trigger outpul: negative going Square Wave (50% duty cycle yp.) $>500 \mathrm{mV}$ from 500 into 50Ω. Internal 50Ω an be switched olf by slideswitch on PC-board. Amplitude up to I V inco 501 up to 200 MHz .
Trlgger outpul protection: cannol be damaged by shon cireuil or application of external $\pm 200 \mathrm{~mA}$.
Externally controlled operalion

External Inpul

Impul Impedance: $50 \Omega \pm 10 \%$. DC coupled.
Maximum Input $\pm 6 \mathrm{~V}$.
Trigger level: adjustable - $1.5 \vee 10+1.5 \mathrm{~V}$.
Slope conlrol: positive, negative or manual selectable. In the manual position all ext, functions can be controlled by push button. Button pushed in simulates \&्वn "on-signal."
Sensitlvity: sine-wave $>200 \mathrm{mV}$ p-p pulses $>200 \mathrm{mV}$.
Repetition rate: 0 to 250 MHz .

Ext.-controlled modes

Ext. trigger: there is approximately 7 ns delay between the external input and the Irigger outpul. Rep. rate is externally controlled (is eriggered by external sienal). Trigger outpul provides the pulseshaped inpui signal. Square wave mode is disabled.
Synchronous gating: gating signal lurns rep. rate genesalor on. Lasi pulse normal widih even if gate ends during pulse.
Exiernal width: output pulse width determined by width of drive inpuc. Rep. rate and delay are disabled. Triger ouipul provides shaped inpul signal.

General

Power requiremente: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}(+5 \%,-10 \%) 48-$ 440 Hz . Power consumprion 85 VA max.
Welght: net, 7.9 kg (17.44 lb). Shipping $8.9 \mathrm{~kg}(19.63 \mathrm{lb})$.
Dimensions: 426 mm wide, 145 mm high. 380 mm deep ($16 \frac{1}{\mathrm{~h}} \mathrm{in} . x$ s1/1s in. $\times 15$ in.).

Optiong	Price
Option 907: Front Handle Kil	add $\$ 15$
Option 908: Rack Flange Kit	add $\$ 10$
Option 909: Rack Flange \& Front Handle Combina-	
ion Kit	add $\$ 20$
8082A Pulse Generator	$\$ 3355$

100 MHz repetition rate

- Extremely linear slopes
- Variable transition times down to 2 ns.

$1 \mathrm{~ns} / \mathrm{cm}$

$0.5 \mathrm{~V} / \mathrm{cm}$
1 GHz bandwidth

The 8007 B is a high speed pulse generator that is woll suited for STTL and ECL applications.
The outpul can be sel 10 positive or negasive polarity, complement or symmetrical to ground. A high de-offset of up $10 \pm 4 \mathrm{~V}$ is also included.

External triggering and synchronous gating are provided. The irigger level is adjustable for all externally controlled modes with the slope polarity selectable. This is very useful for avoiding malfunctions caused by noise and ringing on the external trigger signal.

In "External Widih" mode the external input and pulsc ousput have equal width. Transition times and amplitude of the output pulse can be sel by the front panel coniruls. This mode is useful for shaping NRZ signals, as the width information is passed on to the output pulse unchanged.
The "Widih Trigger" mode is suilatle for RZ signal shapiog. Delay, width, transition times and amplitude are determined by the front panel controls.

Specifications

Pulse characteristics

(50Ω source and load impedance):

Traneltion Hmes: <2 ns to $250 \mu \mathrm{~s}$, three ranges (comman for boith transition times). Independent verniers for adjusting leading and trailing edge within each range up 10 maximum ratios of $1: 50$ or $50: 1$.
Linearity: maximum deviation from a straght line between 10% and 90% points $\leq 5 \%$ of pulse amplirude.
Preshoot, overshoot, ringing: < $\pm 3 \%$ of pulse amplitude.
Pulse width: < 5 ns to 50 ms in five ranges. Verrier provides continuous adjustment within ranges.
Width jiter: $<0.1 \%$ on any width selting.
Maximum dufy eyele: normal >50\%; complement approx. 100%.
Amplitude: $5 \mathrm{~V} \max$ (10 V across open circuii) 100.2 V in four rang. es: vernier adjustment within ranges. Pulse can be switched off.

Pulse output: + or - polarily seleciable: normal, complement, or symmerrical 10 ground.
Source impedance: $50 \Omega \pm 4 \Omega$ shunted by typ. 10 pF .
$D C$-ofiset: $\pm 4 V$ across $50 n$ load. Independent of amplitude setuing. can be switched off.
Pulse delay: < 30 ns 1050 ms with respeet 10 trigger oulput. Five ranges, with continuous adjustment within ranges.
Deiay fitter: <0.1\% on any delay selting.
Repetition rate and trigger
10 Hz to 100 MHz in 5 ranges.
Continuous adjustment within ranger.
Perlod jitier: <0.1\%.
Double pulse: available only up to pulse rate seting of 50 MHz , representing an outpul pulse rate of 100 MHz .
Trigger output $>+1 V$ across $30 \Omega, 4 \mathrm{~ns} \pm 2 \mathrm{~ns}$ wide.
External triggering (0 to 100 MHz),
Delay: approx. 15 ns between tig. input and tig. output,
Manual: fromt panel pusibibution for single pulse.
Exiernal width and width trigger
External width: output pulse width determined by width of drive input.
Width trigger: external drive inpul switched to the width generator. Pulse width delermined by frome panel width selting.
Rate generatar: provides rigger pulses independent of drive input.
Synchronous gating
Gating signal turns generalor "on." Last pulse is completed even if gate ends during pulse.
External inpytit
Impedance: 50 R , de-coupled. Max input $\pm 5 \mathrm{~V}$.
Levol: adjustable from $+1 V$ to -1 V. Polarity: + or -
Senaltivity: sine waves I V prp: pulses IV.

General

Operating temperature range: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Power requirements: $\{15$ or $230 \mathrm{~V}+10 \%,-15 \%, 48$ to 440 Hz .100 VA (maximum).
Weight: net, $8 \mathrm{~kg}(17.6 \mathrm{lb})$. Shipping, $9 \mathrm{~kg}(19.8 \mathrm{lb})$.
Dimensions: 425 mm wide $\times 140 \mathrm{~mm}$ high $\times 344 \mathrm{~mm}$ deep ($161 / \mathrm{m}^{\circ} \times$ $\left.51 / 2^{\prime \prime} \times 133^{*}\right)$.

Options
Price
808: Rack Flange Kit add $\$ 10$
g007B Pulse Generator

```
- Dual outputs, +10 V and -10 V - 50 ohm/high impedance source, selectable
- TTL output
```

- 50 ohm/high impedance source, selectable
- Five modes of operation

The 80058 is a gencral purpose, Iriple outpul pulse generator. This versatile instrument has all parameters variable and produces simultancous positive and negative pulses. It also has a TTL outpul which has all parameters variable except amplitude. This feature, logether with the normal/complement facility. greally improves the ease of operation. Features which contribute to the mexibility of the 8005 B are synchronous and asynchronous gating. double pulse and square wave modes and the selectable source impedance.

Specifications

Pulse characteristics

Internal	Logd	Rmplitude Range Selectad	Amplliude	Ofisel	
50,				Outpul (+)	Outpul (-)
ON	509	1.25/2.5 V	300 mV io 1.25 V	$\pm 2 V$	$\pm 2 \mathrm{~V}$
ON	High 2	$125 / 2.5 \mathrm{~V}$	600 mV to 2.5 V	$\pm 4 V$	$\pm 4 \mathrm{~V}$
OFF	50Ω	1.25/2.5V	600 mV 102.5 V	$\pm 2 \mathrm{~V}$	$\pm 2 \mathrm{~V}$
				to $\pm 4 \mathrm{~V}$	$10 \pm 4 V^{2}$
ON	50Ω	$5 \mathrm{~V} / 10 \mathrm{~V}$	1.25 V 105 V	$\pm 2 \mathrm{~V}$	$\pm 2 \mathrm{~V}$
ON	High 2	$5 \mathrm{~V} / 10 \mathrm{~V}$	2.5 V 1010 V	$\pm 4 \mathrm{~V}$	$\pm 4{ }^{4}$
OFF	50Ω	$5 \mathrm{~V} / 10 \mathrm{~V}$	2.5 V 1010 V	$\pm 2 \mathrm{~V}$ to	$\pm 2 \mathrm{~V}$ to
				OV. $-4 \mathrm{~V}^{2}$	$0 V^{2}+4 V^{2}$

1 The maximumb sulput (angolitude + oftsel) is 10 Y .
2. Offet tange with amplivide vernier CCW is $\pm 2 \mathrm{~V}$. Oisee fange increases as shown wher ampilude verater a CW.

Transitlon times: ≤ 10 ns to 2 s in six ranges. Separale verniers provide independent control of leading and trailing edges within each range. Max leading/Irailing cdge rauio. 1.30 or $30: 1$.
Linearlty: for transition times $>30 \mathrm{~ns}$, straight line deviation is $<\mathbf{4} \%$ of pulse amplizude.
Overshoot, preshoot, ringing: <S of pulse amplitude.
Pules width: <25 ns $-3 \mathrm{~s}, 5$ ranges. Adjustment within ranges.
Widin litter: <0.1\% of any width serting.
Maximum duty cycle: $>80 \%$ for repetition rates from 0.3 Hz ia I $\mathrm{MHz}>50 \%$ from 1 MHz to 20 MHz . Up to 100% in somplement.
Square wave: 0.15 Hz to 10 MHz Duty cycle: $50 \% \pm 5 \%$ for repelition rales $\leq 1 \mathrm{MHz}$ increasing $1050 \% \pm 15 \%$ at 10 MHz .
Pulse delay: <100 ns to 3 s (with respeel to (rigger oulpul) in five ranges. Continuous adjuslment within each range.
Delay jilter: <0.1\% of any delay scuing.
Pulae outputs: simultaneous pos., neg and TTL compatible outputs. Maximum pulse amplitude: (from positive and negative outpuls) s V, with internal 50 ohms and external 50 ohms, 10 V with internal 50 ohms and external high impedance, or with internal high impedance and exiernal 50 ohms.

Output protectlon: cannol be damaged by short circuit or application of external voltages $\leq \pm 10 \mathrm{~V}$ (al $25^{\circ} \mathrm{C}$ ambient) independent of control sctings.
Source impedance: 50 chms $\pm 10 \%$ (shunted by lyp 20 pF) or oul. put impedance of a current source, switch selectable.
TTL compalible oulput; bued +4.6 V across open circuit.
Source impedence: 50 ohms lyp.
Pulse formate: nomal or complement, switch sciectable.

Repetition rate and trigger

Hepetition raie: 0.3 Hz to 20 MHz in five ranges. Vernier provides continuous adjustment within each range.
Perlod Iltter. < 0.1% of any period selling
Double pulse: 10 MHz max. Sinulates 20 MHz .
Trigger outpul: posiLive pulscs $>2 \mathrm{~V}$ amplitudi across exicenal so ohm load. Pulsc width >6 ns.

Externaliy controlied operation

External triggealng
Repelition rate: de to 20 MHz .
Delay: approx 35 ns trig. input 10 (rig. oulpul.
Manual: push button for singe pulse (iwo in double pulse).
Trigger Input
Maximum input: $\pm 10 \mathrm{~V}$: impedance: approx. I $\mathrm{k} \Omega$ dc-coupled.
Senslifity: sinc waves; 2 V p-p. Pulses / V puak.
Polarly; positive or negative. switch selcelable.
Minimum pulse width: 10 ns .

Galing

Synehronous: gate signal tums on repuition rate. Time between start of gate and firsi pulse delined by delay control Lasl pulse is always completed even if gate ends during pulse. Synchronous trigger pulses occur for duralion of gatc.
Asynchronous: gate signal controls output of ratc generator.

Gate Inpul

Inpul impedance: approx. I ks, de coupied.
Gate amplituder: 2 V to 20 V (max), polarily: megative.

General

Operaling temperature range: $0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}$
Power: 115 V or $230 \mathrm{~V} .+10 \%,-15 \%, 48-440 \mathrm{~Hz}, 180 \mathrm{VA} \max$
Weighl: nel, 7 kg (16 lb). Shipping, $9 \mathrm{~kg}(20 \mathrm{Jb})$.
Dimenslong: 425 mm wide, 140 mm bigh. 336 mm detp, ($16 \frac{1}{4} \mathrm{in} . ~ X$ $51 / s$ in. $\times 131 / s$ in.).

```
Options Price
908: Rack Flange Kil add $10
8005B Pulse Generator $1360
```


PULSE GENERATORS Simple operation, flexible output parameters Model 6002A 8 8004A

- 10 MHz repetition rate
- 1.5 ns transition times
- Double pulse and 2 V offset

8002A

The 8004 A generales pulses with exuemely fast Iransition limes. Both pulse width and delay are variable down to zero. A double pulse mode provides convenieni lest signals for logic and memory circuils and increases the mar. rep. rate to 20 MHz . The $\pm 2 \mathrm{~V}$ de offsel is independent of pulae amplitude controls. A 50 ohm souree ensures clean pulses for ECl-propagetion delsy meashocnients.

Specifications

Pulse characteristics (50Ω source and load impedance)
Transition times: < 1.5 ns .
Preshoot, overshoot, ringing: < 5 \% of pulse amplitude.
Amplifude: 5 V mas. seven-step allenuator dow'n to $<0.02 \mathrm{~V}$.
Polarity: + or - selectable.
DC offset: $\pm 2 \mathrm{~V}$ across 50)! load; can be switched on:
Pulse width: 0 to 1 ms in six runges. Adjustable in ranges.
Maximum duty cycle: $>50 \%$ ($100 \mathrm{~Hz}-$) MHz), $>25 \%$ ($1-10 \mathrm{MHz}$).
Width jitter: <0.1s on any widh setting, plus 50 ps.
Pulse delay: $0-1$ ms (with respect to trig. oulpul) in 5 ranges.
Delay fither: $<0.1 \%$ on any delay setting.
Repelition rate and trigger
Free running: 100 Hz to 10 Mizz . five ranges. Period jilter: $<0.1 \%$.
Double pulse: increases max. rate 1020 MHz .
External triggering: 0 to 10 MHz .
Senslitvity: sine waves 2 V p-p: pulses I V peak. >10 ns: maximum inpul $\pm 10 \mathrm{Y}$. Deley: approx. 125 ns trig. impur 10 trig, output (down to 35 ns with slide switch on board).
Input impedance: approx. I k Ω de coupled.
Manual: pushbution for single pulse.
Trigger oulput: ampl. $>+2 \mathrm{~V}$ across 50 n . is ns $\pm 10 \mathrm{~ns}$ wide.

Gating

Synchronous gating: gating signal lurns genctator "on". Last pulse is completed even if gate unds during pulse.
Asymehronous gating: gating signal furns output pulse "on". Trigger outpul always available: last pulse ends with gate.
Gate input: -2 V to -20 V enabling.
Inpul ímpedance: approx. I tul. de coupled.
General
Power: 115 or 230 V. $+10 \%$, $15 \% .50$ to 400 Hz .35 VA.
Weight: nct. $3.2 \mathrm{~kg}(7 \mathrm{lb})$. Shipping. $4.1 \mathrm{~kg}(9 \mathrm{lb})$.
Dlmensions: 197 mm wide $\times 165 \mathrm{~mm}$ high $\times 279 \mathrm{~mm}$ deap ($71 / 4 \times$ $61_{2} \times 11^{\prime \prime}$).
Model number and name
Price
8002A Pulse Generator
$\$ 950$
8004 A Pulse Generator
$\$ 1300$

Figure 1. Channels A and B combined

The 8010A is is very versatile pulse generalor because it is actually (wo pulse generators in one. Alt pulse parameters exocpt repetition rate are generated separately for each channel. The two outputs can be used separately for digital logic applizations or can be combined at the oulput amplifiers to provide extremely complex wavelorms for analog applications. The repetition sate can be iriggered separately for each channcl thus enabling one channel to be controlted by the repelition rate generator while ite other is triggered extemally. Variable paramelers, high stabilits and accuracy, and fully calibrated vomiers (except for offset) enable exact pulse seltings to be repeated accurately and easily.

Specifications

Pulse characteristics (with 50Ω load impedance)
Transition times: sep. outputs: <i0 ns to is in eight ranges. Independent verniers control leading and trailing edge within each range up to a max. ratio of $1: 10$. In $A+B$ mode <12 ns to Is . With 10 V outpul < 20 ns to 1 s .
Aceurecy: $\pm 10 \%$ of selling $\pm 2 \%$ of full scale $\pm 4 \mathrm{~ns}$.
Linearity: for transition time $>30 \mathrm{~ns}$. straight line deviation is $<4 \%$ of pulse amplitude.
Overshoot and ringing: < 5% of pulsc ampliivde.
Pulae width (A and a): <20 is to Is cight ranges, conlinuous adjustment wilhin ranges.

Accuracy: $\pm 10 \%$ of setiong $\pm 2 \%$ or full scule $\pm 4 \mathrm{~ns}$.
Maximum duty eycle: $>80 \%$ for repeution rates from 1 Hz to 1 $\mathrm{MHz} .>50 \%$ from 1 to 10 MHz .
Width ilter: < 0.1% on any wiath scuting.
Maximum oulput: 5 V sep., 10 V combined (channel B).
Attenualor: seven-slep allenuator reduces output to 0.02 V .
Accuracy: $\pm 10 \%$ of selting $\pm 2 \%$ of full scalc.
Source impedance: $5012 \pm 10 \%$ shunted by typ. 20 pF ,
DC-offsel: $\pm 2 \mathrm{~V}$ across 50n load: can bc swilched off.
Pulse delay: (A and B) 50 ns 10 I s delay related to 1 rig. output in 8 ranges. Accuracy: $\pm 10 \%$ of seting. $\pm 2 \%$ of full scale $\pm 4 \mathrm{~ns}$. Jitter: $<0.1 \%$ of selting.
Repetition rate and trigger
Free running: $1 \mathrm{~Hz}-10 \mathrm{MHz}$ in seven ranges.
Accuracy: $\pm 10 \%$ of setling $\pm 2 \%$ of full scalc.
Period lifter: <0.1皆
Square wave: $1 \mathrm{~Hz}-10 \mathrm{MHz}$. Symmerical to ground.
Double pulse: channel A and B independently selectable.
External triggering
Rep, rate: 0 to $10 \mathrm{MHz} . \div 2$ for square wave oulpul.
Trigger Inpuf: sine waves I V p-p. Pulscs $0.5 \mathrm{~V}, \geq 20 \mathrm{~ns}$.
Inpul Impedanca: 1.0 k
Delay: approximatcly 30 ns trig. inpul to trig. oulput.
Manual: pushbullon for single pulse. Sup. triggering for both channels: spikes +2 V amplitude. $>50 \mathrm{~ns}$ widih. Ingul impedance 50Ω (inputs on rear panel).
Trigger output
Amplitude: $>+2 \vee$ across 50Ω. Is ns $\pm 10 \mathrm{~ns}$. $50 \Omega \mathrm{impcdancr}$.

Gating

Synchronous: - 2 V to -10 V signal turns rate gencrator "on."
Asynchronous: -2 V to -10 V signal surns the output pulse "on." Trigger oulpul-always available.

General

Power: 115 or $230 \mathrm{~V}+10 \%$, $-15 \% 5010400 \mathrm{~Hz} 200 \mathrm{VA}$.
Dlmenslons: 425 mm wide $\times 184 \mathrm{~mm}$ high $\times 466 \mathrm{~mm}$ deep ($161 / s^{*} \times$ $\left.71 / 4^{\prime \prime} \times 181 / y^{\prime \prime}\right)$.
Options
008: Rack Flange Kit add $\$ 10$
B010A Pulse Generator

pULSE GENERATORS
 High pulse power: $100 \mathrm{~V}, 200 \mathrm{~W}$ output
 Model 214A

- Wide amplitude range; 0.08 V to 100 V
- 15 ns iransition times
- 1 MHz repetition rate
- Double pulse mode

The 2l4A is a well-proven pulse generator with a very wide range of applications. The high 200 watts of pulse power (2 amp peak, ± 100 volts into 50 ohms) and fast rise time of is ne are particularly suited for testing current-driven devices such as magnelic cores, as woll as high-power modulators. The fast risu and fall times combined with high power output pulses facilitate checking switching ume of high power semiconductors. The positive or negalive pulse oufpll, with identical characterislies, provides a simple means of checking cither nery or pnp type transistors. By gating the Model 214A output, a burst of pulses may be obiainod for making compuler logic measurements. The double pulse feature may also be used for pulse resolution lesls of amplifiers and memory cores. Becausc of ils athility to provide a 100 V amplltude oulput pulse, the 2I4A is ideally atited as a Irigger souree in high power applications where a poor signal-id-noise ratio is present.
Source impedance is 50 ohms on all bul the highest (100 -volt) range, 10 minimize errors caused by re-relloctions when operating inio unmatched loads. At lower oulput levels (down to 80 mV), the sise tione is less than 11 ns (typically less than 10 ns). Carefully controlled pulse shape, pulse rate and widh, and minimum pulse jiller emsure accurate and dependable test results. Mil churacteristics of the putse waveform. including overshool, preshoot, pulse droop, and pulse top variations. are completely spocified. and pulse irregularities are kepl 10 a minimum.
An external urigeer source of de to 1 MHz can be used instead ol the inlernal rate generator to produce the output pulses. Positive or nega. live trigger sígnals of 0.5 voles peak may be used and irigger slope and level may be selected to determine the Iriggering point on the wave form. A single pulse may be obtained from an internal circuit each time a manual button is pushed. Gating of pulses is easily achicved by applying an external signal and an oulput occurs only when the gating signal reaches a positive 8 volt level. Three modes of pulse operation allow: (I) setting of the output pulse to occur from 01010 ms before (advance) the (rigger output. (2) setting of the ouifpur pulse to cu:cur from 0 to 10 ms after (dclay) the trigger oulput, of (3) a double pulse oulpur with variable spacing between the iwo pulses.

Specifications

Pulse chapacteristics

Source impedance: 50 ohms on 50 V and lower ranges: approx. 1500 ohms on the 100 V range.
Translifon times: <13 ns on 20 V and lower sanges and the -50 V range, <15 ns on the +50 V range; cypieally <10 is with the vernicr sel for maximum attenuation and ivpically 15 ns on the 100 V range. Pulse amplitude: 100 V inco 50 ohms. Altenuacor provides 0.2 to 100
V in $1.2,9.10$ sequence (9 ranges): vernier reduces oulput of 0.2 V setLing to 80 mV and provides continvous adjustment willun ranges. Polarlty: positive or negalive.
Overshool: < 5 \%, bolh edges (measured on a 50 MHz oscilloscope). Pulse top variatlon: < 5%.
Droop: <6\%
Preshoot: < 2%.
Pulse widthe: 50 ns to 10 ms in 5 decade ranges; conlinuausly adjusable verniur.
Width jitter: < 0.05% of pulse widh +1 ns .
Maximum duty cycle: 10% on 100 V and 50 V ranges; 25% on 20 V range; 30% on 10 V and lower ranges.

Repetition rale and trigger

 InlernalRepetitlon rate: 10 Hz to | MHz (5 ranges), continuously adjust-
able vernicr. Rate jitter: <0.5's of the period.
Manual: pushbution single pulse, 2 Hz maximum ralc.
External
Repellition rate: de so 1 MHz .
Bensittvity: <0.5 V peak.
Slope: positive or negative.
Level: adjustable fromi-40 V $10+40 \mathrm{~V}$.
Delay; delay helween input rigger and leading edge of pulse is approximately 250 ns in Pulse Advance mode (approx, 420 ns minimum in Pulse Delay mode).
External gating: +8 V inpul ihreshold. Maximum inpul 40 V peak. Double pulse
Minimum Spacing: $1 \mu 5$ on the 0.05 to $1 \mu s$ pulse width sange and 25% of upper limit of width range for all other ranges.
Trigger output
Amplltuder >10 volts open circuil.
Source Impedence: approximately 50 ohms.
Wheth: $0.05 \mu \mathrm{~s}$ nominal.
Polarlty: positive or negelive.
General
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 481066 \mathrm{~Hz}$, approx. 325 VA .
Olmenslons: 426 mm wide, 178 mm high, 467 mm deep $\left(161 / \mathrm{m}^{4} \times 7^{\prime \prime} \times\right.$ 181/4").
Weight: mel, $15.8 \mathrm{~kg}(35 \mathrm{lb})$. Shipping. $18.5 \mathrm{~kg}(4) \mathrm{lb})$.
Optlons
Option 908: Rack Flange Kit

Price add $\$ 10$

1900 System introduction

The Hewlen-Packard 19 P0 system wilh ils nodular construction offers the maximum possible flexibility and versatility in a pulse generator. It makes available an extremely wide range of facilities which could otherwise only be implemented by several convencional instruments. In olany cuses the plug-ín conecpt offers a very sensible solution to the ever changing requirements of technology

The 1900 pulse system comprises at sernes of plug-in units which fall ince three functional groups: SYSTEM CLOCK (Rate), INFORMATION (Timing) and INTERFACE (Outpul). There arc (wo clock units with a repelition rate of 25 Hz 1025 kHz and 10 Hz 10 125 MHz . There are four information units devoted to pulse delay, bit error diluction, word generation and pseudo-random-binary-sequence generation, and five interface and oulput units for the control of width, transition times, polarity, offsel and amplitude. A scleted combination of medium or high power modules find space within one of the (wo mainframes. Addinonal fealures include the internal wiring of a mainfrume, which permits the choice of external or internal interconnection of plug-ins, and built-in shielding to minimize radio frequency interference (RFI).

Applications

Because of its Mexibility the 1900 system covers a very wide tange of applicalions. The following applications areas have been chosen as typical.

MOS əpplications

MOS circuits are used in such applicalions as computer memories and peripherals and in process conirol equipment, and a pulse source is required to control the MOS circuits and enable them to perform the digital logic functions. The pulses required range
from - 27 V amplitude with high theshold MOS to +16 V amplitude with CMOS in either 2 phase slatic or dynamic systems. The 1900 system providus all the necussary facilitics for solving probicms concernco with MOS interfacing. liming, datn testing. clock pulse degradation and worst casc text patitens.
The 1915A. for example, has a ± 2.5 V 10 so \vee oulpul from an impedance of 50Ω. When modified by Option H5I, the 1915A can produce single pulses or opcrate with duty cycles less than 0.2% over the complete range of 0 to $25 \mathrm{MH7}$. The variable transilion times. down to 7 ns , allow simulation or pulse degradation due to capacitive loading. The internal 500 load enables the use of long interconnecting cables with a minimum of renection.
For low threshold, P-channcl. N-channel and C-MOS devices the 1917 A provides 0.2 V to 10 V from a 50 s source into a son load. When the internal or external load is disconnecied an oulpul of 01017 volls is avaslable.

Fast logic applications

The iwo main types of high-spied logic on the market today are Scholiky-clamped TTL (TTL-S) and non-saturaling emitter-coupled logic (ECL). The 1900 outpul plug-ins, with transition times as fass as 350 ps, can be used in any high speed logic applications.
The 1916A. for example. has dual normal and complementary outpus ideally suited to driving twisted pairs and diferential amplifiers. Also. with a repetition rate of up 10100 MHz and variable transition times down to 2.5 ns it can be used for propagation delay and reflection necasurements.
One problem with sub-ranosecond logie is pulsc degradation causted by the capacilive loading effect of the device under test. The 1920A plug-15, with is 25 MHz sepctition rate and 350 ps transtion times produces pulse cuges fast enough to tolerate this degradation and still come within the manulaclurer's specification.

The 1921A plug-in has a feedihrough output that permits noise spikes to be injocted in 10 a 50 ohm sustem to lest a circuil for noise toleration or to generate bipolar signals.

Communications applications

Information can be transmited using either digital or analog communicalions systems. Diglal systems are often used in prer. erence to a a alog systems because even badly distorted digital signals can be reconsiructed and because dicy can eaxily be used to latansmit messages in code (eryptography).
The 1900 system provides facilitios for word generation, random sienal simulation. bit error delection and cryptography with the 1925A and 1930A pulse pattern generators.

The 1925A can gencrate words of 2 to 16 bits in length at frequencies up to 50 MHz and also a pseudo-random binary sequence (PRBS) of 12.767 bits in length for essing communications channels. The output can be switched to cither non-return-lo-7ero (NRZ) or stlurn-to-zero (RZ) mode.

The 1930A can generate a PRBS sequence in either NRZ or RZ mode at clock ratcs up 10 40 MHz . The scoquence can be varied from 7 to 1.048 .575 bits in length before being reprated. It also has a lacility for checking the validity of messages aver communications links and producing crror signals as crrors occur in the system under tist. These error signals can be used to measure bit error rates.

Programmability

A remote programming racility is available for the 1900 sysicm which permits anslog or digital programming of most 1900 sysfem functions. Analog programming can be used for semi-automatic lessing of components or equipment that require a limited number of different repearable pulse waveforms. For digital programming, the 1900 system is inter laced to a compuler by the 6940 A mulliprogrammer.

PULSE GENERATORS
 1900 System: output plug-ins

- 50 V maximum amplitude
- 350 ps minimum fixed transitions
- 2.5 ns minimum variable transitions
- 125 MHz maximum repetition rate

The 1900 system oulpul plug-ins are listed first because they are the plug-ins that primarily determine the output pulse characteristics.

The 1915A is the high power plug-in of the range. its 50 V. 1 A max. outpul and variable transition times from 7 ns to $i \mathrm{~ms}$ make it ideal for lesting magnetic memory devices, MOS devices and other high voltage, high eurrent devices. In external width mode the 1915A can also be used in pulse code modulation (PCM) and digital non-return-tozero (NRD) applications. An overload circuit and lamp are provided to protect the output amplifier from damage.

The 1917A has variable transition times from 7 ns 100.5 ms . It covers a wide range of digital applications from MOS memories to TTL testing snd is the most economical output plug-in of the 1900 system.

The 1916A also has variable transition times, from 2.5 ns $10250 \mu \mathrm{~s}$, and can be used to test a range of digital logic from RTL to MECL 10 K at repetition rates up to 100 MHz . In addition, the two output channets, with independent amplitude and offset controls, and the wide range of output configurations enable the 1916A to be used for analog applications.

The 1921A with a maximum repetition rate of 125 MH 2 provides the high speed pulse shaping capabilities in the 1900 system. With its 5 V amplitude. $\pm 5 \mathrm{~V}$ offset and $<2 \mathrm{~ns}$ transition times, the 1921A can be used for a variely of iesting and design applications. An additional feature is a feodthrough output which allows the 1921A to inject pulses into a 50 ohm transmission line for generating bipolar and complex pulses.

The 1920 A is the output plug-in that provides the very fast transition times (<350 ps leading edge, <400 ps trailing edge) in the 1900 system. These very fast transitions enable the 1920A to be used for testing rise-time, propagation delay, bandwidth and storage time of high speed logic families such as ECL III. The zero pulse width facility also enables the 1920A to be used for impulse testing.

ECL III
©
స్

1915A Specifications

Pulee characteristics

Source impedance: 50 ohms or high impedance: self conlained 50 ohm termination can be disconnecied.
High impedance output: approx. $4 \mathrm{k} \Omega$ shuneed by < 45 pF .
50 ahm outpul: approx. 50 ohms shunied by $<45 \mathrm{pF}$.
Amplitude (short-circult ourrent): $50 m A$ io $1 A$ in 4 ranges, 2.5:I vernier allows continuous control within ranger. Voltage into external 50 ohms is $\pm 2.5 \vee 10 \pm 50 \vee$ with high impedance source or ± 1.25 V to $\pm 25 \mathrm{~V}$ with 50 ohm source. Maximum amplitude (inciuding offsel) is $\pm 50 \mathrm{~V}$.
Pulse lop variations 50 ohm source and 50 ohm load, $\pm 5 \%$ for Iransution times 7 ns to $20 \mathrm{~ns}, \pm 2 \%$ for transilion times $>20 \mathrm{~ns}$; high impedance source and 50 ohm load. $\pm 5 \%$ for all uransition imes.
Transllion times: 7 ns (10 ns with high Z source) to 1 ms in 11 ranges ($1,2.5$ sequence), two 100:I venniers provide independent control of rise and fall times. Transition ime variations over entire amplitude range ($\pm 0.2 \vee 10 \pm 25 \mathrm{~V}$): $\pm 15 \%, \geq 100$ ns: $\pm 40 \%$ \% 7 ns to 100 ns.
Polarlty: positive or negalive, selectable.
Basallne offsel: $\pm 60 \mathrm{~mA}$, max. olfict into cxternal 50 ohms is ± 1.5 V with 50 ohms source, $\pm 3 \mathrm{~V}$ with high Z source.
Pules width
Internal: 15 ns to 40 ms in 7 decade ranges (except first range - 15 ns io 40 ns), $10: 1$ vernier provides continuous adjusiment within ranges; width jiter <0.5\% af sclacted width.
External: provides pulse amplifier operation: output pulse width determined by drive input widh.
Duty cycle: $>65 \%$ on all ranges excepl $>50 \%$ on $0.015100 .04 \mu 5$ width range; 0 to 100% in external mode. For $<0.2 \%$ duty cycle operation, reler to overioad specification.

Overload

Overload lamp lights to indicate when power deteclor protection eircuits are turning off the outpul cursent to prevent damage 10 the oulpui transistors. The power delector is energized for single pulse of $<0.2 \%$ duly evele operation for pulse widehs $>1 \mu \mathrm{~s}$. If single pulsc or low duty cycle operation is required, Oplion HI5 or, in programma. ble (005) versions. H51 or H52 may be ordered.
Drive input
Repetilion rate: 0 to 25 MHz (see overload specification for low rcp. rate considcrations).

Ampilitude: IV peak min., 5 V peak max.
Inpul Impedance: 50 ehms. dc-coupled.
Maximum delay: (aller drive input) $<45 \mathrm{~ns}$.
General
Welght: net. $2.5 \mathrm{~kg}(51 / 2 \mathrm{lb})$. Shipping, $4.1 \mathrm{~kg}(9 \mathrm{lb})$.

1916A Specifications

Pulse characteristics

(50n? source and load impedance).
Transillon llmes: 2.5 תs 10250μ in 3 ranges: $50: 1$ verniers provide separiate control of rise and fall limes. Nonlincarity: maximum deviation from straight line between $10^{\circ} \%$ and 90° i, amplitude. less than 5% of pulse amplitude.
Overshoot, ringing and preshoot: <s\% of pulse amplicude.
Amplilude: $<200 \mathrm{mV}$ to 5 V (across 50 n) in four ranges. Vernier pro. vides conlinuous adjusument within ranges.
Pulse outpul: channel A; pos-normal. pos-symmetrical (about offset voliage) or neg-complemenL. Channel B; neg-nomal, neg-symmetrical or pos-complement, Switch seleciable.
Maximum duty cycle: $>50 \%$ for internal width; up 10100% with complement: up to 100% for exicrmal width.
Source Impedance: $50 \Pi \pm 4 \Omega$ shunted by 10 pF (typ).
DC oflsel: $\pm 2.5 \mathrm{~V}$ across 503 . independent of amplitude. Can be switched off.
Pulse wldth: 5 ns to 1 ms in 6 ranges. $10: 1$ vernies provides continu. ous adjusiment within ranges.
Width |itter. $<0.1 \%+25$ ps of pulse width.
External widih: pulst widh within ± 2 ns of external inpul width when inpul widit measured al 0.6 V .

Drive Inpul

Repetlion rale: 0 to 100 MHz .
Input Impedance: 50n. de coupled.
Pulse ahape: amplilude, $>1.5 \mathrm{~V}$; widh $>3 \mathrm{~ns}$: slope. $>0.25 \mathrm{~V} / \mathrm{ns}$ in internal width, $>0.15 \mathrm{~V} / \mathrm{ns}$ in external width (smalter slopos mas cause performance degradalion).
Maximum input: $\pm 5 \mathrm{~V}$.
Propegalion delay: internal widib mode, 23 ns approx.: external widith mode. 18 ns upprox.

General
Welght: net, 1.13 kg ($21 / 2 \mathrm{lb}$). Shipping. $2.8 \mathrm{~kg}(61 / \mathrm{lb})$.

1917A Specifications

Pulse characterigtles
Source impedance: 50 ohms or high Z : seleced with internal swilch. High impedance outpul, approx. $3 \mathrm{k} \Omega$ shunted by $45 \mathrm{pF}, 50$ ohms oulpul. approx. 50 ohms shunied by 45 pF .
Amplifude: (volls into 50 ohms) 0.2 to 10 V with 50 ohms source: 0 to $14 \mathrm{~V}(8$ to 400 mA) with 3000 ohms source; $2.5: 1$ vernier provides conlinuous adjusiment over cach range.
Pulee lop variationa: $\pm 5 \%$ for transition limes >7 ns.
Transilion times; 7 ns to 500 us in 5 ranges; two $50: 1$ verniers provide independent control of rise and fall times.
Transition time varialions over entíre amplitude range ($\pm 0.210+10$ volts): $\pm 15 \%, \geq 100 \mathrm{~ns}: \pm 40 \%, 7$ 10 100 ns .
Polarity: plus or minus, selectable.
Baseline offest: $\pm 2.5 \mathrm{~V}$ into external 50 ohms with 50 ohm source: 100 mA with 3000 ohm source.

Pulse widih

Internal: ranges, 15 ns 1040 ms in 7 ranges; $10: 1$ vernier provides continuous adjustment over each range: widith jitter, <0.25\% of selected pulse widzh.
External: provides pulse amplifier opesation; outpul pulse width delergined by wideh of drive inpul.
Duty cycle: internal width mode. 650 exeepl for 15 to 40 ns width range, 50% on 15 to 40 ms width range: external widih mode, up 10 100 \%; limited by output pulse iransition times.

Drive inpet

Repelifion rate: 0 to 25 MHz .
Input impedance: 50 ohms, dc-coupled.
Amplitude: I V peak min., $5 V$ peak max.
Maximum delay afler drive Input: approx. 35 ns.
General
Welght: nec. $1.13 \mathrm{~kg}(21 / 1 \mathrm{lb})$. Shipping, $2.8 \mathrm{~kg}(61 / \mathrm{lb})$.

1920A Speciffcations

Pulse characieristics

Sounce impedance: 50 ohms $\pm 5 \%$.
Amplitude: 0.5 V to 5 V into 50 ohms in three ranges: $1,2.5$ sequence. 2.5: I vernier provides continuous adjustment over each range. Outpul circuil cannot be damaged by shorting.
Pulse ahape (measured at 5 V Into 50 ohms)
Leading edge: riselime, <350 ps; preshoot, <l象, overshool and ringing, < $10 \% \mathrm{p}$-p; time to settle 10 within 3% of flat top, $<5 \mathrm{~ns}$: rounding < 5%.
Tralling edge; fallime. <400 ps; preshool, < 1% for pulse width $>5 \mathrm{~ns}$; overshoot and ringing, < $10 \% \mathrm{p}-\mathrm{p}$: time to seltle to within 3% of baseline. < 5 ns except for perturbation $10-20$ ns after trailing edge < $\pm 4 \%$; rounding, < 5 穊.
Polarity: plus or minus, selectable.
Baseline offeec plus, minus, or off: selectable, 0-2 V inio 50 ohms.
Width: 0 to 10μ s in four ranges. $10: 1$ vernier provides continuous adjustment belween ranges.
Width Jitter: < 20 ps or 0.1% whichever is greater.
Duty cycle: 0 to $>25 \%$ (0 to 20 MHz rep. rate): 0 to 10% ($>20 \mathrm{MHz}$
rep. rate).
Drive Ingut
Repethion rate: 0 to 25 MHz .
Amplitude: 1 V peak min., 5 V peak max.
Maximum delay after rale input, approx. 60 ns .
Input impedance: 50 ohms, dc-coupled.
General
Welghl: net, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. 4.5 kg (10 lb).

1921A Specifications

Pulse characteristics

Source impediance: approx. 50 ohons shunted by 9 pF . Reflection coefficient is typically <0.15 for inciden? pulses with rise times >1.5 ת.
Pulse amplituder (volts into 50 ohms) 0.5 to $5 \mathrm{~V} ; 2.5$: I vernier pro. vides continuous adjusiment over eacb range.
Polarlty: positive. Opposite pulses can be obtained by adjusting offset, amplifude and complement conirols.
Duty cycle: $>50 \%$ in internal; up to 100% with complement; external widih mode, up to 100%.
Feedthry mode; allows oulput pulses to be added on a 50 obmitransmission linc for bipolar applications.
Complement: selecls nomal puise or its logic complemen. Transition time ahff: normal to complement. typically $< \pm$ I ns.

Pulee lop variallons: $< \pm 5 \%$ for amplitudes from 110 SV and $< \pm 7 \%$ for ampliudes of $<1 \mathrm{~V}$.
Baed line offset: 0 to $\pm 5 \mathrm{~V}$ inco 50 ohms.
Transition Ilmes: <2 ns.

Pulse width

Internal: ranges, 4 ns 101 ms in 6 ranges ($10: 1$ vernier provides continuous adjustment over eich range); jitter, <25 ps $+0.1 \%$ of oulse widh; ume intersymbol interference, width change with rep rate $<1.5 \mathrm{~ns}+0.2 \%$ of pulse width.
Extermal: provides pulse amplificr operation; dotput pulse width is determined by width of drive input. Pulse width tracking is within approx. \pm I ns width inpul pulse width measured al 0.6 V . Time intersymbol interference: Eansition shift with rep. rate. <1 ns,

Drive input

Pepellition rate: 0 to 125 MHz .
Input impedence: 50 ohms, de-coupled.
Pulee shape: smplitude, $>1.5 \mathrm{~V}$: widih, $>3 \mathrm{~ns}$ slope $>0.25 \mathrm{~V} / \mathrm{ns}$ al 0.7 V in internal width, $>0.15 \mathrm{~V} / \mathrm{ns}$ at 0.7 V in external width (smaller slopes may cause degradation of performance).
Maximum Inpute $\pm 5 \mathrm{~V}$.
Propagation delay: internal width mode, approx. 18 ns: external width mode, approx. IS ns, feedthru mode, approx. 4 ns.

General

Weight nel. 1.4 kg (3 lb). Shipping, 2.7 kg (6 lb).

1915A Options

Price

001: analog programming. Provides connector and cir-
cuits to contral width, transition time, amplitude. polarity and offsen.
002: pasitive output. Provides positive-only pulse output and and positive-only offsct.
less $\$ 225$
003: negative output. Provides negative-only pulse output and negative-only offsec.
less \$225
004: voleage calibration. Calibration of pulse amplitude in voltage.
005: digital programming. Provides digital control of Width, Transition Time, Amplitude, Polarity and Ofr. set. Refer to 1900/6940A deseription or contaet your Hewlett-Packard Field Engineer for more information. 007: Rear Panel oulpuls.

1917A Options

001: analog programming. Provides connector and circuits 10 control Width, Transition Time. Amplitude. Polarity and Offset.
005: digital programming. Provides digital conirol of Width Transition Time. Amplitude, Polarity and Offset. Refer to $1900 / 6940 \mathrm{~A}$ description or contact your Hewlelt-Packard Fiold Engineer for more inlormation. 007: Reas Panel outpuls.

1920Ā Opîions

001: analog programming. Provides connector and círcuits to control width range and vernier, offset range and vernior, and amplitude vernier.

1921A Oplions

001: analog programming. Provides connector and circuits to concrol Width, Amplitude, Complenent, and Offset.
Model number and narme
1915A Output plug-in $\$ 2150$
1916A Output plug-in \$1735
1917A Output plug-in $\$ 950$
1920A Outpur plug-in $\$ 2500$
I92IA Output plug-in \$1200

PULSE GENERATORS
 1900 System: pulse pattern generator plug-ins; Models 1925 \& 1930A

- $50 \mathrm{MHz}, 1 \times 16$ bit
- RZ/NRZ format
- Fixed $2^{15}-1$ PRBS

1925A Description

The 1925A is a digital word-generating plug-in unil. If gencrates iu variable lengit word at a repetition rate of $0-50 \mathrm{MHz}$. Thus it can be driven by cither the 1905A or 1906A rate generator plugins and will drive any of the 1900 oulput plug-ins.
Word lengths of 2 to 16 bits can be seleeted using internal switchas and the word content can be sel cither using the front panel switches or by external programming. The word can be miliated by an excernal command signal or by a manual pushbulton or il can be recycled automatically wilh one clock period belween words
Alternatively a pseudo-random sequence of rixed $2^{15}-1(32,767)$ bits can be gencrated by switching the 1925A to PRN. The facility is exisemely userful for testing cummunications channets or LSI computer memories. The internal registes can be set or eleared to establish referenee levels and sequences when PRN mode is being used.
The 1925A will operale in either refurnto-zero (RZ) mode or non-relurn-to-zero (NRZ) mode and the output ean be switehed to complement if requirod. An end-of-word synchronization signal is also available at a separate socket.

1930A Description

Mode 1930A is a quarier-size. Cormalting plug-in for the 1900 pulse system. It can generate a pseudo-random binary sequence (PRBS) in cilher return-to-zero (RZ) or non-return-to-zeso (NRZ) formats at clock rates up to 40 MHz (typically to 50 MHz). The length of a sequence cam be varied from 7 io $1.048,575$ bils before being repeated. A PRBS is appatently random in that, for samples of n bits or lese, it follows closely the statistical characteristics or a binomial distribulion but it is deterministic and periodic.

Random signal simulation

Random signal simulation allows a device thal processes digital information to be completely exercised whike providing the stationary characteristics of a reperitive signal. In pattern sensitive devices, pseu-do-random binary sequences provide a fast. casy and complete

- 40 MHz PRBS 2^{3} up to $2^{20}-1$
- 40 MHz bit error detection
- 40 MHz cryptography

method of generating all possible combinations of up 2020 hils for delecting worst case pallerns. Also. in an n cell device. a random sequerce can be generated that is $2 \boldsymbol{n}-1$ bits long and contilins all possible combinations of n bite except the all zerus combination. In the 1930A. "n' can be between 3 and 20, thus it is possible to select the sequence length to avoid "beating" with other sigitals in the device being excresed.

Bit error detection

One of the mair reasons for testing digital processing equipment is to determine how accurately the iransmited signal is recrived and to Find the effect of noise in the transmission system. A measure of the quality of a digial system is Bit Error Rate (BER).

Bit error decection in digital transmisision sysiems is simplified by the ability of 1930A to synchronize rapidly to a data stream (either words or pseudorandom sequences) and compare the iseoming data bil by bit with a stored replica. For example: one 1930A generates a signal that is transmitted over a digtal communication link white a second 1930A synchronizes to the incoming sigital from the link. Each time the reocived signal differs from the stored replica an error pulse is produced at she error outpul. Error pulses can be conumted to provide the bit error rate. This technique is not restricted to transmission systems. It is equally applicable when testing mass-storage memory' devices.

Coding

Coding in digital applications is accomplished by dividing the incoming dita stream by the characteristic equation of the gencrator. The preudu-random binary sequence completely scrambles the original data in both lime and frequency domains. Eleven difierent serumDling paterns can be seleeted with a front pandel register length switch. and fed back lapes inside the plug-in altow over 73,000 dififerent pseu-do-random patterns. Scrambling pallerns may also be sel by remole. electronic program signals through the rear paricl of an Option 001 manframe. To decode the information, unother 1930A sel to the same sequence multiplies the scrambled signal by the same equation to regain the original data.

1925A Specifications

Clock input
Rep, rate: 0 to $50 \mathrm{MHz}\left(15-35^{\circ} \mathrm{C}\right), 0$ to $45 \mathrm{MHz}\left(0-50^{\circ} \mathrm{C}\right)$.
Inpul impedance: 50 ohms. dc-coupled.
Ampiltude: +1 V min, +5 V max.
Width: >4 ns, <18 ns at +0.6 V .
Propagalion delay: 35 ns max.. leading edge of trausition of output dafa.
Traneltion tlme jitler: (between clock or END and WORD-OUT) 100 ps .

Start input

Perlod: > (word length plus 30 ns).
Inpul impedance: 50 ohms, de-coupled.
Amplitude: + IV min, +5V max.
Width: >s ns.
Programming inputs ('requires 1900A Option 001 or 1901A Option 001 mainframe).
True: contact closure 10 ground, satorated DTL. or voliage source (TTL) $<+0.2 \mathrm{~V}$.
False: opesi. off DTL. or vollage source (TTL) $>2.5 \mathrm{~V} .<4.0 \mathrm{~V}$.
Nolse lmmunity: $>0.7 \mathrm{~V}$ p.p. True $<0.2 \mathrm{~V}$. Falsc $>3.5 \mathrm{~V}$.
Nolse bandwidth: < 15 MHz .
Word and end output
True: $45 \pm 5 \mathrm{~mA}$ current source or $>1 V$ into 25 ohms.
Falae: <1 mA.
Rleetime and fallime: <4 ns (10% 品 1090%).
Perturballone: <15\%.
Source impedance: unterminated curtent source.

Functions

Word length: 2 to 16 bils, set by inlernal swilches: not programmablu.
Word content: set by front-panel switches or cxternal programming.
Word format: NRZ/RZ, selectable from front panei or external program. RZ pulse width less than $1 / 2$ clock period or 15 ns (whichever is smaller). WORD/WORD selectable from front-panel switch.
Word cycling: automatic (continuous with orit clock period delay betwien words). external start command, or manual pushbution.
Manusl/Auto: selectable from froni-panel switch or external program. In AUTO mode, word continuously recycles with one clock period delay between words. In program mode, content of each werd corresponds to the previous parallel word input that existed doring END. In manual mode, a word starts after receiving an external start signal or pressing MANUAL pushbutton.
End out: available from front-panef BNC corresponding to end-ofword.
Set serially loads l's into shift register. Output word bits are all I's after 16 clock pulses. Used to start the PRN sequence.
Clear. parallel resel of shift register. Output word bits are all zero. Used to manually load the beginning of the PRN sequence if desired.
Peeudo-random nolse: provides a linear shiff-register sequence of 32,767 bils. The sequence starts with the lasi 16 -bit word in shift regiser. Maximum clock rate is 30 MHz .
Programming: all dala bits, NRZ/RZ, PRN/WORD, and MANUAL/AUTO.

General
Weight: nct, $1.02 \mathrm{~kg}(21 / 4 \mathrm{lb})$. Shipping. $2.04 \mathrm{~kg}(41 / 2 \mathrm{lb})$.

1930A Specifications

Clock input
Repetition rate: 0 to 40 MHz (lypicully 1050 MHz in most scquences).
Inpul Impedance: 50 ohms. dc-coupled.
Amplltude: $+1 \vee \mathrm{~min}$.
Width: >4 ns and $<15 \mathrm{~ns}$.
Propagation delay: 40 ns max. (eleck input to transition of outpul dafa).
Maxlmum Input: $\pm \leq V$.

Data input

Repetition rale: 0 to 40 MHz (typically to 50 MHz).
Inpul Impedance: SO ohms, de-coupled.

Ampltude

One level: + IVmin.
Zero level; OV.
Maximum Input: $\pm 5 \mathrm{~V}$.

Trigger output

Amplitude: 1 V (open circuil).
Width: approx. I clock period.
Source lmpedance: 50 ohms.

Error outpul

Amplitude: $45 \pm 5 \mathrm{~mA}$ current source or $>2 \mathrm{~V}$ into 50 ohms.
Wldth: >10 ns, $<50 \%$ of period in RZ mode.
Source impedence: unterminated current sọurce.
Solf generated error rate: $<1 \times 10^{-12}$.
PRBS output
Amplitude: $45 \mathrm{~mA} \pm 5 \mathrm{~mA}$ or $>2 \mathrm{~V}$ into 50 ohms.
Alse and fall times: <4 ns.
Width: typically >7 ns and <14 ns.
Source Impedance: unterminalcd current source.
Programming Inputs
(Requires option (\%O1 1900A or 1901A mainframes)
False: contact closure to $<0.6 \mathrm{~V}$.
True: open or $>3.0 \mathrm{~V}$.
Response: < $3(x)$ ns
Threshold: approx, 2 2 V or 5.5 kg .

General

Welght: net, $1.02 \mathrm{~kg}(21 / 4 \mathrm{lb})$. Shipping, $2.04 \mathrm{~kg}(41 / 7 \mathrm{lb})$.
Options Prlce
005: digital programming. Enables control by a 6940 B
Multi-programmer. For more information see 1900/
69408 description or contact your Hewlett-Packard
field engineer.

Model number and name

1925A Pulse pattern generator plug-in
$\$ 1100$
1930A Pulse pattern generator plug-in
$\$ 1350$

- 1905A 25 MHz rate generator plug-in
- 1906A 125 MHz rate generator plug-in

1905A and 1906A Rate generators specifications

(Except as noted, specifications apply to both rate generators).

Frequency

Internal: 1905A, 25 MHz to 25 MHz in 6 ranges. 1906A. 10 Hz to 125
MHz in 8 ranges. $10: 1$ range vernier.
External: 1905A, o to $25 \mathrm{MHz}: 1906 \mathrm{~A}$, 0 to 125 MHz .
Perlod jitier: < 0.1% of selected period.
External trigger
Amplitude: 1905A. 0.5 V p-p min., 5 V p-p max.: 1906A. 0 to 50
 $\vee \mathrm{p}$-p.
Slope: positive or negative (sclectable).
Trigger leval: sclectable on input waverorm from 0 to $\pm 3 \mathrm{~V}$.
Delay: 190SA, approx. 27 ns external inpuito rate output: 1906A. approx. 12 ns external input to rate oulpui.
Input impedance: approx. 50 ohms. de-coupled.
Synchronous gating
Amplifude: 1905A. -2 V gates generator on. -5 Y max.: $1906 \mathrm{~A} .+1$
V gates generator on, +5 V max: 50 ohms. de-coupled.
Output pulse:
impedance: approx. 50@, de-coupled.
Amplitude: $>1.5 \vee$ into 50Ω (drives 21900 series plug-ins).
Aleatime: 1905A. <5ns; 1906A. <3 ns.
Wldth: 1905A, <10ns; 1906A, <5 ns.

General

Wolght: nel. 0.6 kg ($1 / 4 \mathrm{lb}$). Shipping. 2.7 kg (6 lb).

1908A Specifications

Functions (drive output switch)
Delay: drive ouiput delayed with respeet to rrigger output. Advance: trigger output delayed with respect to drive oulput. Double pulse: gencrated from drive output connector. Spacing determined by time interval setting.

Time interval (between trigger and drive outputs)
Range: 15 ns io $\mathbf{i 0 m s}$ in 6 ranges. $10: \mathrm{i}$ vernier provides continuous adjusiment in any range.
Jitier: $<0.1 \%$ of selected lime interval.
Excesgive delay light: indiestes that selected delay time excecus pulse period.
Rate input
Repetition rete: 0 to 25 MHz .
Amplitude: $>1.5 \vee$ prak min.. $5 V$ peak max.
Maximum delay alter rate inpul (with delay control set to minimum)
Trigger output: approx, 14 nis in delay: approx. 29 ns in advance.
Delve output: approx. 29 ns in delay: approx. 14 ns in advance.
Input Impedance: approx. 50 ohms, dc-coupled.
Trigger and drive outputs
Output Impedance: approx. 50 ohms.
Amplitude: >1.5V into 25 ohms (drives two 1900 serics plug-ins).
Risetime: < 5 ns.
Width: $<10 \mathrm{~ns}$.
General
Weight: nct. 0.6 kg ($\mathrm{I} \% \mathrm{lb}$). Shipping, 2.7 kg (6 lb).
1905A \& 1906A Options and accessories
Price
001: analog programming. Connector and circuil card for conirol of Rate Source (INT. EXT,,+-) and pulse rate.
005: (1905A only) digital programming. Digital conIrol of Rate Source and Pulse Rate. Rer. 1900/6940B description or conlact Hewletr-Packard Field Engineer for more information.
Programming kit HP Pari No, 01905-69501, for field inslallation of option 00 .
1908A Options and accessories
007: analog programming. Provides connector and circuils for control of Drive Outpul (Delay. Double Pulse) and Time Interval. Drive Oulpul modes and Time Interval ranges are selected by contact closure to ground. Time Interval vemier is controlled by analog current.
005: digital programming. Provides digital control of Drive Oulpul (Delay. Double Pulse) and Time interval. Refer to 1900/6940日 description or contact your Hewleth-Packard Field Engineer for more information.
Programming kit HP Parı No. 01908-69501, for field instullation of option 001.
Model number and name
1905A Rate Generator plug-in
1906A Rate Generalor piug-in
1908A Delay plug-in
\$325:

- Powers all plug-ins including 1915A
- RFI shielded
- Internal signal routing between plug-ins

1900A

- Powers all plug-ins except 1915A
- RFI shielded
- Internal signal routing between plug-ins

1901A

The 1900A mainframe supplies the same voliages as the 1901A mainframe plus special positive and negative variable supplice for the 1915A outpul plug-in. Thus the 1900A mainframe can power all plagins in the 1900 system and the 1901 a mainframe can power all plugins excepl the 1913A.

A furiher difference is that the 1901A mainframe has higher power capobilities in the other supplies than the 1900A mainframe for driving the remaining 1900 system plug-ins (this can be seen from the table below).

Bolh mainframts are fitted with RFI shiclding and contain wiring 10 provide internal connections between plug-ins. These connections can be changed for any combination of plug-in intercomections. The choide of internal or exterral interconnection of plug-ins is made using switches in the plug-ins.

Plug-in compatibility

For a given combination of plug-ins, add up the applieable percentages of each column. The conliguration is compalibic when no column expceds 100%.

Plug-in	Mainirame space	1900A Pawer			19014 Power		
		+25V	-25 V	-10 V	$+25 \mathrm{~V}$	-25 Y	-108
1905月	25罗	9\%	9\%		6\%	6\%	
1906A	25\%	11\%	12\%		8%	8\%	
1908A	25\%	8\%	8\%		6\%	6\%	
1915A	50\%	27\%	25\%		-	-	
1916A	50\%	419	43\%	78	27\%	30\%	5\%
1917h	50 \%	40\%	38\%		27\%	25\%	
1920A	50\%	55\%	55\%		36\%	36\%	
1921A	25\%	435	21\%		28\%	14\%	
1925A	25\%	10\%	2\%	38\%	6\%	2\%	25\%
1930A	25\%	13\%	5\%	42\%	8\%	4\%	30°

1900A and 1901A Maintrames specifications
General
Dimenglong: $425 \times 133 \times 543 \mathrm{~mm}$ ($161 / 4{ }^{\prime \prime}$ wide. $51 /{ }^{\prime \prime}$ high). 492 mm deep over-all ($195 /{ }_{2}^{2}$) bekind rack mount.
Welght 1900 A , nel 16 kg (35 lb); shipping 21 kg (46 lb); 1901 A , nei 12.7 kg (28 lb); shipping 17.6 kg (39 lb).

Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 to 66 Hz . 1900A, 300 watts max., will drive 1915A plug-in. 1901A, 250 watts max., will nol drive 1915 A plug-in.
Accessory furnished: power cord.

Accessories

Analog programming klt (HP P/N 01800-89502): provides field instaliation of Option 001.
Chassls slide klt (HP P/N 01900-69501): Allows installation on non-pivoting slides with an adjustable lengith of 20 to 22 inches.
Blank plug-Ing: blank plug-ins fill unused plug-in compartments to provide proper plug-in cooling and reduce RFI. Model IOA81A, quar-ter-size plug-in. Model 10482A, half-size blank piug-in.
Plug-In extender: provides acecos to components when servicing and calibrating an operating plug-in. Exicnder accomodates holh quarterand half-size plug-ins. Model IO482A plug-in extender.
Options Price001: provides internal cabling and connectors fromplug-ins to rear panel for digital or analog program-ming.\$200002: non-pivoting chassis slides with adjustable lengithor 20 to 22 inches.$\$ 95$
007: Rear Panel inputs and outputs $\$ 80$
908: Rack Flange Kil add $\$ 10$
Modal number and name
1900A Mainframe $\$ 1175$
1901A Mainframe $\$ 875$

- Full control of all parameters
- Both analog and digital control available
hontact closures
- hofic levels

Introduction

Programmable pulse generators can be incorporated into automatic rest systems. Programming adds nexibility which is invaluable for applicalions that require several different but repeatable pulse waveforms. This capability is available in a number of the components of the 1900 system.

- Occupies only one controller I/O slot
 - System can be easily expanded

Analog conirol

Analog control is partcularly suitable for simple applications where only partial control is nociod or when only a fow pulse waveforms are required repeatedly. Available in the 1900 stries are six plug-ins which feature analog progremming as an option. They are:

1905 A	001	1915 A	001	Programming of these modules
1906 A	001	1920 A	001	requires an option 001 1900A
1908 A	001	1921 A	001	oi 1901A mainlrame.

Programming is by contact closure for ranges and by resistor or analog current for vernier functions.

Digital programming

For lexible control of a pulse gencrator, digital programmeng is the answer and Hewlett-Packard's contribution is the 1900/6940A programmable pulse generalor.

The plug-in 1900 system and the 6940B Multiprogrammer allow riliable and efficient control of a large number of functions by a minicompuler, using only a single 16 bie I/O slol. Up to fifteen 6941B Extenders may be added to provide contral of up to 240 separate functions scill using only one computer $1 / 0$ slot. A 10490A connector mounting panel and stabilization card are necessary when using the 6940 B with a 1900 system.

Available in the 1900 serics are six plug-ins which feature digital programming as an oplion. They are

1905 A	005	1917 A	005	Programming of these mod-
1908 A	005	1925 A	005	ules requires an Optron 001
1915 A	005	1930 A	005	1900 A or 1901A mainirame.

Only the functions with parameters to be varied need be programmable, For the others, standard plug-ins may be used or part of the programming hardwace can be omitted. For example: if only the width of an outpul stage and not offsel, amplitude, ctc. is to be programmed, then the cards in the 6940/694IB wheh would be required to control these non-varying paramelers can be omitied.

The $1900 / 6940 \mathrm{~B}$ works with any digital computer. however. for Hewlell-Packard digital computers, sofiware in FORTRAN and BASIC is available.

Option 005 (1900/69408) specifications

Pulse parameter specifieations are contained in the individual specifications for each plugin. The following specifications apply 10 programming accuracies for the 1905A, 1908A, 1915A, 1917A, 1925A and 1930A.

1905A Rate generator

Programmable functions
Period: 25 Hz to 25 MHz in 6 ranges.
Aceuracy: $\pm 5 \%$ of digital inpul or $\pm 10 \mathrm{~ms}$, whichever is greater.
Resolution: 360 poines in each range.
Mode: + Ext, - Ext, Internal.
Pesponse time: $<30 \mu$ s plus one period.

General

8940B: I slol required.
Equipment suppllod: I output card and inierconnecting cables.

1908A Delay generator

Programmable tunclions
Mode: delay. advanox. double pulse.
Delay Interval: 15 ns 1010 ms in 6 ranges.
Accuracy: $\pm 5 \%$ of digital inpul or ± 10 ns, whichever is greater,
Aesolution: 900 poinls in cach range.
Response time: < 30μ splus onc pcriod.
Duty eycle: 50% max.
Temperafure range: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. From $0^{\circ} \mathrm{C}$ tu $55^{\circ} \mathrm{C}$. sperifications are the same except for Aceuracy, which is $\pm J 5^{\circ} \mathrm{c}$ of digital input or $\pm 10 \mathrm{~ns}$. whichever is greater.
General
B940B: | slot required.
Equipment supplied: I output card and interconnecting cables.

1915A Variable transition time output

Programmable parameters
Wldih: 15 ns to 40 ns in 7 ranges.
Accuracy: $\pm 10^{29}$ ol digital input or $\pm 10 \mathrm{~ns}$, whichever is greater.
Resolutlon: 360 points in each range.
Response time: <30 $\mu \mathrm{s}$ plus one period.
Duty cycle: 50% max.
Transitlon time: 7 ns to $100 \mu \mathrm{~s}$ in 5 ranges.
Accuracy: $\pm 15 \%$ of digital input or 10 ns. whichever is greater.
Resolution: 450 points in each range.
Response tlme: < $30 \mu s$ plas one penod.
Ampllitude: 0.05 A ta 1.0 A (1.25 V to 25 V into 25 ohms) in 4 ranges. Polarlty: posilive or negalive.
Accuracy: digital input $\pm 5 \mathscr{C}_{6}$ of max. vernicr on each range.
Resolulion: 300 points in each range.
Response 1 ime: < 50 ms for 50 V pulses from high 2 source into 30 ohm load. < 15 ms for 25 V pulses from 50 ohm source into 50 ohm lond. Typicilly $>500 \mu \mathrm{~s}$ for duly cycle $>0.2^{\circ} \mathrm{m}$.
Otheet: 0 to 60 mA in I range (0 to 1.5 V into 25 ohms).

Polartly: positive or negative.
Accuracy: $\pm 2 \mathrm{~mA}$ of digital inpul ($\pm 50 \mathrm{mV}$ inco 25 ohms).
Resolution: 150 points.
Response lime: <250 μs.
Temperalure renge: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. From $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. specificalions are the same except for the following: Offect Accuracy, $+15 \%$ of 60 mV . whichever is greater; Transilion Time Accufacy, ± 20;'; or ± 10 ns. whichever is greater: Width Accuracy, $\pm 15 \%$ or $\pm 10 \mathrm{~ns}$, whichever is grealer; Amplitude Accuracy. $\pm 15 \%$ or $\pm 50 \mathrm{mV}$. whichever is greater.
General
6940B: 5 slols required.
Equipmenl supplied: 5 outpur cards and interconnocting cables.

1917A Variable transition time output

Programmable parameters

Whath: 15 ns 1040 ms in 7 ranges
Accuracy: $\pm 55 \%$ or digital inpul or $\pm 10 \mathrm{n5}$, whichever is greater.
Resolulion: 360 points in wach range.
Response time: $<30 \mu$ s plus one period.
Duly cycle: 50\% max.
Transition time: 7 ns to $100 \mu 5$ in 5 ranger.
Accuracy: $\pm 15 \%$ of digital input or $\pm 5 \mathrm{~ns}$. whichever is grealer for all ampliudes between 2 and 10 volts.
Reaclutlon: 450 points on each range.
Response lime: <30 μ s plus one period.
Amplitude: 0.2 V to 10 V in S ranges.
Polarity: positive or negative.
Accuracy: $\pm 5 \%$ of digital input or $\pm 50 \mathrm{raV}$, whichever is greater.
Resolution: $\mathbf{3 0 0}$ poinls in cach range.
Response tlme: <30 $\mu \mathrm{s}$ plus one period.
Oftset: 0 to 2.5 V in one range.
Polartty: posilive or negative.
Accuracy: $\pm 7 \%$ or $\pm 70 \mathrm{mV}$ of digial inpul, whichever is greater.
Resclution: 250 points.
Response time: <80 ms.
Temperature range: $10^{\circ} \mathrm{C}$ 10 $40^{\circ} \mathrm{C}$. From $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$. specificaLions are the same except for the fallowing. Offsel Accuracy. \pm I 5% or 60 mV , whichever is greatcr; Width Accuracy, ± 150 or $\pm 10 \mathrm{~ns}$, whichever is greater; Transition Time Aocuracy, $\pm 20^{\circ} \%$ or $\pm 10 \mathrm{~ns}$, which. over is grealer: Amplitude Accuracy. $\pm 15 \%$ or $\pm 50 \mathrm{mV}$, whichever is greater.
General
69408: S slols required.
Equlpment supplled: S output cards and interconnecting cables.

1925A Word generator

(Specifications identicul to standard version).

1930A PR binary sequence generator

(Spocifications idenlical to standard version).
Model J0490A kit is required 10 adapl the Models 6940A and 6941A to the 1900A or 1901A.

\author{

- 0.5 Hz to 50 MHz repetition rate
 - 2 complementary outputs per channel, RZ/NRZ formats
 - Variable RZ width, 4 delay channels
}

\author{

- Channel serializer
 - TTL/ECL output levels selectable
 - Optional HP-IB programming of Bit pattern
}

The 8016A is a parallel and serial data generator that provides digital stimulus for a very wide range of applications. For the digital designer the 8016A is a natural companion to multichannel data display devices such as logic analyzers. It forms an ideal system componem for large iest systems because it can provide the combination of digital paticrns plus adjustable timing parameters necessary for testing IC's and circuil boards. It is also a quite useful lime saver for design and uest of complex communications systems.
The large memory size und ease with which bit patterns are programmed produce a Mexibility of signal outpul, both in content and in format. Data loading and oulpul can be in cither a parallel or serial Format. In parallel mode, data is input and output as 32 sequential byles. each 8 bits wide. In serial mode data is bandled as 32 bit scrial words. and 8 independent words are available. A buill-in channel serializer also permits cescading the channels 10 produce a word fengut of up to 256 bits. Maximurn use of the memory is thus retained when fewer channels are required.
A serobe output provides additional data formatting capability. The strobe can function either as a nimth data channel 32 bits long, or as a fouling 32 bit trigger word assignable to any or all of the 32 bit seclionts of a serialized data frame. The strobe is ihus perfoet as a word framing pulse or as a qualifice signal to label address and data infornastion contained in the same data stream. Additional synchronizing signals are provided by the first and last bit outputs and the clock outpul.

The 8016A's front panel control scheme provides simple control of all of the 8016A's complex waveform generation capabilities. The data entry controls are optimized 10 a "row of 16 , collumn of 8 " atrangement. Each pushbutzon and adjacent LED form one bit of a buffer switch register whose states are displayed on the LED's. Dala is loaded eilfer into the row pushbutlons as serial words or into the col-
umn pusthbutions as 8 bit parallel byles. A single press of the load data switch then Iransiers the data to the high speed memory. If dala needs to be edited. a"fetch" facility returns data 10 the buffer register, where it is again displayed on the LED's. Bit patterns may also be more rapidly loaded into the 8016a via an optional card reader. The entise memory may thas be loaded in less than 2 seconds.

Complete testing of digital circuits and systems requires not only digital patierns but conirol of the analog parameters of the pulsex as well. Pulse widllss. levels, and interchannel delays must all be adjustable both for proper functional zesting and, in addition, to measure such dynamic parameters as selup and hold times, clock pulse width sensitivitios, and the systern sensitivity to propagation delay variations. To meet these testing requirements the 8016A first includes 6 independent delay circuirs. Two selectable delay ranges, $0-100 \mathrm{~ns}$ of $0.1-1 \mu \mathrm{~s}$ are provided. Output levels of the 8016A's 50 ourpul amplifiers may also be adjusted to meet either ECL or TTL lest specifications. Tramsition times of <3 ns for TTL and <2.5 ns for ECL pulses are also in line with resting requirements. In addition a choice of $R Z$ or $N R Z$ formsts with variable $R Z$ pulse width is provided. This combination of pattern and pulse parameter control means the 8016A est ofion provide problem solutions which would otherwise require a setup of separate pulse and word generators.
lis simple but very fexible bit pattern programmability combined with it short cycle lime (50 MHz clock) make the 8016A especially erfective in simulating worst case conditions in IC testing. e.g. high speed esting of eritical areas of memory. Similarly, the 8016A is a lime saver in component evaluation environments because test selups can be rapidly buill and reconligured to meet the demands of testing small quantities of a wide variety of IC types. In addition the 8016A is very useful in feeding controlled bit patcerns inlo data buscs, datia communications systems, and ielemelry systems, borh for testing and for simulation purposes.

Specifications

Data capacity

Number of channels: 8 data channcls pius 1 strobe channel.
Number of bile per channel: 32 (fixed).
Total bil capaclty: 288.
Data ean be loaded in parallel or serial form depending on the position of the PROGRAM MODE switch. The dana is loaded via a single row and single column of pushbuttons, each pushbution controlling a one-bit bulfer register.

Serial capacity

One word consists of $\mathbf{3 2}$ bits in serial. A front panel switch serialues words to form a firame.

Serial formals:

9 words on 9 channels, including strobe word, cach 32 bils long.
4 frames on 4 channels, cach corisisting of 2 words or 64 bils,
2 frames on 2 channels, each consisting of 4 words or 128 bits.
1 rrame on I channel consisting of 8 words or 256 bits.
Parallel capacity
Parallel format: 32 words with up to 9 bits in paralicl-strobe channel included - will be generated. The number of bits per word depends on the number of output channcls serialized.

Data outputs

Two separate outputs per channel. one for normal and one for complement.
Amplilude: TTL or ECL voliage levels, variable by front pancl con1rol.
Source impedarice: 50 ohms.
Delay; four channels can be separately delayed between 0 ns and $\mathrm{I} \mu$ sec with reference to the channcis $1,3,5$ or 7.

Two ranges: $0 \mathrm{~ns}-100$ ns

$$
0.1 \mu s-1 \mu s
$$

Ranges are common to all delayable channels. Channels heve individual vernier controls.

Delay jitter: $\leq 0.1 \%+50 \mathrm{ps}$
Skewtime: Skewlime of undclayable channcls $(3,5,7)$ in relerence to channel one: $\pm \mathrm{I} \pi$.
Formet RZ or NRZ separately sclectable for each data channel and strobe channet.
RZ Wldth: 10 nsec 10 I $\mu \mathrm{sec}$ in two ranges. Vamiur provides continuous adjusiment within ranges. Range switch and vemicr common 10 all channels.
Width Jitler: $\pm 0.2 \%+50 \mathrm{ps}$.

Aux. outputs

First bit: corresponds with parallel word onc or with the first bit of the serial word. Format is NRZ.
Last bit: eorrespondi with the last parallel word or with the last hit of the last word of a framic. Format is NRZ.
Clock: dellvers one pulse per bil. Formal is RZ.
Clock pulse width: controlled by RZ-Width control. Clock pulse may be delayed beiween 0 ns and I $\mu \mathrm{s}$ in relerence to channels I, 3, 5 or 7.
Slrobe word: separate LOA.D and FETCH pushbutions and lengh 32 bils (can be extended to 256 bits by repeciition). The strobe' word may be delayed belween 0 ns and 1 usec in reference to channels $1,3,5$ of 7.
Amplitude of eux. outpuls: TTL or ECL voltage levels variable by front panel control.
Source Impedance: 50 ohms .
Probe power
ECL: $-5.2 \mathrm{~V} \mathrm{de} \pm 10 \%$: 80 mA .
TTL: + 5 V de $\pm 10 \% ; 100 \mathrm{~mA}$.

Bit rale

Internal: 0.5 Hz to 50 MHz in cight tanges. Vernier provides coninvous adjusiment within ranges.
External: de up to 50 MHz or manual (riggering.

Clock Inpul

Repetition rate: 0 to 50 MHz .
Trigger pulse width: ≥ 10 nsec.
Trigger amplitude: selectable by ineernal switches on Bit Rase board AS. Max. Amplitude: ± 7 V al 100% duty cycle.
Ext. + (TTL): amplitude $\geq+2 \mathrm{~V}$, inpul impedance $\geq 1 \mathrm{k}$ to GND.
Ext +: amplitude $\geq+1 \mathrm{~V}$, input impedance 50 shms ta GXD.
Ext. - (ECL): amplitude $\leq-1.6 \mathrm{~V}$, input impedance 50 hms to -2 V .
ExL -: Trigger level adjusiable á Potentiometer ASR 114 from +1
Vio-iV.
Input Impedance: 50 ohens to GND.
Recycling
Auto mode: data is recyeled oontinuously.
Single cycle (2 modes):
a) one word generated for each cycle command.
b) words gencrated as long as the cyele command is active. Last word always completed. If channels are serialized, the serialized word (b-4 bits, 128 bits, 256 bits) is always completed.
Perlod belween cycle commends: Byte (Irame) lengih plus 200 ns .
Amplitude: $>+2 \mathrm{~V} . \leq+10 \mathrm{~V}$.
Width: ≥ 12 ns.
Input Impodance: $1 \mathrm{k} \Omega$.

Manual rese:

Auto cycle:: all channel outpuls are ses 10 " 0 ". The next clock pulse after RESET generates byte number one.
Single cycle: all chanoel outputs are resel to word pausc. Word pause can either be "ZERO" or "LAST BYTE", controlled by a rear panel swith.

Pulse characteristics

The level of all output signals is controlled by a TTL/ECL switch. Adjusts for amplitude and offset. Source Impedance is 50 ohms.
TTL (across 50 ohms); HIGH LEVEL variable from 2.5 V to I V. LOW LEVEL SO.2V.
Transition Imes; $\leq 3.0 \mathrm{~ns}$ (First/Last Bit Trigger $<4.0 \mathrm{~ns}$).
ECL (across 50 ohms): HIGH LEVEL OFFSET variable from
-0.9 V to +1.1 V . Amplitude variable from 0.3 V to 1.0 V .
Trensillon ilmes: $\leq 2.5 \mathrm{~ns}$ (First/Last Bit Trigger $<4.0 \mathrm{~ns}$).

General

Operatling demperature ranger: $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$.
Powar requirements: $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V}$ or $240 \mathrm{~V}+5 \mathrm{~S}_{2},-10 \%$, 48 $\mathrm{Hz} 1066 \mathrm{~Hz}, 200 \mathrm{VA}$ (maximum).
Welght: ncl, 14.5 kg (31.96 lb), Shipping, $16 \mathrm{~kg}(35.27 \mathrm{lb}$).
Dimenalons: $460 \times 475 \times 178 \mathrm{~mm}(18 \times 18.650 \times 7$ inches).
Options and Accessories
Price
001: remote programming. Bit palters can be
programmed by any conitoller that is compatible with
the HP Inicrface Bus (HP-IB).
002: Card Readec. This oplion enables rapid loading of
the ditta and strobe channcl bit patterns. The c.ird reader accepts marked or punched cards and transmits
the data/control information to the 8016A viat the HP
Interface Bus (HP-1B Oplion 00) is required).
$\$ 660$
907: Front Handle Kit
add $\$ 15$
908: Rack Flange Kil
909: Rack Flange \& Front Handle Combination Kit

- 10 MHz repetition rate
- Selectable PRBS and word length
- Selectable formats RZ/NRZ, normal/complement
- TTL compatible output
- Bit pattern programmable
- Single and continuous cycling

External slock

NRZ Output (16 blt continuous word recycilngs

RZ Output signal

Frst bit synch pulse

The 8006A generates serial digital words of wariable length at clock rates up to 10 MHz . An easy selection of iwo 16 bil words is availsblc. These two words can be serialized to produce a 32 bit word at each outpul. Sclectable operating modes include positive return-lozero (RZ) format, positive and negalive non-relurn-to-zero (NRZ) format, manual or automatic word cycling, complementary output signals, and remote programming of the data content. The remote programming fealure allows conversion of parallel words to serial words. Two outputs provide trigger pulses coincident with the first and the last hit.

Additionally, a pseudo-random binary sequence variable from 7 to 65535 bits can be oblained from channel \wedge oulpul, with the inveried sequence available at channel B.

Specifications

[^17]Pseudo-random sequence generation PRN: provides a lineur shift register sequence at channel A output und the inverted sequence at channel B output. Maximum bis rate in 9 MH .
Sequence length: variable from 71065935 bils
Trlgger pulse: scleciable for each bit in sequence.
Interface
Clock inpul
सepetition rate: 0 to 10 M Hz , Amplizude $\geq \pm 2 \mathrm{~V}, \leq \pm 10 \mathrm{~V}$.
Widlh: >15 ns at $\pm 1 \mathrm{~V}$. In弓su: impedance: >500.
Cycle command Inpul
Minimum perlod: word lengli plus 100 ns . Amplitude $>+2 \mathrm{~V}$. $<+10 \mathrm{~V}$.
Width: >15 ns al +1 V . Input impedance: $>500 \Omega$.
Exlernal data inputs; no slorage capabihty lor programmed data.
Low state: contact closure. TTL low, or voliage source $>0 \mathrm{~V}$, $<+0.8 \mathrm{~V}$.
High state: open, TTL high or voltyge source $>+2.4 \mathrm{~V},<+5 \mathrm{~V}$.

Synch outputs

Amplitude: $>+2 \vee$ acroxs 50 .
Width: approx. 40 ns. Output impedance: 50Ω.

Word outpuls

Poallve NRZ, AZ: higli: +2.5 V across 50 II, source impedance
50n. Low: $2-0.3 \mathrm{~V}, \leq+0.3 \mathrm{~V}$, source impedance approx. On. Currenu sink capabiliy 80 mA maximum.
RZ pulse width: approx. 45 ns.
Negatlve NRZ: ligh: 0 V . low: -5 V across 50 l , source impedance 502.
Transition times: < 10 ns.

General

Operating temperalure: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V},+10 \%,-15 \%_{0}, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 59 \mathrm{VA}$.
Weight: net $6 \mathrm{~kg}(131 / \mathrm{lb})$.
Dimensions: 425.5 mm wide $\times 88.2 \mathrm{~mm}$ ligh $\times 337 \mathrm{~mm}$ deep $\left(10^{3} / \mathrm{m}^{\mathrm{m}}\right.$

$\left.\times 3^{11 / 92^{n}} \times 131 /^{n}\right)$.

Option and accessories Price
001: rear panci clock outpul. Amplıtude 2 V across
50§. Source impedance approx. S0』. Pulse width ap-
prox. 30 ms .
900: Rack Flange Kit
8006A 2×16 bit Word and PRBS Generator

The 3760A Data Generator is a fast, versatile PRBS and WORD generator intended for both factory and field use, with many features which make it expecially atractive for applications in high frequency digital communications.
The generator can he manually or automatically atiggered from an external clock in the frequency range $1 \mathrm{kHz-150} \mathrm{MHz}$. Alternatively the elock can be derived from an optional internal clock source which can be variable or crystal controlled in the frequency range is-1s0 MHz . A clock oulput is always provided in normal or complemented form, which is rariable in amplitude and de offere.
The pseudo-random binary sequence. PRBS, is variable in length from $2^{3}-1$ tu $2^{\text {th }}-1$ bits, with an additional lone sequence of $2^{12}-1$ bits. A sync pulse occurs once per PRBS and may be varied in pasition relative to the sequence. As the 3760 A generator is often used in conjunction with the 3761a Error Detector, two errors ean be inserted once per 4000 sequences to check the aceuracy of the 3760A/3761A system.

The lenglh of the binary WORD is variable from 31010 bits and its content is selected on the front panel. A syne pulse is generated once per WORD. Alternatively. a repetitive 1010 pattern can be selected.
The sync pulse can be used to initsale a block of I to 99 zcros which can be added to the data stream and used to examine regenerator clock extraction and threshold circuits in PCM/TDM systems.
The data oulpul which can be PRBS, WORD or the fixed pattern 1010. is available in normal or complemented form. Either RZ or NRZ formats may be selected and the data oulpul can be delayed by up to 100 ns with respect to the elock. As with the clock, the data output can be varied in amplitude and de offset. A second data outpul. which is synchronously delayed by 8 bits from the normal data output, is also available ns an option. This fealure makes the eqenerator idcally suited for driving digital radio sysiems employing four phase modulation.

Specifications

Modes of operation

PRBS normal: genesales a repelitive $2^{n}-1$ bil maximal lengin PRBS where $n=31010$ and 15 .
PRES add zeros: addition of a block of 1 to 99 zeros with PRBS normal, occuring after the sync pulse.
PRBS add error: introduction of two errors per 4000 sequenecs.
1010: generates a pruscil repelitive word, content 1010.
WORD normal: generales at continuous 3 to 10 bil word with selectable content.
WORD add zeros: addition of a block of 1 to 99 zcros into WORD normal. occuring between words.

Clock input

Rate: 1 kHz to 150 MHz .
Impedance: 50 ohms $\pm 5 \%$ de coupled (75 nhms optional).
Trigger: manual with level range $-3 \vee$ te $+3 \mathrm{~V},+\mathrm{ve}$ or - ve slope. Auto with input mark:space rutio range 10:1 to I:10.
Sensilivity: better than $500 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$.
Amplltude: 5 V pk -pk maximum. Limits $\pm 5 \mathrm{~V}$.
Pulse width: 3 ns mininum at 50% pulse amplitude.
Indieator: lamp showing clock present and trigecring corrccily.
internal clock (optional)
Variable: range 1.5 to 150 MHz .
Crystal: two rates in the ringe 1.5 to 150 MHz , stability $\pm 20 \mathrm{ppm}$. Jitter: <0.5\% of period +0.05 ns pk-pk.

Clock outpul

Outputs: CLOCK or CLOCK.
Impedance: source impedance 50 ohms $\pm 5 \%$ (75 ohms optional).
Amplitude: continuously variable in 5 ranges from 0.1 to 3.2 V symmetncal about offsci level.
DC offet: Zero, <2 8 of pulse amplitude.
Variable. continuous 0 to $\pm 3 \mathrm{~V}$.
Transition times: < 1.4 ns into 50 ohms.
<1.6 ns into 75 ohms.
Overshoot: < 10% of pulse amplitude.

Data output

Outpule: DATA or DATA.
Formal: NRZ or RZ (up $10130 \mathrm{Mb} / \mathrm{s}$).
Delay: data (and sync) delayed wih respoci 10 cluck continuously in 10 ranges from oto 100 ns .

Oiher specifications 35 for clock oulpul.
Delayed data output (optional)
Oulputs: DATA or DATA ganged with normal Data outpul.
Delay: synchronous 8 bits with respoct 10 normal Dala outpul. Other specifications as for normal Data output with ganged amplieude and dc offset controls.
Sync output
Rate: once per PR BS or WORD cycie.
Amplitude: $+1 V$ into 50 ohms.
General
Power: 100 to 125 V or 20010250 V .4010400 Hz , consumption 90 W .
Weight: $13.5 \mathrm{~kg} .(30 \mathrm{lb})$.
Dlmenslons: 425 mm wide, 140 mm higl, 467 mm deep. $\left(16 \frac{1}{4} \times 51_{2}{ }^{4}\right.$ $\times 181 / 4$ ").
3760A Data Generator

Hewlett-Packard frequency synthesizers iranslate the stable frequency of a precision frequency standard to one of thousands or even billions of frequencies over a broad spectrum that extends from de to 2600 MHz . The isble below highlights HP's complete line of frequency synthesizers.

HP Mode:	Frequency Range	Frequency Resolution	Frequeлеу Stability	$\begin{gathered} \text { Level } \\ \text { Range } \\ \text { BBm-500 } \end{gathered}$	Level Resolution	Remole Control	Other ${ }^{\circ}$ Features
$\begin{aligned} & 3320 \mathrm{~A} \\ & (\mathrm{Pg}, 307) \end{aligned}$	$\begin{gathered} \mathrm{DC}-13 \mathrm{MHz} \\ \mathrm{~S} \text { ranges } \end{gathered}$	0.01 Hz to 10 kHz (4 digits)	$10^{-1 / d a y}$	$010+13$	x lurn Yernier	Freq.	1
$\begin{aligned} & 33208 \\ & (\mathrm{Pg} .307) \end{aligned}$	$\begin{gathered} \mathrm{DC}-13 \mathrm{MHz} \\ 5 \text { ranges } \end{gathered}$	0.01 Hz to 10 KHz (4 digilis)	$10^{-7 / d a y}$	$-7310+21$	$\begin{aligned} & 0.01 \mathrm{~dB} \\ & \langle 4 \text { digits }\rangle \end{aligned}$	$\begin{aligned} & \text { freq. and } \\ & \text { Ampl. } \end{aligned}$	I
$\begin{aligned} & 3330 \mathrm{~B} \\ & (\mathrm{Pg} .309) \end{aligned}$	$\mathrm{OC}-13 \mathrm{MHz}$	$\begin{gathered} 0.1 \mathrm{~Hz} \\ (9 \text { digits }) \end{gathered}$	$10^{-8 / d a y}$	$-8710+13$	$\begin{aligned} & \hline 0.0188 \\ & \langle 4 \mathrm{~d} / \mathrm{giv}\rangle \end{aligned}$	Fieq and Ampl.	2, 3, 4, 6, 8.
$\begin{aligned} & 8660 A^{* 2} \\ & (\text { Pg. } 328) \end{aligned}$	10 kHz to 2600 MHz (3 plug-ins)	$\underset{(10 \text { digils) }}{2 \mathrm{~Hz}}$	$3 \times 10^{-8 / d a y}$	$-14610+13$	1 dB sleps plus Vernier	fieq.and Amgl. 8 Modulation	5.7.8
$\begin{aligned} & 8660 C^{\circ} \\ & (\text { Pg. } 328) \end{aligned}$	10 kHz to $2600 \mathrm{MH}_{2}$ (3 Diug.ing)	$\stackrel{2 \mathrm{~Hz}}{(00 \text { digis) }}$	$3 \times 10^{-8} /$ day	$-14610+13$	1 dB steps plus Vernies	Freg. and Ampl \& Modulation	3, 5, 7, 8

(6) external AM, (7) $3 \times 10^{-2} /$ day stability Dp! OD1 (83 H5. 18
*The G6i60 A / B is a synthesiter-signal generator-snd it dicussed in ortail in the section labeled "Signal Generators."

Description

The 3320A/B Frequency Synthesizer has the frequency accuracy, stability. and resolution demanded by many of today's exacilng applications. The ease and fexibility of adding greater stability means the $3320 \mathrm{~A} / \mathrm{B}$ can be tailored to your needs ans they emerge. Spectral purity and low signal-to-phase noise complement the frequency qualities of the 3320A/B.
The 3320B is more than a synthesizer. It offers precise level control, superior frequency response. low harmonic distortion and high power oulput.

Two choices of digital remole conmel afford great flexibility for today's system applications. High precision in both frequency and amplitude means that expensjve system monitoring is unnecessary.
Frequency
The 3320A/B Frequency Synthesizer has a broad frequency range of 0.01 Hz to 13 MHz in seven fecquency ranges.

Three digits plus a ten-luri two-digit continuous vernier, plus 10% overrange capubility, gives the $3320 \mathrm{~A} / \mathrm{B}$ one part in 10^{K} frequencs res. olution across its lotal frequency range.

Amplitude

The 1320A has a maximum one volt me into 50 ohms output $(+13$ $\mathrm{dBm})$ with a continuous +13 dBm to 0 dBm amplitude vernitr

The 3320B features a four-digit leveling loup with a 0.01 lat level
resolution of a calibrated output 「rom +26.99 dBm to -69.99 dBm $(-73,00 \mathrm{dBm}$ under remuic contrit).
Frequency response of $\pm 0.05 \mathrm{~dB}$ over the range of $10 \mathrm{~Hz}, 10 \mathrm{l} 3$ MHz, and level accuracy of $\pm 0.05 \mathrm{dBm}$ absolute at 10 kHz complement the level capability of the 3320 B .

Programmability/remote control

The $3320 \mathrm{~A} / \mathbf{8}$ is a programmable signal source. Digital remole control capability may be purchased installed in the insirument, or may be added later if the need arises.
The 3320A, with its Option 003, allows paralle BCD remole control of frequency only. The first digit of the frequency versier, the frequency range, and the main frequency digits may be controlled remosely.

The 33208 has iwo remole control oplions. Both options allow full control of all functions except the last vernier digit and the line switch. Option 004 is paraliel BCD semote control capabilily. Option 007 (HP-1B) is a unique bit-parallef/word serial programming option. The Hewlett Packard Interface Bus (HP-1B) provides a low-cosl versatile way to interconncet instruments digitally.

Specifications

Frequency range: 0.01 Hz to 13 MHz in 7 ranges.
Frequency ranges: $10 \mathrm{MHz}, 1000 \mathrm{kHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}, 1000 \mathrm{~Hz}$: 100 Hz and 10 Hz (oplional). 30% overrange on all ranges.

.01 Hz to 13 MHz frequency synthesizer

Frequency resolution：

Range	Vernier Out （local or remole）	Vernier in （local）	Vernier in （remole）
10 MHz	10 kHz	10 Hz	1 kHz
1000 kHz	1 hHz	1 Hz	100 Hz
100 kHz	100 Hz	0.1 Hz	10 Hz
10 kHz	10 Hz	0.01 Hz	1 Hz
1000 Hz	1 Hz	1 mHz	0.1 Hz
100 Hz	0.1 Hz	0.1 mHz	0.01 Hz
10 Hz	0.01 Hz	0.01 mHz	0.001 Hz

Frequency accuracy

Vernier out：$\pm 0.001 \%$ of setting for $6 \mathrm{moo} .0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ．
Vernler in：$\pm 0.01 \%$ of range for $6 \mathrm{mo}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ．
Frequency stability
Long lerm：± 10 parts in 10° of setting per year（vermior out）with am－ bient iemperature reference．Optional high stability crystal reference oven available（Option 002）．
Signal－tu－phase nuise（integrated）：$>40 \mathrm{~dB}$ down in 30 kHz band，ex－ cluding $\pm 1 \mathrm{~Hz}$ ，centered on carricr． 10 MHz range，verpier out，Im－ proves on lower frequeney ranges．
Harmonic distortion：with output frequencies $>0.1 \%$ of range at full output amplisudc，any harmonically related signal will be less itan the following levels：-60 dB with output from 5 Hz to $100 \mathrm{kHz} ;-50 \mathrm{~dB}$ wilh oulpul from 100 kHz to 1 MHz ；-40 dB with oulput from I MHz to 13 MHz ．
Spurious：$>60 \mathrm{~dB}$ down．
Internal frequency gtandard： 20 MHz crysial．
Phose locking：the 3320A／B may be phase locked with a 200 mV to 2 V rms signal that is any subharmonic of 20 MHz ．
Rear panel output：front or rear panel output is standard．

Auxillary outputs

Tracking outputs： 20 MHz to 33 MHz offste signal，$>100 \mathrm{mV}$ rms／50s？．
1 MHz reference output： $220 \mathrm{mV} \mathrm{rms} / 50 \Omega$（ $>\mathrm{dBm} / 50 \mathrm{l}$ ）．
Low level output：same frequency as main oulput but remains be． iween 50 mV rms and 158 mV mms （into 5032）depending on main out－ put levcl setuing

3320A Amplitude section

Amplitude：maximum IV rms $\pm 10 \%$ into 50Ω ．
Amplitude range： 0 dBm i $0+13 \mathrm{dBm}$ range ihrough $1 / 4$ tum front panel control（nol programmable）．
Frequency respense：$\pm 2 \mathrm{~dB}$ oyer（otal range．
Output impedance： 5017 （ $\mathrm{i} 5 \Omega$ ．Option 001）．
3320日 Amplliude section
Amplitude renge：$+26.99 \mathrm{dBm}(1 / 1$ watt） $10-69.99 \mathrm{dBm}(-73.00$ dBm under remate control）into 500 ．$(+26.99 \mathrm{dBm}=5 \mathrm{~V}$ rms into 50n）．
Amplitude resolution： 0.01 dB ．
frequency response（ 10 kHz reference）：

10 Hz		$\begin{aligned} & 10 \\ & +26.99 \mathrm{dBm} \end{aligned}$
$\pm 0.5 \mathrm{~dB}$	$\pm 0.05 \mathrm{~dB}$	
	$\pm 0.1 \mathrm{~dB}$	3.00 dBm
	$\pm 02 \mathrm{~dB}$	23．00 dBm
	$\pm 0.4 \mathrm{~dB}$	53.00

Amplitude accurscy（absolute）：$+26.99 \mathrm{dBm}, \pm 0,05 \mathrm{~dB}$ at 10 kHz and（ $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ ）．
Output lmpedance： $50 \Omega(75 \Omega$ Oplion 001）．

Options
001 （3320A／8） 75 ohm：amplitude range（3320B only）+24.99 dBm $10-69.99 \mathrm{dBm}$（ -75.00 dBm under remole control）into 75Ω ．
002 （ $3320 \mathrm{~A} / \mathrm{B}$ ）crystal oven：： 5 MHz crystal in temperature stabi－ lizod oven．Long term stability：± 1 part in $10 * / d a y ; ~ \pm 1$ part in $10^{\prime} / \mathrm{mo}$ ．Frequency aceuracy：± 1 par in 10^{\prime} of selting per mo．For field instahlation order accessory kil HP 11237A．
003 （3320A only）BCD remote control＇：allows digital remole con－ trol of frequency only on 3320A．The most significant digit of the ver－ nicr may be programmed．（hus giving four digits，plus 30% overrange． control of frequency in seven ranges（two are optional）．Frequency switching and setiling time：$\pm 0.1 \%$ of range． $15 \mathrm{~ms}, \pm 0.001 \%$ of range． 60 ms ．For field installation order accessory kit HP 11238 A ，
004 （33208 only）BCD remote control＊：allows digital remole con－ uso）of frequency and amplitude．＂Four digits of frequency，aver－ range， Irequency range，Vernier In／Oul，four digits of amplitude．and leveling loop response times are all controlled digitally．Frequency switching and selling lime is $\pm 0.01 \%$ of range，is $\mathrm{ms}: \pm 0.001 \%$ of range， 60 ms ．Amplitude switching and selting time：＜ 1.5 s to rated accuracy．
007＊（ 33208 only）HP－IB remote control：allows bit－parallel word－ serial romote conirol of all functions．＂ A 3320 B with this option will recognize an address and then accept instructions in a serial fashion． Instructions are a seven－bit parallel HP－IB code．Due to the address－ ing feature，up to ten 3320日＇s（with this option）may be programmed from one programmer．This option requires eight digital input lines for full control．＂Seven of the eight are programming input lines and one is a data command line．Full digital isolation is standard with this option．

Logic Level Requirements for all Digital Remate Controt Options
Slate

Requirements

008 （3320A／B） $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ Ranges＊；adds two lower frequency ranges， 100.0 Hz and 10.00 Hz ，yielding greater resolution for low fre－ quency oufpuls（see resolution section of specilications）．These iwo ranges are fully programmable if digital remote oplions are inslalled． For field installation，order Accessory Kii HP II240A．
General
Operating temperalure： $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ．
Storage temperature：$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power requirements： 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 63 Hz ． 10 VA max．
Weight
$3320 \mathrm{~A}: \mathrm{ncl}, 14.4 \mathrm{~kg}$（32 Jb）．Shipping، $21.3 \mathrm{~kg}(47 \mathrm{lb})$ ．
33208：net． 15.4 kg （ 34 lb ）．Shipping， 22.2 kg （ 49 lb ）．
Dimenglong： 425 mm wide， 491.5 mm deep， 132.6 mm high（ $16 \%^{\circ} \times$ $195 / \mathbf{R}^{\prime \prime} \times 5 \% 3^{\prime \prime}$ ）．
Options and accessories Price
3320A Option 001． 750 oulpul
3320A Oplion 002，cryslal oven add $\$ 345$
3320A Option 003．BCD remote control
3320A Option $006,100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ ranges
add $\$ 355$
33208 Option 001 75Ω output
3320B Option 002．crystal oven
3320 B Option 004，BCD remote contros add $\$ 238$

N／C

3320B Option 006， $100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ ranges add $\$ 238$
3320 Option 007．HP－［日 remote consrol add $\$ 765$
11048C．Son feedthrough
$11049 \mathrm{~B}, 75 \Omega$ feedthrough
$\$ 16$
11473－76A Balancing Transformers．（sce page 472）\＄275 ea
Model number and name
3320A Frequency Synthesizer
$\$ 2330$
3320B Frequency Synlhesizer
$\$ 3665$
arietia ins：allable
－＂Luceit last verier dieit and line switch

- Digital sweeping of frequency and amplitude

Description

The fully programmable (HP-1B) 3330B Frequency Synthesizer has a frequency slability of $\pm 1 \times 10^{-8}$ per day, -50 dB signal-to-phase noise, with a constant resolution of 0.1 Hz up 1013 MHz . Amplitude can be controlled to a resolution of 0.01 dB over á 100 dB range.

Solid-state displays show frequency and amplitude. Nine digits of frequency and rour digits of amplitude are displayed on the Mode) 3330B.

Spectral purity, not normally associated with frequency synthesizers, is a unique feature of the 3330B. Spurious is >70 d日 below the carrier and harmonica are $>60 \mathrm{~dB}$ to 40 dB below the cartier, depending upon the frequency selling. As a siveeper, the 3330 B uses digitat sweeping for linearity. Either single or continuous sweeps may be set up. Parameters such as center frequency. Frequency step. lime per step. and the number of steps. go into the memory. then are execuled by pressing a single bulton. The ROM operates the sweep as set up until told to stop. Many of the sweep parameters can be changed while the instrument is sweeping. The instrument sweeps amplitude in steps as small as 0.01 dB . The amplitude can be stepped at the end of each Frequency sweep cycle to produce a family of carves.

Specifications

Frequency range: 0.1 Hz to $13,000.999 .9 \mathrm{~Hz}$.
Frequency resolulion: 0.1 Hz (8 digils + overrange).

Frequency stablirty

Long lerm: $\pm 1 \times 10^{-k}$ of frequency per day. $\pm 1 \times 10^{-7}$ olfrequency per month.
Temperalure: $\pm 1 \times 10^{-8}$ of frequency al $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C} . \pm \mathrm{I} \times 10^{-7}$ of frequency al $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Signal to phase nolse (integrated): 50 dB down in a 30 kHz band, excluding $\pm 1 \mathrm{~Hz}$, centered on carrier.
Harmonle distortion: with full outpul amplitude, any harmonically relatod sigral will be less than the following specified levels.

5 Hz to $100 \mathrm{kHz}:-60 \mathrm{~dB}$.
$100 \mathrm{kHz} 101 \mathrm{MHz}:-50 \mathrm{~dB}$.
1 MHz to 13 MHz : -40 dB .

Spurious

All nonharmonically related spurious signals will be greater ikan 70 dB below selected oulpul level or silo dBm/50n. whichever is greater.

Frequency swliching and petiling time: the time required for frequency switching and settling is a function of the largest frequencs digut affocted by the frequencs change in question.

Largest digit changed	$\begin{aligned} & 0.1 \mathrm{~Hz} \\ & \text { or } 1 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { of } 100 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 1 \mathrm{kHz} \\ \text { of } 10 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 100 \mathrm{kHz}, 1 \mathrm{MHz} \\ & \text { of } 10 \mathrm{HHz} \end{aligned}$
Switching and settling time	$\begin{aligned} & <1 \text { ms to } \\ & \text { within } \\ & 500 \mu \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & <1 \text { ms lo } \\ & \text { wilhin } \\ & 0.05 \mathrm{~Hz} \end{aligned}$	$<1 \mathrm{~ms}$ to wilhin 5 Hz $<50 \mathrm{~ms}$ io within 0.01 Hz	$<1 \mathrm{~ms}$ to within $500 \mathrm{~Hz} ;<50 \mathrm{~ms}$ to within I Hz

Internal frequency reference: 5 MHz crystal oscillator in temperature slabilized oven.

Frequency adjustments
Coarae: internil adjuxtment adequale for five years of aging
Fine: one turn pot or $\pm 5 \mathrm{~V}$ dc for 1.2 to 2.5×10^{-1} max control with internal reterence or 3×10^{-s} mux control with rear panel switch in ext. ref. position without an cxternal reference applied.
External Irequency reference: the 33308 may be phase locked with a 200 mV 102 V rms signal that is any subinarmonic of 20 MHz from 1 MHz through 10 MHz .
Rear panel output: front or rear pancl output is standard.

Auxliziary outpuls

20-33 $\mathbf{~ A H z ~ t r a c k i n g ~ o u t p u t : ~}>100 \mathrm{mV} \mathrm{mss} / 5012$.
1 MHz reference output: $>220 \mathrm{mV} \mathrm{rms} / 50 \mathrm{~N}$ ($0 \mathrm{dBm} / 50 \mathrm{f}$).
Synthesized search or tune: a frequency step (0.1 Hz min) may be entered. This step may be inded to or subtracked from the synthesized oulput signal. Rate of searth or lune is selected by the time per step coniral.
Digital aweeping of frequency: accomplished by untering and setling the center frequency, a frequency step, number of steps, lime per slep, and sweep difection.
Sweep width: the product of the step size and number of steps.
Siep aize: continuously adjustable in 0.1 Hz incruments.
Step accuracy: $\pm 1 \times 10^{-8}$ per day for slandard refurcnce crysial. Number al slepe: 10,100 , or 1000 .
Time per step; $1 \mathrm{~ms}, 3 \mathrm{~ms} .10 \mathrm{~ms} .30 \mathrm{~ms}, 100 \mathrm{~ms} .300 \mathrm{~ms} .1000 \mathrm{~ms}$, and 3000 ms .
Dtrection of sweep: up, both. down.

SIngle aweep: initiated by momentary pushbution.
Conlinuous sweep: initiated by momentary pushbutton.
Manual sweep: accomplished by holding down the freq \uparrow or lifeq \downarrow
keys. Display will follow output.
Sweep output: stepped de voltage proportional to sweep pasition, 0 $10+10 \mathrm{~V}$.
Accuracy: $\pm 0.2 \%$ of full scate.
Linearity: $\pm 0.1 \%$ of full scale.

Digital outputs

Step count: 0 to 1000 count on 12 BCD (1-2-4-8) lines 10 indicate sweep position.
Sweep status: line to indicate when instrument is sweeping.
Step resdy: indicates instrument has spent the selected time per step and is ready 10 go to the next step.
Sweep modificalion (conflnuous): during a continuous swecp, the step size. center frequency, sweep direction, and time per step may be changed withoul stopping the sweep.
Center trequency modification: accomplished by pressing freq \uparrow or freq 4.
Frequency step: to widen or narrow the sweep width, the frequency step size may be expanded or contracted by factors of 2 or 10. The keys labeled freq step $\times 2$, freq step $\div 2$, freq step $\times 10$ and freq step $\div 10$ may be pressed.
Sweop modification (gingle): during a single swecp. the time per step and direetion sweep may be changed withoul slopping the sweep.

Amplitude section

Amplitude: maximum 2.) V rms into open circult maximum $\operatorname{L.OS} \mathrm{V}$ rms into 50Ω.
Ampillude range: +13.44 dBm to -86.55 dBm into $50 n$.
Ampillude resolution: 0.03 dB .
Outpul Impedance: 50Ω (75Ω Opition 001).
Display: four digit readout in dBm with referenec 1050Ω. Leveled frequency response () 0 kHz reference) $10 \mathrm{~Hz}-13 \mathrm{MHz}$.*
+13.44 dBm to $\mathbf{- 1 8 . 5 5 ~ d B m : ~} \pm 0.05 \mathrm{~dB}$.
-16.55 dBm to $-36.55 \mathrm{~dB} \mathrm{~m}: \pm 0.1 \mathrm{~dB}$.
-36.55 dBm to $\mathbf{- 6 6 . 5 5 d B m : ~} \pm 0.2 \mathrm{~dB}$.
-68.85 dBm to $-88.55 \mathrm{dBm}: \pm 0.4 \mathrm{~dB}$.
Amplitude attenuator accuracy: $\pm 0.02 \mathrm{~dB} / 10 \mathrm{~dB} \operatorname{step}$ (at 10 kHz) of attenuation down from maximum output.
Amplitude accuracy (absolute): $\pm 0.05 \mathrm{~dB}$ at 10 kHz and +13.44 dBm ($15^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$). (For absolute accuracy at outher Irequencies and amplitudes, add 0.05 dB to the leveled frequency response speeification. plus the altenuator accuracy specification.)
Amplltude modulation: requires extemal modulation source. Rear panel BNC. ALC switch must be im slow position.
Modulating algnal: 100 Hz to 100 kHz .
Modulatlon depth: 0.95 V rms modulating signal for 95% modulalion depth.
Dighal sweepling of amplltude: accormplished by entering and selting the ecnter amplitude, an amplitude step. number of steps, time per slep and sweep direstion.
Type: linear and symmecrical abous the center amplitude.
Sweep wldth: product of the slep size and number of steps.
Step size: 0.01 dB to 99.99 dB in 0.01 dB increments.
Number of steps: 10, 100, or 1000.
Time per atep: $30 \mathrm{~ms} .100 \mathrm{~ms} .300 \mathrm{~ms}, 1000 \mathrm{~ms}, 3000 \mathrm{~ms}$.
Direction of sweep: up, both, down.
Single sweop: momentary pushbution. Display tollows output.
Conflnuous aweep: momentary pushbution. Display of center amplitude or step.
Manual sweep: accomplished by holding down the ampl \uparrow or ampl \downarrow keys. Display will iollow outpur. Sweep output, digital oulputs, sweep modification (contintrous), sweep modification (single), al) the same as with frequency sweep.
-AdS ± 0.5 d8 [ar lyyeling cift.

Digltal remote control

The 3330 B allows full programming of frequency. amplitude and sweeping.
Each key. slideswitch position, and control has a seven-bit parallel ASCII code assigned to it. Programming is accomplished by sending
the 3330 a a series of seven-bit codes (instructions). Before the instrument will aceept instructions. it must be addresed, This is done by preceding the first instructions with the ASCII code for the insirument being addressed. The address of a 3330B is sel at Octal "044" by the manufacturer but may be easily changed by the user.

The addressing capability of the 3330B allows up to is units to be connected in parallel on the ASCII buss. Up to 63 different addresses are available.
riming: maximun of $310 \mu 5$ per digi. Maxirnum of 1 msto enter and initiate program control codes. Maximum of 2.5 ms 10 enter and iniLiate sweep.
Input control Ines: 7 Program Dara linas, 1 MRE.* I Data Strobe line. I Remote Enable line, I Step Inhibit line (use not required).
Output control lines: I Ready for Data, 1 Data Accepied, 14 Siveep Parameter lines (use not required).
Ieolatlon: the inpur and output control lines on the standard 3330 B do not have isolated grounds with respect to output signal ground. For isolation of these digital grounds, order Option 004.
Loglc leval requirements:

Stale	Requirements
"Low" (logical "1")	$0 \vee \log 0.4 \mathrm{~V}(5 \mathrm{~mA}$ max $)$ or conlact closure to ground lirough <80 obnis.
$\begin{gathered} \text { "High' } \\ (\operatorname{logical} " \mathrm{O} \mid \text { " } \end{gathered}$	$+2.4 \mathrm{Vlo}+5 \mathrm{~V}$ or cemoval of contacl to ground

Optlons

Option 001: 75 ohms - IV rms (Tactory installation only). Atlenualion and uutpul referenced to 75Ω.
Amplitude range: $+11.25 \mathrm{dBm} 10-88.74 \mathrm{dBm}$.
Option D02: High Stability Crystal Oven
Long ferm frequency stablilty: $\pm 1 \times 10^{-9}$ per day. $+2 \times 10^{-8}$ per manth.
Long term temparature: $\pm 1 \times 10^{-9}$ lotal frequency at $25^{\circ} \mathrm{C}$. $\pm 10^{\circ} \mathrm{C} . \pm 1 \times 10^{-6}$ total of frequency at $25^{\circ} \mathrm{C} 0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Frequency adjuelmente: same at itundard instrument.
Option 003: deletion of Crysial Oven. 20 M Hz ambient temperalure crysial reference oscillator.
Frequency stability: ± 10 paris in $10^{\circ} / \mathrm{yr}^{2}$.
Frequency adjustmenta; rear panel I lurn pol or rear pancl voll. age control input for 30×10^{-8} maximum control.
Option 004: isolated Digital Input (factory installation only.) With this option. the digital input lines are electrically isolated from the signal ground. (HP -1B).

DC isolation: $\pm 250 \mathrm{~V}$.

AC lsolalion: $>30 \mathrm{~dB}, 0101 \mathrm{MHz}$.
Oplion 005: 5 V rms - 50 ohm oulpul. This option gives the 33308 a
$1 / 2$ wall oulpul.
Amplifude range: +26.99 dBm to -73 dBm inio 50 ohms.

General

Operating temperature: $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Turn on tlme:
application of power $10^{\prime \prime}$ On": 20 min to within $\pm 1 \times 10^{-7}$ of the final frequency.
"Siandby" 10 "On": is s to full specifications.
Power requirements: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz} 1063 \mathrm{~Hz}, 20 \mathrm{~W}$ slandby, 200 W on.
Weight: net, 22.6 kg (53 lb). Shipping, $26.8 \mathrm{~kg}(63 \mathrm{lb})$.
Dlmenalons: 426 mm wide $\times 178 \mathrm{~mm} \mathrm{high} \times 547 \mathrm{~mm}$ deep ($16 / /^{\prime \prime} \times$ $\left.7 \times 211 / 2^{\prime \prime}\right)$.

Options
Option 00175Ω - I V output
Option 002. crystál oven
Option 003. deletion of oven
Option 004, isolated HP-IB
Option 005, SV-50si output
9330日 Automalic Symtheatzer

Oscillators, function generators

Signul sources have been described by various names-oscillators, test oscillators, audio signal generators, function generators. elc. Different names are applied, depending on design and intended use of the source. In recenily developed sources, the naine "lest oscillator" has been used to describe an oscillator having a calibraled attenuator and oulpul monitor. The tirm "signal generator" is reserved for an oscillator with modulation cupahility.
A function generator is a signal generator that delivers it choive of different waveforms with frequencies adjustable over a wide range. Function gellerators produce sine, triangle, square wave, saw-tooth waves, pulses. sweep, and modulation. liewlett-Packard's function generators extend from a low fro quency or 0.0000 SHz (HP 203A Option 002) up to a high frequency of 13 MHz (HP 3312A).

Basic requirements

In selecting an oscillator or function gencrator, the user will be most interested in its frequency coverage. The question to be answered here is, "Will the instrument supply both the lowest and highess frequencies of interest for anticipated tesis?" As shown in Table I. Hewleti-Packard manufactures a broad range of oscillators and function genorators covering the frequency speetrum from 0.00005 Hz 1013 MHz .

The user's next concern will be with available output power or voltage. Sornc tests require large amounts of power, while vihers merely require sufficient voltage output. For almosi any application, there is a Hewlet (lPackard oscillator capable of delivering desired voltage oulput into a high-impodance load or of supplying desised power into lower impedunce loads.
Beides frequency range and power output, the user will be imerested in instrument stability, its dial resolution, and the amount of harmonic distonion, hum and noise in the oulput signal, and functions avyilable. See Table 1 for a compurison of Hewlets. Pack. ard oscillators and function generators.

Frequency stability

Frequency slability of an oseillator determines the ability of the instrument to maintain a selected frequency over a period of time. Component aging, power-supply variations and temperature changes all affect stability. Carefully chosen componeras, such as prccision resistors and variable capacitors in the frequency-delermining networks. contribute to long-tern stability.

Amplitude stablity

Amplitude stability is important in certain

Table 1. Funclions, frequency range and power output of Hewlelt-Packard oscillators and iunction generators.
oscillstor applications. Amplitude stability is inherent in the Hewlew-Packard RC oscillator circuit because of large negative feedback factor and amplitude stabiliztng evehniques. "Frequency respense," or umplitude variaton as 「requency is changed, is of special in. terest when the oscillator is used for sesponse oleasuremenls throughout a wide renge of Crequencies.

Dletortion

Distorion in the oscillator's output signal is an inverse measure of the purity of the oscillator's waveform. Distortion is undesirable in that a harmonic of the test signal may feed through the circuits under test, generating a false indication al oulpul. If the oscillator is used for distortion measurements, the amount of distortion that it contributes to meisurements should be far less than that contributed by the circuits under lest.

Hum and nolse

Hum and noise can be introduced at a va. sicty of points in oscillator cireuils: but when the circuit operates al a relalively high level. the amount of hum and noise inlroduced into the device under test is usually negligible. Hum and noise inlroduced by a power am-
plifior usually remain constant as output signal amplieude is diminished. Hence. even though hum and noise power may be quite small compared to rated oulpul, these spurious signals somelimes become a significans portion of low-level output signals. To overcome such a limitation, many Hewlen-Packard oscillators have their amplitude conirol on the output side of the power amplificr so that hum and noise are reduced proportionally with the ssgnal when low.level signals are desired for test purposes.

Function generators

The function genorator is a versatile muliwaveform signal source capable of very wide frequency coverage. Available funclions range from variable phase offser (203A) to modulation (3310A/B, 3311A, 3312A) to sweop and Iriggerod/galed waveforms ($3310 \mathrm{~A} / \mathrm{B}, 3312 \mathrm{~A}$). The function generator is an indispensable general purpose signal source for production testing, insirument repair, and the electronics laboratory. Diverse ficlds of applications in which the function generator is being used include medical research. education, chernical. commanications, geo-physics, andusirial conirol, mili. tary, and aerospace.

OSCILLATORS \& FUNCTION GENERATORS

5 Hz 10600 kHz audio oscillators

Models 200CD, 200CD Opt H20, \& 201C

Description

These Hewlett-Packard oscillators have high stability and accurate. easily reseltable tuning circuits, Luw-impedanwe uperaling levels, 10 gether with superior insulation, guaralle peak performance throughout years of trouble-free service. The instruments have a wide frequency range and long dial lengths and leature an inproved vernier frequency control.

Accessories available:
 Price

11000A Cable Asxembly
1001A Cable Asscmbly
11004A Line Matching Transformer
$\$ 17$
I 1005A Line Matching Transforme

Specifications

	20000	2016
Frequency Pange	5 Hz 10600 KHz	20 Hz lo 20 kHz
Number of Ranges	5 overlapping	3 overlapping
Disl Accuracy	$\pm 2{ }^{\circ}$	$\pm 1 \%$
Grequency Response	$\pm 10 \mathrm{~B}$ (1 kHz cef)	$\pm 1 \mathrm{~dB}$ (1 $\mathrm{KHz}_{2} \mathrm{e}$ l)
Oulpus (imid 60003 load)	$\begin{aligned} & >180 \mathrm{~mW}(10 \mathrm{~V}) \\ & \text { OpL H20, } 93 \mathrm{~mW}(7.5 \mathrm{~V}) \end{aligned}$	3 W (425V)
Oulpul Impedance	600Ω	$600 \mathrm{n} \pm 10 \%, 20,30$ and 40 dB setungs $<600 \mathrm{n}, 0 \mathrm{~dB}$ and 10 dB selt hags
Outpul Balance	Balance and floating belter than 0.1 \% at lower frequencies and approx. I\% at higher frequencies	One lerminal at ground potential
Distortion	$0.2 \mathrm{~F}, 20 \mathrm{~Hz} 10200 \mathrm{kHz}$ $0.5 \%, 5 \mathrm{~Hz}$ 10 20 Hz and 200 kHz 10600 kHz Opl H20 0.06\% 60 Hz 1050 kHz 0.1 s , 20 Hz to 60 Hz and 50 kHz 10400 kHz 0.5%, 5 Hz to 20 Hz and 400 kHz to 800 kHz	$<0.5 \% 50 \mathrm{~Hz}$ lo 20 kHzat I W $<1 \%, 20 \mathrm{~Hz}$ lo 20 kHz at 3 W
Hum and Noise	<0.1\% of raled outpul	<0.03\% ol cated outpul
Allenuatos	Brioged " 7 "	0 to 40 dB
Ingul Power	115 or 230 V .50101000 Hz .90 VR	115 or $230 \mathrm{~V}, 5010400 \mathrm{~Hz}, 75 \mathrm{VA}$
Weaght kg (l)	$\mathrm{Net} 99 \mathrm{~kg}(22 \mathrm{lb})$ Shipping: 10.8 kg (24 lb)	Net: 1.2 kg (16 \|b) Shipping: 8.6 (19 lb)
$W \times N \times D$ Dimensions	$\begin{aligned} & 187 \mathrm{~mm} \times 292 \mathrm{~mm} \times 365 \mathrm{~mm} \\ & \left(7 \mathrm{~m}^{\prime \prime} \times 11 \mathrm{~h}^{\prime} \times 14 M^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 191 \mathrm{~mm} \times 292 \mathrm{mmn} \times 318 \mathrm{~mm} \\ & \left(7 \mathrm{~m}^{\prime \prime} \times 11^{\prime} \times 12 h^{\prime}\right) \end{aligned}$
Price	200CD: \$505. Opt. H20: add \$75.	201C: 5440

Description

The HP 209A is a mall, ligh(weight. sine/square oscillator. Slable. accurate signals which can be synchronized with an extermal sesurce are instantly available over a frepuency range from 4 Hz to 2 MHz . Separately adjustable sine/squart outputs are located on the front panel. Distortion and flanness catn be minimized at low frequencies by a real panch low distortion mode switels.
The HP 204C is a small, lightweight capacitive-luned oscillasor. Interchangeable power packs, line, rechargeable batteries or mercury bulterics make this instrument ideal for both ficld and laboratory use.
The HP 204D Oseillator is identical to the 204C with the addition of an 80 dB allenuator and vernier. The allunuator with the vernier provides excellent output amplitude setability.

209A Specifications

Frequency: 4 Hz to 2 MHz in 6 ranges.
Dial accuracy: $\pm 3 \%$ of frequency setting.
Flatness: al maximum outpus into 6000 load. 1 kHz , reference.

Low dislorlion mode	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 5 \%$
Normal mode	$+5 \%,-1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 5 \%$

Distortion; 200 Hz to 200 kHz 0.1 党 (-60 dB): \& Hz to 200 Hz . $<0.2 \%$ (-54 dB); $200 \mathrm{kHz}-2 \mathrm{MHz},<1 \mathrm{k}(-40 \mathrm{~dB})$.
Hum and noise: < 0.01% of input.
Output characteristics sine wave
Output voltage: 5 V rms $(40 \mathrm{~mW})$ into 600 n : 10 V open circuit. Output impedance: 600 n .
Output control: $>26 \mathrm{~dB}$ range continuously adjustable.
Output balance: $>40 \mathrm{~dB}$ below 20 kHz . Oulpul can he loated up to $\pm 500 \vee$ peak between output and chassis ground.
Output characteristics square wave
Output voltage: 20 Vp -p open circuit symmetrical aboul 0 V . Oulput can be noated up to $\pm 500 \mathrm{~V}$ p.
Rise and fall time ${ }^{-}<50$ ns into 600Ω. Symmetry: $\pm 5 \%$.
Output impedance: 600

Synchronization

Sync output: sinc wave in phase with oulput: 1.7 V rms open circuil (high end affeeted by capacilive loads): impedance $10 \mathrm{k} \Omega$.
Syne Input: same as 204 C .

204C Specifications

Frequency: 5 Hz to 1.2 MHz in 6 overlapping ranges.
Dial aceuracy: \pm 3\% of frequency stting.
Flatness: al maximum outpul inio 600Ω load. 1 kHz reference.

Low dislortion mode	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$
Nornal mode	+ $5 \%-1 \%$	$\pm 0.5 \%$	$\pm 1 \%$
5100300 l			

Dtatortion: 30 Hz to $100 \mathrm{kHz}, 0.1 \%(-60 \mathrm{~dB}) ; 5 \mathrm{~Hz}$ to $30 \mathrm{~Hz},<0.6 \%$ (-44 dB); 100 kHz - 1.2 MHz . lincarly derated to $<1 \%$.
Hum and notee: <0.01\% of output.

Outpwi characterdatices

Outpul vollage: $>2.5 \mathrm{~V}$ rms $(10 \mathrm{~mW}$ or $+10 \mathrm{dBm})$ into $600 \mathrm{n}:>5 \mathrm{~V}$ rms open circuil.
Outpul impedance: 600Ω.
Outpul control: $>40 \mathrm{~dB}$ range: continuously adjustable.
Oulpul balance: $>40 \mathrm{~dB}$ below 20 kHz . Can be floated up to $\pm 500 \mathrm{~V}$ p betwien oulpul and chassis ground.

Synchronization

Sync oulput: sine wave in phose with oulpul, $>100 \mathrm{mV}$ rms into $<100 \mathrm{pF}$ over entire range: impedanec 10 k ?.
syne input; oscillator can be synchronized to external signal. Syne range, the difference between syne frequency and set frequency. is a linear function of syine vollage. $\pm 1 \% / \mathrm{V}$ rms for sine wave with a maximum input of \pm ? V peak (± 5 V rms).

2040 Specifications

(Identica) to $204 C$ except "oulput conirol" is replaced by ine following):

Oubput attenuator

Range: 80 dB in 10 dB steps.
Overall accuracy: $\pm 0.3 \mathrm{~dB},+10 \mathrm{~dB}$ chrough -60 dB fanges: ± 0.5
dB on -70 dB range.
Outpul vernler: $>10 \mathrm{~dB}$ range. continuously adjus(able.

General

Operating lemperalure: spocificalions are met from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: slandard: ac-line 115 V or $230 \mathrm{~V} \pm 10 \mathrm{~m}, 48 \mathrm{~Hz} 1066 \mathrm{~Hz}<7$ VA max. Opt. 001 : mercury batieries 300 hours operation. Opi. 002 :
line/rechsrgeable batteries 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 66 Hz < 7
VA max. 15 hours operation per recharge.
Dimensions: 130 mm wide. 155 mm high (wilhout remuvable fuct). 203 mm dcep $\left(51 / \mathbf{c}^{\prime \prime} \times 6 / 1, \mathbf{n}^{\prime \prime} \times 8^{\prime \prime}\right)$.
Weight: net 2.7 kg (6 lb); shipping. 3.6 kg (8 lb).
Accessories avallable Price
11136 A Mcrcury power pack for 204C/D
III37A Rechargcable battery/AC power pack for 204C/D
11075A lnsltument case
$\$ 99$
Model number and name
Oplion $001, ~ 204 \mathrm{C} / \mathrm{D}$ (for mercury batterites)
add $\$ 83$
Oplion 002، 204C/D (fur rechargeable bati/ac line) add $\$ 94$
209A Sinc. square wave oscillator
204C Sine wave oscillator
$\$ 440$
204D Sinc wave oseillator
\$405

OSCILLATORS \& FUNCTION GENERATORS

10 Hz to 1 MHz digital oscillator

Model 4204A

- 0.2% frequency accuracy
- Accurate 80 dB output attenuator
- 0.01% frequency repeatability
- Excelleni stability
- Flat frequency response

Description

Hewlett-Pnckard's 4204A Digital Oscillator provides accuratc. stable test signils for both laboratory and production werk. This onc instrument does the job of an eudio oscilator. an ac volimeter, and an elcaronic counter where an accurate frequency sourcc of known amplitude is required.

Any frequency betwein 10.0 Hz and 999.9 kHz can be digitally sclected with an in-line rolary switch, to four significant ligures. As many as 36,900 discrete frequencies are available. Infinitc resolution is provided by one vernier control. which also extends the upper frequency limic 10) MHz . Frequency accuracy is better lban $\pm 0.2{ }^{\circ} \mathrm{c}$ and repeatability is (ypically belter than $\pm 0,01 \%$.
A built-in high impedince voltmeter measures output. The meter is calibrated to read volts or dBm into a matched 600 ohm load (0 dBm $=1 \mathrm{~mW}$ into 600 ohms.) The output attenuator has an 80 dB range. adjustable in 10 dB sieps with a 20 dB vernier. Maximum output power can be increased to 10 volts (22 dBm) into 600 ohms or 20 volts open circuit.
Frequency responsc is flat with less than $\pm 3 \%$ variation over the entire frequency range at any allenuator serting. Frequency siability is better than 10 garis in 10^{6} per minute.

Specifications

Frequency range: $10 \mathrm{~Hz} 101 \mathrm{MHz}, 4$ ranges.
Frequency accuracy: $\pm 0.2 \%$ or $\pm 0.1 \mathrm{~Hz}$ (at $25^{\circ} \mathrm{C}$).

Frequency stability:

$\pm 10 \%$ line voltage yariatlon: \}ess than $\pm 0.01 \%$.
Change of frequency wlith temperalure: $< \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Drift: <10 ppm/minute.
Frequency response: Mal within $\pm 3 \%$.
Output. $10 \mathrm{~V}(22 \mathrm{dBm})$ into 600 ohms $(160 \mathrm{~mW}) .20 \mathrm{~V}$ open circuit. Output attenustor: 80 dB in 10 dB steps; $< \pm 0.5 \mathrm{~dB}$ crror.

Output monitor: voltmeter monitors level at imput of attenuator in volls or dB.
Accuracy: $\pm 2 \%$ of full scalc.
Flalness: $\pm 1 \%$ al full scale. 10 Hz to $500 \mathrm{kHz}: \pm 2 \%$ at full scale. 500 kHz to 1 MHz .
Distortion: Iess than $0.3 \%, 30 \mathrm{~Hz}$ to 100 kHz . Less than $1 \%, 10 \mathrm{~Hz}$ to 600 kHz . Less than $1.2 \%, 10 \mathrm{H}<101 \mathrm{MHz}$.
Hum and nolse: less than 0.05ri of output.
Temperalure range: $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$.
Power: $115 \mathrm{~V} / 230 \mathrm{~V}$ switch, $\pm 10 \mathrm{Ci}, 10 \mathrm{VA}, 501060 \mathrm{~Hz}$.
Welght: ncl, 8.5 kg (19 lb). Shipping, 11 kg (28 lb).
Dlmenslons: 134 mm high $\times 426 \mathrm{~mm}$ wide $\times 286 \mathrm{~mm}$ decp $\left(51 /{ }^{*} \times\right.$ $\left.16 \frac{1}{4} \times 11 \%^{\prime \prime}\right)$.

Accessories avallable:

Price
11000 A Cable: dual banana plugs
$\$ 16$
11001 A Cable: banana plug 10 BNC male conntecor
11004 A Line Matching Transformer has a írequency response of 5 kHz to 600 kHz , providing fully balanced outputs for 135 or 600 ohms
11005 A Line Marching Transformer has a frequency sesponse of 20 Hz to 45 kHz providing full balanced output into 600 ohms
16252A Marching Transformer has a frequency response of 10 kHz to 1 MHz providing unbalanced 75 ohm output. Icrminsted in UG-657/U female BNC con-
nucior
Price on reques:

Ophons

Oplion 908: Rack Flange Xil add $\$ 10$
Model number and name
Option 00I, 4204A Outpui Monitor lop scale caliorated in $\mathrm{dBm}, 6000$. Bottom scale calibrated in volts
add $\$ 24$
4204A Dipital Oscillator
$\$ 1390$

Specifications

MODEL NO.	651日	652A	654A
Oescription	Amplifude and frequency slability of this seld slate capacilance-luned lest oscillator provides high quality signals for general purpose lab or produclion measurements.	Same as Model 6518, HP's Model 652A ollers an expandable output monilar for amplitude control to 0.25% acress its enfire trequency band tor greater output resolution and resetlability.	Similar to the 65 SB Test Oscillator. HP's Model 654A has balanced oulputs of 1351.1505 . and 6000. Automatic leveling over entre frequency range and expanded meter.
frequency Bange	10 Hz to 10 MHz .6 bands.		
Frequency Accuracy			$\pm 2 \% 100 \mathrm{~Hz}$ 10 $5 \mathrm{MHz} \pm 3 \% 10 \mathrm{~Hz}$ to 100 Hz . $\pm 4 \%$ S MHz to 10 MHz
Freguency Response (Fialness)	$\pm 2 \%, 100 \mathrm{~Hz}$ to $1 \mathrm{MHz}_{z} \pm 3 \% .10 \mathrm{~Hz}$ to 100 Hz ($\pm 4 \%$, 1 MHz lo 10 MHz applies only al 500 or 750 aulpul and amplitude readjusted io a reference on the output monitor.)	$\pm 0.25 \% 3 \vee$ and $\mid V$ range: $\pm 0.75 \% \quad 0.3 V$ to 0.3 mV range, $\pm 1.75 \% 0.1 \mathrm{mV}$ range. (Amplilude readjusted using expanded scala on oulpul momilor).	(+10 dBm and 0 dBm) $\pm 0.5 \%$ liom 10 Hz to 10 MHz for unbalanced outputs and 10 Hz to 5 $\mathrm{MHz}_{\mathrm{z}} \mathrm{for} 135 \Omega$ and 150 outpuls, and 10 Hz to I MH2 for 600 n oulput.
Dislartion	$<1 \%$, 10 Hz to 2 MHz , <2\%, 2 MHz to $5 \mathrm{MHz}<4 \% .5 \mathrm{MHz}$ to 10 MHz		10 Hz lo 1 Mkz . $>40 \mathrm{~dB}$ balow dundamenta; 1 MHz_{2} lo 10 MHz , >34 d8 below fundamenial.
Output	quenco; $-70 \mathrm{~d} 8 \mathrm{~m} 10+23 \mathrm{dBm}$ (50 n oulpui) lull scale, 10 dBm per sleg; 20 dB coarse and line adjuslable amplitude control.		$+11 \mathrm{dBm} 10-90 \mathrm{dBm}, 10 \mathrm{~dB}$ and I 6 Br sieps with adjustable ± 1 of meter range, calibrated for each impedance of 5012 and 75Ω untralanced and $135 \Omega, 150 \Omega$ and 600Ω balanced.
Oulput Monitor (Monitor's Levela! input of atlenuastor)	Yop scale calidrated in volls, boltom scale in dB, Accuracy $\pm 2 \%$ of tull scale.	Same as 6518 plus Expand Scale which expands reference voltage of the notmal seale fram 0.9 to 1.0 or 2.8 to 3.2.	$\pm 18 \mathrm{Bm}$ full scale wilh 0.02 dB resolution, AC . curacy $\pm 0.05 \mathrm{~dB}$.
Oulput* Conneclors	8NG connectors.		
Altanualor	90 dB range in 10 dB sleps; $\pm 0.075 \mathrm{~dB},-60 \mathrm{dBm} 10+20 \mathrm{dBm}: \pm 0.2 \mathrm{~dB},-70 \mathrm{dBm}$ to -60 dBm .		99 dB range in 10 dB and 1 dB slegs: ± 1.58 (0.15 dB) except $\pm 10 \%$ (1 dB) al oulpui levels below 50 dem at frequencies $>300 \mathrm{kHz}$
Temperalure Range	$0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{C} 10130^{\circ} \mathrm{F}\right)$.		
Power	$115 \mathrm{Vor} 230 \mathrm{~V} \pm 10$ 餉. 48 Hz to $66 \mathrm{~Hz}, 30 \mathrm{VAmax}$.		115 V or $230 \mathrm{~V} \pm 10 \mathrm{~L}_{6}, 50 \mathrm{~Hz}$ to 66 Hz .35 VA max.
Weighl	Nel, 7.6 Kg (17 lb). Shigping, $990 \mathrm{~kg}(22 \mathrm{lb})$.		Net, 9.4 kg (2l (b). Shigplog, $11.8 \mathrm{~kg}(26 \mathrm{lb})$.
Dimensions	425 mm wide $\times 133 \mathrm{~mm}$ high $\times 286 \mathrm{~mm}$ deed $\left(163 \mathrm{~m}^{\prime \prime} \times 53 / 37^{\prime \prime} \times 11 \%^{\circ}\right)$.		
PRICE	3855	5995	\$1170

[^18]

Description

HP's solid-stale 203A Variable Phase Function Generator provides two transient-free square and low-distorion sinusoídal test signals paricularly uscful for a wide variety of low-irequency applicaions. Ficld and laboratory testing of servo. geophysical, medical and highquality audio equipment becomes practical when using the 203A.

HP's 203A frequency range of 0.005 Hz to 60 kHz is covered in seven overlapping bands (two additional ranges available on special order offering firequency sange to 0.00005 Hz). Accurate $\pm 1 \%$ (requency setting is provided by 180 dial divisions. A vernier drive allowa precise adjusimenı.

HP's 203A provides a maximum output voltage of 30 V peak $10-$ peak for all wavelorms. Sinusoidal signals have less than 0.06% discortion and provide virtually tansient-free oulputs when frequency and operating condisions are varied rapidly. Four outpul circuits of the 203A have individual 40 dB continuously variable attenuators.
Oulpuls consist of a relerence sine and square wave, and a variablephase sine and square wave. Both sine-and-square-wave oulputs are electrically identical except that one sinc-and-square-wave oulput contains a 0 to- 360 degree phase-shifter. These four signals (two reference phase and (wo variable phast) are available simullancously from the 203A. The output system is floating with respect to ground and may be used to supply an oulput voltage that is terminal grounded, or may be floated up to 500 volts de above chassis ground. Output impedance is 600 ohms for all oulpuls.

Specifications

Frequency range: 0.005 Hz to 60 kHz in seven decade ranges.* Dial accuracy: $\pm 1 \%$ of reading.

Frequency stabllity: within $\pm 1 \%$ including warmup drifl and line voluge variations of $\pm 10 \mathrm{c}$.
Output wavelorme; sinc and square waves are avallable simultaneousty: all oulpuls have common chassis terminal.
Reference phase: sine wave. 0 to 30 V peak-10-peak: squarc wave. 0 1030 V peds-10-peak (open circuit).
Varlable phase: sinc wave. 0 to 30 V peak-10-peak: square wave. 0 to 30 V peak-to-perk: continuously variable. 0 to 360° : phase dial accuracy. $\pm 5^{\circ}$ sine wave. $\pm 10^{\circ}$ square wave (open circuil).
Outpul Impedance: 600 ohms.
Outpul power: 5 vols into 600 ohms (40 mW); 40 d 8 continuously variable allenuation on all oulpuls.
Dialortion: total hamonic distortion hum und goisc $>68 \mathrm{~dB}$ below fundamental ($<0.06 \%$) at full oulput.
Output system: direct-coupled oulput is isolated from gromad and may be operated floating up 10500 V de.
Frequency rebponse: $\pm 1 \%$ referenced to $\mid \mathrm{kHz}$.
Square wave response: rise and fall lime, < 200 ns ; overshool, $<5 \%$ at full oulpul.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. 50 to 66 Hz , 27.5 VA max.
Dlmensions cabinct: 425 mm wide $\times 133 \mathrm{~mm}$ bigh $\times 286 \mathrm{nmm}$ deep ($16 \frac{1}{4} 4^{n} \times 5 \frac{1}{4^{n}} \times 11 \%^{\prime \prime}$): rack mount kit (00203-84401) furnishicd with instrument.
Welght: nal, $9.17 \mathrm{~kg}(20 \mathrm{lb} 4 \mathrm{oz}$). Shipping. $12.6 \mathrm{~kg}(28 \mathrm{lb})$.
Model number and name Price
Option $001,0.0005 \mathrm{~Hz}$ add $\$ 89$
Option 002, 0.00005 Hz add $\$ 270$
$203 \mathrm{~A}, \mathrm{Variable} \mathrm{Phase} \mathrm{Function} \mathrm{Generator}$

Description

The 3311A Function Generator offers wide functional capability al a modest price. This compact unil has seven decades of range from 0.1 Hz to $\mid \mathrm{MHz}$. Pushbution range and function selection add convenience to versatility. Added features normally not found on function generators in this price range are $10: 1$ voltage control and a separate pulse oulpul suitable for synchronization or driving TTL logic circuits.

Output

Ten V p-p into 6000 (20 V p-p O.C.). This output may be atenuated by $>30 \mathrm{~dB}$ by a variable attenuator and offiel by $\pm \mathrm{S} \mathrm{V}$. The de offsel allows the sine. square. and triangle functions to he positioned to the most desired level. This feature adds to the usefulness of all three functions.
vco
The de coupled voliage control allows the use of an exiernal source 10 sweep the 3311A>10:1 in frequency. An ac voltage can be used to FM the function generator.

A separate TTL compatible pulse output provides current sinking for up to 20 TTL loads. The pulse has a $15 / 85$ aspect ralio with a <25 ns rise lime.

Specifications

Wavelorme: sinusoid, square, triangle, and positive pulse.
Frequency range: 0.1 Hz 10 1 MHz in seven decade ranges.
Dial accuraoy: $\pm 5 \%$ or full scale.
ieolaton: using an external supply, outputs may be floated up 10 $\pm 500 \mathrm{~V}$ relative to the instrument case (earth ground).

600 Ohm output

Maximum output amplitude: $20 \mathrm{Vp-p}$ open circuit; $10 \mathrm{Vp-p}$ intes 6000.

Amplifude control: conilinuously variablc, $>30 \mathrm{~dB}$ range. DC off. set: up $10 \pm 10 \mathrm{~V}$ open circuil, $\pm 5 \mathrm{~V}$ inio 600Ω, continuously adjust-
able and independent of amplitude control. Maximum Y_{ac} pealk + $V_{\text {de }}$ offet without clipping is $\pm 10 \mathrm{~V}$ open circuit, $\pm 5 \mathrm{~V}$ inta 600 .
Output Impedance: $6000 \pm 10 \%$.
Sine wave amplifude fiatness: within $\pm 3 \%$ of 10 kHz reference (maximurn outpul amplitude) $10100 \mathrm{kHz} \pm 6 \%$ to 1 Hz .
Sine wave total hermonic dielortion: <3\% (maximum output amplitude).
Triangle Innearlty: deviation <1 18 from best straight line at 100 Hz (muximum oulput amplitude).
Square wave Iransitlon time: sise time: $<100 \mathrm{~ns}$; fall time: $<100 \mathrm{~ns}$. Square wave time axis symmetry error: $\pm 2 \%$ maximum to 100 kHz .

Pulse outpul

Outpul amplitude: >3 V positive (open circuit) TTL compatible.
Duty cyele: 13.5% to 16.5% of the total period.
Transilion Umes: < 25 ns .
External frequency control
VCO range: $>10: 1$ on any frequency range.
Input requirement: with frequency dial set to 1.0 , a linear ratup of $0.0 \vee 10-10 \mathrm{~V} \pm 2 \mathrm{~V}$ will linearly increase frequency $>10: 1$.
Input impedance: $10 \mathrm{k} \Omega \pm 10 \%$.

General

Operating temperalure: $0-55^{\circ} \mathrm{C}$; specifications apply from $+15^{\circ} \mathrm{C}$ $10+35^{\circ} \mathrm{C}$.
Storage temperalure: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}-10 \%$, $+5 \%$ switchable: $₫ 6 \mathrm{~Hz} 1066 \mathrm{~Hz}$ $\leq 12 \mathrm{VA}$.
Dimenslons: 89 mm high $\times 160 \mathrm{~mm}$ wide $\times 248 \mathrm{~mm}$ deep (34% $61 /{ }^{\circ} \times 9 /{ }^{\prime \prime}$).
Wolght nel. $1.5 \mathrm{~kg}(3 / 3 \mathrm{lb})$; shipping. $2.5 \mathrm{~kg}(51 / 2 \mathrm{lb})$.
3311 A Fisinction Generator

OSCILLATORS \& FUNCTION GENERATORS

Function generator
Model 3312A

- AM, FM, sweep, trigger, gate and burst

Description

Hewlett-Packard's 3312A Function Generator combines two separate, independenl funclion generators with a modulator section in one compact instrument.
The main gencrator can-via pushbution control-be triggered by the modulation generator to provide sweep functions. AM, FM, FSK. or tone burse.

Ten V p-p into 50Ω provides power for most applications. The ourput altenuator bas a range of more than 10,000 : 1 so clean low-level signals from 10 V to 1 mV p-p into 50 n can be obtained.

The main generator includes de offset up to 10 volls p-p $50 n$.
Hewlet-Packard's 3312A is an effective low cost solution for generating a multitude of funclions.

3312A Specifications

Output wavelorme: sine, square, iriangle, \pm ramp. pulsc. AM, FM. sweep. trigger and gate.

Frequency characteristics

Range: 0.1 Hz to 13 MHz in 8 decade ranges.
Dial accuracy: $\pm 5 \%$ of full scale.
Square wave ilse or fall time (10% to 90%): <18 nsec.
Aberratlons: < 10%.
Triangle linearity error: <1贸 al 100 Hz .
Varlable symmetry: 80:20:80 to / MHz .
Sine wave diatortlon: <0.5\% THD from $10 \mathrm{~Hz} 1050 \mathrm{kHz}>30 \mathrm{~dB}$ below fundamental from 50 kHz to 13 MHz .

Output characteristics

Impedance: $50 \% \pm 10 \%$.
Level: $20 \mathrm{~V} \mathrm{p}-\mathrm{p}$ into open eircuit, $10 \mathrm{~V} \mathrm{p}-\mathrm{p}$ into sons.
Level liatness (sine wave): $< \pm 3 \%$ from 10 Hz to 100 kHz al full rated ouppu1 \{ xHz reference), $< \pm 10 \%$ from 100 kHz to 10 MHz .
Attenuator: 1:1, 10:1. 100:1. 1000.1 and $>10: 1$ continuous control:
Attenuator error: < 5%.
Sync output: impedance: $50 \Omega \pm 10 \%,>1 \mathrm{Vp-p}$ square wave into open ciscuit. Duty cycle varies with symmerry conirol.
DC offeet: ± 10 volls. continuously adjustable, independent of variable attenuator setting. Instanlaneous ac voluge $+V d c$ offsel must be between $\pm 10 \mathrm{~V}$ (not terminated) or $\pm 5 \mathrm{~V}$ (terminated with 50Ω) in the l:) attenualor position.

Modulation characteristics
Types: internal AM, FM, sweep, trigger, gatc or burst: external AM. FM, sweep. trigger, gate or burst.
Wavelorms: sine, square, zriangle, ramp or pulse variable symmetry.
Frequency range: 0.01 Hz 1010 kHz
Output level: >1.0 $\mathrm{V} \cdot \mathrm{p}$ inio $10 \mathrm{k} \Omega$.

Amplifude modulation

Depth: 010 100\%.
Modulation frequency: 0.01 Hz to 10 kHz (internal). Dc $10>1 \mathrm{MHz}$ (extemal).
Carrler 3 dB bendwidth: $<100 \mathrm{~Hz}$ to >5 MHz
Carrler envelope distortion: <2\% at 70 s, sine wave modulation with $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{r}_{\mathrm{m}}=1 \mathrm{kHz}$.
External gensitivity: $<10 \mathrm{Vp}$-p for 100% modulation.
Frequency modulation
Deviation: $010 \pm 5 \%$ (internal).
Modulation trequency: internal: $0.01 \mathrm{~Hz} 1010 \mathrm{k.Hz}$ exiernal: De to $>50 \times \mathrm{Hz}$.
Dlatortion: $<-35 \mathrm{~dB}$ al $\mathrm{f}_{\boldsymbol{c}}=10 \mathrm{MHz} \mathrm{r}_{\mathrm{m}}=1 \mathrm{kHz}, 10 \%$ modulation.
Sweep characteristics
Sweep width: $>100: 1$ on any rarge.
Sweep rate: 0.01 Hz to $100 \mathrm{~Hz}, 90: 10 \mathrm{ramp}$, and 0 Hz (provides manual setting of "Siveep Star" without modulation gencrator ascillating).
Sweep mode: repelitive linear sweep between slart and slop irequency setlings. Retrace time can be mereased with symmetry control.
Ramp outpul: $010>-4 \rho-\mathrm{p}$ inco $5 \mathrm{k} \Omega$.
Gate charbeteristics: slan/stop phase range: $+90^{\circ}$ 10 -80°
Frequency range: 0.1 Hz io 1 MHz (useful io 10 MHz).
Gating algnal trequency range (extemal): Dc 10) MHz , TTL compatible.
Exiernal frequency contral
Range: 1000:1 on any range.
Input requirement: with dial set at $10,010-2 \mathrm{~V} \pm 20 \%$ will linearly docrease 「requency $>1000: 1$. An ac voliage will FM the frequency about a dial seling within the limits $(0.1<\Gamma<10) \times$ range setsing. Linearlity: ralio of outpui frequency 10 input voliage $(\Delta f / \Delta V)$ will be linear within 0.5% over a $100: 1$ frequency range.
Input impedance: $2.8 \mathrm{k} \Omega \pm 5 \%$.

General

Operaling lemperalure: $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$: specifications apply from $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$.
Power: 100 V. 120 V. 220 V. $240 \mathrm{~V}+5 \%$. -10%. switchable; 48 Hz 10 $66 \mathrm{~Hz} \leq 25 \mathrm{VA}$.
DImenslons: 102 mm high $\times 213 \mathrm{~mm}$ wide $\times 377 \mathrm{~mm}$ deep ($4^{*} \times 81 / 2$ $\left.\times 14 \%^{\prime \prime}\right)$.
Welghl: nel, 3.8 kg ($8 \mathrm{lbs}, 602$). Shipping، 5.9 kg (13 lbs).
3312A Function Generator

3310A

Description

The 3310A Function Gencrator is a compacl voltage-controlled generator with 10 decades of sange. Ramp and pulse functions are gvailable in addition to sine, square and triangle. DC offse and external voltage control provide wide versatility. A hast rise time syne output is provided. Aspect ratio of nonsymmetrical function is $15 \% / 85 \%$.

The 331013 has all the features of the standard 3310 A plus single and multiple cycle output capability.

3310A Specifications

Outpul waveforme: sinusoidal, square, triangle, positive pulse, negative pulse, positive ramp and negative ramp. Pulses and ramps have a 15% or 85% duts cycle.
Frequency range: 0.0005 Hz 10 5 MHz in 10 decade ranges.
Sine wave frequency response
0.0005 Hz to $50 \mathrm{kHz}: \pm 1 \% ; 50 \mathrm{kHz} 105 \mathrm{MHz}: \pm 4 \%$. Reference, I kHz at full amplitude into 50 s.

Dial accuracy

0.0005 Hz 10500 kHz all functions: \pm (1\% of setting $+1 \%$ of full scale).
600 kHz to 5 MHz sine, equare and triangle: $\pm 13 \%$ of setting $+3 \%$ of full scale).
500 kHz to 5 MHz pulso and rampas: $\pm(10 \%$ of seting $+1 \%$ of full scale).
Maximum output on high: $>30 \mathrm{~V} p-p$ oper circuiz: $>15 \mathrm{~V} p-\mathrm{p}$ into son (except for pulses al frequency $>2 \mathrm{MHz}$).
Pulee (frequency $>2 \mathrm{MHz}$): $>24 \mathrm{~V}$ p-p open ciresil: $>12 \mathrm{~V}$ p-p into 50Ω.
Minimum oulpul on low: <30 mV p-p open circlit: <1S mVp-p into son.
Output level control; range $>30 \mathrm{~dB}$. High and low outputs overlap for a total renge of $>60 \mathrm{~dB}$; low output is 30 dB down from high out. pul.
Sine wave distortion
0.0005 Hz to $10 \mathrm{~Hz}>40 \mathrm{~dB}(1 \%)$.

10 Hz to 50 kHz (on 1 k range): $>46 \mathrm{~dB}(0.5 \%)$
60 kHz to $500 \mathrm{kHz}:>40 \mathrm{~dB}$ (1\%).
$500 \mathrm{kHz} 105 \mathrm{MHz}>30 \mathrm{~dB}$ (3\%).
Square wove end pulse responae: <30 ns rise and fall imes al fiull oulput.
Triangle and ramp Ilnearity: $0.0005 \mathrm{~Hz} 1050 \mathrm{kHz}<1 \%$.
Impedance: 50』.
Sync
Amplitude: $>4 \vee \mathrm{p}-\mathrm{p}$ open circuil, $>2 \mathrm{~V}$ p-p into 50Ω.

33100

DC ofleet

Amplltude: $\pm 10 \mathrm{~V}$ open circuit, $\pm 5 \mathrm{~V}$ inlo 50Ω (adjuslable).
Note: may V acp $+V$ de offiset is $\pm 15 \mathrm{~V}$ open circuit.
External trequency contral: $50: 1$ on any range.
Input requirement: with dial set to low end mark, a positive ramp of 0 to $+10 \mathrm{~V} \pm 1 \vee$ will linearly increase frecpuency $50: 1$. With dial set at 50, a lincar negasíve ramp of $010-10 \mathrm{~V} \pm 1 \mathrm{~V}$ will linearly decrease frequency 50:1. An ac valtage will FM the frequency about a diat setting within the limits ($<f<50$) \times range seving.
Linearity: ratio of output frequency to input voluge $(\Delta F / \Delta V)$ will be linear within 0.5\%.
Senaitlvity: approximalcly $100 \mathrm{mV} / \mathrm{minor}$ division.
Input impedance: 10 kg .
General
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz} 10440 \mathrm{~Hz},<20 \mathrm{VA}$ max.
Dimenslons: 197 mm wide, 114 mm high (withoul removable feel). 20.3 nm deep ($7 \mathrm{H}^{\prime \prime} \times 41^{\prime \prime} \times 8^{\prime \prime}$).

Weight: net, $2,7 \mathrm{~kg}(6 \mathrm{lb})$; shipping. $4.5 \mathrm{~kg}(10 \mathrm{lb})$.
Accessories available
HP Part No. 5060-0105 Filler sitip for use with HP 1051 A Combining Case or HP 5060 -0797 Rack Adapter Frante.

3310B Specifications

Same as 3310 A with the following additions:
Modes of operallon: free run, single cycle, muliple cycle.
Frequency range: 0.0005 Hz to 50 kHz (usable 105 MHz).
Single cycle ${ }^{+*}$: ext rigger (ac coompled) requires a positive-going square wive or pulse from 1 V p-p $1010 \mathrm{Vp} \mathrm{p}-\mathrm{p}$. The triggering signal cant be dc offsel, bul (V ac peak +Vdc) $\leq \pm 10 \mathrm{~V}$ ex1 gate (de coupled) will trigger a single cycle on any positive waveform $\geq 1 \mathrm{~V}$ but $\leq 10 \mathrm{~V}$ which has a period greater than the period of the 3310 B output. and a duty cycle tess than the period of the 3310 B output. The gate signal cannol exceed 10 V .
Multiple cycle ${ }^{\text {at }}$: manual trigger wilt cause the 3310 to froc run when depressed. When the crigger button is released. the waveform will stop on the same phase as it started. Exi gate will cause the 3310 B to free run when the gate is held at between +1 and +10 V . When the gate signal goes to zero, the 33108 will stop on the same phase as it stanced.
Start-stop phase: The start-stop phask can be adjusted over a range of approximately $\pm 90^{\circ}$.
Model number and name

TABLE 1.

Hewlell-Packard calibration instruments provide accurate and precise de and ac slimulus for your calibration needs. Accurate de vollage measurements capability to 1000 volus is also available for lesting de power supplics and other procision de sources. See Table I for a list of insirumeni fealures.

FUNCTION	RAMGE	RESOLUJION	MODR NO.	Page
AC volts	$1 \mathrm{miv}-1000 \mathrm{~V}$	1 pom	745A	322
DC volis DC differenlial vollmelers $D C$ vollmeler	$\begin{array}{r} 0-1000 V \\ 1 \mu V-1000 V \\ 1 \mu v-1000 V \end{array}$	$\begin{gathered} 1 \mathrm{ppm} \\ 1 \mathrm{ppm} \\ 2 \% \end{gathered}$	7408	324
AC yolts DC volls AC amps DC amos	$0.01 \mathrm{~V}-1000 \mathrm{~V}$	3 digits	69208	321

[^19]- Calibrate/test DC ammeters up to 4 amps
- Calibrate/test average reading AC ammeters up to 5 amps
- Calibrate/test DC voltmeters up to 1000 volts
- Calibrate/test average reading AC voltmeters up to 1000 volts

Description

Model 6920B is a versatile ac/de meter calibrator, capable of both consunt voltage and constani current output. Its absolute accuracy makes it suitable for laboratory or production testing of panel meters, multimeters. and other meters having accuracy of the order of 1.0% or higher. This calibrator has been designed for convenience, and combines in onc instrument all the outpuls needed to test the more commonly used meters.

Output switch

An ouiput switch selects the safest mode of operation for the particular lype of meter being cested. A "lock" position leaves the resting parameters in operation to free both hands for altaching and disconnecting successive meters. A spring-loaded "test" position facilitates testing meters with several full-scale values and reduces he danger of burn-out.

AC output waveshape

When the function switch is set on " $A C$ ". the output wave-shape is sinusoidal (to a first approximation) and has the same frequency as the input line power applied to the instrument (except when an external ac reference is used). The feedback loop. which controls and regulates this ac. is actually monitoring the average value of the ac oulpul, although the front panel controls are calibrated in terms of rms. Thus, this calibrutor is suiable for use with average reading ac voltmeters scaled in rms. In addition, the calibrator can be used with true rems meters, provided allowance is made for the tocal oulput distortions. This distortion is approximatuly equal to the line inpul waveshape distortion (or distortion of the external ac ruference) plus 3%.

Speclfications

Output voltage ranges
0.01-1 V: current capability 0-5 A
0.1-70 V: current capability 0-1 A

1-100 V: current capability $0-100 \mathrm{~mA}$
10-1000 V: cutrent capability $0-10 \mathrm{~mA}$
Above output voltage ranges and maximum current capabilities for each range apply in full for either de or ac operation.
Output current ranges
(5 A maximum oulput)
$1-100 \mu \mathrm{~A}$: voltage capability $0.500 \vee$ (uncalibrated in AC)
$0.01-1 \mathrm{~mA}$: voltage capability 0.500 V
$0.1-10 \mathrm{~mA}$: voltage capability 0.500 V
1-100 mA: vollage capability $0-50 \mathrm{~V}$
$0.01-1 \mathrm{~A}$: voltage capability $0-5 \mathrm{~V}$
0.1-10 A: (5 A max. oulput) voltage capability 0-0.5 V

Above output current ranges and maximum voltage capabilities for each range apply in full for either dc. 30 Hz or 60 Hz operation.
Output accuracy: $D C-0.2 \%$ of set value plus 1 digit. $A C-0.4 \%$ or set value plus I digit (when used with average reading meters). Above securacy applicable over a emperature range from is $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, over full input voltage range, and after I hour warmup.

Controls

Funcilon switch: This is a 3-posilion switch: "orf". "AC" and "DC". In the "off" position the ac power input is disconnected from the unit. In the "AC" position the meter colibrator produces an ac outpul: similarly, in the "DC" position the calibrator produces a de oulput.
Range switch: 10 positions. one for cacb voltage and curcent range.
Callbrated output control: digital potentiomeler riadout control (3 significant digits) determines exact value of output.
Output switch: Swith described at len.
Output terminale: two front panel terminals are provided: these are the output terminals for both ac and de operation. In voltage ranges, the negative verminal is grounded.
Ripple: in dc operation the outpul ripple is typically less than 1.0% $\mathrm{fms} / 5 \% \mathrm{p}$-p of the oulpul range switeh setting.
Input: IISV ac $\pm 10 \%$. single phasc, $58-62 \mathrm{~Hz}, 0.7 \mathrm{~A}, 65 \mathrm{~W}$ max. (Sex options 005 and 028 for 50 Hz and 230 Vac operation).
Operating temperature range: $0-50^{\circ} \mathrm{C}$: convection cooled.
Size: $172 \mathrm{mmH} \times 198 \mathrm{mmW} \times 279 \mathrm{mmD}$. $\left(61 / 4^{\circ} \mathrm{H} \times 79 / \mathrm{m}^{\circ} \mathrm{W} \times 11^{\prime \prime}\right.$ D).

Welght: $6.8 \mathrm{~kg}(15 \mathrm{lb})$ net. 7.71 kg (17 lb) shipping.
Options
Price
005: 50 Hz output regulation realignment
N/C
028: $230 \mathrm{Vac} \pm 10 \%$, single phase input
N/C
Accessories available
$5060-8762$ Rack kit for mounting one or two 6920 B 's in a $19{ }^{\prime \prime}$ rack
5060-8760 Filler panel to block unused hall of rack adapler
11057A Clip-an carrying handle

Description

Hewlell-Packard's Model 74SA AC Calibrator combinod with Model 746A High Voltage Amplifier is a compaet, callbrated ac source with continuously adjustable frequincy oulput from 10 Hz 10 110 kHz . Outpul voliage can be varied f́rom 0.1 mV to 1099.999 V in steps as small as) opm of range over the entire frequency range.

HP's 745A provides the first six vollage ranges, 0.1 mV to 109.9999 V. while the combination of the 745A and 746A permils expansion to 1099.999 V as a seventh range. Model 746A can only bu used with the 745A.

Specifications

Ranges
Output voltage ranges: seven ranges with 10 overrange as follows:

Range	Sellability and resolution
1 mV	0.100000 mV 101.099999 mV in 1 nV steps
10 mV	1.00000 mV 1010.99999 mV in 10 nV sleds
100 mV	10.0000 mV to 109.9999 mV in 100 nV sleps
IV	0.100000 V 101.099999 V in $1 \mu \mathrm{~V}$ steps
10 V	$1.00000 \vee 1010.99999 \mathrm{~V}$ in $10 \mu \mathrm{~V}$ steps
100 V	10.0000 V 10109.9999 V in $100 \mu \mathrm{~V}$ steps
1000 V	100.000 V to 1099.999 Y in 1 mV sleps

Ouspul voltages from $100 \mu \vee 10110 \vee$ arc available from 745 A output terminals; voltages from 100 V to 1100 V are available from the 746A oulpul cable.
Oulput frequency rangea: continuously adjusiable from $10 \mathrm{~Hz}, 10$ 110 kHz in four decade rangus wilh 10% overlap.
Error measurement: iwo ranges with zero center dial: $\pm 0.3 \%, \pm 3 \%$. A zero sange is provided to easily switch unt the effects of the crror measurement system.
Performance rating
Accuracy: accuracy holds for a 90 -day period and is met aller a onehour warm-up period $3125^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ wilh $<950_{0} \mathrm{RH}$. This applies only to ihe 745A. Warm-up lime requised for HP's 746A is approximately 30 s .
Voltage: spccilications are absolute, iraceable to National Bureau of Siandards
1 mV 10 100 V rangeas:

Frequency	Accuracy
50 Hz 1020 kHz	$\pm(0.02 \%$ of selting $+0.002 \%$ of range $+10 \mu \mathrm{~V})$
20 Hz to 50 Hz	$\pm(0.05 \%$ of setling $+0.005 \%$ of 20 kHz 10110 hHz
10 Hz 1020 Hz	$\pm(0.2 \%$ ol selting $+0.005 \%$ of

1000 V range:

Frequency	Accuracy
50 Hz 1020 kHz	$\pm 0.04{ }^{\text {o }}$ ol selting
20 Hz to 50 Hz 20 kHz lo 50 kHz	$\pm 0.08 \%$ or setling
50 KHz 10110 kHz	$\pm 0.15 \%$ of settung
10 Hz to 20 Hz	

Frequency: $\pm(2 \%$ of setting $+0.2 \%$ of end scalc).
Error measurement: $\pm(0.5$ er of setting $+0.5 \%$ of range).

Tomperature coefficient
Voltage: I mV to 100 V ranges: $\pm 0.0003 \%$ of setting per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ}{ }^{\circ}$ - 10010 V ranne: $\pm 0.0005^{\circ} \%$ of sething per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Frequency: ± 0.05 \%, of end scale per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $5^{5}{ }^{\circ} \mathrm{C}$. Derate aceuracy specification by this temperature coefficient for operation in temperalure range of $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}: 1050^{\circ} \mathrm{C}$.
Voitage stability: stability mel after one-hour warm-up period al constant iemperature with $<95^{\circ} \mathrm{H}$ RH. 1 mV to 100 V ranges:

Long-term: $\pm 0.01^{2 \pi}$, of seluing for six months.
Short-term: $\pm 0.005^{5}$ n of selting for 24 hours.

1000 V range

Long-term: 50 Hz to $20 \mathrm{kHz} \pm 0.01 \%$ of sething for six monihs; 10 Hz 10 50 Hz and 20 kHz to $110 \mathrm{kliz}: \pm 0.02^{\prime}$ 分 of setting for six months.
Short-term: $\pm 0.005 \%$ of stling for 24 hours.

Outpul charactertstics

Total distortion and nolse: 0.05% of serling $+10 \mu \vee$ over 100 kHz bandwidth on all ranges.
Tolal distoriton, cycle-fo-cycle instability and nolse: will cause $< \pm 0.005 \%$ of error when used to calibrate in average-responding or true r mis-responding instrament from I mV to 1100 V .
Load regulation (no laad to full load):
Output impedance: < $112 \mathrm{on} 1 \mathrm{mV}, 10 \mathrm{mV} .100 \mathrm{mV}$ ranges. On the IV. $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges for oulput current cyual to ar less thin ibat shown in the diagram below, crror is included in the aceuracy spectication.
Load capablify: 1000 pF or 50 mA on 1 mV to 100 V ranges (50 mA allows 800 pF at $100 \mathrm{~V}, 100 \mathrm{kHz}$). 1000 pF or 63 mA on 1000 V range (63 mA atlows 100 pF at 1000 V .100 kHz).
LIne regulation: ± 0.001 后 of sutting change in oulpul voltage for a 10% change in line voltage (included in aceuracy specs).
Oufput teminale: high and low outpui terminals can be floated $\pm 500 \mathrm{~V}$ de above chasisis ground.
Counter oulput: irequency counter output on 745A rear panci, 2.2 V $\pm 20 \%$, protected against short circuits.

745A
 1,10,100v ronges.

Remote programming:

Vollage ranga, Prequency range, error range, and senses	Requirements
Contscl closure	Less than 400 R to ground
NPN transistor	Open circult vollage 5 V Shout circult curreal 2 mA Maximum woltage on orogram- ming lire al clossie 0.8 V .
Reed switch inrough diode	
NPN (ransistor through dinde	
rrequency vernier	Minimum lo m3xamuriol range
Analog voltage	+1V10 +10 VDC
Resislance to ground	500 -10 x /

General
Operating temperature: $0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}$.
Storage temperalure: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$.
RFI: meets MIL-I-618ID when using shiclded outpul connectors.
Power
745A: 115 V or $230 \mathrm{~V} \pm 100$, 30 Hz to $66 \mathrm{~Hz}, 100 \mathrm{VA}$ max.
$748 \mathrm{~A}: 115 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to 60 Hz .850 VA max.
746 A aux power rated al 120 VA max.
Weight
$745 \mathrm{~A}: n \mathrm{ct}, 29.3 \mathrm{~kg}(65 \mathrm{lb})$. Shipping, $36.3 \mathrm{~kg}(80 \mathrm{lb})$.
$748 \mathrm{~A}:$ nel, 34 kg (75 lb). Shipping. 38.5 kg (85 lb).

Dimenslong

745A: 425 mm wide $\times 221 \mathrm{~mm}$ high $\times 467 \mathrm{~mm}$ decp $\left(161 / 1^{\prime \prime} \times 81 / /^{\prime \prime}\right.$ $\times 18 \% \%^{\circ}$).
746A: 425 mm wide $\times 177 \mathrm{~mm}$ high $\times 464 \mathrm{~nm}$ deep $\left(16 \mathrm{~K}^{\prime \prime} \times 7^{\prime \prime} \times\right.$ 18\%").

745A Accessories furnlehed:

Rack mount kil.
HP Part No. S060-0630. 22 -pin printed circuil board extender
HP Part No. 5060-0043, 15-pin printed circuil board extender.
HP Part No. 5060-0031. 10-pin printed circuil board extender.
HP Part No. 1251-0084 romote programming plug.

746A Accessories furnished:

Rack mount kil.

HP Parl No. 1251.0485. semote right angle connector.
HP Part No. 1450-0356, incandescent lamp.
HP Pars No. 4040.0427 , exiracior.
HP Pari No. 5040-0404. probe holder.
HP Part No. 5060-0216. joining kit brackel.
HP Part No. 5060-0610. 22-pin printed circuil board extender. HP Part No. 00746-02701, foam filter.
Model number and name
Price
HP 745A AC Colicat
\$5195
$\$ 3265$

Description

DC standard

The 740 B is an ultra stable, high resolution DC calibration source which delivers output vollage from zero to 1000 volts with specilied accuracy of $\pm(0.002 \%$ of seling $+0.0004 \%$ of range). Dusigned for calibrating digital voltmeters. differential voltmeters, potentiometers. vollage dividers and for genceal standards lab application, the 740B has six digit resolution with discrete steps of 1 ppm or full scale.
The 740 B will deliver current up 1030 mA and may be sel at any desired limit between 5 mA and 50 mA by a conünuonsly adjustable front panel control. A from panel indicator displays overload conditions if the load current exceeds the current limit seting. Low output impedance is maintained by remole sensing terminals which control the outpur voltage at the load. The entire cirevit is floating and guarded.
Differential volimeter
As a differential voltmeler. the 740B measurts voltage from zero to 1000 volls oc with an inpul resistance of $>10^{14}$ ohms independent of null condition. Meter sensitivity pushbutons allow input voluges to be measured to six digits for a maximum resolution of 1 ppm of range. with a maximum usablc sensitivity of $1 \mu \vee$ full scalc. Specifted accuracy is $\pm(0.005 \%$ of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V})$.

Specifications

DC standard rangea
Output voltage: 0 co 1000 V ' in a decade ranges as follows: 010 IV in $\mathrm{I} \mu \mathrm{V}$ steps, 0 to 10 V in $10 \mu \mathrm{~V}$ steps. 0 to 100 V in $100 \mu \mathrm{~V}$ sleps. 0 to 1000 V in $\mathrm{I} \mathrm{m} V$ sieps. Digital display tubes indicate first S digits, meter displays 6ih digit.
DC alandard performanca
Accuracy: ($<70 \% \mathrm{RH}$. constant line, load and temperature $\pm 1^{\circ} \mathrm{C}$.

Calubrated at factory ar 115 V and $23^{\circ} \mathrm{C}$) 30 day: $\pm\left(0.002{ }^{\text {en }}\right.$ of selting $+0.0004 \%$ of range). 90 day: $\pm(0.005 \%$ of selting $+0.0004 \%$ of range $\}$. Srability: ($<70 \%$ RH, constant line, load and temperalure $\pm 1^{\circ} \mathrm{C}$.)

Period	2epo stablity ppm of range	Volitage stability (erciludises zera stability) ppm ol setting + ppm of fange
1 hr	$\pm 1 \mathrm{ppm}$	$\pm(0 \mathrm{ppm}+1 \mathrm{ppm})$
24 hr	$\pm 2 \mathrm{pom}$	$\pm(5 \mathrm{ppm}+1 \mathrm{ppm})$

Temperafure coefficient; $10^{\circ} \mathrm{C}$ io $40^{\circ} \mathrm{C}:< \pm 0.0002 \%^{\circ}$ of selting $/{ }^{\circ} \mathrm{C}$ or $\pm 0.0001 \%$ of range $/{ }^{\circ} \mathrm{C}$, whichever is grealer
LIne regulation: $< \pm(0.0005 \%$ of scllang $+0.0001 \%$ of range $)$ for 10% line voliage change.
Load regulation (no load to full load): $<(0.0005$ of selting +10 $\mu \mathrm{V}$).
DC atandard output characteriatics
Terminals: plus and minus oulput, plus and minus sensc. circuil guard, and chassis ground. Minus oulpui and circuil guard can be Boated up $10 \pm 500 \mathrm{~V}$ with respect 10 chassis ground.
Output currenl: maximum output current 50 mA al I V outpul, decreasing linearly to 20 mA al 1000 V output. Current limiter continuously adjusiable from 10% to 100% of maximum outpui current. Oulput raslstance: $<\left(0,0002+0.0001 \mathrm{E}_{\mathrm{Du}}\right)$) .
Nolge: (rms value)

Range	$0.01 \mathrm{~Hz}-1 \mathrm{Kz}$	$1 \mathrm{~Hz}-1 \mathrm{MHz}$
IV	$<1 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
10 V	$<10 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
100 V	$<100 \mu \mathrm{~V}$	$<1 \mathrm{mV}$
1000 V	$<1 \mathrm{mV}$	$<10 \mathrm{mV}$

DC differentlal voltmeter ranges

Voltage: I mV to 1000 V * in 7 decade ranges.
Resolution: δ-digit readout yields resolution of 0.0001% of range (6 th digit indicaled on meter).

DC differentlal voltmeler performance

Accuracy: ($<70 \%$ RH. constant line and temperature $\pm 1^{\circ} \mathrm{C}$. Calibrated al laciory al 115 V and $23^{\circ} \mathrm{C}$.)
30 day: $\pm(0.005 \%$ of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V})$.
90 day: $\pm(0.008 \%$ of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V})$.
Stablilty: ($<70 \%$ RH, constant line and iemperature $\pm)^{\circ} \mathrm{C}$.)

Period	Zero stability	Reading stablity (ercludes 2610 slability) ppm of reading + ppm of range
1 hr	$\begin{gathered} \pm(1 \text { ppm of range } \\ +1 \mu V) \end{gathered}$	$\pm(0 \mathrm{ppm}+1 \mathrm{ppm})$
24 hr	\pm (1 pop of range $+2 \mu V)$	$\pm(500 \mathrm{~m}+100 \mathrm{~m})$

Temperature coefficlent: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}:< \pm\langle 0.0002 \%$ of reading + $\mathrm{I} \mu \mathrm{V}) /{ }^{\circ} \mathrm{C}$.
Line regulation: $\langle \pm(0.001 \%$ of reading $+2 \mu \mathrm{~V})$ for 10% line vollage change.
DC differential voltmeter input characteristics
Terminals: plus and minus input, circuit guard and chassis ground. Minus inpul and circuit guard can be floated up to $\pm 500 \mathrm{~V}$ with respect to chassis ground.
Inpul realstance (independent of null): 100 mV to 1000 V rangex: $>10^{\circ} \Omega ; 10 \mathrm{mV}$ range: $>10^{\circ} \Omega_{;} 1 \mathrm{mV}$ range: $>10^{\circ} \mathrm{fh}$.
Effective common-mode rejectlon (ECMR): ECMR is the ratio of the common-mode signal to the rcsultant error in readout with $1 \mathrm{k} \Omega$ unbalance resistor in cither lead. $A 160 \mathrm{~Hz}$ and above: $>120 \mathrm{~dB}$.
Normal mode relectlon (NMR): NMR is the ratio of the ac normal. mode signal to the resultant error in readoul. At 60 Hz and above: $\geqslant 100 \mathrm{~dB}$. Maximum ac normal-mode signal: 25 V ms .
Overload protection: $1000 \mathrm{~V}^{\mathbf{2}} \mathrm{dc}$ may be applied on any range or sensilivity without damaging insirument.
DC vollmeter
Vollage ranges: $1 \mu \mathrm{~V} 101000 \mathrm{~V}$ * in 10 docade ranges.
Aceuracy: $\pm(2 \%$ of range $+0.1 \mu \mathrm{~V})$.
Inpul resistance: 100 mV 10 1000 V range: $>100 \mathrm{~g}$ I: 10 mV range: $>10^{\circ} \Omega$: $1 \mu \vee$ to 1 mV range: $> \pm 10^{\times} \Omega$.
Zero control limila: $> \pm 10 \mu \mathrm{~V}$.
Zero drift: $<2 \mu \mathrm{~V}$ per day.
Normel mode rejection: same as de difficrential volumeter.
DC amplitier
Vollage goln:

Range	Gain
1 mV	60 dB
10 mV	40 dB
100 mV	20 dB
$1 \mathrm{~V}-1000 \mathrm{~V}$	0 dB

Bandwidth: de to 0.2 Hz .
Gain eccuracy: $\pm(0.01 \%$ of inpul $+0.0005 \%$ of range $+2 \mu \mathrm{~V})$ referred to inpur.
Llnearlty: $\pm 0.002 \%$ on any rangc.
Stability:

Tamperalure coeficient:	
Line regulation: Input realatance: Same as DC Diffircotial	

inpul realstance: Differential
ECMR:
NMR:
Voltmeter
Overioad proteolion:
Load regulation:
Output current:
Output resistance:
Nolee (rme value, referred to input):

Range	$0.01 \mathrm{~Hz}-1 \mathrm{~Hz}$	$1 \mathrm{~Hz}-1 \mathrm{MHz}$
1 mV	$<0.2 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
10 mV	$<0.4 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
100 mV	$<1 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
IV	$<1 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
10 V	$<10 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
100 V	$<100 \mu \mathrm{~V}$	$<1 \mathrm{mV}$
1000 V	$<1 \mathrm{mV}$	$<10 \mathrm{mV}$

General

Recorder outpul: provides voltage proporional to meter dellection in all modes of operation. Adjustable output supplies up $10 \pm 1 \mathrm{~V}$ de across I $\mathrm{k} \Omega$ load: voltage polarity same as meler denection.
Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ unless specified otherwise.
Storage lemperature: $-40^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$.
RFI: meets MIL-1-6181D \uparrow.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 501066 \mathrm{~Hz}$. <125 W.
Dimenslons: 425 mm wide, 175 mm high, 464 mm deep $\left(16 \frac{1}{4} \times 6 / \mathrm{h}^{2}\right.$ $\times 18 \%{ }^{\circ}$).
Welght: net $21.3 \mathrm{~kg}(47.3 \mathrm{lb})$: shipping. $27 \mathrm{~kg}(60 \mathrm{lb})$.
Accessories furnighed: IIO54A inpul cable assumbly: 4 banana jacks mounted on terminal box with 3 -fi cable and maling connector. Terminals include positive and negative inpul, circuil guard, and chassis ground. Positive and negative terminals are solid copper. gold nashed. A switch allows reduclion of inpul resistance to $2 \mathrm{M} \Omega$.
110558 oulpul cable asscmbly; 6 banana jacks mounled on ierminal box with 3 -fi cable and mating connector. Terminals include posilive and negative oulput. posilive and negative sense, circuit guard, and chassis ground. Ouiput and sense terminals are solid copper. gold flashed. Rack mount kil.
7408 DC Standerd / \triangle DC voltmeter
$\$ 3980$
-Maxinitum of -500 y de with respect to line zround can be applied to of obtained trom the HP 740 B . \dagger Poulive of negative oubul terminals of the oulpul bor (HP [10598) connected to fhasos, and guaro sats ehassis lerminals of the inpot hox (HP 110S4A) conmected together.

Signal generators

Hewlett-Packard offers a complete línc of easy to use HF. VHF. UHF, and SHF signal generators covering frequencius between 10 kHz and 40 CHz . This line includer new solid-stale generators and synthesized sígnal generators as well as a complete line or per-formánce-proven vacuum tube signal generators. Each includes the following features: I) accurate. easy-to-read frequencies, calibrated and variable. 2) accurately calibrated variable oulput level. 3) wide modulation capabilisy.

Beside these basic fentures, HP signal generalor characieristics cilsure the utmost cunvenience and aceuracy for all kinds of measurcments and sigmal simulations, including receiver sensituvity, seloctivily or rejoction. signal-to-noise ratio, gain bandwidth characeristics, conversion gain, untenna gain, and transmission line characteristics, as well as power to drive bridges. slotted lines, filter networks. etc.

New golid-state gonerators

This new group of signal generators offers all the advantages of solid-state design. such as increasod portability, ruggedncss, and relistility, while still retainius the ontanding signal quality characteristic of Hewlcil-Packard's older vacuum tube signial gemerators. In addition these generators offer many new fea-
lures not found on the older generators suck as digital frequency readour (8640 B .3660 C). ability to count external signals (8640 B), field portability ($8654 \mathrm{~A} / \mathrm{B}$) and complete remote programming ($8660 \mathrm{~A}, 8660 \mathrm{C}$).

HF to UHF

The performance leader of the solid-state famity is the 8640 signal generator covering 450 kHz to 550 MHz . Frequency coverage can be extended to 1100 MHz with an internal doubler. (OPT OO2) and an optional buil:in audio oscillator extends the CW oulput range down to 20 Hz (OPT 001). This new generator is avalable in three models: the 8640 A with mechanical slide rule Irequency dial: (he 8040 B featuring a built-in 550 MHz counter; and the 8640 M for ruggedraed applicalions.

The 8640B with buill-in counter includes ewo significant new features nol previously found on Hewlell-Packard signal generators: 1) the ability to count external signals at frequencies up to 550 MHz and 2) a front panel pushbution to phase-lock the generator's RF oulpul to the buidt-in counter time base for frequency stability or beter than $s x$ 10^{-8} /hour.

Internally, the hearn of the 8640 is a me. chanically euned high-Q cavily oscillator that operates over the range of 230 to 550 MHz . This oscillator has very good inherent stabil-
ity and exceptionally low noise characterislies. Nine lower frequency ranges arc obtained by dividing down the basic oscillator froquency and fillering out the unwanted harmonics.

The 8640 M is a ruggedized version of the 8690 fealuring phasc-locked stability, digital read-out, built-in thermal cutorf and reverse power protection. The ' M ' with is aluminum carrying case has been type-lested to withstand shock, vibration and humidity exusemes, and is specified to operate over a temperature range of $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ for field and flight-hine measurements.

The 8640 's broad frequency coverage and calibrated oulput range, logether with full AM/FM modulation cupability and excuptionally low nonse, make it the ideal choice for complete RF and IF performance: lests on virtually any type of HF, VHF, or UHF recesver in the Lab or in the field.

Compach, field portable

Compact, portable signol generators form another part of the solid-stite lamily. The 8654 covering 10 to 520 MHz fealures calibrated outpul lewel with a full range allenuator and both $A M$ and $F M$ modulation capability. Small siec and light weight make it well suited for field mainenunce and operational readiness checks in addution to general pupose signal generator applications. The 8654A is an AM gencrator with uncalibrated

FM capability, while the 8654 B has fully calibraled and melered FM and AM.
The 8655A Synchronizer/Counter combines with the $8654 A$ and B to phase lock the gencrators RF output to the counter time base for frequency siability of hetter than 0.1 ppm/ 10 hour. In addition the 8655A is an RFl-proof counter with the cupability to count exiernal signals up to 520 MHz .

Synthesized signal generators

The HP 8660A/C: synthesized signal generator family covers the range from 10 kHz to $2.6 \mathrm{GH} \%$ This is a plug-in suries of instruments combining symihesizer accuracy. stability, and programmability with the precisc modulation and outpul level zalibration of a high quality signal generalor.

Two TTL programmable manframes are avalable. The 8660 A utiliues thumbivhed switches to select oulpul frequency. The 8660 C mainframe is more versatile offering a keyboard comeol pancl, synthesized digital sweep, and frequency siep capability. Three RF sections provide frequency coverage of 10 kHz (al 100 MHz 1 MHz Io 1300 MHz , and I MHz to 2.6 GHz . Minimum slep ii\% is 1 Hz or 2 Hz depending on frequence range and all include calibrated output level over $>140 \mathrm{~dB}$ of range. Madulation section plug-ins include calibrated AM. FM and PHASE modulation as well as external pulse modulation.

Both synthesized signal generators are natural choices for applications requirine. maximum nignal accuracy, stability and very fine resolution. With full digital programmine of frequency, outpu! level, and modulation. they are also ideal sources for automalic systems.

Performance-proven vacuum tube signal generators

HF io UHF
The HP 606B, 608E, and 612A signal generators collectively cover frequencies from 50 kHz 10 1.23 GHz . All feature extremely low driff and incidental frequency modulation, and may be amplitude (sinc. square, pulse) modulated.

UHF to SHF

A complac line of Hewlett-Packard microwave signal generators provides coverage from 800 MHz to 21 GHz . The 618C. 620 B . 626A. and 628A incorporate cavity-tuned klystron oscillitors wilh very low drifl and risidual FM. They may be pulse, square wave and frequency modulaled, maxing them useful for microwave receiver testing as well as SWR and iransmission line measurements.

The HP 8614A and 8616A signal generarors covering 0.8 to 2.4 GHz and 1.8 to 4.5 GHz feature builtin PSN diode modulators. These modulators allow internal or externys
outpu! power leveling as well as a wide range of pulse and amplitude modulation.

HP 938A and 940A Frequency Doubler Sels provide low-cosi signal generalor capability in the 18 to 40 GHz range by doubling the irequency of signal sources in the 9 to 20 GHz range.

Special slgnal generators/accessories

For Avionics mavigation and communications applicarions, the 8640 B option 004 combines the digital readoul, phase luck fealures with y dernodulated output and special AM circuilry. Conibined with suitable external modulation suurces the 8640 B provides for testing and calibration nf aircran VOR/lLS and Marker Beacon reccivers.

The 8925A DME/ATC Test Set is designed 10 provide for the testing and calibration of aircraft DME radios and A'TC transponders: suitable external modulators ase required, such as the Collins 578D-1 and 578A1, to simulate ground station operation.

A varicty of accessories are available 10 cm hance the operation of HP signal gencrators. The list includes a speetrum generator. froquency doublers, outpul eerminations, a fuse holder, balanod mixers, filters and the HP 8730 Series of PIN modulators which increase the modulation capability of microwave signal sources. Also avililable is the HP 8403A Modulator providing complete control of the 8730 series of PIN modulators.

Signal generator summary

Madel	Frequency range	Characleristics	Page
$8660 A / C$ Synthesured Generator	$\begin{aligned} & 0.01 \text { to } 110 \mathrm{MHz} \\ & 1 \text { to } 1300 \mathrm{MHz} \\ & \text { I to } 2600 \mathrm{MHI} \\ & \hline \end{aligned}$	1 Hz trequency resolution. 3×10 /day stabilily. Calibrated culpul from +13 to $\sim 146 \mathrm{dBm}$. Com. alifely $\Pi \mathrm{L}$ drogramrable. Plug-ins deteming irequency rlM, pulse capabilly	328
606B Signal generalor	50 kHz 1065 MHz	oulpul $3 V$ lo $0.1 \mu \mathrm{~V}$, mod. gW de to 20 kHz , low drial and noise. Iow incidental FM, low distortion. ouxiliary RF oulpul	340
8640A/B/M Signal Generalor	$0.5-1024 \mathrm{MHz}^{2}$	oulput 8640 B has built-in counter and phase-loch capaidlly, All solid state	333
608 E Signal Generalor	10 to 480 MHz	oulput IVIo $0.1 \mu \mathrm{~V}$, into 50 -ohm load; AM, pulse modutation, diect calibration, leveied power output, aux RF ouloul	341
$3200 \mathrm{~B}$ Oscillalor	$10-1000 \mathrm{MHz}$	IV $101 \mu \mathrm{~V}$ outpul inlo 50 . I 20 ob altenuator range 0.002% statibly, compact. portabie, weyght, 15 ib. Douther exiends trequency to 1000 MHz	346
$865 \mathrm{AA} / \mathrm{B}$ Sipnal Generator	$10-520 \overline{\mathrm{MHz}}$	solle-siate, compacl, welght 16 lb	338
$8655 \mathcal{A}$ Sunchromzed Counter	$10-520 \mathrm{MHz}$	phase-lock frequency stabiluer for 865A and 8. 6-digil LED display iuch resolulion, 500 Hz . Low RFI, extepal count capabilily to 520 MHz	339
8925A DME/AYC Tent Sel	962 to 1213 MHz	output up to - 10 obm. Provides Pulse Avionics Signals when used wi!f external modulators lor DME/AIC/TACAN Lests	346
612A Signal Generator	450 to $1230 \mathrm{MHz}_{2}$		342
8614A. 8616A Signal Generalos	$\begin{aligned} & 0.8 \text { to } 2.4 \mathrm{GHz} \\ & 1.8 \text { to } 4.5 \mathrm{GHz} \end{aligned}$	oulpul +10 ($8616:+3 \mathrm{dBm}$ gbove 3 CHz) to -127 dBm inlo 50 ohms, Ieveled balow 0 dBm ; internal square-wave; external pulse, AM and FM; auriliary RF oulpul	343
618C, 6208 Signal Generalors	$\begin{aligned} & 3.8 \text { to } 7.6 \mathrm{GHz} \\ & 7 \text { to } 11 \mathrm{GHz} \end{aligned}$	outpul) mW to - $127 \mathrm{dBn}(01 \mu \mathrm{~V}$) inlo 50 ohrms, pulse, Irequancy or squater wave modulaton, direct calibration. ext FM and pulse modulation, auxiliary RF oulput	384
626A, 628A Sugnal Genetalors	$\begin{aligned} & 101015.5 \mathrm{GHz} \\ & 151021 \mathrm{GHz} \end{aligned}$	outpul +10 dBm do -90 dBra : gulse, irequency or squase wave modulation. direct calibralion	345
$\begin{aligned} & \text { 938A, 940A } \\ & \text { F:iqLency Doublers } \end{aligned}$	$\begin{aligned} & 18 \text { to } \overline{26.5} \mathrm{GHz} \\ & 26.5 \text { to } 40 \mathrm{GH} \text {. } \end{aligned}$	diven by 910 I 3.25 GHz source 1325 to 20 GHz source. HP 6262628 A 08690 series sweepers or klystrons: 100 dB orecision allenualor	345

- 10 kHz to 2600 MHz
- Synthesizer stability and accuracy
- 1 Hz resolution (2 Hz above 1300 MHz)
- Calibrated output over $>140 \mathrm{~dB}$ range
- AM, FM, \varnothing M, or pulse modulation
- Fully TTL programmable

8660 C
HP-18

System Concept

The $8660 \mathrm{~A} / \mathrm{C}$ iamily is a modular solid-state plug-in system. Each systern includes 1) a programmable synthesized signal generator mainframe. 2) a leas one RF section plug-in, and 3) at least onc mod. ulation stection. This modular plug-m coostruction allows an 8660 system to be configured for any specific application white minimizing the added expense of unnecessary features

As ats name implies. the 8660 is a true frequency synthesizer. Yet it is linding even broader appeal as a high performance signal generator. And being completely programmable. the 8660 is the perfect choice for most automated receiver or component testing situalions.

Mainframes

There are two diflerent synthesized signal gencrator mainframes to choose from. Both fualure complete TTL progeanming of frequency. oulput level, and most modutation functions. The standard program. ming interface is BCD and int oplional HP-IB interface is available. Bolh mainframes can operite from an inlemal crysial reference or external Irequency standard.

The 8660A mainframe uses thumbwheel switches to select CW ourput Frequencies. Frequencius up 101300 MHz can be entered directly with I Hz resoluion. (For applications roquiring frequencies above 1300 MHz the 8660 A must be used with the 86603 A Option 003. The frequency selection process involver selecting one-half of the desired RF output frequency and activating the 86603A Option 003 Iront panel doubler swich).

The 8660C keyboard mainframes provides direce keyboard entry of CW frequencies up to 2600 MHz . Added capabilities of the 8660 C include digital sweep, frequency stepping. synthesized search, and a tendigit numerieal display.
Swept testing of very narrowband devices such as crystal rilters is made possible by the 8660 C 's digital sweep. Since the RF ouput consísts of discrele synthesized steps, the result is a very linears sweep with exiremely low residual FNI. A 0-s V horizontal sweep oulput is provided for óriving XY plolters, oscilloscopes, eic.

For applications which require frequency to be changed in uniform increments, a frequency stepping capability is provided on the 8660 C . For example, if a receiver with 50 kHz channel spacing is being teste ${ }^{\text {a }}$.
a 50 kHz step size can be entered and the frequency stepped to the next higher or lower chanmel with a single key-siroke.

Synthesized setarch provides the dial tuning convenience or y signal generator while maintaining synthesizer signal quatity. As the dial is turmed the output frequency is tuned up or down in discrete synthesized sueps which may be chosen as small as 1 Hz .
Plug-in RF Sections
There are three RF soctions to choose from. The 86601λ covers the 10 kHz to 110 MHz frequency range with calibrated oulout of +1310 -146 dBm . The 86602 B (used with the 11661 B Frequency Extension Module) covers ; MHz to 1300 MHz with outpul of +10 to -146 dBm. The 86603 A (also used with the 116618) covers I MHz to 2600 MHz with output of $+710-136 \mathrm{dBm}$. All RF sections have I Hz firequency sesolution except for 2 Hz above 1300 MHz with the 86603 A . In the remote mode output level can be programmed in I d8 sleps over the full operating sange.

Plug-In Modulation Sectionsi

There are five modulation sections to choose fram The 86612 B and 86633 B are boish AM/FM modulation sections. An accurate modulation meter indicates 5 AM or FM peak deviation. The 86633B differs from the 86632 B in that the carrier is phase locked while FM mostls-
 runnieg VCO during FM but allows ratas and deviations up to 1 MHz . Any drifl can be removed by depressing the FM CF CAL button.

The 86634A offers only analog phase modulation at rates 1010 MHz and metered deviations to 100° below 1300 MHz and 200° above 1300 MHz . The $86635 \mathrm{~A} \$ \mathrm{M} / \mathrm{FM}$ Modulation Section is similar in performance to the 86634 A except rates are limued 101 MHz and FM capability is atso included. (The 86634A and 86635A must be used with Oplion 002 RF Sections).

The 8663IB Auxiliary Section provides both external AM and pulse modulation. The 86631B Auxiliary Scelion must be used when another modulation section is not installed.

All modulation functions of the 86632B, 86633B. and 86635A are fully programmable.

B660A/C mainframe specifications

Frequency accuracy and slabllity: CW frequency accuracy and long cerm stability are determined by reference oscillator in $8660 \mathrm{~A} / \mathrm{C}$ mainframe ($3 \times 10^{-9} /$ day) or by exierna) reference if used.

Reference oscillalor

Internal: 10 MHz quarcz oscillator. Aging rate lass than ± 3 parts in 10^{x} per 24 hours afler 72 hours warm-up. (± 3 parts in $10^{\prime \prime}$ per 24 hours. Opuon 001).
External: rear pancl switch allows operation from 5 MHz or 10
MHz frequency siandard al a level belween 0.2 V and 2.0 V ims into 170 ohms.
Reference oulput: rear panel BNC connector provides outpul of reference signal selected at level of al least 0.5 V rms into 170 ohms.
Digllal sweep (86B0C): auto, single or manual. Selectable speeds O.I. 1 , or 50 seconds.

Remote programming

Functlons

8660A: all froni pancl frequency and outpur level. and most modulation functions are programmable.
8660C: CW frequency, irequency slepping (STEP 4. STEPい), and outpui level. and most modulation lunctions are programmable. Note: digital sweep is NOT programmable.
Programming Inpul
Connoctor type: 36-pin Cinch iype 57 (mating connector supplied). IOplional HP-IB interface; 24 -pin Cinch pype 57 (mating connecior NOT supplied)].
Logle: TTL compatible (negative iruc)
Switchlng time: less than 5 ms to be within 100 Hz of any ncw fre. quency sclecled. (Less than 100 ms to be within 5 Hz).
Maximum stepping rate: I ms per stcp.

General

Operating temporature range: 0° 1o $+55^{\circ} \mathrm{C}$.
Power: 100. 120, 220, or 240 volts $+5 \%,-10 \%, 48-66 \mathrm{~Hz}$. Approximalely 350 walls.
Welght: \Mainframe only]: net. $23.8 \mathrm{~kg}(53 \mathrm{lb})$. Shipping. $29.6 \mathrm{~kg}(65$ (b).

Options for 8660A/C
001: $\pm 3 \times 10^{-9}$ /day internal reference oscillator.
002: no internal reference oscillator.
003: operation from 50 to 400 Hz line.
004: 100 Hz frequenc) resolution (200 Hz above 1300 MHz CF).
005: HP-1B programming interfice
100: 11661B faclory installed.
009: (8660A only): front panel LED display indicales selected frequency in J-2-4-8 BCD code.

RF section specifications (installed in 8660 A or 8660 C mainframe)

		866014	$\begin{gathered} 86602 \mathrm{~B} \\ \text { (with } 116618 \text {) } \end{gathered}$	$\begin{gathered} 85603 \mathrm{~A} \\ \text { (wilh } 11661 \mathrm{~B}) \end{gathered}$	
	Frequency Pange	$\begin{gathered} 0.01-110 \mathrm{MHz} \\ (109.999999 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} 1-1300 \mathrm{MHz} \\ (1299.999999 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} 1-2600 \mathrm{MHz}_{2} \\ (2599999998 \mathrm{MHz}) \end{gathered}$	
				Cf $<1300 \mathrm{MHz}$	CF $\geq 1300 \mathrm{MHz}^{2}$
	Frequency Resolution	1 HL			2 Hz
	Harmonics	$<-40 \mathrm{~dB}$	$<-30 \mathrm{~dB}$ (<-25dB above +3 dBm)		$<-20 \mathrm{~dB}^{\prime}$
	spurious: Non Harmonically Rela Power Line Piplated (CW	$\begin{aligned} & -80 \mathrm{~dB} \\ & -70 \mathrm{~dB} \end{aligned}$	-80 dB below 700 MHz - 80 de above 700 MHz within 45 MHz of carrier -70 dB abave $700 \mathrm{MANz}_{2}>\mathrm{d5} \mathrm{MHz}_{2}$ from carrier -50 dB on +10 dBr range $<-70 \mathrm{~dB}$		$\begin{aligned} & -74 \mathrm{~dB} \text { within } \\ & 15 \mathrm{MHz} \text { ol camiar' } \\ & -6 \Delta \mathrm{~dB}>\$ 5 \mathrm{MHz} \\ & \text { liom carier } \\ & <-64 \mathrm{~dB} \end{aligned}$
	Signal To Phase Noise Ratio (CW, AM, © only) ${ }^{2}$	$>50 \mathrm{~dB}$	$>45 \mathrm{~dB}$		$>39 \mathrm{~dB}$

1 O or sitput hapels +5 dBm and below, slightly higher hom +3 to +78 Bm .
${ }^{2}$ Measured in a 30 ath band centered on the carmer extuding a I Itr bans ceatered on the curiat.

RF Section specifications (cont.)

		86501 A	$\begin{gathered} 86602 \mathrm{~B} \\ (w\{4 \mathrm{I} 116618) \\ \hline \end{gathered}$	$\begin{gathered} 86603 A \\ (\mathrm{w} / \mathrm{h}) 1661 \mathrm{~B}) \\ \hline \end{gathered}$	
		001-110 MHI	1-1300 M ${ }^{\text {Hz }}$	$1-1300 \mathrm{MHz}$	$1300-2600 \mathrm{MHz}$
	Outpul Level (inlo 503)	+13 d8m to -146 d8m	$+1010-146 \mathrm{dBm}$	$+1010-136 \mathrm{dBm}$	$+7 \mathrm{lo}-136 \mathrm{dBm}^{3}$
	Dulpul Accuracy (local and remole)	$\begin{aligned} & \pm 1 \mathrm{~dB},+1310-66 \mathrm{dBm} \\ & \pm 2 \mathrm{~dB},-6610-146 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \pm 1.510-76 \mathrm{dBm} \\ & \pm 2.0 \mathrm{lo}-14688 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \pm 2.5 d 8,10-76 \mathrm{~dB} \mathrm{~m}^{3} \\ & \pm 3.5 \mathrm{~dB} .10-136 \mathrm{~d} \mathrm{~m} \end{aligned}$	
	Flatness (output level variation with lrequency	$< \pm 0.5 \mathrm{~dB}$	$< \pm 1.0 \mathrm{~dB}$	$\begin{gathered} < \pm 2.0 \mathrm{~dB} \\ (1-2800 \mathrm{MHz}) \\ \hline \end{gathered}$	
	Impedance	5081			
䇾	AM Modutalion Oepth	01095%	0 to 90\%4		0-50\% 4
	3 d\& Bandwidh: 0-30\%	200 Hz . $\mathrm{CF}<0.4 \mathrm{MHz}^{2}$ $10 \mathrm{kHz}, 0.4 \leq \mathrm{CF}<4 \mathrm{MHz}$ $100 \mathrm{MHz}, \mathrm{CF} \geq 8 \mathrm{MHz}$	$10 \mathrm{kHz}, \mathrm{CF}<10 \mathrm{MHz}$ $100 \mathrm{MHz}, \mathrm{CF} \geq 10 \mathrm{MHz}$		$\mathrm{S} \mathrm{KHz}$
	$0-70 \%$	$125 \mathrm{~Hz}_{2}, \mathrm{CF}<0.4 \mathrm{MHz}$ $6 \mathrm{kHz}, 0.4 \leq \mathrm{CF}<4 \mathrm{MHz}$ $60 \mathrm{kHz}, \mathrm{CF} \geq 4 \mathrm{MHz}$	$\delta \mathrm{KHz} . \mathrm{CF}<10 \mathrm{MHz}$ $60 \mathrm{kHz} . \mathrm{CF} \geq 10 \mathrm{MHz}$		N / A
	0-90\%	$\begin{aligned} & 100 \mathrm{~Hz}, \mathrm{CF}<0.4 \mathrm{MHI}_{\mathrm{l}} \\ & 5 \mathrm{kHz}, 0.4<\mathrm{CC}<4 \mathrm{MHz}_{2} \\ & 50 \mathrm{kHz} \mathrm{CF} \geq 4 \mathrm{MHI} \end{aligned}$	$5 \mathrm{kHz}, \mathrm{Cf}<10 \mathrm{MHz}$ $50 \mathrm{kHz}, \mathrm{Cf} \geq 10 \mathrm{MHz}$		N / A
	$\begin{gathered} \text { Distorlion }{ }^{3} \text { at, IHO } 30 \% \text { AM } \\ \text { at } 70 \% \mathrm{AM} \\ \text { at } 90 \% \mathrm{AM} \end{gathered}$	$\begin{aligned} & <1 \%, 0.4-110 \mathrm{MHz} \\ & <3 \%, 0.4-110 \mathrm{MHz} \\ & <5 \%, 0.4-110 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & <1 \% \\ & <3 \% \\ & <5 \% \end{aligned}$		$\begin{aligned} & <5 \% \\ & N / A \\ & N / A \end{aligned}$
	50 Rale	DC (O) MHz wilh 866328 20 Hz 10100 kHz with $86633 B$	DC to 200 kHz wilh 86632 B and 86635 A 20 Hz to 100 hHz with 866338		
	Maximum Devialion (peak)	I MHz wilh 86632B 100 kHz wilh 86633 B	200 kKz with 856328 and 86835 A 100 KKz with 866338		$\begin{aligned} & 400 \mathrm{KHz} w / 86632 \mathrm{~B}, 35 \mathrm{~A} \\ & 200 \mathrm{KHz} w / 86633 \mathrm{~B} \end{aligned}$
	Distortion, THO (al rales up 1020 kHz)		<1\% un 10200 kHz dev.		$<1 \%$ up 10400 h Hz dev.
	Qulse Rise/Fall Time	200 ns	50 as		
	ON/OFS Ratio (with pulse level conirol al max.)	$>50 \mathrm{~dB}$	$>40 \mathrm{~dB}$		$>60 \mathrm{~dB}$
	¢M Rate	N / A	DC to I NHz with 86635A DC 101 MHz for $\mathrm{Cf}<100 \mathrm{MHz}\}$ DC to 10 MHz for $\mathrm{CF} \geq 100 \mathrm{MHz}$) with 86534A		
	Maximum Peak Devialion	N/A	0 to 100 degrees		010200 degrees
	Distortion	N / A	$<5 \%$ up lo 1 MHz zales <7\% up to 5 MHz rates $<15 \%$ up 1010 MHz rates		
$\begin{aligned} & \text { 를 } \\ & \text { 룬 } \end{aligned}$	Weight	Ner 5 kg (II (b) Shipping $6 \mathrm{~kg}(13 \mathrm{lb})$	Net 3.9 kg (9 lb) Shipping $4.9 \mathrm{~kg}(11 \mathrm{lb})$	Net 5 kg (II lb) Shipping $6.2 \mathrm{~kg}(14 \mathrm{lb})$	
			1166 IB Nat $1.8 \mathrm{~kg} \mathrm{(4} \mathrm{1D)} .\mathrm{Shipping} 2.2 \mathrm{~kg} \mathrm{(5} \mathrm{10)}$		

- Pulse/AM

$86631 B$
- AM/FM

86632 B
- AM/FM

86633E
- $\phi \mathrm{M}$

$86634 A$
- $\phi \mathrm{M} / F \mathrm{M}$

86635A

Modulation Section specifications

		866318	86632B	86633 B	86634 R	86635A
AM	Fuilitions	Ext. Only	Inl. and Ext.	Int. and ExL	-	-
	Indicated Accuracy (al 400 and 1000 Hz rales	-	$\pm 5 \%$ ol full scale ($\pm 10 \%$ ol fuli scate for center lequencies $\geq 1300 \mathrm{MHz}$)		-	-
FM	funclioas	-	Int and Ext. FM CF CAL	Int. and Ext.	-	Int. and Exl, FMCs CAL
	Cente: Ferquency Long Term Slabilily	-	Typically less Ihan $200 \mathrm{~Hz} / \mathrm{hr}$.	Sarne as in CW Mode (3 $\times 10^{-8} /$ day $)$	-	Typleally less lhan $200 \mathrm{~Hz} / \mathrm{hr}$.
	Indicated Accuracy (up to 20 KHz rates)	-	\pm \$ ol lull scale		-	$\pm 5 \%$ ol lull scale
PULSE	Funclions	Ext. Only	-	-	-	-
¢M	Funclions	-	-	-	Inl. and ExL	InL. and ExI.
	Indicated Aisulacy ($15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$)	-	-	-	$\pm 5 \%$ of full scale up to 100 hhz zales $\pm 15 \%$ of lull scala up 1010 MHz rates	
Meter		-	$\begin{aligned} & 0-100 \% \mathrm{sM} \\ & 0-10,100,1000 \mathrm{kHz} \\ & \text { FM Ph. Dev. }(0-20 . \\ & 200,2000 \mathrm{hHz} \mathrm{FM} \\ & \text { lor CF } \geq 1300 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & 0-100 \% \text { AM } \\ & 0-10,100 \mathrm{hkz} \text { FM } \\ & \text { Pk. dev }(0-20 . \\ & 200 \mathrm{kHz} \mathrm{FM} \text { lor } \\ & C F \geq 1300 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & 0-100^{\circ} \text { Peak } \phi M . \\ & 0-200^{\circ} \text { for CFZ } \\ & 1300 \mathrm{MHz} \text {) } \end{aligned}$	$0-10.100,1000 \mathrm{kHz}$ FM, O- $100^{\circ} \mathrm{Ph} \phi \mathrm{M}$ ($0-20.200,2000 \mathrm{kHz}$ fM. 0-200 $\mathrm{Ph} . \Phi \mathrm{M}$ los $\mathrm{CF} \geq 1300 \mathrm{MHz}$)
Inierna Sour Oulp	Modulation	None				
Inpul Impedance		$50 \cap$ Pulse 600Ω AMI	6008	600Ω	508	600Ω
Weight		Net, 1.2 kg (3 lb) Shipping. 2.1 kg (5 lb)	$\mathrm{Net}_{1} 2.6 \mathrm{~kg}(6 \mathrm{lb})$ Shipping. 3.8 kg (8.4 ib)	$\mathrm{Nel}, 26 \mathrm{~kg}(6 \mathrm{lo})$ Shisping. 3.8 kg (8.4 lb)	Nel, $1.8 \mathrm{~kg}\langle\mathrm{Alo} \mathrm{l})$ Shipping. 2.9 kg (6.5 lb)	Net, $2.6 \mathrm{~kg}(6 \mathrm{lb})$ Shipping. 3.8 kg (8.4 lb)

Madel number and name	Price
8660A Synthesized Signal Generator Mainlrame	\$6400
8660C Symhesized Signal Generator Mainframe	\$7900
Option 001: $\pm 3 \times 10^{-4} /$ day internal reference oscillasor	\$210
Option 002: no internal reference oscillator	less \$300
Oplion 003: operation from 5010400 Hz line	\$155
Oplion 004: 100 Hz , frequency resolution (200 Hz above	
1300 MHz)	less \$350
Oplion 005: HP-1B programming interface	\$250.
Option 009: (8660A only) LED display indicates se-	
lecticd frequency in 1-2-4.8 BCD code	\$210
Option 100: 116618 factory installed inside mainframe	\$3200

8600A Synithesized Signal Generator Mainlrame Option 001: $\pm 3 \times 10^{-4} /$ day internal reference oseilla cor

Option 003: operation from 50 1o 400 Hz line

Oplion 004: 100 Hz frequency resolution (200 Hz above
$1300 \mathrm{MHz})$

$\$ 3200$

86601A RF Section	\$3200\|
86602B R F Section	\$4300\|
86603A RF Section	\$60001
Option 001: no RF output attenuator (all RF Scctions)	Jess \$6001
Opuion 002: adds phase modulation capability (86602B. 86603A only)	\$1500
Option 003: allows operation of 86603A with 8660A mainfrume	\$2501
11681 B Frequency Exicnsion Module	\$32001
86631B Auxiliary Section	\$300
86632B A M/FM Modulation Section	\$1800
86633B A M/FM Modulation Section	\$1750
86634A ϕ M Modulation Section	\$1400
86635A $¢ \mathrm{M} / \mathrm{FM}$ Modulation Sation	\$2200

11707A Test plug-in

Designed for sroubleshooling all 8660A/B/C Synthesized Signal Generalors, the 11707A Test Plug-in installs in the Mainframe in place of the RF Section. Front pancl BNC connectors provide quick fron: panel aceess to all major internal phase lock loops used in RF output gencration and with the aid of a frequency counter each loop frequency can be readily monitored. Another BNC connecior manitors all power supply voltages and analog modulation voltages applied to the RF Sections. Individual LED's in the top "wndow" also provide an accurbte display of the various digital command lines used to control attenuation and remole programming.

11671A Interiace kit (BCD only)

This kit provides she computer-lo-device communication interface neeessary for HP computer contrulted operation of the 8660A /C Synthesized Signal Generator. Kil includes sixteen-line $/ / O$ card and cable for direcl conncetion to HP 2100 Series computers. Also includ. $e d$ is a 24 -pin shorling connector and a register diagnostic lape for computer verilication of proper 1/O operation.

11672A Service accessory kit

The 11672 A Service Kit is an exclusive accessory of the 8860 family and is a "must" for any detailed servicing. The kit contains virious extender cables, coax cable assemblics, and sealectro connectors so that the RF Section, Modulation Seetion, or the Frequency Extension Module may be removed from the Mainframe. reconneeted by the extender cables, and serviced or adjusted while the system is operating normally.

A capacitor luning tool is included with the kil which makes it possible to make adjustments eaṣily without disrupting circuit operation.
Model number and name Price
11707A Tesl plug-in
$\begin{array}{ll}11671 \text { A Interface kit (BCD anly) } & \$ 1200 \\ & 5475\end{array}$

SIGNAL GENERATORS
 Precision, high stability, AM-FM, 0.5 to 1024 MHz
 Models B640A, 8540B

\author{

- Wide frequency and power range
 - Low broadband and close-in noise
 - Calibrated, metered AM and FM
 - All 8640A features plus
 - Internal pushbutton synchronizer
 - External counter to 550 MHz
}

Description

The 8640 signal generator covers the frequency range 500 kHz to $512 \mathrm{MHz}(450 \mathrm{kHz}$ to 550 MHz with band overrange) and can be excended to 1100 MHz with an internal doubler (option 002). An optional audio oscillator is also available to extend the CW output range of the generator down to 20 Hz . This broad coverage, logether with calibrated ouiput and modulation, provides for complete RF and IF performance tests on virtually any type of HF, VHF, and UHF receivers.
Both solid state generators 8640 A and B have an output level range of $+1910-145 \mathrm{dBm}(2 \mathrm{~V} 100.013 \mu \mathrm{~V}$) which is calibracod, metered. and leveled to within $\pm 0.5 \mathrm{~dB}$ across the full frequency range of the insicument.

The 8640A/B generators provide AM. FM, and pulse modulation for a wide range of receiver test applications. This modulation is calsbrated and metered for direct readoul under all operating conditions.

A reverse power protcction option (OpL OO3) is available to eliminate insirument damage due to accidental transmitter keying. This module prolects to over 25 watts of applied power and automatically resets upon removal of the excessive signal.
Spectrally pure oulput signals
Noiso performance of the 8640 is statoof-the-art for a solid-state generator. The high-Q cavity ascillator has been oplimized with use of a low-noive microwave iransistor for spectrally pure outpul signals.

Al 20 kHz offsets from 230 to 450 MHz SSB phase noise is >130 $\mathrm{dB} / \mathrm{Hz}$ below the carrict leval and rises to $122 \mathrm{dA} / \mathrm{Hz}$ al 550 MHz . This signal-1o-nose ratio increases by approximascly 5 dB for each djvision of the oulput frequeney down 10 the broadband noise floor of belter than $140 \mathrm{~dB} / \mathrm{Hz}$. This exeepional noise performanoe is also preserved during FM modulation and in the phase-locked mode of the 8640B.

Mechanical dial or built-in counter
There are two versions of the 8640 Signal Generators. One, the 8640A, has an easy-to-read slide rule dial with scales for each of the 10 output frequency ranges. There is an additional scale, to provide direct readoul of the oulpuifrequency even in the INTERNAL DOUBLER band, $512.1024 \mathrm{MH}_{2}$.

The 8640 B has the same performance features as the 8640 A , but incorporstes a builtin 550 MHz frequency counter and phase lock synchronizer.

The built-in 6-digit counter displays the oulput Frequency and can also be used to count external input signals from 20 Hz to 550 MHz . This eliminates the need for a separale frequency counter in many measurement systems.

Internal pushbutton synchronizer

At the push of a bulton, the 8640 B built-in phase lock synchronizer locks the RF outpul frequency to the crystal lime base used in the councer. In this locked mode, the output slability is better than $5 \times$ $10^{-8} / \mathrm{hr}$ and the spectral purity and FM capability of the unlocked mode are preserved. For higher siability, it is possible to lock to an externally applicd 5 MHz standard. Two 8640B's can also be locked together for various 2 -lone measurements.

FM while phase locked

When phase lacked. full FM capability is preserved down to modu. iation rates of 50 Hz . The narrow bandwidth of the phase lock laop ($<5 \mathrm{~Hz}$) provides for FM modulation up 10250 kHz rates and assures no degradation in noise from the unlocked mode. This crystal stability, coupled with the precision modulation and low noise, makes the 8640B ideal for tesiing narrowband FM or crystal-controlled receivers.

8640A/B specifications

(Sce Jechnical Dala Sheet for Complete Specificalions). All specificatoons apply over the nominal Frequency Bands and over the lop 10 dB of the output level vernier range unless otherwise specified.
Frequency characteristics
Range; $500 \mathrm{kHz} 10512 \mathrm{MH} \subset$ in 10 octave bands (to 1024 MHz with option 002 intermal frequency douhler).
Bands and band overlap: band cutend 10% below and 7% above the nominal frequency bands shown below.

frequency bands (MHz)		
$05-1$	$8-16$	$128-256$
$1-2$	$16-32$	$256-512$
$2-4$	$32-64$	$512-1024$
$4-8$	$64-128$	(op1002)

Fine turing
8640A and 8640 B unlocked: $>1000 \mathrm{ppm}$ boral ringe.
86408 locked mode: $> \pm 20 \mathrm{ppm}$ by varying internil lime base vernitr.
Counter resolution (86408):

Frequency Bands (MHz)	Nomal Hede	Expand $\times 10$	Expand $\times 100$
$0.5-1$	10 Hz	1 Hz	0.1 Hz
$1-16$	100 Hz	10 Hz	1 Hz
$16-128$	1 hHz	100 Hz	10 Hz
$128-102 \mathrm{~A}$	10 kHz	1 hHz	100 Hz

Accuracy
8640A: mechanical dial; accuracy better than 0.5_{0}°, reseltability better than 0.1%.
66408: 6-digit LED display with $X 10$ and $X 100$ expand; accuracy depends on internal or external relerence used.
Stablity (after hour warmup)
Normal: < 10 ppm; 10 min.
Locked: $(80408)<0.0 \leq \mathrm{ppm} / \mathrm{hr}$.
Restabllzalion time after frequency change
Normal: < 15 min.
Locked (8B40B): I min ufler relocking to be wilhin 0.1 ppm of steady stäle frequency.

Measured SSB Nolse vs. Olfet from carrier. Markers indlcate specified limits.

Oulput characterislics
Range: 10 dB steps and 18 dB vernier provide the rollowing output power seltings into 50Ω :

Frequency Range (MHz_{2})	8640A/B	With Option(s)		
		002	003	002/003
0510512	$\begin{aligned} & +19 \text { to } \\ & -145 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +18.5 t 0 \\ & -145.88 m \end{aligned}$	$\begin{aligned} & +18.510 \\ & -145 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +1810 \\ & -145 \mathrm{dBm} \end{aligned}$
$\begin{aligned} & 512 \text { Io } 1024 \\ & \text { (Oplion 002) } \end{aligned}$	-	$\begin{aligned} & +1310 \\ & -145 \mathrm{dBm} \end{aligned}$	-	$\begin{aligned} & +1210 \\ & -145 \mathrm{dBm} \end{aligned}$

Level Matness (referred to oulput at 50 MHz and applies 101 V range and for top 10 dB of vernier range):

$\begin{aligned} & \text { Frequency } \\ & \text { Range } \\ & \text { (MHz) } \end{aligned}$	8640A/B	Wih Oplion(s)		
		002	003	002/003
0.51064	$\pm 0.5 \mathrm{~dB}$	05 dB	$\begin{aligned} & +0.75 \mathrm{~dB} \\ & -1.25 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & +1.0 \mathrm{~dB} \\ & -20 \mathrm{~dB} \end{aligned}$
6410512		± 1.0 dB		
$\begin{gathered} 512 \text { 10 } 1024 \\ (0 \text { Option } 002) \end{gathered}$	-	$\pm 1.5 \mathrm{~dB}$	-	$\pm 2.0 \mathrm{~dB}$

Level accuracy: (worsl cast as indicaled on level meter) $\pm 1.5 \mathrm{~dB}$ to $\pm 4.0 \mathrm{~dB}$ depending on level frequency and options installed.
Spectral purity
Harmonics (al 1 voll, +10 dBm output range and below):
>35 dB below fundamental, 0.5 to 128 M Hz .
$>30 \mathrm{~dB}$ below fundamental. 128 to 512 MHz .
$>12 \mathrm{~dB}$ below fundamental, 512 to 1024 MHz .

Spurtous output signals (excluding frequencies within 15 kHz of the signal whose efects are specilled in resldual AM and FM):

```Frequency Range (MH2)```	Subhammonically Relaled		Non-hambonicailly Relaled	
	8640\%	8540B	8640 A	86408
$\begin{aligned} & 0.5 \text { to } \\ & 512 \end{aligned}$	none detectable	$>100 \mathrm{dBC}$	$\begin{gathered} \text { none } \\ \text { detectable } \end{gathered}$	$>100 \mathrm{dBC}$
$\begin{aligned} & 51210 \\ & 1024 \\ & \text { (Oplion 002) } \end{aligned}$	$>200^{\circ}$			

Residual AM \{averaged rms): 0.3 to 3 kHz post delection noise bandwidth <85 dB down.
Residual FM \{averaged rms): 0.3 to 3 kHz post delection noise bandwidih.
$0.510512 \mathrm{MHz}_{\angle}<5 \mathrm{~Hz}$.
$512101024 \mathrm{MHz}<10 \mathrm{~Hz}$.
1'SE = 8 B Dolow Miv carner

## Modulation characteristics

General
Types: Internal AM and FM. External AM, FM and PULSE.
Internal modulation sources: (independently adjustable outpul is available al front panel).
Standard: 8640A or 8640 B .
Frequency: fixed 400 Hz and $1 \mathrm{kHz}, \pm 2 \%$.
Oulput level: 10 mV to 1 V . Nocuracy $\pm 20 \%$.
Optlonal: (internal variable audio oscillator Option 001, 8640A or 8640B).
Frequency: variable 20 Hz to 600 kHz , $\pm 10 \%$ plus fixed 400 Hz and $1 \mathrm{kHz} \pm 3 \%$.
Outpul level: 10 mV to 3 V . Accuracy $\pm 20 \%$.

## Amplitude modulation

(AM specifications apply to the top 10 dB or outpul vernier range unlews otherwise specificd.)

## Deplh

0.5 to 512 MHz : 0 to $100 \%$ for output level range from +13 dBm and below.
512 to 1024 MHz : 0 to $100 \%$ for ouput levels of +7 dBm and below and for top 16 dB of outpul wernier range.
AM Rates: INT and EXT ac; $20 \mathrm{Hzto} \mathrm{AM} 3-\mathrm{dB}$ bandwidib. EXT dc: de so AM 3-dB bandwidih.
AM 3-dB Bandwidih:

Frequency 8ands	$01050 \% \mathrm{AM}$	$50 \mathrm{lo} 90 \% \mathrm{AM}$
0.5102 MHz	20 MHz	12.5 kHz
2108 MHz	40 KHz	25 kHz
810512 MHz	60 kHz	50 kHz
512101024 MHz	60 HHz	50 kHz

AM Distorilon (at 400 Hz and 1 kHz rates):

Frequency 日ands	$01050 \%$ AM	$501090 \%$ AM
0.510512 MHz	$<1 \%$	$<3 \%$
512101024 MHz	$<5 \%$	$<10 \%$

External AM Sensitivity ( 400 Hz and 1 kHz rates)
0.5 to $512 \mathrm{MHz}:(0.1 \pm 0.005) \%$ A.M per mV peak imo 6000 with AM vernier at full CW position.
512 to 1024 MHz nominal $0.1 \%$ A M per mV peak into 6005 with AM vernicr at full CW position.
Indicaled AM Accuracy ( 400 Hz and $\mathbf{1 k H z}$ rates using internal meter)
0.5 to $512 \mathrm{MHz} \pm 8 \%$ or reading on $0-10$ scale. $\pm 9 \%$ of reading on 0-3 scale (for grealer than $10 \%$ of full scale).
512 to 1024 MHz nol specilied: cach generator can be individual. ly calibraled using operating manual procedure.
Peak Incidental phase modulation (al $30 \%$ AM)
0.5 to $128 \mathrm{MHz}<0.15$ radians.

128 to $512 \mathrm{MHz}<0.3$ radians.
512 to 1024 MMx : $<0.6$ radiams.
Peak Incldental frequency devlation: cquals peak incidental phase modulation $\times$ modulation rate.
Pulse modulation:

frequency Bands ( $\mathrm{MHz}_{2}$ )	0.5-1	1-2	2-4	4-8	8-32	32-1024
Rise and   fall   Times	$<9 \mu$ S	$<4 \mu \mathrm{~S}$	$<2 \mu S$	$<1 \mu S$		
Pulse Repeltition Rate	$\begin{gathered} 50 \mathrm{~Hz} \\ 10 \\ 50 \mathrm{KHz} \end{gathered}$		$\begin{gathered} 50 \mathrm{KI} \\ 10 \\ 100 \mathrm{KH} \end{gathered}$		$\begin{gathered} 50 \mathrm{H}_{2} \\ 10 \\ 250 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 50 \mathrm{~Hz} \\ 10 \\ 500 \mathrm{kHz} \end{gathered}$
Pulse Width Mivintum'	$10 \mu \mathrm{~S}$		5 s		$2 \mu \mathrm{~S}$	
ON/OFI ratioal max vernier	$>40 \mathrm{~dB} 0.510512 \mathrm{MHz}$   $>60 \mathrm{~dB} 512101024 \mathrm{MHz}_{2}$					
Peah Inout Required	$\text { Nominally }+0.5 \text { V ( } 5 \mathrm{Y} \text { max) Sinewave or Puise }$ relurn to zero into 50 n schmill trigger					

[^20]Frequency modulation
Deviation: maximum aliowable deviation equals $1 \%$ of lowest Irequency in each nominal output frequency band.

Frequency Band (HHz)	Maximum Peak Deviation (kHz)
$0.5-1$	5
$1-2$	10
$2-4$	20
$4-8$	40
$8-16$	80
$16-32$	160
$32-64$	320
$64-128$	640
$128-256$	1280
$256-512$	2560
$512-1024$	5120

FM 3 dB bandwidth: internal and external ac: 20 IIz to 250 kHz External de: du to 250 kHz .
FM distortion: (at 400 Hz and I kHz rales)
<1\% for deviations up to $1 / 2$ maximum aliowable.
$<3 \%$ for maximum alkovible deviation.
External FM sensifisily: I volt peak yields maximum deviation indicated on PEAK DEVIATION switch with FM vernier al full CW position.
Indicated FM accuracy: (using internal meter) $\pm 10 \%$ of meter reading, above $10 \%$ of fell scale.
incldental AM: (at 400 Hz and 1 kHz ralcs)
$<0.5 \%$ AM for $F M$ up to ! , max allowable deviation.
$<1 \%$ AM for FM al maximum allowable deviation to 512 MHz .
$<7$ AM for FM al maximum allowable deviation to 1024 MHz

## Counter characteristics (8640B)

External RF input:
Frequency range: 20 Hz to 550 MHz .
Semeltully: $\geq 100 \mathrm{mV}$ ims into son.
Resolution: 6-digit LED DISPLAY.

Mode	Normal	Expand X10	Expand X100
$0-10 \mathrm{MHz}$	100 Hz	10 Hz	1 Hz
$0-550 \mathrm{MHz}$	10 kHz	1 kHz	100 Hz

Internal reference characteristics: (after 2-hr warmup).
Aceuracy: (fter calibration at $25^{\circ} \mathrm{C}$ )
Becter than $\pm 1 \mathrm{ppm}$ For $15^{\circ}$ to $35^{\circ} \mathrm{C}$.
Beller than $\pm 3 \mathrm{ppm}$ for $0^{\circ}$ to $55^{\circ} \mathrm{C}$.
Drift rate: (constant temperature and line volage) < 0.05 ppin per hour: <2 ppm per year.
Frequency funing: $> \pm 20 \mathrm{ppm}$ using internal time base vernier.
Rear output: $>0.5$ ४ $p-p$ inio 5001 . This will drive another 8640 B .
External relerence Input: 5 MHz nominally $>0.5 \mathrm{~V}$ ( 5 V max) into $1 \mathrm{k} \Omega$.

## General characteristics

Operating temperature range: $01055^{\circ} \mathrm{C}$.
Power requirements: 100.120 .220 , and 240 volts, $+5 \%,-10 \% .48$ 10440 Hz : I7S VA maximuro.
Welght: 8640A and 8640 B : net, 20.4 kg ( 45 lb ); shipping 24.1 kg ( 53 lb).
Dimenslons: 124 mm high $\times 425 \mathrm{~mm}$ wide $\times 476 \mathrm{~mm}$ deep ( $5 \% \times$ $\left.183 / 4 \times 181 /{ }^{*}\right)$.

Model number and name	Price
8640 A Signal Genersition	$\$ 4900$
8690 B Signal Generator	$\$ 6400$
Option 001 : (internal variable audio oscillator, 20 Hz lo	add $\$ 275$
600 kHz )	add $\$ 850$
Option 002: (internal doubler $512-1024 \mathrm{MHz}$	add $\$ 300$
Option 003: (reverse power protection)	add $\$ 800$

## Avionics option

## Model 8640B Opt 004

- Demodulated output from RF detector, AC and DC.
- Phase shiff; less than $0.01^{\circ}$ at 30 Hz .
- External Count Capability: 1 Hz to 550 MHz .


The Hewilett-Packaro Model 8640 B OPTION 004 NaV/COM SIGNAL GENERATOR is an 8640 B AM/FM SIGNAL GENERATOR specially adapled for lesting ILS (Marker Beacon. Localizer and Glide Slope), VOR and VHF communications receivers used throughout the Aviation indusiry. VOR. LOCALIZER and VHF communications frequencies ( 10810136 MHz ) are available on one frequency band for rapid channcl selvetion. GLIDE SLOPE (329 to 335 MHz ) and MARKER BEACON ( 75 MHz ) frequencies are also casily set using the 6 -digit LED display.
The 8640 B OPTION 004 providas highly stable, spceitally pure RF signals for tesing narrow-ehannel, crystat controlled receivers. For avionics testing. external audio generators are required to provide the composite modulation. Designed with versatile AM and FM modulation. OPTION 004 features low distortion modulation when used with suitable. external VOR/ILS Audio Generators.

Operation and specifications of the 3640 Option 004 are the same as the Standard 8640B AM/FM Signal Gencristor with the following additions.

## Demodulated output

One front panel BNC connector provides demodulated output from the RF peak detecior for precise AM seltings. A choiee of combined AC/DC at I V rms or AC only ar 5 V rms is provided.
Output level setting
To ensure the best possible demodulated outpul Inearity, Option 004 combines a 1 dB step attenuator and a vernier with a 10 dB step attenuator. This provides oulpul levels from $+15 \mathrm{dBm} 10-142 \mathrm{dBm}$ ( 1.3 V to $0.018 \mu \mathrm{~V}$ ). The output level can be read directly from the altenuator disl in d8m or from the fromt panel meter in dBm or volts.

## External AM Input Impedance

Extemal AM input impedance of 2 K ohms allow's compatible operation with old and new generations of external audio generylors.
Low distortion modulation
The 8640 B Option 004 provides flat AM ecsponse and minimum phase shif̂ at 30 Hix and 9900 Hz as well as constant group delay between 9 kHz and II kHz for accurate VOR and ILS testing.

## Specifications

(These specilications apply 108640 B Option 004 in addition 10 standard 8640 B specilications. See 8640 B AM/FM Signal Generator Data Sheel for complete specifications.)
Spectral purity
Nolee: SSB Broadband noise floor: greater than I MHz offsel from carricr, >130 d日 down.

## Output characteristics

Range: +15 dBm to $-142 \mathrm{dBm}(1.3 \vee 100.018 \mu \mathrm{~V})$
Attenuators: a 10 dB step aternualor, a 1 dB step attenuator with vernier allow sclection of any output level over the full output level range. Vernier: 2 dB continuously variable from a CAL detent position.
Level flatness: $< \pm 0.75 \mathrm{~dB}$ from 0.5 to 512 MHz referred to output at $190 \mathrm{MHz},< \pm 0.5 \mathrm{~dB}$ from 108 to 336 MHz referred 10 outpul al 190 MHz . (Flaness applies $10+1010-10 \mathrm{dBm}$.)
Level accuracy:

Oulpul Level   (dBm)	$+1510-10$	$-1010-50$	$-50 \mathrm{to}-142$
Total Accuracy as   Indicated on   Level Metar	$\pm 1.5 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$

## Modulation characteristics

Demodulated output (Output vernier in CAL posifion) (108 to 118 and 329 io 330 MHz ); an internal selector switch allows selection of $A C$ only or $A C$ and $D C$ al the demodulated output.
AC only output: directly proportional 10 AM depit. ( 90 to 150 Hz modulation frequency).
$\%$ AM equals: $(20 \pm 0.6) \%$ per $V$ rms. 0 to $55^{\circ} \mathrm{C} ;(20 \pm 0.4)$ \% per $V$ rms. 20 to $30^{\circ} \mathrm{C}$ ( $20 \pm 0.2$ ) \% per $V$ rms (using calibration sheer provided by factory.)
$A C$ and $D C$ oulput. $A C$ outpur voluge is directly proportionas 10 AM depth ( 90 to 150 Hz modulation frequency)
\%AM equals: $(100 \pm 3) \%$ per V rms. 0 10 $55^{\circ} \mathrm{C}:(100 \pm 2) \%$ per V rms. $201030^{\circ} \mathrm{C}$ : $(100 \pm 1)^{\%}$ per V rms (using calibration sheer provided by factory.)
DC output equals $1 . \& 1 \mathrm{~V}$ de with vernier in CAL position.
Amplitude Modulation Characteristics ( $\div 10 \mathrm{dBm}$ output and below):
Exiernal Input impedance: nominally $2 \mathrm{k} \Omega$.
Frequency response: $\pm 0.05 \mathrm{~dB}$ from 90 Hz through 150 Hz < 108 to 118 and 329 to 335 MHz .): $\pm 0.05 \mathrm{~dB}$ from 9 kHz through 11 kHz ( 108 to 118 M 4 z$)$; $\pm 3 \mathrm{~dB}(0$ io $70 \% \mathrm{AM})$ from de through $50 \mathrm{kHz}(8$ to 512 $\mathrm{MHz}): \pm 3 \mathrm{~dB}(0 \mathrm{co} 90 \% \mathrm{AM})$ from de ihrough $35 \mathrm{kHz}(810512 \mathrm{MHz})$ Phase shitt from Audlo Input to Demodulated Oulput (109 10118 MHz) (AM EXT DC mode):
$30 \mathrm{~Hz}< \pm 0.01^{\circ}$
30 Hz to $10 \times \mathrm{Hz}< \pm 3^{\circ}$
$9 \mathrm{kHz} 1011 \mathrm{kHz}< \pm 1^{\circ}$ difference.


## Description

The 8640 M is a highly ruggedized version of the 8640 B signal generator. While retaining the excellent stability and signal purity of the 8640日, the " M " adds a new dimenslon to laboratory graded instruments; field useability.

The waterproof combination ease, construeted to the requirements of Mif-T-21200J, is visual cvidence of the rugged nature of the 8640 M . This case provides a protective outer shell and cushioned mounts to assure tolerance to the shock and vibration rigors of off road Iransportation. All controls on the front panel are drip-proof, and the air ducts are louvered to allow operation in wind, rain, or snow.

Reliability testing 10 Mil-Sid-78) allows prediction of MTBFs in excess of 2200 hours. The testing included vibration, $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ temperature cyeling, and power cycling. Maintainability teating to Mil-Sid-471 hati verified that the mean time to repair the 8640 M is less than $\mathbf{2}$ hours.

Built into the 8640 M is reverse power protection. This circuil prevents damage to the generator resulting from accidental uansmitter keying. Prolection to over 25 wats is specified with automatic resel when reverse power is removed.

## Specifications

Frequency characteristics
Range: 560 kHz to 512 MHz in 10 -Octave Bands (to 1024 MHz with External Frequency Doubler).
Internal counter resolution:

Frequency Bands   $(\mathrm{MHz})$	Normal Mode	Expand   $\times 10$
$0.5-1$	10 Hz	1 Hz
$1-16$	100 Hz	10 Hz
$16-128$	1 kHz	100 Hz
$128-1024$	10 kHz	1 kHz

## Stability:

	Hormial (Typieal)	Locked
lime (afler 3.hn. warm-40)	<15 Dom/10 min	<2 ppm/10 min
Temperalure	$<50$ ppm/ $/{ }^{\circ} \mathrm{C}$	$<1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Output range and accufacy:

	Using Fop 10 dB   of Venier Range			Using Full   Vemiger Range
Oulpul (dEm) Range	+1310   -7	-710   -47	-4710   -137	+1810   -145
Total Accuracy as Indicated   on Level Meler	2.0 dB	2.5 dB	3.0 dB	Add   $\pm 0.5 \mathrm{~dB}$

## Modulation

Types: internal AM, FM, and PULSE,
external, AM, FM and PULSE.
Environmental performance
Temperature: MIL-STD-810f, Method 501, 502 Proc. 1.
Operatling: continuous operation allowed berween $-40^{\circ} \mathrm{C}$ $\left(-40^{\circ} \mathrm{F}\right)$ and $+55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$, Intermittent operation ( $<20 \mathrm{~min}$.) allowed up to $+71^{\circ} \mathrm{C}\left(360^{\circ} \mathrm{F}\right)$.
Non-Operaling: storage allowed between $-60^{\circ} \mathrm{C}\left(-76^{\circ} \mathrm{F}\right)$ and $+85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$.
Humldity: MIL-STD-810B, Method 507 Proc. I. 10-day tesi.
Operailng: $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right) 10+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ at up $1095 \% \mathrm{RH}$.
Non-Operating: storage allowed between $-60^{\circ} \mathrm{C}\left(-76^{\circ} \mathrm{F}\right)$ and
$+60^{\circ} \mathrm{C}$ (140 F) up to $95^{\circ} \mathrm{C}$ RH. Condeosation allowed.
Shock: MIL-T-21200J Class (I. When mounted in its combination case. the 8640 M will withstand 20 g 's shock in any of 3 planes without damage.
Vibration: MIL-T-21200J Class II.
Rain: MrL-STD-810B Mcthod 506 Proc. 1 . Simulated rain and wind conditions up to 12 in ./hour rainfall and up to 40 mph wind. Instrument was in normal operating conniguration.
Explosive Atmosphere; MTL-STD-810B Method 511 Proe. I. Type testing verified succersfiul operation in potentially explosive almosphere laden with avionic fuel vapor.
Salt Fog: MIL-STD.810B Meihod 509 Proc. I. A mechanicul mockup was rested to verify the non-corrosive nature of parts, materials. and processes.
Fungus: non-fungus nutrient material used.
EMI: MIL-STD-461A, Class CI. Tesi Methods CE 03 and RE 02.
$\$ 8400$

## Rugged solid-state generator 10 to 520 MHz ; synchronizer/counter Models 8654A, 8654B, 8855A

- Calibrated output power
- Calibrated AM, FM, internal, external, independent
- Compact size and shape


8654A

## 8654A/B Signal generators

The HP 8654A/B Signal Generators are porable. low-cost solidstase generators providing calibrated output and versatile modulation capabilities over the 10 to 520 MHz Irequency range. The 8654 provides clean RF signals with harmonics $>20 \mathrm{~dB}$ down and subharmonies and spurious $>100 \mathrm{~dB}$ down for testing receivers, amplifiers, an. tennas, and filter networks. The 86548 has calibrated AM and FM white the 8654A has uncalibrated FM.
Its compact ness and small size allow the 8654 to fit easily inoo production. mobilc, airborne. and shipboard lest locations. lis rugged. lightweight construction is also suilable for ficld mantenance and service applications.
Internal oscillators provide both amplitude modulation and frequency modulation at 400 Hz and 1000 Hz , or external modulation can be accomplished using siandard audio oseillators.
A front-panel meler accurately indicales amplitude modulation depth from 0 to $90 \%$ when the meter mode switch is in the AM pasition. Additionally, the 86548 provides calibratod and melerth FM over four deviation ranges: $0103 \mathrm{kHz}, 01010 \mathrm{kHz}, 0$ to $30 \mathrm{kHz}, 010$ 100 kHz .
Reverse power protection is available (Option 003) to prolect against accidental triggering of transccivers of up to 25 watts into the signal generator.
Effeclive RF shiclding and output range penmit receiver sensilivity measurements to be made down to power levels of $0.3 \mu \mathrm{~V}$.

## 8654A/B Specifications

Specilications apply from 10 to 520 MHz for oulpul power $\leq+10$ d8m and over the lop 10 dB of outpul level vernier range unless atherwise specified.

## Frequency characteristica

## Range: 10 to 520 MHz in 6 bands.

8854A bands (MHz): $101018.6,18.61035,35$ to 66, 6610130,130 to 250.250 to 520.
8654 B bands ( MHz ): 10 10 19, 19 to 35 , 351066.66 to 130.130 to 270. 270 to 520.

Accuracy: $\pm 3 \%$ after 2 -hour warm-up.
Sellabllity: senable to within 5 ppm or the desired frequency with an external indicator after l-hour warm-up.
Stability (after 2 -hour warm-up and 15 mln . after frequency change): $<(1 \times \mathrm{Hz}$ plus 20 ppm$) / 5 \mathrm{~min}$.
Spectral purlty
Harmonle Distortion (oulput power $\leq+3 \mathrm{dBm}$ ): $>20 \mathrm{~dB}$ below carrier.
Subharmonles and non-harmonlc spurious (excluding Ilne related): >100 dB down.


8654 B

Rosidual AM (average rms): $>55 \mathrm{~dB}$ below carricr in a 50 Hz to 15 kHz post-detcction noise bandwidit.
Resldual FM on CW (averaged rme deviation): <0.3 ppm in a 03 103 kHz post-detcection noise bandwidth. $<0.5 \mathrm{ppm}$ in a 50 Hz 1015 kH 2 post-detertion noise bandwidth.

Output characteristics
Range: 10 dB sleps and a 13 dB vernier provide power seltings from +10 dBm to $-130 \mathrm{dBm}(0.7 \vee 100.07 \mu \mathrm{~V})$ inco $50 \Omega$.
impedance: $50 \Omega$ ac coupled, 75 V de maximum. SWR $<1.3$ on 0.1 V range nr lower. With Option 003. SWR <1.5 on 0.1 V range or lower. Level accuracy (total as Indicated on level meter): +10 to -7 $\mathrm{dBm} . \pm 1.5 \mathrm{~dB} ;-7 \mathrm{to}-57 \mathrm{dBm} . \pm 2.0 \mathrm{~dB} ;-5710-97 \mathrm{dBm} . \pm 2.5 \mathrm{~dB}$; $-9710-127 \mathrm{dBm}, \pm 3 \mathrm{~dB}$.
Level flatnegs: $\pm 1 \mathrm{~dB}$ referenced to the oulpul al 250 MHz for outpui levels $>-7 \mathrm{dBm}$,
Auxlllary RF output: $>-7 \mathrm{dBm}(100 \mathrm{mV})$ into 50 n .
Leakage (wilh all RF outputs terminated properly): leakage limits are below those specified in MIL-1-6I8ID. Furthermore, with an oulput level $<0.01 \mathrm{~V}$. less than $0.5 \mu \mathrm{~V}$ is induced in a 2 -(urn. I-inch diameter loop I inch away from any surface and measured into al 5082 rewiver.
Reverae Powar Protection (Opllion 003); protects signal generator from accidental applications of up to 25 W of RF power into generalor output.
Modulation characteristics
Amplitude modulatlon: specifications apply for output power <+3 dBm.'
Depth: 0 o $90 \%$.
Modufation rete: internal, 400 to $1000 \mathrm{~Hz} \pm 10 \%$ : external 3 JB band width. de coupled to $>20 \mathrm{kHz}$.
External AM sensitivily: ${ }^{2}(0.1 \pm 0.01) \%$ AM/mV into $600 \Omega$.
Indleated AM aecuracy: ${ }^{2} \pm$ ( $5 \%$ of readings $+5 \%$ of full sede).
Peak incidental frequency deviation ( $30 \%$ AM) : ${ }^{1}$ less than 200 Hz .
Envelope distortion: ${ }^{7}<3 \%, 01070 \%$ modulation: $<5 \%$. $90 \%$ modulation.

Frequency modulation, 86548; fully calibraned.
Peak devlatlon: 0 to 30 kHz from 10 to 520 MHz .
010100 kHz from 80 to 520 MHz .
Deviatlon ranges: $0103 \mathrm{kHz}, 01010 \mathrm{kHz}, 0$ 10 30 kHz .010100 kHz . Modulation rate: internal, 400 and $1000 \mathrm{~Hz} \pm 10 \%$. Extermal 3 dB bandwidth, de coupled to $>25 \mathrm{kHz}$.
FM distortion: $<2 \%$ for deviations up to $30 \mathrm{kHz} .<3 \%$ for deviations up to 100 kHz .
 enceed +9 abm.
4400 and 1000 Hz modulation rates

- Synchronize $8654 \mathrm{~A} / \mathrm{B}$, stability $0.1 \mathrm{ppm} / \mathrm{hr}$.
- 500 Hz lock resolution
- Low RFI counter to 520 MHz

External FM sensitivity: ${ }^{2}$ |-volt peak yields maximun deviation in. dicated on peak deviation meter with FM LEVEL vernier at full CW posilion.
Sensiflivity accuracy: ${ }^{2} \pm 10 \%$.
Indicated FM accuracy $\left\{15^{\circ} 1035^{\circ} \mathrm{C}\right.$ ): ${ }^{2} \pm$ ( $10 \%$ of reading $+3 \%$ of full scale). For 100 kHz deviation above 130 MHz . add $3 \%$ of reading. Incldental AM: ${ }^{2}<1 \%$ AM at 30 kHz deviation.
Frequency modulation, 8654A: uncalibraled.
Devialion: $>0.1 \%$ of carrier frequency. maximum.
Modulation rate: iniemal, $400 \& 1000 \mathrm{~Hz}, \pm 10 \%$. Exiemal 3 dB bandwidth, de-coupled to $>25 \mathrm{kHz}$ driven from 600 m or less.
External FM sensiliulty: 10 V into 6000 yields $>0.1 \%$ deviation ( $\pm$ Is volls max).
General characlerlstics
Power: 100, 120, 220, or 240 volts $+5 \%$. $10 \%$, 48 to 440 Hz ; IS VA maximum. $2.29 \mathrm{~m}(7 / / \mathrm{fl}$.) power cable furnished with mains plugs to match deslination requiremients.
Welght: net, 7.9 kg ( 17 Ib 6 oz .) Shipping, 9.5 kg ( 2 I lbs ),
Dimenslone: $266 \mathrm{~mm} \mathrm{~W} \times 178 \mathrm{~mm} \mathrm{H} \times 305 \mathrm{mmD}\left(101 / 2^{\prime \prime} \times 7^{\prime \prime} \times\right.$ 12").

## 8655A Synchronizer/Counter

The HP 865SA Synchronizer/Counter is a phase-lock frequency stabilizer that provides the HP 8654A and 8654 E Signal Generators with etystal-oscillator frequency slability. It is also a Frequency counter with very low RFI leakage. When used with an 8654 Signal Gencrator, the frequency cas be phase-locked at any frequency from 10 to 520 MHz . In the locked mode the spectral purity and FM cupability of the unlocked 8654 are prescrved. This performance allows testing of new state-uf-the-art crystal controlled receivers.
Phase locking the 8654 is simple with the 8655A Syncbronizer. A purh of the LOCK button ertablishes lock at the frequency shown on the LED display. Maximum lock resolution is 500 Hz . If lock is broken, the LED display fashics, Lock can be re-established by reluning and ugain pushing the LOCK button.
The 8655A can also be used to count external input signals from 1 xHz to 520 MHz . Input sensitivity is better than 100 mV into 50 ohms. Using the EXPAND button it is possible to achicve a resolution of 1 Hz in the i $\mathrm{xHz}-10 \mathrm{MHz}$ EXT COUNT mode or 100 Hz in bolt the $10-520 \mathrm{MHz}$ EXT COUNT and SYNCHRONIZE COUNT modes.
$R F$ leakage from $86548 / 8655 \mathrm{~A}$ system is $<1.5 \mu \mathrm{~V}$ in a 2 -turn. 1 . inch dianjeter loop I inch away from any surface and measured into a 50 ohm receiver.

## 8655A Specifications

## Counter characteristics

Range: 1 kHz to 520 MHz
Senaltivity: $<100 \mathrm{mV}$ rms ( -7 dBm ), ac coupled into 50 ohms. (Iypically $<-20 \mathrm{dBm} .10 \mathrm{XHz}$ to 200 MHz .)
Maximum inpul: AC: 707 mV ( +10 dBm ) for accurate count. DC: $\pm 25 \mathrm{~V}$ on EXTERNAL COUNT INPUT, 0 V de (ac only) on rear pancl SYNCHRONIZE COUNT INPUT. Boih inputs are pralected with common fusc.
Count resolution: 6-digit LED displiy

Mode	Normal	$\begin{gathered} \text { X10 } \\ \text { EXPANDJ } \end{gathered}$
1 kHz to $10 \mathrm{MHz}_{2}$ (EXTERNAL)   10 kHz to 520 MHz (EXTERNAL \& SYNCHRONIZE COUNT)	$\begin{gathered} 10 \mathrm{~Hz} \\ 1 \mathrm{kHz} \end{gathered}$	$\begin{array}{r} 1 \mathrm{~Hz} \\ 100 \mathrm{~Hz} \end{array}$

Accuracy: $\pm 1$ count $\pm$ time base accuracy
 (imdicasel by unitiow light). Phase loci is net allowed.


8855A

## Time base characterisiles:

Frequency: I MHz temperature-compensated erystal oseillator Aging: (conslant ambient temperature) $<0.1 \mathrm{ppm} / \mathrm{hr},<2 \mathrm{ppm} / 90$ days
Temperature: $\pm 5 \mathrm{ppm}$ from $0^{\circ}$ to $50^{\circ} \mathrm{C}$. (Referenced to $25^{\circ} \mathrm{C}$.)
Typical overall accuracy (after 2-hour warm-up and within 3 months of callbrallon): bettor than $\pm 2 \mathrm{ppm}$ from $15^{\circ} 1035^{\circ} \mathrm{C}$. (Optional higher stability time base available.)
Rear oulput: 1 MHz , nominally $>0.5 \mathrm{~V}$ peak-10-peak into 500 ohms.
External relerence input: 1 MHz , nominally $>0.5 \mathrm{~V}$ peak-to-peak into 1000 ohms. (Not available with optional high stability time base.)

## 8854A/B-8655A Synchronization characteristics

Frequency sange: $10-520 \mathrm{MHz}$
Frequency count resolutlon: 1 kHz , or 100 Hz in X 10 EXPAND
Frequency lock resolution: 1 kHz . Depressing LOCK +500 Hz butcon allows a locked resolution of 500 Hz
Frequency accuracy: same as time base accusacy.
Lock time durallon (ater 5 minule warm-up, constant ambient): 45 min. lypical.
FM rate while synchranlzed: 50 Hz to $>25 \mathrm{kHz}$.
FM accuracy (wht 8854B only):
$\left[\begin{array}{l}\text { Total FM } \\ \text { Accuracy }\end{array}\right]=\left[\begin{array}{l}8654 \mathrm{~B} \mathrm{FM} \\ \text { Accuracy }\end{array}\right] \pm\left[\begin{array}{l}\text { Frequency } \\ \text { Correction Error }\end{array}\right]$

Frequency correetion errort is eypically $< \pm 4 \%$.

## General

RF leakage (when operaled with 86548 using furnlahed intertace obbles): less than $\mathrm{L}, 5 \mathrm{~V}$ in a 2 -turn, I-inch diameter loop 1 inch away from sny surface and measured intoa 50 ohm receiver.
Power: 100, 120, 220, or 240 volts $+5 \%,-10 \% .48$ to 400 Hz .60 VA maximum. $2.29 \mathrm{~m}(71 / \mathrm{n})$ power cable.
Weight: net, 6 kg ( 13 lbs 3 oz ). Shipping 6.5 kg ( 14 lbs 4 oz .).
Dimensions: $266 \mathrm{~mm} \mathrm{~W} \times 101.6 \mathrm{~mm} \mathrm{H} \times 317.5 \mathrm{mmD}\left(1011^{*} \times 4^{\prime \prime} \times\right.$ (21/2").
"Frequency correction erior is a lunction of the inloched 86548 frequency dritit for aptimim 5 H acculacy. this error may be climingtes by unlocking, retaning to the desired trequency, and refocking

Options	Price
908: Rack Flange Kit	add $\$ 10$
Model number and name	
8654A AM signal generator	$\$ 1900$
864AB AM/FM signal generator	$\$ 2275$
Option 003: Reverse power protection (Sor $8654 \mathrm{~A} / \mathrm{B}$ )	add $\$ 300$
8655A Synchronizer/Counter	$\$ 2000$



The Hewlett－Packard 606日 Signal Generator provides you with high quality，versatile performance with distinctive ease of operation in the important and widely uscd 50 kHy to 65 MHz frequency range． Outpul signals are stable and aceurately known，output amplitude can be procisely established over a very wide dynamic range，and versatile modulation capabilities are incorporated to salisfy viruslly all mea． surement requisements．Convenient size and shape，logether with a simple，straightronward control panel layout，make the 606B well suited for production line usic：as well as laboratory or ficld applica－ lions．

## Design

The 606 B is a master oscillator－power ampliner（MOPA）dusign with a broadband buffer amplifier slage becween the uscillator and power amplifice circuits for isolation．The MOPA design fermits op－ timization of the oscillator circuit for highest stability including low drift，minimum residual $F M$ ，low harmonics，ecc．，without restricting the modulation characteristics．Modutation is applied to the power amplifier circuit with negligible effect on the oscillator frequency（be－ cause of the buffer stage）．Very Fine frequency settability is achieved through incorporation of a $\Delta F$ control which provides belter than 10 ppm resolution．

## 606B Specifications

Frequency and oulpul characteristics
Renge： 50 kHz 1065 MHz in 6 bands：accuracy：$\pm 1 \%$ ．
Drift：（1 V outpul and below）less than 50 ppm （or 5 Hz ，whichever is greater）per 10 min period after 2－hr warmup：less than 10 min 10 re－ stabilize after changing frequency．
$\Delta F$ control：befter than 10 ppm sellability；range of $\Delta \mathrm{F}$ control ap－ proximately $0.1 \%$ ．
Regottablitity：belter ihan $0.15 \%$ after warmup．
Crystal calibralor：provides frequency checkpoints every 100 kHz and I MHz；jack provided for audio frequency oulpul：crystal fre－ quency accuracy better than 0.01 \％from $0^{\circ} .50^{\circ} \mathrm{C}$ ．
Reaidual FM：lass than $\pm 1 \mathrm{ppm}$ or $\pm 20 \mathrm{~Hz}$ pesk，whichever is greater．
Output level：conlinuously adjusiable from $0.1 \mu \mathrm{~V}$ to 3 V inio $50-$ ohm resisilive load，calibrated in volage and dBm ．

Frequency response and output accuracy：at oulpul below I V． output level variation with frequency is less inan 2 dB ：output accura－ cy is beller than $\pm 1 \mathrm{~dB}$ al any frequency．
Impedance： 50 ohms．SWR loss than 1.2 on 0.3 V allcnuator range and below．
RFI：meels all conditions specilied in MIL－I－6l४ID：pernsiss receiver sensilivity measurements down 10 al leasi $1.0 \mu \mathrm{~V}$ ．
Harmonic oulput：al keast 25 dB below the carrier．
Spurloua AM：Isum and noise sidebands are 70 dB below carrier down to thermal level of $50-0 \mathrm{hm}$ output system．
Auxillary RF output：（fixcd level CW）on front pancl：minimum out－ put： 100 mV rms into 50 ohms from 50 kHz 1019.2 MHz 200 mV rms from 191065 MHz ．

## Modulation characteristics

## Internal AM：

Frequency： 400 and 1000 Hz ，$\pm 5 \%$ ．
Modulation level： 0 to 95 on I $V$ atienuator range and below； 0 to at least 30 管 on 3 V range．
Incidental FM（attenualor on 1 V range and below， $\mathbf{3 0 \%}$ modula－ tlon）：less than $5 \times 10^{-h}+100 \mathrm{~Hz}$ peak
Carrier envelope distorton：＜1\％al $30 \% \mathrm{AM},<3$ 多 al $70 \% \mathrm{MM}$（at－ tenuator on IV range and below）．

## External AM：

Frequency：de 1020 kHz maximum，dependenı on carricr fre－ quency（ $F_{c}$ ）and percent modulation as labulaled．
Maximum modulation frequency：

$30 \%$ Mod：	$70 \%$ Mod：	Square wave Mod：
$0.06 \mathrm{f}_{\mathrm{c}}$	$0.02 \mathrm{f}_{\mathrm{c}}$	$0.003 \mathrm{f}_{\mathrm{c}}(3 \mathrm{kHz}$ max．）

Modulatlon level； 0 to $95 \%$ on I $V$ attenuator range and below． 0 to al least $20 \%_{0}$ on $3 V$ range．
Inpul requlred： 4.5 V peak produces $95 \%$ modulation（maximum inpu（ 50 V peak）：input impedance 1000 ohms．
Carrier envalope distorion：$<3 \%$ at $70 \% \mathrm{AM}(\leq 1 \mathrm{~V}$ outpu）
Modulatlon meter accuracy：$\pm 5 \%$ of full scalc， $01090 \%$ ．for modu－ lation frequencias to $10 \mathrm{kHz}, \pm 10 \%$ of full scalc for frequencies from 10 kHz to 20 kHz ．
Modulation level constancy（Internal or external AM；attenuator on 1 V range and below）：modulation level stays constant within $\pm 1 / 1 \mathrm{~dB}$ regardless of carrier frequency and outpul level changes．

## General

Power：lis or $230 \mathrm{~V} \pm 10 \%$ ． 50 to 400 Hm 135 W ．
Dimenslons：cabinet， $527 \mathrm{~mm} \mathrm{~W} \times 318 \mathrm{mmH} \times 370 \mathrm{mmD}$ D． $20 y^{*}$ $\times 12 \frac{1}{2} \times 143^{4}$ ）：rack， $483 \mathrm{mmW} \times 266 \mathrm{~mm} \mathrm{H} \times 367 \mathrm{mmD}$ behind panel．（ $\left.19^{N} \times 101 / 2^{*} \times 14 / h^{\omega}\right)$ ．
Weight：cabinct，nel． 24.8 kg （ 55 lb ）：shipping $29.3 \mathrm{~kg}(65 \mathrm{lb}$ ）：rack． net， 22.5 kg （ 50 Jb ）：shipping 28.4 kg （ 63 Jb ）．

## Accessorles available：

11507A Outpul Termination，provides 3 positions： 50 ohms， 5 ohms and JEEE Standard Dummy Antenna
11509 A Fuseholder，proteclion for 606B Iranseciver lests．
I0534A Mixer，for use as a nanosccond pulse modulator．
Model number and name
Price
606B HF Signal Gencrator（cabinel）
$\$ 3100$
606BR HF Signal Generator（rack）
$\$ 3100$

# SIGNAL GENERATORS <br> VHF signal generator 

 Model 608E

Model 608E provides high-quality, versatile performance with distinclive easc of operation. The 608 E provides an output of up 10 I volt over the range from 10 to 480 MHz .

The 608E is an improved version of he popular and lime-proven HP $608 \mathrm{C} / \mathrm{D}$ Sighal Generators. The insirument is a master oscillalorpower amplifier (MOPA) lype with a broadband buller amplifier stage berween the oscillator and power amplifier circuits for isolation. The MOPA design permits opiimiotion of the oscillator stage for high stability of $0.005 \%$ per 10 minutes, minimum residual FM, arid low harmonics withoul resincting the modulation characterintics, Modulation ts applied to the pover amplifier stage with negligible iffect on the oscillaior irequency.

## 608E Specifications

Frequency characteristics
Range: $10-480 \mathrm{MHz}$ in five bands
Accuracy: $\pm 0.5$ 多 with cursor adjusiment.
Drift less than $50 \times 10^{-6} / 10 \mathrm{~min}$ after one hr warmup.
Resettabilify: better ilitn $\pm 0.1 \%$ after initial warmup; finc-fre-quency-adjust provides upproximately 25 kHz scclability af 480 MHz . Gryatal callbrator: provides frequency cheak points every I MHz up 1o 270 MHz or every 5 MHz over lotal range; jack provided for audio frequency ouspuli crystal froquency accuracy belter ihan $0.01 \%$ at room lemperalures.

Regidual FM : leas than $\pm 5$ pars in $10^{\circ}$ in a 10 kHz posi-delection bandwidih.
Harmonic output: al leasi 35 dB below the carrier for harmonic frequencies bclow 500 MHz .

## Output characteristica

Output level; continuously adjustable from $0.1 \mu \vee 101.0 \vee$ into a $50-$ ohm resistive losd; output calibsated in voles ind dBm.
Accuracy: within $\pm J d B$ of altenualor dial reading at any frequency when RF output muter indicales "ATTENUATOR CALIBRAT. ED."
Impedance: $50 \Omega$ with a maximum SWR of 1.2 for altenuator setting below -7 dBm .
RFI: meets all conditons specified in MIL-I-6181D: permits receiver sensitivin' measurements down to at least $0.1 \mu \mathrm{Y}$.
Auxillary RF outpul al leasi 180 mV ms into $50 \Omega$ provided at fronl panel.

## Modulafion characteristics

Internal AM
Frequency: 400 and $1000 \mathrm{~Hz} . \pm 10 \%$.
Modulalion level: $01095 \%$ modulation at carricer levels 0.5 V and below
Carrier envelope dlatortion: less than $2 \%$ as $30 \% \mathrm{AM}$, less than $5 \%$ al $70 \%$ AM.
Exlernal AM
Frequency: 20 Hz to $20 \mathrm{kH} /$.
Modulation level: 0 to $95 \%$ modulation al carrier levels of 0.5 V and below: continuously adjustable from front panel MOD LEVEL control; inpul requred. $1-10 \mathrm{~V}$ rms ( $1000 \Omega$ inpul impedance).
Carrier envelope alstorton: less iban $2 \%$ at $30 \%$ AM, less ihan $5 \%$ al $70 \%$ A M (modulation source distortion less than $0.5 \%$ ).
Modulatlon meter accuracy: $\pm 5 \%$ of full seale $01080 \%, \pm 10 \%$ from $80 \%$ to $95 \%$ (for INT AM or 20 Hz to 20 kHz EXT AM).
Incidental FM (at 400 and 1000 Hz modulation): less thon 1000 Hz peak at $50 \%$ a M for frequencies sbove $100 \mathrm{M} \mathrm{Hz:} \mathrm{below} 100$ MHz, less ihan 0.001\% a: $30 \%$ AM.

## External pulse modulation

Rlee and decay time: from 40 MHz io 220 MHz , combinud rise and decoy lime luss than a $\mu 5$; above 220 MHz combined rise and decay lime less than $2.5 \mu \mathrm{~s}$.
On-off ratio: al least 20 dB for pulsed carrier levels of 0.5 V and above.
Inpul required: positive pulse, $10-50 \mathrm{~V}$ peak. inpul impedance $2 \mathrm{k} \Omega$
General
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ 10 400 Hz : approx. 220 W .
Dimenglons: cabincl, 337 n$) \mathrm{m} \mathrm{W} \times 416 \mathrm{mmH} \mathrm{H} \times 533 \mathrm{mmD}\left(131 / \mathrm{m}^{\mathrm{m}} \times\right.$ $16 \% \mathrm{n}^{\prime \prime} \times 21^{4}$ ); rack mount: 483 mm W $\times 335 \mathrm{~mm} \mathrm{H} \times 467$ nm D ber bind pancl ( $\left.19^{*} \times 1331 / 3 "^{*} \times 183 / k^{*}\right)$.
Welght: cabinet mount: ncl. $28 \mathrm{~kg}(63 \mathrm{lb})$ : shipping 33.4 kg ( 74 lb ): rack mount: net. 28 kg ( 62 lb ); shipping, 37.4 kg ( 83 lb ).

## Accessorles avallable:

11508a Outpur Cable for high impedance circuits.
IIS09A Fusc Holder: protcolion for iransceiver tesis.
10514A Mixer for use as nanosucond pulse modulator.
Madel number and name
Price
608E VHF Signal Generator (cibinel)
$\$ 3900$
$608 E R$ VHF Signal Generator (rack)
53900


Here is an all-purpose, precision signal generator paricularly designed for umost convenience and applicability throughoul the imporiant UHF-TV frequency band. If is ideally suited for measure. ments in UHF-Iclevision broadeasting, studio-transmitter links, citizen's radio and public service communications systems. The HP 612A also covers the important frequencies used in aircraft navigation aids such as DME. TACAN and airborne Iransponders. Aocessory modulators, available from many of ilie manufacturers of these navigational aids, enable the 612A 10 provide the complex modulation pasterns required for lestog and aligning these systems. In the laboralory, the 612A is a convenient power source for driving bridges, sloited lines. antenmas and filter nelworks, in addition, the HP 8731 PIN Modulators can be used with the 6I2A to obiain RF pulses with 30 ns rise lime and $0.1 \mu \mathrm{~s}$ minimum duration-with on-off ratios approaching 80 dB .

## MOPA circuit

The master oscillator-power amplifier circuit in the HP 612A provides 0.5 voll into 50 ohms over the full frequency range of 450 to 1230 MHz . There is very low incidental FM (less than $0.002 \%$ at $30 \%$ AM) and excellent amplitude modulation capabilitics by all frequencies from 20 Hz to 5 MHz . The degree of modulation is easily read from the large percent modulation meter. The instrument can be ampli-tude-modulated (either intemally or externally), and provision is made for external pulse modulation as well. Pulse modulation can be applied to the amplifier or directly 10 the oseil)ator when high on-off sig. nal ratios are required (signal may be completely cul off beiween pulses). Modulation can bu up or down from a presel level to simulatc TV modulation characteristics accurately.

## Cavity oscillator

The oseillator-amplifier circuit in the 612A cmploys bigh-frequency pencil triodes in a cavity-luned circuil for precize tracking over the eniire band. Noncontacling cavity plungers are die-cast to precisc tolerances, then injoction-molded with a plastic filler for optimum $Q$. The frequency drive is a direct screw-operated mechanism, free from backlash. A waveguide-beyond-cutoff piston allemuator and crystal monitor circuit are used to ensure accuratc, rcliable output down to $0.1 \mu \mathrm{~V}$. The altenuator is calibraled over a range of 131 dB and has been carefully designed to provide a constanl impedance-versus-frequency characteristic. The SWR of the 50 -ohm oulpul system is less than 1.2 over the complete frequency range.

## Specifications

## Frequency and outpul characteristics

Feqquency range: 490 to 1230 MHz in one band; scale length ap proximatuly 381 mm (15").
Calibratlon accuracy: within $\pm 1 \%$, resettability better than 5 MHz al high frequencies.
Output voltage: $0.1 \mu \mathrm{~V}$ to 0.5 V into 50 -ohm load; calibrated in V and $\mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW})$.
Outpul accuracy: $\pm 1 \mathrm{~dB}, 0$ to -127 dBm over entirc írequency range.
Outpul impedance: 50 ohms; maximum reflection coeflicient, 0.091 (1.2 SWR. $20 . \mathrm{S} \mathrm{dB}$ retum loss) for altenuator scltings of 0 dBm and below.
RFI: conducted and radiated luakage limits are below those specified in MIL-J-6181D: permils recelver sensitivity' measurements down 10 I $\mu \mathrm{V}$.

## Modulation characterlstics

Ampllitrde modulalion: above $470 \mathrm{MH} \mathrm{Z}, 0$ to $90 \%$ ai audio ricquencics. indieated by pancl meter; accuracy $\pm 10 \%$ of full scale, 30 to $90 \%$ mudulation.
Incldental FM: less than 0.0025 for $30 \%$ AM.
Internal modulatlon: 400 and $1000 \mathrm{~Hz} \pm 10 \%$; envelope distomion less than $3 \%$ at $30 \%$ modulation.
External modulation: 20 Hz to 5 MHz above 470 MHz . 2 V rms produces $85 \%$ AM at modulating frequencies up 10500 kHz , at least $40 \%$ a M at 5 MHz : modulation may be up or down from the carrier level or symmesrical aboul the carrier level; posilive or negative pulses may be applied to increase or decrense RF output from the carrier level.

## Pulse Modulation:

Pulse 1 (pulsa appliad to ampilfier): positive or negative pulses. 4 1040 V peak produce an RF on-off ratio of al leasi 20 dB : minimum RF output pulse length, $1.0 \mu \mathrm{~s}$.
Pulse 2 (pulse applied to oscillator): positive or negative pulses, \& so 40 V peak: 10 RF outpul during off time: minimum RF oulput pulse lengith. $1.0 \mu \mathrm{~s}$.

## General

Power: II 5 or 230 vols $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 215$ walts.
Dímenslons: cabinct: $343 \mathrm{~mm} \mathrm{~W} \times 419 \mathrm{~mm} \mathrm{H} \times 546 \mathrm{~mm} \mathrm{D}\left\{131 \%^{\circ}\right.$ $\times 1612^{\circ} \times 21 / 2^{*}$ ), rack mount: $483 \mathrm{~mm} \mathrm{~W} \times 355 \mathrm{~mm} \mathrm{H} \times 514 \mathrm{mmD}$ behind panel $\left(19^{\circ} \times 13^{11 / 31} \times 201 /{ }^{\prime \prime}\right)$.
Welght: net. 25.2 kg ( 56 lb ). Shipping, 30.6 kg ( 68 lb ) (cabinct): net, 25.2 kg ( 56 lb ). Shipping, 34.6 kg ( 77 lb ) (rack mounl).

Accessorles avallable; II 500A RF Cable Asscmbly: 10503A Video Cable Asscmbly: 360G Low-Pass Filter (msy be used where harmonic ouiput must be reduced to a minimum, as in slotted line measurements).
Model number and name
Price
612A UHF Signal Gentrator (cabinel)
$\$ 3600$
6I2AR UHF Signal Generator (rack)
$\$ 3600$

# soma oenamaros <br> UHF Signal generators <br> Models 8614A \& 8616A 

Stabie, easy to use, $800-4500 \mathrm{MHz}$


## HP 8614A, 8616A Signal generators

The HP 86I4A and 8616A Signal Gencralors provide stable. accurate signals from 800 to 2400 MHz (8614A) and (rom 1800104500 $\mathrm{MHz}(8616 \mathrm{~A})$. Both frequency and attenuation are set on direct-reading digital dials. while selectable functions include CW, leveled output, square wave modulation, and external AM, FM and pulse modulation. Modulation ean be accomplished simulancously with or withoul leveling.

Two RF power outpuls are simultancously avalable from separsate front-panel connectors. One provides at least $10 \mathrm{~mW}(2 \mathrm{~mW}$ above 3000 MHz ) or a leveled outpul fromi 0 to -127 dBm . The other is at leas! 0.5 mW across the band and is independent of allenuator setting. This signal can be used for phase-locking itie signal generatorn for extreme stahility, or it tan be monitored wibl a frequency counter for extreme frequency resolution without adversely affecting the primary oulput.

A unique PIN diode modulator permits amplitude modulation from de to 1 MHz or fusnishes RF pulses with a $2 \mu$ s rise tines. This broad modulation bandwidih permits remote contrel of outpul level or precise leveling using external equipment. The internal leveling is also oblainced by using a PIN modulator

The 8614A and 8610n can also be used with companion modulators, HP 803 A modulators and HP 8730 -serits P1N modulators to provide 80 dB pulse on/olf ratio (see page 347). In addition, TWT ampliliers can be used with these gencrators to provide high power levels.

## Specifications

8514A
Fpequency range: direct reading within 2 MHz 800 to 2400 MHz
Vernier: $\Delta F$ control has a minimum range of 1.0 MHz for Thet turगng.
Frequency calibration accuracy ( 0 dBm g below): $\pm 5 \mathrm{MHz}$ Frequency stabllity: approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ clange in ambient temperatuse. less than 2500 Hz peak resídual FM, negligible inciden(a) FM in pulss and AM operalion below -10 dBm .30 ppm change for line voltage variation of $\pm 10 \%$.
RF oulpul powar: $+100 \mathrm{Bm}(0.707 \mathrm{~V})$ into $50 \Omega$ load. Outpul altenuation dial dircelly calibrated in dBm from 0 to -127 dBm . A sceond uncalibrated outpul (approximately -3 dBm ) is provided on front panel.
RF output power accuracy (with respect to altenuation dial): $\pm 0.75 \mathrm{~dB}+$ attenualor accuracy ( 0 to -127 dB m ) including leveled oulput varialions
Attenuator accuracy: $+0,-3 \mathrm{~dB}$ from $010-10 \mathrm{dBm} ; \pm 0.2 \mathrm{~dB} \pm 0.06$ $\mathrm{dB} / 10 \mathrm{~dB}$ from -10 to -127 dBm . direct reading dial, 0.2 dB inerements.
Oulput impedance: 50N: SWR <2.0
Modulation: on-of ratio at least 20 dB lor square wave, pulse Internal square wave: 950 to 1050 Hz . Square wave can be synchsonized with a $+110+10 \mathrm{~V}$ signal at PULSE inpat.
External pulse: $50 \mathrm{~Hz} 10 \leq 0 \mathrm{kHz} 2 \mu \mathrm{sec}$ rise lime, +20 to +100 V peak inpul.

External AM: DC io I MHz
Exiernal FM: a) froni panel connector capacity-coupled to repeller of klysiron, b) four-lerminal rear panel connector (Cinch-Joncs typc $S 304 \mathrm{AB}$ ) is de-coupled to repeller or klystron
Power source: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ 10 60 Hz . approximalily 125 W Dimenslons: $425 \mathrm{~mm} W \times 467 \mathrm{~mm} \mathrm{D} \times 141 \mathrm{~mm} \mathrm{H}\left(16 /^{*} \times 18 \%^{*} \times\right.$ S1/i"); rack mount $483 \mathrm{~mm} \times 416 \mathrm{~mm} \times 133 \mathrm{~mm}\left(19^{\prime \prime} \times 163 / \mathrm{m}^{\prime \prime} \times 57 / 32^{\prime \prime}\right)$
Welght: net. 19.5 kg ( 43 lb ). Shipping, 22.3 kg ( 49 lb )
Optlon 001: external modulation inpul connectors on rear pancl in parallel with fromi-panel connectors: RF conncciors on rear panel only.

## 8616 A

Froquency range: direct reading withín 2 MHz 1800 10 4500 MHz .
Vernier: $\Delta F$ control has a range of approximately 1.0 MHz for finc Itunisg.
Frequency calibralion accuracy ( 0 dBm \& below): $\pm 10 \mathrm{MHz}$
Frequency stablity: approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ change in ambient temperature, less than 2500 He peak residual FM, negligible incidental FM in pulse and AM operation for altenuator senings below $-10 \mathrm{~d} / 3 \mathrm{~m} .30 \mathrm{ppm}$ change for line vollage variation of $\pm 10 \%$.
RF output power: $+10 \mathrm{dBm}(0.707 \mathrm{~V}) 10-127 \mathrm{dBm}$ into $50 \Omega$ load. 1800 10 $3000 \mathrm{MHz} ;+3 \mathrm{dBm}$ 10 -127 dBm from 3000 10 4500 MHz . into a $50 \Omega$ load. Output attenuation dial directly calibrated in dBm from 0 to -127 dBm . A seeond uncalibrated outpul (approximately $-3 \mathrm{dBm})$ is provided on the front panel.
RF oulput power accuracy (with respect 10 attenuation dial): $\pm 1.0 \mathrm{~dB}+$ altenuator accuracy ( $010-127 \mathrm{dBm}$ ).
Attenuator accuracy: 40 . -1 dB from 0 is $-10 \mathrm{dBm} . \pm 0.2 \mathrm{~dB}$ $\pm 0.06 \mathrm{~dB} / 10 \mathrm{~dB}$ from -10 io -127 dBm .
Output impedence: SOO: SWR less than 2.0
Modulation: on-off ratio at least 20 dB for square wave. pulse.
Internal square wave: 950 to 1050 Hz . Oiher fictuencies available on special order.
External pulse: 50 Hz to $50 \mathrm{kHz}: 2 \mu \mathrm{sec}$ rise time, $+2010+100 \mathrm{~V}$ pesk inpul.
External AM: DC 10 ) MHz
External FM: a) front panel connector capacies-coupled to repeller of klystron; b) fout-terminal rear panel connector (Cinch-Jones type S304AB) is DC-coupled to repeller of kilystron.
Dimenslons: $425 \mathrm{mmi} W \times 467 \mathrm{mmD} \times 141 \mathrm{mmH}\left(161 / /^{*} \times 189 / \mathrm{m}^{\prime \prime} \times\right.$ $\left.51_{2}^{\prime N}\right)$; rack mount $483 \mathrm{~mm} \times 416 \mathrm{~mm} \times 133 \mathrm{~mm}\left(19^{\prime \prime} \times 16: \%^{\prime \prime} \times 57 / 2^{\prime \prime}\right)$. Weight: net, $19.5 \mathrm{~kg}(43 \mathrm{lb})$. Shipping, 22.3 kg ( 49 lb ).
Opilon 001: external modulation inpul connectors on rear panel in parallel with fromi-panel conneciors: RF connectors on rear pancl only.
Options
Price
908: Rack Flange Kil
add $\$ 10$
Model number and name
8614 A Signal Generntor ( $800-2800 \mathrm{MHz}$ ) $\$ 4100$
8616A Signal Generator ( $1800-4500 \mathrm{Mizz}$ ) $\$ 4100$
8614A Option 00)
add \$25
8616A Option 001
add \$25
hb SIGNAL GENERATORS
SHF Signal generators
Models 618C, 620E

- Multiple-purpose instruments, 3.8 to 11 GHz .


The Models 618 C and 620 B SHF Signal Generators provide versability, accuracy, and stability in the range from 3.8 to 11 GHz . Frequency is set on a large, direct-reading dial. A $\Delta F$ vernier control provides ulers-line tuning capabilicy. There is also a provision for remole fine luning.
A calibrated ouipul from 0 to $-127 \mathrm{dBm}(0.224$ volts to 0.1 microvoli) is also sel on a large, direct-reading dial. The dial is calibrated in both dBm and volts. An auxiliary output of at least 0.3 milliwat is available and is independent of attenuator setting. Thus. il can be used for phasc-locking the signal generator when crysial-oscillator stabilisy is required. or il can be monitored with a ficquency counter for extreme frequency resolution.
The 618C and 620B Generators both feature orcillators of the reIlex klystron type, with external resonant cavity. Oscillator frequency is determined by a movable plunger which varies the length of the cav. ity. Oscillator output is monitored by a temperature-compensated do tector circuil. This circuit operates virtuslly unaffocted by anbient temperalure conditions.

Modułation includes internal pulse, square wave, and frequency modulation plus exiernal pulse and frequency modulation.

## 618 C and 620 B Specifications

Oulput

## Frequency range

618C: 3.8 to 7.6 GHz covered in a single band.
620B: 710 II GH\% covered in a single band; repeller voltage automatically racked and proper mode automatically selocted.
Calibratlon: direct reading: frequency calibration accuracy better than $\pm 1 \%$.
Frequency sablity: with lemperature: less than $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ change in ambient icmperature: with line voltage less than 200 ppm change for line voleage variation of $\pm 10 \%$; residual $F M$ : $<15 \mathrm{kHz}$ peak.
Output range: I milliwatt or 0.224 volt to 0.1 microvolt $\langle 0 \mathrm{dBm}$ to -127 dBm ) into 50 ohms: directly calibrated in dBm and volis: coaxial lype $N$ connector.
Output accuracy: within $\pm 2 \mathrm{~dB}$ from -7 10 -127 dBm , within $\pm 3$ $d B$ from 0 to - 7 dBm , icrminated in 50 -ohm load.
Sourca impedance: 50 obms nominal: $S W R<2.0$.

## Modulation

Internal pulse modulallon: repciition rate variable from 40 to 4,000 pps. pulse widih variable $1 / 1010$ microseconds.
Sync oul algnals: simultancous with RF pulse, positive; in advance of RF pulse, positive, variable 3 to 300 microseconds (beree ihan I microsecond rist time and 25 to 100 volts amplitude into 1.000 -ohm load).
External synchronizatlon: sine wave: $40104,000 \mathrm{~Hz}, 5$ to 50 V rms: pulse: 40 to $4.000 \mathrm{pps}, 5$ to 50 V peak. positive or negative, $0.5105 \mu \mathrm{~s}$ wide, 0 I to $1 \mu \delta$ rise tinte.
Internal square-wave modulation: variable 40 to 4.000 Hz .
Internal FM: sawiooih swicep rate adjustable 40 to 4.000 Hz ; frequency deviation to 5 MHz peak-lo-peak over mosi of the frequency range.
Exlernal pulse modulation: pulse requirements. amplisude from 20 1070 vols posirive or negative, width $0.5102,500$ microseconds.
External FM: frequency deviation approximately 5 MHz peak-topeak over most of the band; sensitivity approximately $20 \mathrm{~V} / \mathrm{MHz}$ at froni-panel conncetor, approximately $10 \mathrm{~V} / \mathrm{MHz}$ al rcar-panel connector (moung connector supplicd); front-pancl connector is capacisively coupled to klysiron repeller; rear-panel connecior is de-coupled to klysiron repeller and is sustable for phase-loek control input.

Generarl
RFI: conducted and radiated leakage limuls are below those specificd 10 MIL-I.6181D.
Power source: ils or 230 volls $\pm 10 \%, 501060 \mathrm{~Hz} 230 \mathrm{~W}$.
Dimenslane: cabinel, $445 \mathrm{~mm} \mathrm{~W} \times 353 \mathrm{~mm} \mathrm{H} \times 518 \mathrm{~mm} \mathrm{D}(171)^{N} \times$ $131 /{ }^{\circ} \times 201 / \mathrm{m}^{\mathrm{N}}$ ); rack mounl $483 \mathrm{~mm} \times 355^{\mathrm{mm}} \times 483 \mathrm{~mm}\left(19^{\prime \prime} \times\right.$ $13 \times 1 / 51^{\circ} \times 19^{\circ \prime}$ ).
Welght: ncl, 31.1 kg ( 69 lb ). Shipping, 33.5 kg ( 7 ld lb ).
Accessory lurnlshed: 11500 A Cable Assembly, $1830 \mathrm{~mm}(6 \mathrm{ft})$ of RG-214A/U 50-ohm coax. terminaled on each end by lype $N$ male connoctors.
Model number and name
618 C or 620 B SHF Signal Generator (cabinet mount)
$\$ 4700$
618 CR or 620 BR SHF Signal Genergior (rack mount)


628 A

## Description

The 626 A covers frequencies 10 to 15.5 GHz and the 628 A covers frequencies 15 to 21 GHz In design and operation, the instruments are similar to Hewlett-Packard gencrators lor lower írequency ranges. Carrier frequency is set and read directly on the large tuning dial. No voltage adjustment is nocessary during tuning because repelter voltage is Iracked whit frequency changes automatically, Oscillator outpul is also scl and read directly. and no frequency correction is nucessary throughout operating range. A frequency logging scale permits frequency to be resel within 0.1 \%.

Both the 626A and 628A offer internal pulse, squarewave and frequency modulation, pius external pulsc and frequency modulation. The pulse generstors may be synchronized with an external sine wave and positive or negalive pulse sígrals.

The high power outpul of these signal generators makes them ideally suited for driving HP 938A and 940A Frequency Doubler sets. These doubler sets retain the modulation and stability of the driving source and have accurate power monitors and allenualors.

## 626A, 628A Specifications

Frequency range: 626A. $101015.5 \mathrm{GHz} 628 \mathrm{~A}, 151021 \mathrm{GHz}$.
Frequency calibration: dial direct-reading in $\mathrm{GHz}_{\mathrm{z}}$, accuracy better than $\pm 1 \%$.
Oulpul range: 10 mW to $1 \mathrm{pW}(+10 \mathrm{dBm}$ to $-90 \mathrm{dBm} .0 \mathrm{dBm}=1$ $m W$ ): altenuitor dial calibrated in output dBm.
Source SWR: <2.5 : $1+10 \mathrm{dBm}$; <1.35 at 0 dBm and below.
Output monitor accuracy: better than $\pm I \mathrm{~dB}$; temperature-compensaled thermistor bridge circuit monitors RF oscillator power levcl.

Outpui connector: 626A: WR75 waveguide. Nal cover nange: 21.6 $\times 12.0 \mathrm{~mm}(0.55 \times 0.475 \mathrm{in}$.). 628A: WRSI waveguide, flat cover กange; $15.0 \times 8.5 \mathrm{~mm}(0.59 \times 0.335 \mathrm{in}$.$) .$
Output attenualor accuracy: betcer than $\pm 2 \%$ of aticnuation in $d B$ ineroduced by oulpue altemuator.
Modulation: internal pulse, FM, or square wave; extemal puise and FM.


Internal pulse modulation: reperision rate variable from 40104000 pps; pulse width variahle 0.5 to $10 \mu \mathrm{~s}$.
Internal square-wave modulalton: variabic 40 to 4000 Hz controlled by "pulse rale" control.
Internal Irequency modulation: power line frequency. deviation up to $\pm 5 \mathrm{MHz}$
External pulsa modulation: pulse requirements: amplitude 15 to 70 volis peak posilive or negative: widih I $102500 \mu \mathrm{~s}$.
External Irequency modulallon: provided by capaciuve coupling to the klysiron repeller; maximum deviation approximately $\pm 5 \mathrm{MH}$..
Syne oul signala: positive 20 ws 100 V peak inlo 1000 -ohm lead; bet(cr than $1 \mu$ s rise (ime: I) simultameous with RF pulse, posifive: 2) in advance of RF pulse, positive, vasiable 5 to $300 \mu \mathrm{~s}$.
Exiernal synchronlzatlon: 1) síne wavc, 40104000 Hz , amplitudes to $50 \mathrm{~V} \mathrm{~ms} ; 2$ ) pulse signals 40104000 pps , 5 to 50 V amplitude, positive or negalive: pulse widih 0.5 to $5 \mu \mathrm{~s}$ : rise time 0.1 to $1 \mu \mathrm{~s}$.
Power: 115 or 230 volss $\pm 108.501060 \mathrm{~Hz}$. approx. 200 walls.
Dimenslons: cabinet: $432 \mathrm{~mm} W \times 356 \mathrm{~mm} \mathrm{H} \times 381 \mathrm{~mm} \mathrm{D}\left\langle 17^{\prime \prime} \times\right.$ $\left.1 \mathrm{~s}^{\circ} \times 15^{\prime \prime}\right)$ : rack mounl: $483 \mathrm{~mm} \mathrm{~W} \times 356 \mathrm{~mm} \mathrm{H} \times 313 \mathrm{mmD}\left(19^{*} \times\right.$ $\left.14^{\prime \prime} \times 12^{1} y_{1 c^{2}}\right)$.
Welght: net, 26.8 kg ( 59 lb ). Shipping. 29.8 kg ( 66 lb ).
Accessories furnlahed: 626A, MX 292B and MP 292B Wavcguide Adapters: 628A. NP 292A and NK 292A Waveguide Adaplers.
Accessories avallable: M362A low-pass filter.

## Frequency doubler sets

Model 938A supplies power from 181026.5 GHz and Model 940A from 26.5 to 40 GHz when driven by 9 to 13.25 GHz and 13.25 to 20 GHz sources respeciively. For a swepe ou(put, use a swepl-frequency source such as Model 86908 or Model 8620A/B series with appropriale RF unís.

## 938A, 940A Specifications

Frequency range: 938A, 18 10 26.5 GHz 940 A .26 .5 to 40 GHz . Conversion loas: less than 18 dB at 10 mW inpul.
Output power approximately $0.5-1 \mathrm{~mW}$ when used with typical 626A, 628A signal generators: inpul powtr: 100 mW maximum.
Output attenualor: accuracy, $\pm 2 \%$ of reading or $\pm 0.2 \mathrm{~dB}$, whichever is grealer. range, J 00 dB .
Oulpul reflection coeflicient: approx. 0.33 at full output; less than 0.2 with atienuator sel to 10 dB or greater.

Outpul llange: 938A K-band nat cover hange for WR-42 waveguide; 940A R-band flat Ilange for WR-28 waveguidc.
Dimenslones $137 \mathrm{mmH} \times 489 \mathrm{~mm} \mathrm{~W} \times 457 \mathrm{~mm} \mathrm{D}\left(51 / \mathrm{k}^{* *} \times 191 / 4^{*} \times\right.$ 18").
Welght: net, $9 \mathrm{~kg}(20 \mathrm{lb})$. Shípping, $11.8 \mathrm{~kg}(26 \mathrm{lb})$.

Model number and name	Price
626A or 628A (cabinet)	$\$ 7500$
626 AR or 628 AR (rack mount)	$\$ 7500$
938 A or 940 A	$\$ 5000$

- 10 to 500 MHz
- to 1000 MHz with accessory probe


3200B



8925A
The HP 3200 VHF Oscillator provides low cost, stable, 10 to 500 MHz R F for testing receivers and amplifiers, and driving bridges, sloted lines. aneennas, and fileer networks. Good pulse modulation sen-
silivity allows standard audio oscillators 10 be used to provide usable squart-wave modulation; a 2.5 -volt sine wave will provide adequate drive for this type application. The 32008 can also serve as a local os. cillator for hetcrodyne detector systems and as a marker source for swept systems. An optional accessory Frequency Doubler Probe, HP I35ISA. provides additional frequency coverage lrom 500 to 1000 MHz.

The 3200 B will typically rocover specilied stability in 30 minutes following a frequency band change. Long-term warmup ( 24 hours) can reduce this time as much as $50 \%$, Following in-band lrequency dial changes, the oscillator lypically requires 10 minutes to rocover specified stability. With the instrumens in bermal equilibriuns with its surroundings. (i.e., long-term warmup and constant icmperalurt lab), stabilities of $0.0001 \%$ are typical at some frequencies, if sufficient sellling time is allowed after a frequency change.

Effeclive RF shiclding permits measurements at levels down to $I$ $\mu \mathrm{V}$.

RF is sead on an expanded slide-sule type scale. The oscillator may be precosely tuned by mesus of a mechanical vernier aclivated by the main luning control.

## 3200B Specifications

## Frequency characteristics

Frequency range: 10 to 500 MHz in six bands: 10 to 18.8 MHz : 18.5 to $35 \mathrm{MHz} ; 351068 \mathrm{MHz}: 6810130 \mathrm{MHz}: 13010260 \mathrm{MHz} 26010500$ MHz.
Frequency accursey: within $\pm 290$ after $1 / 2$ hour warmup.
Frequency calibralion: increinents of lexs than $4 \%$.
Frequency stablity (after 4-hour warmup under 0.2 mW losd): shorl ferm ( 5 minules) $\pm 0.002 \%$; long term ( 1 hour) $\pm 0.02 \%$ : line voliage ( 9 -voll change) $\pm 0.00190$.

## RF outpuí

Maximum power (across 50-ohm external load): $>200 \mathrm{~mW}(10$ to $130 \mathrm{MHz}):>150 \mathrm{~mW}(13010260 \mathrm{NHz}) ;>25 \mathrm{~mW}(260$ to 500 MHz$)$ Aange: $010>120 \mathrm{~dB}$ altenuation from maximum oulpul.
Load Impedance: 50 ohnks nominal.
RF leakage; sufficiently low to permil measurements $\mathfrak{n i} 1 \mu \mathrm{~V}$. RFI: mects requiremenis of MIL.1-6181D.

## Amplitude modulation: exlernally modulated.

Range: 0 to 30\%.
Distortion: $1 \%$ al $30 \% \mathrm{AM}$.
External requirements: approximately 32 volis rms into 600 ohms for $30 \%$ AM, 200 Hz to 100 kHz .

## Pulse mocluiation: externally modulated

External requirements: 2.5 volt negative pulse into 2000 ohms
Power. 105 to I25 V or $21010250 \mathrm{~V}, 5010400 \mathrm{~Hz} 30 \mathrm{~W}$
Dimenslons; 194 mm wide. 167 mm high, 333 mm deep ( $7 / \mathrm{s}^{\prime \prime} \times 6 \% / 16^{\prime \prime}$ $\times 131 / 32^{N}$ )
Weight: nel 6.8 kg (15 1b). Shipping 7.7 kg ( 17 lb )
Accessorles avallable: 135ISA Frequency Doubler Probe: 00502.

## 60002 Palching Cable

## 8925A

The HP 8925A DME/ATC Test Sel is specifically designed for testing and calibrating DME (Distance Measuring Equipment) and ATC (Air Traffic Control) (ransponder dircrall uquipment. When used with suitable external modulators, the test set will also simulate some TACAN and IFF signals. Completcly sclf-contained (excepi for video modulators), the syitem consists of a continuously tuneable sigrial generalor (HP 86I4A Option HOI), direct-reading frequency counter (HP 5245L). solid-state modulator (HP 8403A Option HOI). Frequency converter (HP 5254C), wavemeter (HP 8905A), peak power measuring system (HP 8900B), and all necessary circuilry for interconnection to the radio set under test (HP 13505A).
Frequency range: 962 to 1213 MHz .

## Model number and name

Price
3200B VHF Oscillator
I35ISA Frequency Doubler Probe 8925A DME/ATC Tesi Sel
Oplion 001 (less counler)
Option 002 (less cabinct)
Option 003 (dual power range)
less $\$ 5850$
less $\$ 800$
add $\$ 135$

# SIGNAL GENERATORS <br> PIN modulators, modulators 

8730 Serles, 8403A



## 8730 PIN modulators

With HP 8730 series PIN Modulators, signal sources, including klystrons, can be pulse-modulated, leveled or amplifude-modulated with sinusoidal and complex waveforns. Fass rise-limes. low incidental FM and a nearly constant impedance match to source and load are typical of these : absorstion-sype mosulators.

## 8403A Modulator

The Model 8403A provides complete conIrol of the PIN modulators, supplying the appropriate madulation w'ave shapes and bias levels for last rise limes, ráled on/off ratios and amplitude modulalion. An inturnal squari-wate and pulsc modulater with PRF of 50 H 7 io 50 kHz and adjusisble pulise width and dclay also provide square wave and pulses for general pulse applications. For applications requiring an absorption-iype modulator plus controls in a single unit, a PIN modulator can be instalked in the Model 8403A.

## 8403A Specifications

## Outpul characterbstics

(available separately ut front pancl)
For arluing 8730 pln modulatore: $A M$ and pulse oulput, pulse output speciadly shapud for optimum RF rise and decay times.
For general pulse applicallons: positive de-coupled pulse 25 to 30 volts in amplitude. approximately symmetrical about 0 volt; no AM signal.

## Modulalion

Internal square wave
Frequency; variabic from 50 Hz 1050 kHz .
Symmetry: betterthan $45 / 55 \%$.
Internal pulse
Repetition rate: variable from 50 Hz to 50 kHz .
Delay: variable from $0.1 \mu$ s $10100 \mu \mathrm{~s}$, between sync oul pulse and RF outpul pulse.
Width: variable from $0.1 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$.
External sync
Signal: 5 to 20 volis peik, + or - , pulse or sine wave.


Input Impedance: approximilely 2000 ohms, de-coupled.
Trigger out
Sync out: simultaneous with or $0.110100 \mu \mathrm{~s}$ in advance of RF pulse, as set by delay control.
Delayed sync out: simultaneous with outpu: pulse.
Amplitude: approximately -2 volls
Source Impedance: approximately 330 obms.

## Enternal pulse rate

Amplliude and polarity: 5 volts to 20 volts peak. + or - .
Repelilion rate: maximum average PRF, $500 \mathrm{kHz} / \mathrm{sec}$.
Inpul impedance: approximutcly 2000 ohms. do-coupled.
Width: minimum $0.1 \mu \mathrm{~s}$; maximum I/PRF - $0.4 \mu \mathrm{~s}$.

## Continuous amplltude modulation

(wilh 8730 series)
Frequency responae: dc 10 approximalely $10 \mathrm{MH} /(1 \mathrm{~dB})$.
Senslivity: approx. 10 dB /volt with HP 8730A scries; approx. 20 dB/voll with HP 8730B scries.
Input impedance: approximately' 100 ohms.

## General

Power: IIS or 230 volis $\pm 10$ 苋, 50 to 400 Hz , approx. 10 watts.
Dimenslons: $425 \mathrm{mmW} \times 96 \mathrm{~mm} \mathrm{H} \times 467 \mathrm{~mm} \mathrm{D}\left(16 \mathrm{~m}^{2} \times 3 \mathrm{~m}^{2} \times\right.$
$18 J_{\mathrm{h}}{ }^{*}$ ), hardware furmished for rack mount 483 mm w $\times 89 \mathrm{~mm} \mathrm{H} \times$ $416 \mathrm{~mm} \mathrm{D}\left(19^{\circ} \times 315 / 2^{*} \times 16^{3} \mathrm{~K}^{\mathrm{N}}\right)$.
Walght: net. $7.4 \mathrm{~kg}(16.5 \mathrm{lb})$. Shipping. $9 \mathrm{~kg}(20 \mathrm{lb})$.

## Madel number and name <br> Price <br> 8403A Modulator $\$ 1550$

PIN Modulators installed in 8403 1 :
Option 001. 8731A; 003.8732A; 005, 8733A add $\$ 775$
Oplíon 007. 8734A
Oplion 002, 8731B
add $\$ 800$
Oplion 004. 8732B

## add $\$ 1025$

add $\$ 1050$
Oplion 006. 87338
add $\$ 1100$
add $\$ 1150$
Oplion 008.8734B
add $\$ 25$

## 8730 Series specifications

HP Model	87312	87318	87324	87328	8733	87338	8734	57348	87354	77350	H10.87318 ${ }^{\text {r }}$
Frequency range (GHz) Dynamic range (d8)	$\begin{gathered} 0 . k-24 \\ 35 \end{gathered}$	$\begin{gathered} \mathrm{QB}-2.4 \\ 80 \end{gathered}$	$\begin{gathered} 18-4.5 \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 18-45 \\ 80 \end{gathered}$	$\begin{gathered} 1)-8.3 \\ 35 \end{gathered}$	$\begin{gathered} 17-9.3 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 1.0-12.4 \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 10-12.4 \\ 80 \end{gathered}$	$\begin{gathered} 8.2-127 \\ 35 \end{gathered}$	$\begin{gathered} 82-12 . \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 01-12 \\ 35 \end{gathered}$
Max residual atten. (dB)!	<15	$<2.0$	<2. ${ }^{\text {d }}$	$<3.5$	<2.0	$<3.0$	<4, ${ }^{\text {d }}$	$<5$	$<4.0$	$<5.0$	$<20$
Typical rise time (as) ${ }^{\text {a }}$	U	30	40	30	30	30	30	30	30	30	40
Impical decay time (ns)	311	20	30	20	20	20	20	20	20	20	30
	1.5	1.6	1.5	$1.5^{7}$	18	2.0	1.8	2.0	1.7	2.6	1,5
SWr. max athenuation	18	2.0	18	2.0	2.0	2.2	2.0	21	2.0	2.2	$20^{\prime}$
Fonmard blas inpui resistance (ohms)	300	100	300	100	300	100	300	100	300	100	300
RF connector type	N	N	N	N	N	N	N	N	W/G ${ }^{\text {a }}$	W:G3	N
Wexght, net $\mathrm{kg}(1 \mathrm{D})$   shipping kg (ib)	$\begin{aligned} & 14(3) \\ & 3.8(4) \end{aligned}$	$\begin{gathered} \hline .5(5.5) \\ 4.1(9) \end{gathered}$	$\begin{aligned} & 18(3) \\ & 1.8(6) \end{aligned}$	$\begin{aligned} & 25(5.5) \\ & 4.1(9) \\ & \hline \end{aligned}$	$\begin{gathered} 1.11259 \\ 3.5(0) \\ \hline \end{gathered}$	$\begin{gathered} 1.6(15) \\ 75(3) \\ \hline \end{gathered}$	$\begin{aligned} & 1.11751 \\ & 1.4(4) \end{aligned}$	$\begin{aligned} & 1.6(3.5) \\ & 23(5) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1(2.5) \\ & 1.8(4) \end{aligned}$	$\begin{gathered} \hline 1.6(3.5) \\ 2.3(5) \\ \hline \end{gathered}$	$\begin{aligned} & 2515.5) \\ & 4.1(9) \end{aligned}$
Dimensions Length, mm (in) Width mmm (in) Height, tiliil (in),	$\begin{gathered} 280(114) \\ 83(314) \\ 57(24) \\ \hline \end{gathered}$	$\begin{aligned} & 289(1) 44) \\ & 174(44) \\ & 59(24) \\ & \hline \end{aligned}$	$\begin{gathered} 283(114) \\ 83(314) \\ 57(25) \\ \hline \end{gathered}$	$\begin{gathered} 289(11 \mathrm{~h}) \\ 124(8) \\ 57(26) \\ \hline \end{gathered}$	$\begin{aligned} & 213(06) \\ & 83(34) \\ & 31(26) \\ & \hline \end{aligned}$	$\begin{aligned} & 311(124) \\ & 83(34) \\ & 57(264) \\ & \hline \end{aligned}$	$\begin{aligned} & 213(83) \\ & 83(3 y) \\ & 97(24) \\ & \hline \end{aligned}$	$\begin{gathered} 311(12 \% j \\ \$ 3(3 \%) \\ 57(215) \\ \hline \end{gathered}$	$\begin{aligned} & 1) 1(63) \\ & 83(314) \\ & 57(24) \\ & \hline \end{aligned}$	$\begin{gathered} 267(104) \\ 83(3 y) \\ 57(246) \\ \hline \end{gathered}$	$\begin{gathered} 299(114) \\ 124(45) \\ 59(24) \\ \hline \end{gathered}$
Price	3613	\$975	\$675	\$1000	5723	11050	5750	11100	3775	\$1100	4975
Maximuri ratuge maimum input power, peak or CW: 1 W , Diss bunits: $+20 \mathrm{~V},-10 \mathrm{~V}$.   Bias polanty. negative volage incteases attenustion.   RFF: nodated leakage limits are below those specified in MIL-1-6181D al inpot levels less thas 1 mivi at all input leveis radiated Interfermes is sufficienity fow to ohtain rated attenuation.						1. With $+5 Y$ bias   $2 \$ 1 \mathrm{~B} .1104 .5 \mathrm{GHz}$   3. Disen by HP 8403 A , Hodulation.   4. 2.0 SWR 8 I0 $4.5 \mathrm{ch}_{2}$			5. Fits I $\times 1 / 2 \mathrm{in}$. (WR 90) wavequide.   6. External high-pass filters required.   1. Excluding bigh.pass filters.		

## Accessories

Models 10511A, 10514A, 10534A, 11507A, 11508A, 11509A, 11687A, 11690A, 11897A/B/C

- Additional Capabilities for Signal Generators

$11509 A$


## 10511A Spectrum generator

Extends the useful frequency range of signal generalors, sources and frequency synthesizers by providing a spectrum of harmonics up to 1 GHz from sine-wave inputs between 10 and 75 MHz . A $50 n$ bandpass filter can then be cascaded with the l0511A to extract the desired harmonic. The harmonic power avaibable is at least -19 dBm Sor harmonics I through 10.
Inpul requirements; 1 to 3 volis rms into $50 \Omega$, 10 to 75 MHz .

## 10514A. 1053: Double beituced mixers

Used with signal generalors in a variety of mixing as well as AM, pulse and square-wave modulation applications. The coreful balancing of the hot carrier diodes in the 10514 and 10534 Mixers provides excellens suppressian of the local oscillator and inpur frequencies al the oulput porl. Frequency range of the $105 / 4$ is $0.2-500 \mathrm{M} \mathrm{Hz}$ and the 10534 is 0.5 .150 MHz .

## 11507A Output termination

A multi-purpose termination which enhances the usefulness of the 606 A or 606 B by providing the following:

1. A matched 50 -ohm termination to permit use into high impedance circuits.
2. A $20-\mathrm{dB}$ (10:I) terminated volage driver which reduces the source impedance to 5 ohms
3. A dummy anlenna having the IEEE standard characteristics for re ceiver measurements (driven from 10:I divider).
Frequency range: 50 kHz to 65 MHz on 0 10 20 dB positions. 540 kHz to 23 MHz on dummy antenna.

## 11508A Output cable

Provides son termination and standard binding posts at the end of a 610 mm ( 24 -inch) lengit of csble. Allows direct connection of the signal generater to high impedance circuits.

## 11509A Fuseholder

Prevents accidental bumout ol altenuators in HP 8640. HP 606 and 608 Signal Gencrators during (ransceiver lesting by inuoducing a fuse elcment between the signal generator and the transceiver. Several watts of RF power could otherwise be applied to the signal generator altenuator should the eransceiver accidental)y be switched to "Transmit." While the fuseholder provides protection, it in no way limus the usable output from the signal generators.
Accessorles furnished: 10 exiry fuses.

## 11687a 50-75月 Adapter

This 50-75@ Adapter with Type N connectors is recommended for use with the $8640 \mathrm{~A} / \mathrm{B}$ for measurcments in $75 \Omega$ sysicms. The voltage calibration on the output level meter is unaffected by use of the adapter, but a correction of 1.76 dB must be made when using the dB scale.


11687A


## 11690A



11697A
11680A Frequency doubier
The HP II690A Frequency Doubler is designed to exiend the 8640 A or 8640 B frequency range by doubling the $256-512 \mathrm{MHz}$ Frequency Band up to 1024 MHz (to 1100 MH z with band overrange). Its recommended input level for optimum performance with AM modulation is +10 dBm .
The $86-40 \mathrm{~A}$ has a dial scale for the 312 to 1024 MHz external doubler band un indicate the correct doubled outpul frequency. The 8640 B also displays the correet doubled output frequency when the 512 to 1024 ranar is selceled. For $F M$ in the doubled range, an additional position on the PEAK DEVIATION RANGE switch ollows peak deviation up 105.12 MHz .

The following specifications describe the 11690 A when used with 1he 8640A or 86408 :
Input required: +10 10 $+19 \mathrm{dBm}(0.707 \mathrm{~V}$ 10 2 V$)$.
Canvergion loss: <13 dB.
Level flatness: 4 dB tolal variation.
Suppresison of Ist and 3rd hammonic of input typically $>20 \mathrm{~dB}$.

## 11697A/B/C Bandpass filters

The 8640A/B Option C02 Internal Doubler covers several cemmunication bands including UHF-TV. Mobile Radio and some ATC/DME. External band pass filters can be used to improve the generater spurious and harmonic performance in any of these bands. Throe such filters are available. Il697A (SI2 to 674 MHz ). 11697 B ( 674 lo 890 MHz ) and 11697 C ( 800 to 1100 MHz ).
Pass band SWR: $\leq 14$.
Pass band attencation: $\leq 1.1 \mathrm{~dB}$.
Midband attenuatlon: $\leq 0.6 \mathrm{~dB}$.
Rejectlon band attenuatlon:

	Below Passband		Above Passband	
Madel	Frequency (MHz)	Attenuation	Frequency (MHz)	AHenuation
11697 A	$\leq 337$	$\geq 20 \mathrm{~dB}$	$768-3000$	$\geq 20 \mathrm{~dB}$
116978	$\leq 445$	$\geq 20 \mathrm{~dB}$	$1011-3000$	$\geq 20 \mathrm{~dB}$
11697 C	$\leq 550$	$\geq 20 \mathrm{~dB}$	$1333-3000$	$\geq 20 \mathrm{~dB}$


Modal number and name	Price
10511A Specirum Generntor	\$300
10514A Double Balanced Mixer (0.2-500 M Hz)	\$ $\$ 15.50$.
10534A Double Balanced Mixer (0.5-150 MHie)	\$90.301
IIs07A Outpui Termination	\$125
IIS08A Outpui Cable	\$35
11509A Fuseholder	\$80
11687A 505-758 Adapter	\$100
11690 A Frequency Doubler	\$155.
11697A Bandpass Filter (512-674 M Hz)	\$270
11697 B Bandpass Filice ( $674-890 \mathrm{MHz}$ )	\$270
11697C Bandpass Filier (800-1100 MHz)	\$270



## Sweep oscillators

Swept frequency oscillators are used in applications where the eharacteristics of a device must be determined over a wide. continuous range of frequencies, Combined witb a broadband desector and display test set, swaep oscillators provide many trenelits compared to CW frequency sources. A swepl measurement provides a dynamic display of the data. The results of any adjustments 10 the unknown test device are seen immedialely (real (ime) on the display. By replacing laborious point-by-point techniques swcpt measurements increase the spred and convenience of broadband kesting. The continuous frequency characlerization of the unknown device also eliminates the chance of missing important information between frequency points. Swept techniques are applicable in all phases of design, manufacture and mainte палсе.

## Howlett-Packand sweep oscillators

Hewlett-Packard sweepers cover the cintire Ircquency spectrum from de to 40 GHz. Selfcontained, multi-octave sweepers cover the frequency range to 110 MHz . The 8690 series of backward wove and solid state oscillators
reatures plug-ins from 400 kHz to 40 GHz The 8620 family of solid slate oscillators provide a versalile choice of configurations single band, mulsiband, or very wide band plug-ins from 3 MHz to 18 GHz . A chart of the individual frequency bands available appears on page 351.

## Sweep oscillator features <br> Sweep llexibility

Every HP sweeper has several difierent sweep modes available for selling the frequency limiss of the instrument. A full band or independently adjustable sart/slop frequency sweep can be selected. Aliernatively, a marker swoep or a symmetrical $\Delta F$ swerp aboul the desired scinter frequency can be chosen, Switching from one swece mode to another is a simple pushbutton operation. In the auto mode the swoep retriggers atiomatically. Sweep time of 0.01 to more than 100 seconds ean be selected. A manual sweep is also arailable as a front pancl conirol. a real convenience for calibratine displays such as X-Y recorders. An exiernal irigger is provided as well for applications where the sweeper musi be synched to other insirumen. ation or remotely conirolled.

On all sweeps a linear voltage proporhional to frequency is available on an external connector which is useful for driving the horizontal of the displuy. Blanking and pen lif signals are also provided at rear output connectors during fyback time when the RF is off.

The 8620 solid state family also features a self-contuined multi-band capabilisy in one compact instrument. Different octave range oscillators (up to threce in onc drawer) can be selected by simply pressing one band selecs lever. This results in purformance, cost. and size benclits compared to externally muliiplexed sweeper systems.
Power output and leveling
Power output is continuously adjustable at the front pand oves approximately a 10 dB range. Built-in attenualors are also available for greater powey conirol. Internal or external leveling is employed to obtain (1) a constanl power oulpul and (2) a good source match (low VSWR). This ensures high aceuracy when making swept measurements.

## Modulallon

Modulation eapabilities furiker extend the sweeper's uscifulness both as a sweeper and a signal generator Cor signal simulations. Wide

AM and FM bandwidths are usciul for a variety of tesls on communitation roceivers. The flexible FM capability allows remole analog frequeney programming which is important for many applications.

## MLA campatlbility

In communications applications where upconverter simulation is required in conjuncLion with the HP Mierowave Link Analyzer. the 86200 scries of plug-ins provides this capability as an option in frequency ranges from 700 MHz 1014.5 GHz . Group delay of less than 3 nanoseconds and linearity of better than $2.5 \%$ across 30 MHz permit very accurate RF to RF. R F to IF and RF to BB distorlion measurements.

## Programming

The new 8620C solid state sweeper mainframe provides optional BCD or HP-IB programming capability. More than ten thousand frequency poinks per band permis very fine frequeney cumirol. In addition, band selection, sweep mode. RF attenuator, and re-mote-local can be controlled remotely. This allows the sweeper to be used in a wide va. riely of automatic systems and sophisticated signal simulasion applications.
For example. a I MHz 1018 GHz frequency synthesizer can be configured using the calculator, the $86290 \mathrm{~A} / 8620 \mathrm{C} 2-18 \mathrm{GHz}$


Figure 1
siveep oscillaror, and the 8660 UHF synthesizer. (Sec Figure 1). Harmonics of the 8660 are used to phase lock the sweeper to the accuracy and stability of the synthesizer. The calculator is then used to control the sweeper. the UHF synchesizer, and RF switches to allow keyboard cintrol of a CW signal or to step the source across a band of interest. Of course, the calculator can also be usud to as. similate dara gathered at each point.


Figure 2
Prexision power ievel control of the siveeper can be oblyined by using the calculator to drive the swoeper's EXT AM input through a Digital-to-Analog Converter. A calibration array previously stored in the calculator would conerol the D.A voliage producing power level accuracy similar to that of the 436A power meler used in the calibration. (See Figure 2). Level control of the sweeper is important in measuring gain compression and when ratio messurements are nol practical. If greater than 10 dB of control eange is required, a progrimmatle allenuálor with as much as 110 dB of range may be used.

## Olgltal sweeping gynthesizers

The 8660 C and $3330 \mathrm{~A} / \mathrm{B}$ combine the precision frequency accuracy and stability of a synthesizer with the fime saving convenience of a sweeper. Parameters such as center frequency. Frequency step. lime per step. and sweep width are entered and executed ihrough a convenient keyboard or remole
programming connector. An addilional fea. lure on the 3330 B is amplitude sweeping in sicps as small as 0.01 dB . The combination of frequency and ampliude sweeping can be used to produce a comprehensive family of curves.


Figure 3

## Sweeper applications

Sweepers are used extensively with swcpt frequency lest sets to characterize the amplitude response of broadband devices or with network analyzers when the phase characteristics of the device (or 5 -parameters) are needed as well. Two RF measurements (ransmission and rellection - are busic to both aypes of analyzer. Hewict-Packard offers a complete line of dircctional couplers. power solicters. and other iransducers which together with the soalyzers and sweep oscil. lators provide a total swept measurement solation. Figure 3 shows a complete swept system that can be used to simulamiously characterize the scalar mansmission and refleclion properties of devices from 10 MHz to 18 GHz This system has a sensitivity of better lhan -50 dBm .

For measuremenes requiring more sensilivity and/or phase information, sweepers may be used with network analyzers. Now with the KP 8620 family or solid state sweepers and the new 8410 B . Ihesc measurements can easily be made across many octaves of frequency. Previousty the \&t 10 had to be reuned every octave. Now, for example. with the $86222 \mathrm{~A} / \mathrm{B}$ and the 8410 B ، phase-magnilude transmission or reflection cocfítients can be mexsured across the full. 0.11-2.4 GHz range in onc continnous swlep at full sweep speed. Since the 8410 is a luned receiver this means a spurious-free sensitivity of -78 dBm .


Figure 4

Figure 4 is a CRT pholo or simullaneons phase and magnilude transmission characteristics of an 8 to 10 GHz bandpass filier geross 2 to 18 GHz uxing the 86290A sweep oscillator plug-in.

For high power applications such as RFIsusceptibility lests and high attenuation measurements, Hewlett-Packard offers TVVT amplifiers which provide belter than 1 watt from 11012.4 GHz .

Symocsizer accuracy and sability can he abtaned by phast-lacking the Hewlelt-Pack-
ard sheep uscilators to a harmonic of a very stable source. This high stability is important in many applications including microwave spectroscopy and high-Q swept frequency measurements.

Two-Iane swept listing of deviecs such as mixers and receiver fronit ends requires two signals offset from each other by the IF. This is secomplisted by phase-lucking the difference frequency of two sweep oscillators io a very stable souroc. The sweepers may then be swept across the band of interest.

The modulation and buili-in altenuator fealures of Hewlett.Packard sweep oscillators make them tuseful in many iraditional CH signal generator applications.

In addition, accuracy, linearity, and flatness of the broadband 86222A/B and 86290A plug-ins make them more than adequate in many applications requing a gencral purpose CW generator.

For wideband applications the 86290A, 2 18 GHz plug-in and the 86222A/B 0.01-2.4 GH 2 plug-in feature performance that rivals oclave band oscillators in the area of frequency purity and accuracy, harmonics, and Hatness.

For a complete discussion of swepl frequency measurements the following application notes and others are available from your local Hewlett-Packard sales office:

AN 95 " 5 -Paramelers . . . Circuits Analysis and Design"
AN 117-1 "Microwave Network Analysis Applications"
AN $117-2$ "Stripline Component Measurements"
AN 121-1 "Network Analysis with the 8407A. 0.1 - $110 \mathrm{MHz}^{\circ}$
AN 183 "High Frequency Swept Medsurements"
AN 187-1 "Configuration of A $2-18 \mathrm{GHz}$ Syntbesizod Frequency Sounce with the 8620A mainirame"
AN 187-2 "Configuralion of A $2-18 \mathrm{GHz}$ Symhesized Frequency Source Using the 8620C Sweep Oscillator"
AN 187-3 "Three HP-IB Configurations for Making Microwave Scalar Measure. ments"
AN 1874 "Conliguration of a Two-Tone Sweeping Generator"

## Sweep oscilatar - sumimary chart

	Model Number			$\begin{aligned} & 100 \\ & k H z \end{aligned}$	$\stackrel{1}{\left(H_{2}\right.}$	$\begin{gathered} 10 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 100 \\ & \mathrm{NHz} \end{aligned}$	$\underset{G H 2}{1}$	$\stackrel{2}{\mathrm{GHz}}$	$\mathrm{CHz}^{4}$	$\begin{gathered} 8 \\ 6 \mathrm{H}_{2} \\ \hline \end{gathered}$	$\stackrel{12}{\mathrm{GHz}}$	$\begin{gathered} 18 \\ \mathrm{GHz} \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{CHz} \end{aligned}$
Frequency Range*	$\begin{aligned} & 8620 \\ & \text { Series } \end{aligned}$	$\begin{aligned} & 8690 \\ & \text { Series } \end{aligned}$	Othar Sweepery												
$\begin{gathered} \mathrm{Nc}-100 \mathrm{xHz} \\ 0.1 \mathrm{~Hz}-13 \mathrm{MHz} \\ 10 \mathrm{kHz}-2600 \mathrm{MHz} \end{gathered}$			$\begin{aligned} & 3304 / 5 A \\ & 3330 \mathrm{~A} / B \\ & 8660 \mathrm{~A} / \mathrm{C} \end{aligned}$						-						
$\begin{gathered} 100 \mathrm{kHz}-110 \mathrm{MHz} \\ 400 \mathrm{kHz}-110 \mathrm{MHz} \\ 3 \cdots-350 \mathrm{MHz} \\ 10-1300 \mathrm{MHz} \\ 10-2400 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 86210 \mathrm{~A} \\ 86220 \mathrm{~A} \\ 86222 \mathrm{~B} \end{gathered}$	8698B	8601A				$\mapsto$								
$100 \mathrm{MHz}-4 \mathrm{GHz}$ $1.0-2.0 \mathrm{GHz}$ $1.4-2.5 \mathrm{GHz}$ $1.7-4.2 \mathrm{GHz}$	863308/86320日	86998 8691A/8 8691A OpH 200 859280 pt 100													
$\begin{aligned} & 1.7-4.3 \mathrm{GHz} \\ & 1.8-4.2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 2-18 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 86331 \mathrm{~B} \\ 86230 \mathrm{~B} \text { or } 86330 \mathrm{~B} \\ 86290 \mathrm{~A} \end{gathered}$	8692A/B													
$\begin{gathered} 3.2-6.5 \mathrm{GHz} \\ 3.5-6.75 \mathrm{GHz} \\ 3.7-8.3 \mathrm{GHz} \\ 4-8 \mathrm{GHz} \end{gathered}$	86241A or 85341B	$\begin{gathered} 869380 \mathrm{pl} 200 \\ 86938001100 \\ 8693 \mathrm{~A} / \mathrm{B} \end{gathered}$													
$\begin{gathered} 5.9-9.0 \mathrm{GHz} \\ 7-11 \mathrm{GHz} \\ 8-12.4 \mathrm{GHz} \\ 8-18 \mathrm{GHz} \end{gathered}$	$86242 A$ or $86342 A$ 86350A Opl H20 86250 B or 86550 A	$\begin{aligned} & 8694 A / B \text { Opl } 200 \\ & 8694 A / 8 \\ & 8654 A / B \text { Opt } 300 \end{aligned}$										$\mid$			
$\begin{gathered} 10-15 \mathrm{GHz} \\ 12.4-18 \mathrm{GHz} \\ 18-28.5 \mathrm{GHz} \\ 26.5-40 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 86260 \mathrm{~A} 0 \mathrm{pl} \mathrm{H03} \\ 86260 \mathrm{~A} \end{gathered}$	$\begin{gathered} 8695 A \text { Opt } 100 \\ 8695 A / \mathrm{B} \\ 8696 A \\ 8697 \mathrm{~A} \end{gathered}$										$ـ$			$\underline{1}$
- Other Special Frequency Ranges Can Be Provided Upon Resuest.															




8801 A

Covering 100 kHz to 110 MHz , the Model 8601A Gencra. tor/Sweeper combines the high lincarity and flatness of a precision swoeper with a signal genctator's frequency accuracy and wide range of calibrated power luvels. Though in's small and lightweight. 11 does the work of two instruments easily and conveniently.

## 8601A Specifications

Frequency range: low range, $0.1-11 \mathrm{MHz}$; high range, $1-110 \mathrm{MHz}$.
Frequency accuracy: approximately $\pm 1$ 禺 of irequency.
Power outpul: +20 to -110 dBm ; $10-\mathrm{dB}$ steps and $13-\mathrm{dB}$ vernier provide confinuous settings over entire range. Meter monitors oulpul in dBm and rme voles into 503 .
Power accuracy: $\pm 1 \mathrm{~dB}$ accuracy for any oulpul level from +13 $\mathrm{dBm} 10-110 \mathrm{dBm}$.
Flatneses: $\pm 0.25 \mathrm{~dB}$ over full range, $\pm 0.1 \mathrm{~dB}$ over any 10 MHz portion ( +10 dBm step or below).

Impedance: 50ת, SWR <1.2 on 0 dBm slep and below.
Hermonics and spurlous slgnals: (CW shave 250 kHz , ouppu levels below +10 dBm ) harmonics al least 35 dB below carrier. Spurious al least 40 dB velow catrier.
Resldual FM: noise in a 20 kHz basdividith including line relaled components (dominant component of residual FM is noise).

CW: $<50 \mathrm{~Hz}$ rms, low range: $<500 \mathrm{~Hz}$ rms high range.
SYM O, sweep: <100 $\mathrm{H} z \mathrm{mms}$, low range: $<1 \mathrm{kHz} \mathrm{Hms}$, high range.
Reaidual AM: AM noixe modulation index (ms, 10 kHz bandwidıh) is $<-50 \mathrm{~dB}$ : (ispically -60 dB al $25^{\circ} \mathrm{C}$ ).
Crystal callbrator: interna! 5 MHz crystal allows frequetrcy calibration to $\pm 0.015_{0}$ at any multiple of 5 MHz .
Sweep modes: [ull, video, and sy'mmetrical.
Internal AM: fixed $30 \% \pm 5 \%$ al 1 kHz .
External AM: 0 to $50 \%$ de $10400 \mathrm{~Hz}: 0$ to $30 \%$, up 101 kHz .
Internal $F \mathrm{M}$ : 1 kHz ralc, fixed $75 \mathrm{kH} 2 \pm 5$ 哌 deviation, high range; 7.5 $\mathrm{kHz} \pm 5 \%_{0}$ deviation. low range: $<3^{\prime \prime} \mathrm{c}$ distortion.
External FM: sersitivily, 5 MHz per volt $\pm 5 \%$, high range: 0.5 MHz per voli $\pm 5 \%$, low range; negusive polarisy: FM rates to 10 kHz .
Welght: net, 9.5 kg (21 lb). Shipping, 12.3 kg ( 27 lb ).
Oimensions: 190 mm ( $7^{3 / 5: ")}$ wide. $155 \mathrm{~mm}\left(6 / 5:^{\prime \prime}\right)$ high, 416 mm ( $163 / x^{N}$ ) decp

The Model 8600A Digital Marker provides Tive independent, coninuously variable frequency markers over the range $0.1-110 \mathrm{MHz}$ when used with the HP 6601 A or 8690B/8698B Gencritior Sweeper.
The high rexolution controls and 6 -digit readout permit $0.05 \%$ ire quency semability The frequency of any marker may be read while swecping. simply by pushing a bulton within the marker control. The marker selocted is brighter than the others and points in the opposite disection, ensuring positive marker identilicalion.

## 8600A Specifications

Marker eccuracy: any marker may be placcod at a desired frequency $\pm$ ( 0.059 or siveep widh + sweeper stabilsty).
Weight net. 5.9 kg ( 13 lb ); shipping $8.2 \mathrm{~kg}(18 \mathrm{lb})$.
Dimenslons: $99 \mathrm{~mm}\left(3 / /^{\circ}\right)$ high. $413 \mathrm{~mm}\left(161 / 2^{\prime \prime}\right)$ wide, $337 \mathrm{~mm}\left(13 / \mathrm{s}^{\circ}\right)$ long.
Oplon D01: includes modification kit for $8690 \mathrm{~B} / 8698 \mathrm{~B}$ : no addilional charge.
Model number and name Price
8600A Digital Marker $\$ 1500$
860IA Generator/Sweeper \$2800

# SWEEP OSCILLATORS <br> Solid state sweeper family, 3 MHz to 18 GHz 



## 0620 System

The Hewlett-Packard 8620 solid state sweeper system offers the fiexibility of the 8620 C mainframe in addition to a choice of single band, muluband, and the wide band plug-ins including the NEW 86222A/B $10 \mathrm{MHz}-2.4 \mathrm{GHz}$ plug-in. The 8620 system also offers high power output with solid state reliability - greater than 10 mW leveled to 18 GHz .

Typical unleveled power output


The fundamental oscillators used in the plug-ins and modules are YIG tuned transistor or bulk effeet circuils. YIG ouning results in exceptional tuning linearity. low noise. and low spurious content: it also allows frequincy modulation at high rates and wide deviations with low dislorlion.

## 8620C Sweeper maintrame

The 8620 C has many features which are higbly useful in stringent applications. With convenient functionally grouped controls and lighted pushbutton indicators the mainframe offers extreme case of optration and ficxibility. In addition, it can be a completely programmable source cither HP-1B or BCD. an indispensable lealure for automalic sysiems and signal simulation appplications.

## Now 86222A/B and 86290A wide band plug-ins

Now the 10 MHz 1018 GHz frequency range can be covered with just two plug-ins-the 86222A/B and the 86290A. Besides their broad frequency range diese plog-ins offer many special features including unique crystal markers in the 86222 B and better than $\pm 20$ MHz . frequency securacy in the 66290 A even at 18 GHz .

## 86200 Series single-band plug-ins

The 86200 series of plug-ins covers both ends of the firequency speetrum from 3 MHz to 18 GHz with a choico of more ihan seven plug. ins.

## 8621B and 86300 Series multiband plug-Ins

The 8621 B draver provides capability for up to two fundamental oscillator modules ( 86300 series) plus a heterodyne module ( 863208 ). Selecling the band is as simplele as pressing a front panel lever.

SWEEP OSCILLATORS
8620 Family: mainframe
NEW
Model 8620C

- Optional BCD or HP-IB Programming
- 3 Markers
- $100 \% \Delta F$ Capability, fully calibrated



The new 8620 C offers many features as standard equipment. For example, up to four separate bands and their respective frequency scales can be selected with a louch of the band select lever just to the left of the dial scale. This represents a truly convenient wide-band eapacily, one which doesn'! necessitate changing plug-ins or the addition of cosilly, bulky. additional instruments to make wide-band swept measurements. Pushbultons, concentrically located in the frequency control knobs, light when actuated to indicate the sweep function in use. For example, depressing the FULLSWEEP pushbution results in a sweep of the totiol range selected by the band select lever. In this mode three markers are avallable, controlled by the START MARKER, STOP MARKER, and CW MARKER knobs. The MARKER SWEEP function causes a sweep berween START and STOP MARK. ERS. In MARKER SWEEP, the CW MARKER is still available for further llexibility in identifying specific frequencis.

The 8620 C is fully and continuously calibrated for any $\Delta F$ sweep width. Having chosen an optimum widit, one can read the total sweep width from the calibrated $\Delta \mathrm{F}$ dial scate. The sweep is summetrical about the CW MARKER sering and in this function the START and STOP MARKERS are avaitable. Three continuously variable $\triangle F$ ranges are available by using the range switch below the $\Delta F$ knob. This allows calibrated sweep widths of up $101 \%, 10 \%$, or $100 \%$ of full band at the user's choice.

The CW function is seloeted by depressing the CW push bution. 11 is possible to also engage tho CW VERNIER knob to achieve vary accurate selability. With the main dial scale cursor placed on any conveniene mark. It is possible to accurately interpolate between dial seale markers by utilizing the CW VERNIER, This versier makes the erfective length of the dial scale $>71 / 2$ meters ( 300 inches) and contribules to the increased setability.
Another feature is the capability to fully program the sweeper. The standard 8620 C includas programming inputs for band selection, attenuator scting (with 8621 B Opl 010 installed). sweep function sclection, and analog frequency programming. Option Oll provides, in addition, the capability to direcily control the sweeper with the HP-Interface Bus (HP-8B). With this option, the user can place the sweeper into any sweep function ( $\triangle F$, FULL SWEEP. etc.) and it will sweep according to the front panel frequency settings. In this mode a programmable digital marker is available. In addition, an extremely flexible digital frequency programming cupability in included with this option. Resolution of 10,000 points per band or 10,000 points across the frequency range set by the front panci controls permit extremely high resolution limited only by the Residual FM of the sweeper. Option 001 BCD programming provides the same capabilities as the HP-IB option with the exception that no digital masker is available in the programmed sweep modes.

## 8620C Specifications

## Frequency

Froquancy range: determined by band select lever and RF unit.
Frequency llnearity. relcr to RF uníl spesifications.

## Sweep luisctions

FULL sweep: sweeps the full band as delerminod by the plug-in and the band select lever.
MARKER sweep: swecps from START MARKER 10 STOP MARKER frequency seltings.

Range: both independent setlings are fully calibrated and continuously adiusiable over the enfire frequency range: can be sel to sweep either up ur down in Гrequency.
End-polnt accuracy; refer to RF unil specifications, same as frequcncy sucuracy.
$\Delta F$ Sweep: sweeps symmetrically upward in frequency. centered on CW setting. CW vernier can be aclivatcd for fine control of center frequency.

Wlditi conninuousiv adiusiable and calibrated from zero to $1 \%$. zero to $100^{2}$, or zero (os $100 \%$ of usable frequency band as seleced with firant pancl switch. Dist scale collibrated directly in MHz .
Wldth accurdey: $\pm 1 \%$ of maximym $\Delta F$ plus $\pm 2 \%$ of $\Delta F$ heing swept.
Center-frequency bccuracy; refer to RF unil specifications, samc as frequency accuracy.
CW operationa: singlo-frequency RF output controlled by CW MARKER knob selected by depressing pushbution in CW MARK. ER control.

Presel frequencles: START MARKER, STOP MARKER, and $\triangle F$ end points in manual sweep mode and CW MARKER froquency can be used as presel CW requencies.
CW vernier: calibrated direclly in MHz aboul CW selling. CW vernier activated by pushbution in CW vernier conirol. Zero 10 $\pm 0.5$ in or zero $0 \pm 5 \%$ of full bandwidh, seleciable with front pancl switch.
Accuracy: Refer to RF uniz specifications, sume as frequency ac. curacy.
Frequency markers: three constan width 「requency markers are fully calibrated and independently adjusitate over the entire fange in FULL Sweep function, controlled by START MARKER. STOP MARKER, and CW MARKER conlrols. In $\triangle F$ sweep START and STOP MARKERS are awilable. and in MARKER SWEEP the CW MARKER is uvailable. F'ronl panel swilth provides for the selection of either amplitude or intensity markers \{amplitude modulating the RF output or Z -axis modulating the CRT display).

Aesolution: beltey ihan 0.25 of RF unit bandwidth.
Marker output: rectangular pulse, rypically -5 volts peak avail. able from Z -axis BNC conneclor on rear pancl. Source impedance. approximately 1000 ohms.
Accuracy: refer to RF unit specifications, same as frequency as curacy.

## Sweep modes

Aulo: sweep recurs automalically.
Line: swerp ean be synchronized with the ac power line.
External trigger: sweep is actuated by external trigecr signal.
Sweep tíme: continuously adjustable in four decade ranges typically 0.0110100 scconds.

Single sweop: aclivated by front pancl swich.
Manual sweep: front pancl control provides continuous manual adjustment of frequency between end frequencies set in any of the above swecp functions.
External sweep: sweep is comtrolled by external signal applied 10 programming connector. Zero volts for start of sweep increasing linearly to approximately +10 volus for end of sweep.
Sweep outpul: direct-coupled siwioolh, icro to approximately +10
volts, at froml panel BNC connector, concurrent with swepl RF output. Zcro al start of swecp. approximately +10 volts at end of sweep regardless of sweep widih or direction. In CW mode. de output is proportional to frequency.

## Modulalion

Internal AM: square-wave modulation continuotisly adjustable from 950 to 1050 Hz nn all sweep times. On/Off ratio, refer to RF unit specifications.
External AM: refer to RF innil specificarions.
External FM: refer to RF unit specifications.
Phase-lock: rufer to RF unu specilications.

## famote programming

Remole bend select: frcquency runge can be cuntrolled remotely by three binary contact closure lises available at programming conneclor.
Remole attenuation select: 0 to 70 dB attinuation in 10 dB sleps can be controlled by 4 binary contact closure lincs when used with 8621B Oplion 010.
Remote Irequency programming: sec uption 001 or 011 below.
Remole frequency programming, optons 001 (BCD) and
011 (HP-IB)
Funclions
Band: manual enable or remote consrol of four bands
Mode: seven modes, including digital frequency control in three modes, with a resolution of 10.000 points acrosy FLiLL band, between START MARKER and STOP MARKER as set by front panel controls, or across $\Delta F$ as set by front panel $\Delta F$ and $C W$ controls: or selccion of any of four analog sweep funclions: $\Delta F$ or MARKER Sweep wilh end points set by appropriate front parel controls. CW as set by CW MARKER control, or FULL sweep of band selected.
Marker: with analog swecps (FULL. $\triangle F$, or MARKER SWEEP). a programmable marker is available (Opi 001 only), in either amplitude or tntensity as selected with froni panol switch.

## General

Slanking
RF: with blanking switch enabled, RF automatically turns off during retrace, and remains off until stari of nexl sweep. On automatic sweeps, RF is on long cheugh before sweep starts to stabilize external circuits and equipment whose response is compatible with the selecied swicto ralc.
Display (Z-axls/MKR/Pen Lift Output): direct-coupled roctangular pulse approximately +5.0 volis coincident in lime with RF blanking is un rear panel.
Negatlue (Negallve blanking outpul): direcl-coupled rectangular pulse approximately -5.0 volis $\infty$ oincident in lime with RF blanking. fully compalible with $\& \& 10 A / B$ network analyzer.
Pen llt: for use with X-Y recorders hiving positive power supplics. Transmbor-switch signal is avaitable on Z-axis/MKR/Pen lift connector. This signal is also available on the programming connecior.
Furnished: 229 cm ( $71 / r-5001$ ) power cable with NEMA plug: 2 spare 3 gmp fuses; exlender board for servicing; and calibration scade.
Power. 100, 120, 220, of 240 vols $+5-10 \%, 50$ to 400 Hz . Approximately 140 walls.
Welght (not including RF unic): Net, 11.1 kg (2A (b). Shipping, 13.4 kg ( 3016 ).
Dimenaiong: 425 mm wide, 132.6 mm high, 337 mm deep ( $161 /{ }^{\circ} \mathrm{X}$ $\left.51 / 33^{7} \times 131 / 4^{\prime \prime}\right)$.

Options	Price
Oplion 001: BCD Frequency Programming	$\$ 650$
Option 01I: HP-IB Frequency Programming	$\$ 950$
Option 908: Rack Flange Kir	add $\$ 10$

8620 C Sweep Oeclllator Mainframe

- 2 to 18 GHz continuous sweep
- Extended capability for network analysis


The 86290A broadband plug-in sets new slandards in widcband sweeper value with versatile frequency coverage and excellent performance characteristics al an allraclive size and price. For broudbund testing, a continuouv sweep from 21018 GHz (or anywhere in be(ween) is provided. In addition. higher frequency resolucion is achiuved by covering the 2 to 18 GHz range in threc individual bands of 2106.2 GHz . 6 to 12.4 GHz , and 12 to 18 GHz . Individual bands and corresponding dial seales are selected using the band select lever on the 8620C mainframe. Front panel lighes indicate the frequency range solected. In each frequency band, all swoper mainframe conirols are opkrable.

The 86290 A plug-in offers oustanding clecirical perfinimance along with small size and simplicity of operation. The kuy micerelectronic elements of the 86290A are a 2 to 6.2 GH , fundamental osestlator, 100 mW amplifier, and high-sficicney multupler integrated with a Iracking YlG filter, which contrine to produce a $S$ dBmewepl output over the 2 io 18 GHz range. I his oupput is low in harnonic and spurious content and has excellent ficquincy lincarity. On widcband sweeps, the 6.2 GHz and 12.4 GH . sivilch points can be Z -axis blanked as well as RF blanked, resulting in a spurious-itce, clean continuous trace on any display.

The 86290a plug-in has unique advantages as a source for nelwork measurements. For 21018 GHz sciditr measurements, ithe 86290A ac cepts direct 27.8 kHz square wave AM modulation from the HP 8755 Firequency Response Test Sel. Thus the need for an cxicrmat modulator is climinated providing canverience and cost savings, iad more imporant, making full sweeper power available at the les: device. Phase/amplitude network analysis over the continuous 2 to 18 GH 7 . range becomes a realiey using the 86290 A and the new HP 8410 B Network Analyzer. Inturfacing between the 8410 B and the sweeper per. mits the 8410 B to automatieally phasc-lock over multi-octave swedps. Together. the 86290A and the 8410 B now nrake possible phase and amplitude measurements from 2 to 18 GHz in one continuous sweep.

- Advanced iechnology provides outstanding performance.


As a s!and-alone swerptr, the 8620 C and 86290 A plup-in provide still more reatures for ease in swept testing. Even at 18 Gllz. fre. quency can be set with $\pm 20 \mathrm{MHz}$ aceuracy. Sweep lincarity is $0.05 \%$ which means frequencies in the swept mode cun be identilied to accuracies comparable with wavemeters. Internal leveling is standird. Excernal crystal and power meter leveling circuitry is also provided. A SLOPE conteol permits ilie fiequency-dependent losses of a test setup to be compensitad. The 2 to h .2 GHz fundantental oscillator signal is always available through a resu output connector. Phase-locking from 2 10 18 GHz is accomplished using only 6.2 GHz hardware via this output. Accuratc frequency rediout is possible by connecting a DVM to the cialibrated I volt/ GHz output located on the rear panel.

With the plug-in Nexibility and these exceptional features, the $8620 / 80290 \mathrm{~A}$ sweeper is the idead source for broadband sweep leating of components. (ransmssion lines, antenna systems and ECM equip. ment.

## General speciflcatlons

Swltch polnte; hroadband sivitch poinls are at 6.2 and $12.4 \mathrm{GHz}_{\text {. }}$. Frequency overlap is typicully 0 to 20 MH , at switch puints.
Auxillary oulput: rcar panel 2 to 6.2 GHz lumdamental oscillator outpul nominally -10 dBm .
Slope conlrol; front pancl control allowing compensation for incquency dependent losses of a lest selup by altenuating power at lower frequencies.
Peak control: front pancl control for paking power over desited frequency range.
Frequency reference oulput: nom. I v/ $\mathrm{GHz}(2-18$ volts) rear panel BNC output. CW frequency aceuracy lypically $\pm 35 \mathrm{MHz}$. Mainframe modificatlon: order modificalion kil for sequential sweep capability on all 8620 B mamirumes, and on existing 8620A mainframes with serial prefix 1332A and below. (Kit included for 8620 A mainframe will $802 \%$ OA Op(ion 060.)
Weight: net. $4.4 \mathrm{~kg}(9.6 \mathrm{lb})$. Shipping. 5.9 kg ( 13 lb ).

86290A Broadband plug-in

Specilications wilh plug-in insialled in an 8620C mainirame	BAND I	BAND 2	BAMD 3	BAND 4
Frequency range: (GHz)	2-6.2	6-12.4	12-18	2-18
fiequency accuracy ( $25^{\circ} \mathrm{C}$ )   CW mode (or >100 ms sweep lime with FM swilch in fM/PL): (MHz)   All sweep mades: ( $\mathrm{MHz}_{\mathrm{I}}$ )   Marker. (MHz')   Frequency tinearily (correlation belween trequency and sweep oul moliage) lypically: (Mhì)	$\begin{aligned} & \pm 20 \\ & \pm 30 \\ & \pm 30 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 30 \\ & \pm 30 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 30 \\ & \pm 30 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \pm 80 \\ & \pm 80 \\ & \pm 80 \\ & \pm 30 \end{aligned}$
Frequency slablility With lemperature: ( $\mathrm{MHz} /{ }^{\circ} \mathrm{C}$ ) With $10 \%$ line vollage change: ( $\mathrm{KHz}_{2}$ ) With 10 dB power level change: ( $\mathrm{KHz}_{2}$ ) Wiln $3: 1$ load VSWR, all phases: ( $\mathbf{K H}_{2}$ ) Frequency driff (in 10 minute peried ofter 30 minute warm-up): typicalily ( uHz ) Residual FM ( 10 kHz bandwidth; FM switch in nerm) CW mode: ( kHz peak)	$\begin{aligned} & \pm 0.5 \\ & \pm 100 \\ & \pm 200 \\ & \pm 100 \\ & \pm 300 \\ & <10 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 100 \\ & \pm 400 \\ & \pm 200 \\ & \pm 600 \\ & <20 \end{aligned}$	$\begin{aligned} & \pm 1.5 \\ & \pm 100 \\ & \pm 600 \\ & \pm 300 \\ & \pm 900 \\ & <30 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 100 \\ & \pm 600 \\ & \pm 300 \\ & \pm 900 \\ & <30 \end{aligned}$
Maximum leveled power ( $25^{\circ} \mathrm{C}$ ): (d⿴囗m) Power level control range. (dB)	$\begin{aligned} & >5 \\ & >10 \end{aligned}$			
Powar variation   Inteinally leveled (dB)   Exemally leveied (exciuding coupier ard detector variation)   Crystal detector:   Power meler.   With lemperalure (typicaily): (dB/a ${ }^{\circ} \mathrm{C}$ )	$\begin{aligned} & \pm 07 \\ & \pm 015 \\ & \pm 0.15 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.7 \\ & \pm 0.15 \\ & \pm 0.15 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.8 \\ & \pm 0.15 \\ & \pm 0.15 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \mathbf{\pm 0 . 9} \\ & \pm .0 .15 \\ & \mathbf{\pm 0 . 1 5} \\ & \mathbf{\pm 0 . 1} \end{aligned}$
Spurious signals (below lundamental al specified maxmum power) Harmonic related signals: (dB) Nonharmenics: (dB)	$\begin{aligned} & >25 \\ & >50 \end{aligned}$			
Residual AM in 100 kHz bandwidth (bekwe lundamental al specified r:ax/mim power): (dB)	$>55$	$>55$	$>55$	$>55$
Source USWR internally leveled, $50 n$ nominal impedance	$<19$	$<1.9$	$<1.9$	$<19$
External FM   Maximum devia!ions lor modulallon Itequencies.   DC to 100 Hz . $\left(\mathrm{MHz}_{2}\right)$   100 Hz lo 2 MHz (MHz)   Sensitivily (!ypocaliy)   FM mode: ( $\mathrm{MHz} / \mathrm{volt}$ )   Fhase-lock mode ( $\mathrm{MHz} /$ voll)	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & -20 \\ & -6 \end{aligned}$
AM (At specilied maximum power) Soecilic requremenls guaranteeing HP 8755 operalion with $\pm 6 \mathrm{~V}, 278 \mathrm{kHz}$ square wave mod drive connesled to exlesnat AM input On/OII raluo: (dB)   Symmeliy:   Allenuation Ior +5 yolt input: (dB)   Internal I kHz square wave On/Off ratio' ( $\alpha B$ )   af blanking (sefected by mainlrame switch) Or/oll rallo. (dB)	$\begin{aligned} & >30 \\ & 45 / 55 \\ & >30 \\ & >25 \\ & >30 \end{aligned}$	$\begin{aligned} & >30 \\ & 45 / 55 \\ & >30 \\ & >25 \\ & >30 \end{aligned}$	$\begin{aligned} & >30 \\ & 45 / 55 \\ & >30 \\ & >25 \\ & >30 \end{aligned}$	$\begin{aligned} & >30 \\ & 45 / 55 \\ & >30 \\ & >25 \\ & >30 \end{aligned}$
Sweep lime typically: (ms)	10	10	10	60
CW remote programming settling lime   (lyoical time to setJe :nlo CW Ireguency accuracy specification, 8620C Odt. 001 or 01I:   (FM swilch in $8 \mathrm{FM} / \mathrm{PL}$ ): (ms)	5	5	5	10


odel number and name	Price
86290A 2 to 18 GHz plug-In (internal leveling standard):	\$13,250
Oplion 004, rear panel RF output.	\$80
(See Data Sheel for specifications) Opllon 005, APC. 7 RF outpul con	540
Optlon 060, 08620-610) ${ }^{\text {a }}$ kit included for modifying	
8620A mainframes with strial prefix 1332A and below:	\$300

## dard):

Sequentlal Sweep modincation klts (ordcred separalely): 08620-60099, for existing 8620A mainframes with serial prefix 1332A and below: 08620-60100, for all 8620 B mainframes ( 8620 B dial scalus included):

- 10 MHz to 2.4 GHz in ONE, CONTINUOUS sweep
- Internally leveled FLATNESS $\pm 0.25 \mathrm{~dB}$ over full range


86222A

- 1, 10, and 50 MHz crystal marker combs with 86222 B
- Marker accuracy even in CW with 86222 B


The HP 86222A/R sweeper provides uncompromising 10 MHz to $2.4 \mathrm{GH}_{7}$ frequency coverage. The entire range can be swept continuously - ne need to break up your measurement into two or more swoeps. Yel narrowband resolution is not sacrified. This procision is complemented by the 86222 's good stability and frequency accuracy to make narrowband measurements truly practical. Both narrowband and wideband lisearity is excellent ( 2 MHz over full band). The RF output characteristics of the 86222 feature similar high performance. Power output is calibrated $010+13 \mathrm{dBm}$ in 1 dB increments. The output is iniernally leveled to $\pm 0.25 \mathrm{~dB}$ natness over the entire 0.03 to 2.4 GHz range!

For applications demanding precise frequency identification, the 86222 B offers an advancod digitally processed birdie marker system which provides the accuracy associated with stundard birdie markers without their normal liabilities. The 86222 B naricker system internally generates a lypical birdic murker, then processes it to produce a digital pulse. This pulse can then be used to produce an intensity dot on the CRT which corresponds to il preeise irequency. This opens the applications of 86222 B "birdic" markers to a wide variety of network analyzers and displays. such as the 8410 B and 8755, where previously is was impossible to inject them on either the detected de or RF signals. Alternately, an amplitude marker, denved from the birdie, can be selected which produces a dip in RF power at each marker frequency. This (ype of marker is useful for X-Y recordings. In addition, when the outpul frequeney is coincident with a 50 . 10 , or 1 MHz comb of the internal crystal oscillator, a front-pancl LED lights. Thus, independent of the display, an operator can accurately identify a CW froquency of the 86222 B - within 75 kHzat 1 GHz ! Provision is also made for injection of an external marker for identification of specific

Frequencies between I MHz markers.
Continuous mulfi-octave vector measurements to 2.4 GHz are now possible using the HP 862?2 ingether with the HP 8-10B Network Analyzer. Previously, measurements could be made only one octave at a lime because mantal range switching of the HP 8410 was necresary. Now. the HP 86222/8620C combination amonmutially range switehes the network analyzer for one continvous display, cven from 0.1 to 2.4 GHz . Jn addition, with the 86222日 crystal marker system the important thard dimension. frequency, can be added to the polar display of the HP $8410 B$.
Increased dynamic range sealar measurements can be made using the HP 86222 A/B together with the HP 8755 Swept Frequency Response Test Scl. Heterodyne plug-ins in the range or $0.01-2 \mathrm{GHz}$ will typically have a broadband noisc output only 45 to 50 dB below the fundamental oulput signal. This noise is due to the high gatin ourput amplifier used in helerody ne approaches. The noise tcuel will be higher than most broadband deleciors' noíce level and significantly higher than the noise of the Schouky diode used in the HP 8755. This will limit the dynamic range or measurements such as the (ransmission loss of high pass. loiv pass, and noleh filecrs, or return lose of bandpass filters when broadband detectors are used. The HP 8755A, which is a 27.6 kHz receiver does not exhibit this problem when used with the HP 85222A/B. By designing an incegral modulator in the sweeper, and an ALC loop which will hundle the 27.8 KHz , the fundamental oscilIstor outpui can be modulated at 27.8 KHz without modulating the noise of the outpul amplifier. The HP 8755 will therefore nol respond to the noise. The lypical result is a 10 to 15 dB dynamic range improvement over other heterodyne sweepers and de diode detection syslems.

## Specifications with plug-in installed in an 8620C <br> maintrame

## Frequency characteristics

Range: 10 MHz to 2.4 GHz .
Accuracy $\left(25^{\circ} \mathrm{C}\right)$
CW mode: $\pm 10 \mathrm{MHz}$.
Using Programining Inpul (8620C Option 001 or 011): typically $\pm 6 \mathrm{MHz}$.
All sweep modes: $\pm 15 \mathrm{MHz}$
Accuracy of 86222 B may be enhanced to better than $\pm 200 \mathrm{kHz}$ through use of erystal markers.
LInearity (correlation between Irequency and SWEEP OUT
Vollage): typically $\pm 2 \mathrm{MHz}$.
Frequency relerence oulput: nominally $\mid \mathrm{V}, \mathrm{GHz} \pm 0.01 \mathrm{~V}$.
Frequency cal control: permits fine frequency calibration.
stablily
With temperature: $\pm 500 \times \mathrm{Hz} j^{\circ} \mathrm{C}$.
With 10\% line voltage change: $\pm 20 \mathrm{kHz}$.
With 3:1 load SWR, sll phases: $\pm 10 \mathrm{kHz}$.
With 10 dB power level change: $\pm 20 \mathrm{kHz}$
With time (after 1-hour warm-up): typically $\pm 50 \mathrm{kHz} / 10 \mathrm{~min}$.
Restdual FM: ( 10 kHz bandwidth; FM switch in NORM; CW
Modc): <S kHz, peak.
Output characteristica
Maximum leveled power ( $\mathbf{2 5}^{\circ}$ ): $>+13$ dBrn ( 20 mW ): typically $>+15 \mathrm{dBm}$.
Power Level Accuracy: (Internal leveling only): $\pm 1 \mathrm{~dB}$ (includes frequency responsc).
Attenuator Option 002: add $\pm 0.2 \mathrm{~dB} / 10 \mathrm{~dB}$ stcp.
Power Variation
Internally leveled
0.01 to $2.4 \mathrm{GHz}: \pm 0.25 \mathrm{~dB}$.

Across any $50 \mathrm{MHz}(0.03$ to 2.9 GHz ): typically $\pm 0.05 \mathrm{~dB}$.
Stability with temperature: typically $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
Externally leveled (excluding coupler and detector variation)
Crystal delector ( $-1010-100 \mathrm{mV}$ at sated oulpul): $\pm 0.1 \mathrm{~dB}$.
Power meter (with HP 432A/B/C Serles power materg): $\pm 0.1$ dB .
Unleveled indleator: lights when RF power level is set too high to permit leveling over sweep range selecled.
Resldual AM In $100 \mathrm{kHz} \mathrm{BW}:>50 \mathrm{~dB}$ below carrier at maximum power,
Spurlous signals (below fundamental)
Harmonlca: $>25 \mathrm{~dB}$ at +13 dBm : typically $>30 \mathrm{~dB}$ at +10 dBm . Non-Harmonics
0.01 to $2.3 \mathrm{GHz}>30 \mathrm{dBa}+13 \mathrm{dBm}$; lypically $>40 \mathrm{~dB}$ af +10
dBm.
2.3 to $24 \mathrm{GHz}:>25 \mathrm{~dB}$ at +13 dBm typically $>35 \mathrm{~dB}$ at +10 dBm.

Impedance: $50 \Omega$ nominal.
SWR: <1.5
Slope conirol: allows variable compensation for frequency dependent losses in test sel-up.
Outpul connector: type $N$ Female.
Modulation characteristica
External FM:
Inpul impedance: approximately $10 \mathrm{k} \Omega$.
Frequency response: typically 150 kHz .

Square wave response: guarantecs HP 8755 Frequency Response Test Set operation with 8735 Modulator Drive connected to EXT AM input.

ON/OFF ratle: $>30 \mathrm{~dB}$.
Symmetry: $45 / 55 \mathrm{aL} \geq 10 \mathrm{dBm}$ output power.
Aftenuation for +6 V input $>30 \mathrm{~dB}$.
Internal AM:
1 kHz aquare-wave On/Ofl rallo: $>30 \mathrm{~dB}$.
RF blanking On/OHf ratio: $>30 \mathrm{dE}$.
External FM
Maximum deviations for modulation frequencies
DC to $100 \mathrm{~Hz} \pm 75 \mathrm{MHz}$
$100 \mathrm{~Hz} 101 \mathrm{MHz}: \pm 5 \mathrm{MHz}$
1 MHz to $2 \mathrm{MHz} \pm 2 \mathrm{MHz}$.
Sensldivity (typleally)
FM mode: $-20 \mathrm{MHz} / \mathrm{V}$.
Phase-lock mode: $-6 \mathrm{MHz} / \mathrm{V}$.

## Crystal marker capabilities (86222B Only)

Internal eryatal markers: harmonic markers of 10 and 50 MHz usable over full 0.01 to 2.4 GH a ranee and 1 MHz markers usabic 0.01 to 1 GHz . Positive ( $\Pi$ ) or negative ( U ) valage output putses can be selected to Z-axis intensify a scope 1 race; or RF amplitude pips can be selected. (At maximum sweep speed pulse widh oplimized for approximately 10 markers/sweep.)
Accuracy of center Irequencies ( $25^{\circ} \mathrm{C}$ ): $\pm 5 \times 10^{-6}$.
Typical marker widith around center trequency
1 MHz markers: $\pm 75 \mathrm{kHz}$.
10 MHz markers: $\pm 200 \mathrm{kHz}$
50 MHz markers: $\pm 300 \mathrm{KHz}$
Temperature glabillty: typically $\pm 2 \times 10^{-3} /{ }^{\circ} \mathrm{C}$.
Marker output, mode: nominally $>3 \mathrm{~V}$.
mode: nominally -4 to -9 V . iniernally adjusı ablc.
Amplifude mode: 1ypically 0.5 dB .
External marker Inpul: generates amplitude or $\mathbf{Z}$-axis marker when sweep frequency equals external inpul frequency.

Frequency range: 0.01 to $2.4 \mathrm{GiH}_{2}$.
Marker width: rypically $\pm 300 \mathrm{xHz}$
Marker indicstor light: green LED lights coincident with crystal or external marker for accurate CH' calibration.

## General

Improved Network Measurements Capabillty
8410B Network Analyzer. inlerfacing through 8620 C programming connector allows the 8410 B to maintain phase lock oves multioctsve sweeps at all sweep speeds.
8755 Frequency Response Test Sel: direct connection of 8755
mod drive signal to external AM inpue of the $8620{ }^{\circ}$ uliminates the
need for on external mudulator.
Model number and name
Price
86222A $0.01-2.4 \mathrm{GHz}$ RF Plug-In (Internal Loveling Siandard)
$8622280.01-2.4 \mathrm{GH}$ / RF Plug.In with Crystal and
External Markers (Internal Leveling Standard)
Option 00270 dB Step Allenuator ( 10 dB steps) add $\$ 295$
Option 004 Rear Panel RF Oulpul

- High performance
- 3 MHz to 18 GHz ooverage


## Specifications

## 86200 Series

The 86200 series plug-ins feature a wide choice of bandwidths and power specifications for covering the 3 MHz to 18 GHz frequency range. The 8622210 MHz to 2400 Mhz unil and the $86290 \mathrm{~A} 2 \mathrm{GH} /$ to 18 GHz plug-in boik cover mulii-octave frequency ranges with exceptional frequency precision and RF outpul characturistics. See preceeding pages for specificalions on these plug-ins. For octave band applications, smalier range plug-ins covering, for instance, 3.2 GHz to 6.5 GHz are available with optional capablity to operate as upconverlers measurements.
Frequency linearlty: lypizally $\pm 1 \%$
Frequency seterence oulput: eypically I $V / \mathrm{GHz} \mathrm{DC}$-coupled volkage is available for referencing or phase-locking external equipment to the plug-in or for multi-octuve operation will an 8410 B .
RF power leveling: internal de-coupled leveling amplifier and PIN modulator provided.
Internal, option 001: selected by front pancl switch: refer to RF plug. in specificanons. (Sturdard on 86210 A and 86220A.)

## External

Crystal input: approximately $\pm 20$ to $\pm 250 \mathrm{mV}$ for specilied leveling al rated oulpul; for use with positive or negative polarity delcetors such as 780 Series Directional Deteciors, 423 A and $\$ 470$ Scries Crystal Dececlors; polarity swith provided in RF plug-in.
Power meter input: the 8404A Levcling Amplificr and extcrnal AM input on the 8620 Nainframe must be usod withall RF plug.ins except the 86260A. It contains an internal leveling amplifier se-

lected by front panel ALC switch.
Indicator: front pancl indicator lights when RF power level is set too high to permil leveling over entire seltected sweep range or when operating in unleveled mode.
Residual AM in 1 kHz bandwldth: $>50 \mathrm{~dB}$ below fundamental at maximum power.
External AM
Frequency response: lypically de to 100 kHz unkveled, de to 50 kHz leveled (al maximum leveled power).
Input impedance: approximately 5000 (ihns.
RF oulput connector. type (i) Female.
Dlmenslons: 152 mm whe, 127 mm high, 295 mm deep $\left(6^{\prime \prime} \times 5^{\prime \prime} \times\right.$ $\left.115 / 8^{\prime \prime}\right)$.
Weight: nct. $2.3 \mathrm{~kg}(5 \mathrm{lb})$. Shipping. $3.2 \mathrm{~kg}(7 \mathrm{lb})$.
Options:
Price
001: internal leveling. Refer to RF plug-in specifica-
tions.
002: 70 dB attenualor in 10 dB steps, available in 86210 A and 86220 A .
add $\$ 180$
004: rear panel RF ourpur
add $\$ 80$
005: APC-7 RF oulpul connector available on 86260A add $\$ 40$
008: $>+10 \mathrm{dBm}$ leveled outpul power guarameed on 86260A
H70 Series: upconverter simulation guaranlecing compatibility with HP $3710 \mathrm{~N} / 3702 \mathrm{~B}$ Microwave Link Analyzer. Any communications bans betwcen 0.7 and 1 GHz and betwecn 1.6 and 14.5 GHz can be covered with <3 nsec group deldy acrens 30 MHz . Information availatic on request.

Single band plug-ins
Refer aleo to broadband models 86222A/B (0.01-2.4 GHz) and B6290A (2-18 GHz)

Specilicalions with								
8620 C	86210^	862204	862308	862411	86242A	862508	STo	Option 006
Frequency range ( $\mathrm{GH}_{2}$ ):	$0.003-0.35$	0.01-1.3	1.8-4.2	$3.2-6.5$	$5.9-9.0$	$8.0-124$	12.4-18.0	124-18.0
Frequency accuracy CW mode (MHz) All sweep modes ( sweeg time $>100 \mathrm{~ms}$ ) ( MHz ):	$\begin{aligned} & \pm 7 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 33 \end{aligned}$	$\begin{aligned} & \pm 35 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 70 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 70 \end{aligned}$
Residual 8M ( $10 \mathrm{KKL}_{2}$ BW) CW mode (kHz peak):	$<5$	$<5$	<)	$<7$	$<15$	$<15$	<25	<25
Maxtmum leveled power' (dBm):	+13	$+10$	$>+10$	>+5	$>+10$	$>+10$	$>+7$	$>+10$
Power variation:   Internally leveled (AB): Exler:ally leveled ( 08 ): (excluding coupler \& delector variation):	$\begin{aligned} & < \pm 0.25 \\ & \text { Internal } \\ & \text { cal'd oul } \end{aligned}$	$< \pm 0.5$   levelng. put sid.	$\begin{aligned} & < \pm 12 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.7 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 1 \\ & < \pm 0,1 \end{aligned}$	$\begin{aligned} & < \pm 1 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.6 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.6 \\ & < \pm 0.1 \end{aligned}$
Spunlous signale: (dBeeiow fund. as specilled max power) Harmonics:   Nonharmonics:	$\begin{aligned} & >27 \\ & \text { (a) } 13 \mathrm{dBm} \\ & >35 \\ & \text { (3) } 088 \mathrm{~m} \\ & >60 \end{aligned}$	$>25$ $>60$	$>20$ $>60$	$\begin{aligned} & >16(3.2- \\ & 3.8 \mathrm{GHz}) \\ & >20(3.8- \\ & 6.5 \mathrm{GHz}) \\ & >60 \end{aligned}$	$>30$ $>60$	$>30$ $>60$	$>25$ $>50$	$>25$ $>50$
Source USWR: ( $50 \Omega$ nom, inlernally leveled)	<1.2	<1.3	$<1.6$	$<1.6$	$<1.5$	<1.5	<1.6	81.6
External FM:   Max devialions ( $\mathrm{MH}_{\mathbf{z}}$ ) lor modulailuin liequencies. $D C-100 \mathrm{~Hz}:$ $D C-1 M H z:$   Sansilivily (nom, $\mathrm{MH}_{\mathrm{L}} / \mathrm{V}$ )'	$\begin{aligned} & \pm 15 \\ & \pm 0.5 \\ & +3.5 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 0.5 \\ & +3.5 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 2 \\ & -4 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 2 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 2 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 2 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5(\mathrm{DC}- \\ & 200 \mathrm{kHz}) \\ & -20 /-6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5(D C- \\ & 200 \times H z) \\ & -20 /-6 \end{aligned}$
AM: Internal sinuare Wave un/oll raluo \& Ext AMt sensilivily $\mathrm{Yo}-10 \mathrm{~V}(\mathrm{~dB})$ :	$>40$	$>35$	$>25$	$>25$	$>40$	$>80$	>25	$>25$
Price: Plug.in: Oglion 001 (int. lev):	$\$ 2200$ Included	52200 Included	$\begin{aligned} & \$ 2200 \\ & \$ 390 \end{aligned}$	$\begin{aligned} & \$ 1890 \\ & \$ 3900 \end{aligned}$	$\begin{aligned} & 52350 \\ & 5390 \end{aligned}$	$\begin{aligned} & \$ 2450 \\ & \$ 390 \end{aligned}$	$\begin{aligned} & \$ 2840 \\ & \$ 550 \end{aligned}$	$\begin{aligned} & \$ 31100 \\ & \$ 550 \end{aligned}$

'Spectal trequency bands and Blrkyt perwer outputs availsble on request

- Modular construction
- >40 mW in S-band


8621日

The $8621 B$ RF Drawer houses the 86300 series RF Modules, The standard ürawer will aceept one fundamental oscillator module. In addition. with the 1.8 to 4.2 GHz fundamental oncilator modulc, the standard drawer also accepts the 0.3102 GHz heterodyne modute to give 0.1 to 4.2 GHz coveruge. The 8621 B Option 100 will accept two fundamental oscillator modules and the heterodyne module. This will a)low, for example. 0.I to 6.5 GHz coverage in one plug-in.

## Specifications

## 8821B

70 dB atep altenuator, option 010
Range: 70 dB in 10 dB sleps set by from pancl surich.
insertion loss: < 2.0 dB .
Accuracy (including frequency response):
For 10 dB : $< \pm 0.6 \mathrm{~dB}$.
For $>10 \mathrm{~dB}$ : $< \pm 5 \%$ of allenuation.
Programming capability: 4-line binary logic, open or contact closure 10 ground. (8620A/C Mainfracne only, inpul available ar programming conncetor.)
Weight: nel. $0.9 \mathrm{~kg}(2 \mathrm{lb})$.
RF power leveling: internal de-coupled Isveling amplifier provided. Internal: selecied by front pancl switch: refer to RF modulc specificalions.

## External:

Crystal input: approximately $\pm 20$ to $\pm 250 \mathrm{mV}$ for specified leveling at rated nulput: for use with posilive or negative polarity delcelors such as 780 Series Directional Delwinns, 423A and 424 Series Crystal Detectors: polarity switch provided in RF drawer.
Power meter Input: swich in RF drawer scikets proper compensalion for Models $431 \mathrm{~B} / \mathrm{C}$ or $432 \mathrm{~A} / \mathrm{B}^{\prime} \mathrm{C}$ power meters.
Indiestor: from panel indicalar lighes when RF power level is set too high to permi! levelugs over entire velocted sweep range or when operating in unleveled mode.


86300 Series

Frequency reterence output: DC-coupled vollage nominally I $\mathrm{V} / \mathrm{GHz}$ is asailable for referencing or phase locking external equipment to the sweeper or for multi-octave operation with the 8410 B . RF outpul connector: lype N Fernale.
Dimensions: 152 mm wide. 127 mm high, 295 mm decp ( $6^{\circ} \times \mathrm{s}^{\prime \prime} \times$ $11 / 1 / 37$.
Welght: ncl. $1.4 \mathrm{~kg}(3 \mathrm{lb})$. Shipping. $2.3 \mathrm{~kg}(5 \mathrm{~b})$.

## Common specifications

## 86300 erries

Frequency ilnearlty: lypically $\pm 1 \%$.
Fesidual AM in 1 kHz bandwidth: $>50 \mathrm{~dB}$ below fundamental at maximum power.

## External AM

Frequency response: typically de 10100 kHz unleveled. de 10 so kHz leveled (al maximum leveled power).
Input impedance: approximalely SOO whas.
Dlmensions: 92 mm widc, 103 mm high. 95 mm deep ( $31 / \mathrm{x}^{\prime \prime} \times 4^{\prime \prime} \times$ $3 y_{4}{ }^{\prime \prime}$ ).
Weight: net, $1.4 \mathrm{~kg}(3 \mathrm{lb})$. Shipping, $1.8 \mathrm{~kg}(4 \mathrm{lb})$.
Options
001: internal Leveling (refer to RF module specifications). Standard on 86320 B .
030: ror use with 8690/8700A. Refer 108690 Sweeper Fumily specilications.

Model number and name	Price
86211 RF Draver	$\$ 550$
8621B Options	add $\$ 80$
004: Rear panel RF oulpui	add $\$ 770$
O10: 70 dB Antenutor	add $\$ 440$

Multiband plug-Ins

Specificalions with unit Insiotled in 86218 and 8620C	86320日	863308	863318	863418	86342A	86350
Frequency range ${ }^{\text {( }} \mathrm{CHz}$ )	0.1-2.0	1.8-42	1,7-4.3	$3.2-65$	5.9-9.0	$8.0-12.4$
Frequency Acturacy: CW mode (MHz): All sweep riodes (sweaptimes >100 ms) MHz	$\begin{aligned} & \pm 15 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 39 \end{aligned}$	$\begin{aligned} & \pm 35 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 50 \end{aligned}$
Residual FM ( 10 kHz 8W) CW mode ( kHz Peak):	$<15$	<7	$<7$	$<1$	$<15$	$<15$
Maximum leveled power ${ }^{\text {2 }}$ (dBm):	$>+13$	$\begin{gathered} >+16 \\ (40 \mathrm{~mW}) \end{gathered}$	$\begin{aligned} & >+16(2-4 \cdot 6 H z) \\ & >+13(1.7-4.3) \end{aligned}$	$>+10$	>+7	> +6
Power varialion: Internally leveles Externally leveltod (d8) (Excluding coupler-detector or thermistor variation):	$\pm 0.7$ $< \pm 0.1$	$\begin{aligned} & < \pm 0.7 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.8 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.7 \\ & < \pm 0.1 \end{aligned}$	$\pm 1$   $< \pm 0.1$	$\pm 1$   $< \pm 0.1$
Spurious xigasls: (dE betow lund. al spectlied max power) Harmonics:   Nonharmonics'	$>30$ (4. 10 dBm   $>24$ (1. $13 \mathrm{d8m}$   $>30$ 0. 10 dgm   $>24$ 6. 13 dBm	$\begin{aligned} & >20 \\ & >60 \end{aligned}$	$\begin{aligned} & >20 \\ & >60 \end{aligned}$	$\begin{aligned} & >16(3.2-3.8 \mathrm{GHz}) \\ & >20(3.8-6.5 \mathrm{GHz}) \\ & >60 \end{aligned}$	$\begin{aligned} & >30 \\ & >60 \end{aligned}$	$\begin{aligned} & >30 \\ & >60 \end{aligned}$
Source VSHR: < $50 \Omega$ nom. internally levelad)	<1.6	<1.6	$<1.6$	<1. 6	$<1.5$	<1.5
Eriemal FM:   Max deviations (MHz) lor modulation irequencies. $\mathrm{OC}-100 \mathrm{~Hz}:$ $\mathrm{DC}-1 \mathrm{MHz}:$ $\mathrm{DC}-2 \mathrm{MHz}^{2}$   Sensitivity: innminal FM mode (MKz/V) Phase lock mode ( $\mathrm{MHz} / \mathrm{N}$ ):	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$
AM: Internal square wave on/oll ratio alnd Ext. AM sensitivily 10-10V(0B)	$>15$	$>40$	$>40$	$>25$	$>40$	$>40$
Price: Module: Option 001 (int. lev::	$\$ 2200$ Included	$\begin{aligned} & \$ 2050 \\ & \$ 330 \end{aligned}$	$\begin{aligned} & \$ 2300 \\ & \$ 330 \end{aligned}$	$\begin{aligned} & \$ 1980 \\ & \$ 330 \end{aligned}$	$\begin{aligned} & \$ 2110 \\ & \$ 330 \end{aligned}$	$\begin{aligned} & \$ 2110 \\ & \$ 330 \end{aligned}$

[^21]:Specias frequency bands and highes powe? outputs are available on request.

## 8690 Sweeper family, 400 kHz to 40 GHz <br> 8690 System



## 8690 System

The familiar 8690 BivO sweeper family offers exceptional value in performance. operation and verstility. With the ability to accept both BWO and solid state plug-ins. the 8690 munframe allows BWO coverage where ncoessary, and more reliable, high performance solid state coverage a lower freguencies.


## 8690B Mainframe specifications

## Sweep lunctions

START-STOP sweep: sweeps from "sturt" 10 "stop" frequency setling. Both sellings continuously adjustable over enlire fropuency range.
MARKER sweep: sweeps from "Markcr 1 " 10 "Marker 2 " frc. quency setting. Both selting: conlinuously adjuslable over enlize fre-
quency range and accurate to $1 \%$ of full scale fer all RF units $\Delta F$ oweep: sweeps upward in frequency, centered on CW selting. Width is continuously adjustable from zero to $10 \%$ of the frequency band and is calibrated in MHz . Accuracy is $\pm$ l'ay of maximum $\Delta F$ plus $\pm 10$ of $\Delta F$ being swepl.
CW operalion: single-frequency RF oulput selected by SiART/CW or MARKER I control, depending on sweep function selected.

## Sweep modes

Aulo. manual, and triggered sivecp modes: sweep indicator lighes during cach sweep.
Swaep fime: continuously adjusiable in lour decade ranges, 0.01 to 100 scconds.
Swoep oulpul: direct-coupled sawtouth, zero to approximately +15 $V$, concurtent wilh swepl RF oulpul, regardlesi of sweep widih or direction.
General
Frequency markers: two markers independently adjustable over entire able from fronl panel. A -5 V (riangular pulse is avaitable as an in. lensity marker on the reap pimel.
Internal AM: square wave modilation continuously adjustable from 950101050 Hz .
Extornal AM: frequency respunce de to 3 kHz . Deviation from CW setting approximately $6 \%$ of frequency bund pur volt.
Blanking: both negative ( -4 V ) and RF blanking available along with pen lif output.
Welght: net, 23.9 kg ( 53 lb ). Shipping. 32 kg ( 7 l lb ).
Dimenslons: 425 mm wide, 222 mm high. 467 mm deep ( $163 / s^{\circ} \times 8 \frac{1}{s^{4}}$ $\left.\times 181 / 8^{\mathrm{N}}\right)$.


## Solid state plug-ins

Solid state plug. ins from 400 kHz to 12.4 GHz are available for the 8690 mainframe. BWO replacement is both expensive and inconvenient Solid state plug-ins not only offer high reliability, but also provide low residual FM and good spectral purity. This capability allows one mainframe so cover high frequency, high power BWO applications, yet facilitate high performance. longer life solid state coverage of lower frequencies.
Solid state frequency coverage is accomplished two ways. The 8698 B covers 400 kHz to 110 MHz while the 8699 B plug-in har a 100 MHz to 4 GHz range. Utilizing the 8700 A RF deawer, 88300 series solid state modules from the 8620 swecper line (page 362 ) cin be used in the 8690 mainirame. These modules enable solid slate coverage from 1.7 to 12.4 GHz . Furthermore, since the same nodules are used with the 8620A, later expansion to the 8620 all solid slate sweepes can be made conveniently and al minimum exira cosi.

## 8700A specifications

Frequency coverage: accepls one modulc from the 86300 series lins. 1.71012 .4 GHz .

Levelling Jndicators front panel LED indicates unleveled operation.
ALC gain: adjusLs ALC loop-gain for uplimum leveling.
Sweep reference: de vollage proportional to RF freyuency oulput $\approx 40 \mathrm{~V} / \mathrm{oclave}$.
FM input: FM and phase lock inpul. Refer to RF module specifications.
Internal AM: freyuency response typically de to 100 kHz unleveled. de 1015 kHz leveled.
Welght: net, $4.1 \mathrm{~kg}(9 \mathrm{lb})$. Shipping. 5.5 kg (12 lb).

## BWO plug-ins

Both grid leveled and pin teveled BWO plug-ins are available covering I 1040 GHz . Grid leveled BWO ascillators whieve power and

- Both pin and grld leveled BWO plug-ins


Icveling conlrol by varying bias on the BWO grid. Although some deg. radation in frequency performance specifications is seen by this method. grid leveling provides an economical meants of power control and delivers higher power outpul since there are no components (pin modulators) between 8WO and front pancl output.

PIN leveled BWO plug-ins olfer superior frequency stability characterislics. As in all solid state plug-ins. leveling is accomplished through use of a pin diude modulator between oscillator and output. Use of the pin allows the oscillator to work at constant bias and into a constant inypedance losd, resulting in very low residual FM and very litte ifequency puling. Pin leveling also results in a better source impedance match.

## Common specifications: BWO plug-ins

Warranty: all BWO's arc unconditionally warranted for one year. Spurlous signals: harmonics, $>20 \mathrm{~dB}$ below CW ousput, nonharmonics. $>40 \mathrm{~dB}$ below CW sulpur.
Regldual AM: $>40 \mathrm{~dB}$ below CW outpui.
Magnalic shlelding: all plug-ins except the 8691A/B have shiclded 8WO's.
Relerence outpul: de volage proportional io frequency ousul $\approx 40$ V/oclave,
Levellng Indlcator: 「ront panel light indicates unleveled operation.

## Power varlation

Unleveled: <10 dB over full band
Externally leveled: $\pm 0.2 \mathrm{~dB}$ for A units
$\pm 0.1 \mathrm{~dB}$ for B unis
Frequency slabillty wilh temperalure: $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$.
Welght
8691-8692: $n c(7.6 \mathrm{~kg}$ ( 30 lb ). Shipping 12.6 kg ( 28 lb ).
8693-8697: nel 5.4 kg ( 12 lb ). Shipping 9 kg (20 lb).

Model number and name	Price
8700 A R drawer	$\$ 650$
Oplion 004 sear pancl RF oulput	$\$ 80$

8700A RF orawer

Pin leveled solid state plug-ins and modules

Frequency Banfe	Madel   Numbar	Marlmum Levoled Powe	frequency Accuracy	Frequences Stbidity Min		Roblud $\mathrm{m}^{\text {a }}$	Oplian DO1   Int. Caveling   Power Hration	Connector	Pricie	Option 201 Int. Leveling Prict-Mod
				Temperatius	$\begin{aligned} & 10 \mathrm{dBP} \text { pown } \\ & \text { Lovol Citynyt } \end{aligned}$					
$\begin{aligned} & 0.4-11 \mathrm{mHz} \\ & 11-110 \mathrm{mH} \end{aligned}$	96986	$\begin{aligned} & >20 \mathrm{~mW} \\ & >20 \mathrm{~mW} \end{aligned}$	$\pm 1 \% \pm 90 \mathrm{kHI}$   $\pm 15 \pm 500 \mathrm{kHz}$	$\begin{aligned} & \pm \sqrt{6} 55 \sigma^{\circ} / 6 \\ & \pm 0.658 /{ }^{\circ} \mathrm{C} \end{aligned}$		< 300 Hz /ms   $<300 \mathrm{HI} \mathrm{mm}$	$\begin{aligned} & \pm 0.368 \\ & \pm 0.3 \mathrm{~dB} \end{aligned}$	BNG'	\$1960	Slandard
$\begin{aligned} & 0.1-20 \mathrm{~Hz} \\ & 2-10 \mathrm{CH} \end{aligned}$	86995	$\begin{aligned} & 320 \mathrm{~mW} \\ & >6 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 10 \mathrm{MHz} \\ & \pm 10 \mathrm{NHz} \end{aligned}$	$\pm 750 \mathrm{kHz}]^{\circ} \mathrm{G}$   $\pm 750 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$	< $100 \mathrm{~h} \cdot \mathrm{H}$ ?   <SOO K $\mathrm{K}_{4}$ )	$<3 \mathrm{HHz} \mathrm{mls}$   <3 kHz Ima		Yrod ${ }^{\text {S }}$	\$4660	-
18-6.2 6 CH	8633081 OpL 030	$>60 \mathrm{~mW}$	$\pm 13 \mathrm{MHz}$	${ }^{\text {t } 5000 \mathrm{kHz}} /{ }^{\circ} \mathrm{C}$	ti M M	<15 H H2 8 l	$\pm 0.7 \mathrm{~dB}$	Tide 1	\$2050	\$330
1.7-4.36.37	8663318 ${ }^{\text {P }}$ Opt 030	$>20$ mik	$\pm 20 \mathrm{MHz}$	$\pm 500 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$	$\pm 1$ Mikt	<19 k ${ }^{\text {H2 }} \mathrm{fk}$	$\pm 0.30 \mathrm{Cb}$	iypt is	\$2300	\$330
32-6.5 6M	$863418{ }^{3} \mathrm{OpL} 030$	$>10 \mathrm{~mW}$	$\pm 30 \mathrm{MHz}$	$\pm 650 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$	$\pm 1 \mathrm{MHz}$	$<20 \mathrm{kH2} \mathrm{Pk}$	$\pm 0.788$	Typen	\$1980	\$330
3.9-9.06M	$86342 A^{1} 0$ pt. 030	$>5 \mathrm{miN}$	$\pm 35 \mathrm{MH}$	$\pm 750 \times H!1 /{ }^{\circ} \mathrm{C}$	$\pm 6 \mathrm{MHF}$	<23 kha Ph	$\pm 1.08 \mathrm{~B}$	Type N	$\underline{2110}$	8330
80-1206H1	8635091 0 0t 030	$>8 \mathrm{~mW}$	$\pm 40 \mathrm{M} / 4$	$\pm 1.2 \mathrm{MHL}{ }^{\prime} \mathrm{C}$	$\pm 2$ M ${ }^{\text {2 }}$	$<25 \mathrm{kHz} \mathrm{Ph}^{\text {a }}$	$\pm 10 \mathrm{~dB}$	lype N	$\$ 2110$	8330

1. Must be used with the 8700A. Includes 8690 dial screle.

Refer to page 362 for further 86300 intormation.
2. 750 BNC output availible. Add $\$ 55$.
3. Resitual FM measured with 10 絬 bandwidth. Multiply by (3) for B690A melnfirame.

Grid and pin leveled BWO plug-ins

Freauency	$\begin{aligned} & \text { Model } \\ & \text { Fumber } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { Control } \end{aligned}$	Mamum Leraled Pown	frequeney Aceursey	Fim. Sublily Wilth Fownt Level Chamet	$\begin{aligned} & \text { Retifull IM } \\ & \text { Pak } \end{aligned}$	apiliton 001   Mral. Leviling   Powe Faristion	Connedor	Firce	Option D08   Int. Levelling   Price-Adod
L0-2.0642	86931	GAID	$>100 \mathrm{~mW}$	$\pm$ : 6	$<20 \mathrm{MHI}$		$\pm 0.6$ dB	Iype N	\$3000	\$360
	\% ${ }^{\text {g }}$ 912	PIK	310 mW	$\pm 10 \mathrm{MHz}$	$\pm 500 \mathrm{LH}$	<10 kHr	-	Type N	\$3480	-
L-2-236.42	8691A   Dpt. 200	GFRIL	$>100 \mathrm{~mW}$	$\pm 1 \%$	<30 mhe	< 30 Lht:	-	type N	\$3280	-
L.7-42 ${ }^{\text {6 }}$	$\begin{aligned} & 86928 \\ & \text { Opt } 100 \end{aligned}$	PIN	>15 mW	$\pm 25$ M $\mathrm{H}^{2}$	$\pm 4 \mathrm{MHz}$	<20 ${ }^{\text {Hz }}$	-	Iyoe N	$\$ 3930$	-
20-8.0 6H2	86928	GRID	> 70 mW	$\pm 15$	$<80 \mathrm{MHz}$		$\pm 0 \mathrm{AdB}$	Typen	52900	53601
	86928	PIN	$>40 \mathrm{~mW}$	$\pm 2 \mathrm{OHH}$	4 MHz	$<15 \mathrm{AHz}^{\text {c }}$	-	Type N	53500	-
1.9-6.35 647	$\begin{aligned} & 8693 \mathrm{~A} \\ & 0.120 \mathrm{~L} \end{aligned}$	GAID	> 00 mW	$\pm$ + 18	$<80 \mathrm{MHz}$	<50 HLt	-	Iype N	\$3150	-
2.7-8.3 $\mathrm{CH}_{2}$	$\begin{aligned} & 8693 \mathrm{~B} \\ & 0 \mathrm{pl} 1.100 \end{aligned}$	PIN	>5mW	$\pm 45 \mathrm{MHz}$	$\pm 1$ MH2	$<20 \mathrm{kHz}$	$\pm 048 \mathrm{~B}$	Troe N	\$3250	\$390
4.0-2.0 $\mathrm{OH}_{\mathbf{H}}$	E693a	GRID	>35 mm	$\pm 14$	<80 NH\%	$<50 \mathrm{kH})$	tosdi	Iype N	\$2450	\$390
	8693R	PIN	$>15 \mathrm{mw}$		$\pm 1$ Miti	$<15 \mathrm{kHz}$	$\pm 0.608$	Tyoe N	\$2900	\$390
2.0-11.064	8694 Cpl. 200	GRIO	$>25 \mathrm{~mW}$	$\pm 10$.		$<80 \mathrm{kHz}$	$\pm 0.75 \mathrm{~dB}$	typen	\$2755	\$490
	$\begin{aligned} & 869813 \\ & 0 \text { opl } 200 \end{aligned}$	PIN	>15 mH	$\pm 10 \mathrm{mHz}$	4. faH	$<20 \mathrm{HHz}$	$\pm 0.15 \mathrm{dg}$	Tyod	\$3355	\$490
7.0-124 GHz	86844 Opt. 100	GRID	>25 mW	$\pm 18$	<160 M M	$<60 \mathrm{hHz}$	$\pm 0 / 5 \mathrm{ta}$	Ijpen	\$3080	\$490
	$\begin{aligned} & 8694 \mathrm{~B} \\ & \text { opt. } 100 \end{aligned}$	PIN	$>15 \mathrm{~mW}$	$\pm 50 \mathrm{MHz}$	$\pm 1 \mathrm{MiHz}$	$<20 \mathrm{hHz}$	$\pm 0.25 \mathrm{~dB}$	typon	53860	$\$ 490$
I. $0-12.4 \mathrm{CH}$	86948	GRID	> 50 mk	$\pm 1$ \%	$<160 \mathrm{NHz}$	$<60 \mathrm{kHI}$	$\pm 0.75 \mathrm{~dB}$	1900 N	\$2700	\$490
	86948	Fin	230 mk	$\pm 40 \mathrm{MHz}$	$\pm 1 \mathrm{MHz}$		$\pm 0$ \% 88	iymen	\$3300	8490
B. -18.0 EHs	86542   Obl 300	GRIO	>10 mm	415	$\pm 150 \mathrm{NHT}^{2}$	$<150 \mathrm{kHz}$	-	Tyoen	\$5200	-
	  out 300	PN	$>3 \mathrm{mk}$	$\pm 15$	$\pm 1 \mathrm{MHz}$	$<50 \mathrm{kHz}$	-	Iyder	\$5178	-
$10-15.56 \mathrm{H}_{1}$	$\begin{aligned} & \text { R695a } \\ & \text { Opl. } 100 \end{aligned}$	GR10	>25 mW	$\pm 1{ }^{\text {\% }}$	$<0.25 \mathrm{GHz}$	<150 hit	-	Flat flome Iol WR.TSWG	\$4210	-
12.A-18.06H4	B6SSA	GRID	> 40 mm	$\pm 15$.	<025 HH	< 20014		UG-19\%	\$2900	-
	8695B	Fin	>15mW	$\pm 56$ M"M\%	$\pm 1 \mathrm{NHz}$	<2.5) $\mathrm{Hz}_{2}$	-	UG-4i9/U	\$3200	-
10.0-26.5 812	8696A	GRID	$>10 \mathrm{~mm}$	$\pm 1 \%$	$<036 \mathrm{CHI}_{1}$	$<100$ +1/i	-	U6.595;4	\$3350	-
26.3-40 6H\%	86974	GRID	$>{ }^{\text {c }}$ m	148	$<0536 \mathrm{CH}$	<350 HH	-	U6.569/U	\$5400	-
1. Fower lever crange specification ion B units typicaliy 10 dB . A unita 6 dB .   2. Besidual FM measured with 10 基 bandwidth.										

Options 004 rear output 8691-8694
Oplions 004 rear oulpul 8695-8697
add $\$ 155$
add \$3s0


B690B/8706A, 8707A, 8705A


11531 A

## 8705A, 8706A, 8707A Multiband system

Multiband nystems 400 kHz to 40 GHz are available using the 8706A control unit plug-in and the 8707A RF unit holder. The 8706A allows pushbution contral of RF plug-ins instailed in the 8707A. The 8705 A multiplexer switches RF signals up to 12.4 GHz from three RF units and provides an ALC signal for the 8690 b leveling circuits.

## Spectications

8705A Multiplexer
Frequency ranges: de to 12.4 GH c Oulput port SWR $\leq 1.67$. Input por $S W \mathrm{~F} \leq 1.35$.
Insertion lass: 3 dB .
Welght: nel. 7.8 kg ( 17 fb ). Shipping, 10 kg ( 22 lb ).
8706A. Contral plug-in
Compatlbllity: the 8706A conirols up to three 8707A RF unit holdcrs: Option H26 for remote band switching of the 8699B.
Weight: net. 7.3 kg ( 16 lb ). Shipping, 11.4 kg ( 2 s lb ).

## 8707A RF Unit Heidez

Capabllty: accepts up to three 8690 plug-ins.

## Sweep functlons

Normal: permits all 8690 B sweep functions.
Proset: allows screwdriver setting of individual start/stop points.
Weight: net, 13.6 kg ( 30 lb ). Shipping, 16.8 kg ( 37 lb ).

## 8709A Phase lock synchronizer

The 8709A synchronizer is a phase comparator designed to stabjlize the frequency of both HP BWO and solid state sources by phase locking to a reference oscillator. Under these conditions system stability is determined primarily by the slability of the reference osciliator. Phase lock capability is standard on solid state plug-ins from 0.01 to 18 GHz Order Option J54 for BWO plug-ins. Information on complete phaselocked systems avalluble on requesi.

## Specifications

Input frequancy: the locking frequency of the 8709 A is 20 MHz . This signal is obtained by muluplying and mixing the reference oscillator with the microwave signal.
Sensilivity: -65 dBm .
Minimum output voltage: high level $\pm 12.0 \mathrm{~V}$ dc; low level $\pm 8.0 \mathrm{~V}$ de.
Modulation senslivity: 8690 BWO Opion J54 plug-ins, 0.5 to 6.0 $\mathrm{MHz} / \mathrm{V} .8620$ solid state plug-ins $6.0 \mathrm{MHz} / \mathrm{V}$.
Welght: net. 4.5 kg ( 10 lb ). Shipping. 5.3 kg ( 11.6 lb ).

## 8404A Power meter leveling amplifier

The 8404A leveling amplifier permits the $431 \mathrm{~B} / \mathrm{C}$ or $432 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ power meter 10 level both the 8620 and 8600 swecper plug-ins. RF oulpul is leveled to $\pm 0.5 \mathrm{~dB}$ or less whers connected to the $A M$ input of the sweeper.

## 11531A Mainframe test plug-in

The IIS3IA test unit plug-in allows complete calibration of the 8690 mainframe, including sweep modes, markers and BWO. All voltages are selected from a front panel switch.

Model number and name	Price
8404A power meter leveling amplifier	$\$ 460$
Option 001, 4 line BCD level control	add $\$ 210$
8705A signal multiplexer dc -12.4 GHz	$\$ 2560$
8706A control unit plug-in	$\$ 910$
8707A RF unit holder	$\$ 2090$
8709A phase-lock synchronizer	$\$ 1260$
I1531A mainframe test unit plug.jn	$\$ 500$

## Average power measurements

At microwave frequencies, power is the best measure of signal amplitude because, unlike voltige and current. power remains constant along a Inssless irnosmission linc. For this reason, power meters are almost indispensable for microwave measuremen. Typical applications include monitoring transmitter power levels, calibrating signal generators, leveling signal sources, and measuring uransmission characteristies ol unknown devices.

To satisfy the requirements of this broad range of applications, Hewlett-Peckard has developed a family of general purpose microwive power melers. These power meters use either a diede, Ihermucosple, or thermistor as the power sensing clement. and it is important to understand the merits of each of these sensors before choosing a partictilar power meter.

## Power sensors

Dlode power sensar
The newest addition to Hewleth-Packard's power measuring family is the 8484,4 Power Sensor. This sensor uses a Low-Bartier Schollky diode to achieve exceplional 100 $\mathrm{pW}(-70 \mathrm{dBm})$ sensitivity, and low noise and drift. Because the diode is always operated in its square law region Voltage out o (vollage in) ${ }^{2}$ \}, the 8484 A can be used to measure the truc power of complex as well as CW waveforns.

The operating principal of the diode sensor is quite simple: First, microwave energy is coupled through a precision RF siructure to the diode. The diode detecls this energy and produces a vollige proportional to input power. This voltage is then fed from the power sensor to the power meter which amplifies the signal and produces a reading proportional to the power sensorss voltage.

Although simple, this system is an eflective way of measuring power. However. Hew-let-Packard has added several refinements which improve the performance of this basic system. First, the 8484A power sensor is thermally well shielded to reduce drift caused by short-term temperaturc nuctuations such as those produced by holding the sensor whille changing connections. This low drift is absolutcly necessary in a sensor which measures down to 100 pW .
To reduce drift due to the power meter's amplifier, a chopper-stabilized system is used. By changing the low level de signal inco a low level ac signal the effects of de drifi can be eliminated.

Finally. the RF structure which couples microwave energy tw the diode is precisely engineered to achieve low SWR and, therefore. exceptional accuracy.

## Thermocouple power sensors

Hewlelt-Packard produces a broad line of thermocouple power sensors. These sensors differ from eaclo other primarily in the Irequency and power ranges that they measure. but they all share the common characterislies of low SWR, low drift, wide power range. and simple operation.

A thermocouple measurement system consists of a power sensor which produces a de output voltage proportional to the power dis-
sipated in is. and a power measurement cír. cuil, which measures this do voltage and displays it in units of power. This system is idenlical to that used with the diode sensor, the only difference being the method used to convert microwave power into a de voltage. As a rcsult, both diode and thermocouple power sensors can be uned with the same power meler.

## Thermistor power sensors

Thermistors offer an alternative means to measure microwave power. A thermistor is a rosistive element whose resistance decreases with increasing temperature. In a thermetsor type insirument, the sensor chements are conlained in a mount and form one leg of a Wheatstone bridge through a bias connection 10 the power meter. DC or AC excitation biases the thermistor elements to balance the bridge. When microwave power is applied to the sensor elements, the resulting temperature rise causes the thermistor resistance $10^{\circ}$ fall, unbalancing the bridge. Withdrawing an equal amount of bias power from the thermistors rebalances the bridge. The change in bias power is then measured and displayed on à meter.

Hewleth-Packard manufactures a broad line of thermistor power sensors which are available in both coax and waveguide mounts.

## Power meters

Hewlett-Preksed makes four average reading power meters, the 436A, 435A. 432A, and 432 B . The 435 A and 436 A are analog and digital meters. respectively, which are designed to operate with HP's line of thermocouple and diode power sensors. The 432A and 432B are analog and digital meters, respectively, which are derigned to operate with HP's line of lacemistor power sensess.

## 435A and 436A Power meters

The Hewlett-Packard 43SA and 436A power meters provide the necessary implificition and readout circuitry to convert the volt. age from any 8480 diode or thermecotiple sensor into a power reading.

With this type of power measuring system, accuracy is fundamentally dependent on tie instrument's gain being matched to the power sensor's sensitivity. Since boils therms. couple and diode sensitivily is subject to
change with variation in temperature, overload, aging. and also from unit co unit, a con. venient means of calibration is absolutely mandators. For this reason, both the 435 A and $436 \wedge$ power meters provide an accurate. built-in 1 mW reference oscillator for use in calibrating the meter-power sensor combination. Not only does this reference oscillator assure long term accuracy by allowing power meter operation to be periodically cheeked. but it alse allows the use of severat power sensors with a single power meter for measurements over wide frequency and power ranges. This reference oscillator also allows damgged power semsors io be easily replaced in the held while maimaining full spocified accaracy.
With the sensors presently available for use with the 435 A and 436 A power melers, it is possible to measure power from $100 \mathrm{pW}(-70$ $\mathrm{dB}(11)$ to $3 \mathrm{~W}(+35 \mathrm{dBm})$ a 105 dB range.
In addition to these fealures. the 436 A power meter's interface options allow full programmability of all functions and digital readout. Both HP-1B and BCD interfaces are available. With an interface option and a suitable controller, the 436 A becomes more than a simple power meter. Specilically. a HP-1B cquipped 436A power meter conlrolled by a 9820 A or 9830 A calculator can make highly accurate, digitally swepl measurements of gain or luss: calibration factor of power sensors: outpui characteristics of signal generators: and accurate measurements of CW modulated AM. A typical HP-IB sel-up is shown in Figure 1. These applieations and more are described in Application Note 196. Automated Measurements Lising the 436 A Power Meler.

## 432A and 432B Power meters

The 432 A and 432 B power melers provide the britge balancing circuitry necessasy 10 convert the resistance change of a thermistor power sensor into a power reading. Boih meters automatically mainain bridge balance and read power over a 10 microwath to 10 milliwatt (full scale) range.
Since bermistor elements are temperaturesenxing devices, they are unable to dislisguish helween applied power level changes and environmental temperature changes. As thermistor bridge sensitivity is increased.


Figure 1. Example of 438A and 8680 syslem for lrequency and amplitude resoluilon measurements
even manule temperature variations can unbalance the bridge. This results, if uncompensated, in "zero driff" of the power meter and erroneous power measurements.

To overcome these potential drift problems. the 432 A and 432 B power meters use a dual bridge arrangement. The thermistor mounts used have two thermistor clensents which are placed in close thermal proximity so that they are affecied equally by changes in ambient temperature. This technique reduces zero drifl by a factor of 100 over uncompensated thermistor meters.

Another asvinlage of this design is that when zeroed on the most sensitive range, the meter may be swithed to any other power range without rezcroing (yero-carryover is within $\pm 0.5^{5}$ on all ranges). A dc outpul proportional to the meter deflection is available for recording purposes or control of external circuits such as power merer levelling of mictowave sweep oscillators and signal generators.

## Power measurement accuracy

The accuracy of power measuremenis is dependent on several factors. These faclors include mismatch uncertainty. insirumentation uncertianty, calibration factor uncertainiy, noise, zero drin. and for digital melers, plus and minus one count ambiguly.

Of these, by far the largest source of unorrainty is mismatch.
For example. consider the effects of mismatch when measuring the oulpul of a microwave source operating at a frequency of :


Figure 2. Limils of mismatch uncertality when SWR of source is 1.5 and SWR of power sensor is elso 1.5 .


Figure 3. Raduced limits of mismatch uncertalnty when SWR of source is 1.5 and SWR of power sensor is only 1.1.

GHz with an SWR of 1.5. If the power sensor also has an SIVR of 1.5 , the cotal mismatch unceriainty which cannot be calibralcd out wishout tedious tuning at each frequency. is $\pm 8 \%(+0.34,-0.35 \mathrm{~dB})$, as shown
in Figure 2.
Because of this large uncertainty which results from using sensors with a large SWR. Hewlet1-Packard's sensors have been designed to have the lowest possible SWR. The resulting improvement in accuracy can be dramatic.
For example. if HP's 8481 A , which has a SWR of 1.1 at I GHz, were used to measure the power from the source in the previous example, uncertainty due to mismatch would arop from $\pm 88^{2}$ lo only $\pm 1.9 \%( \pm 0.083 \mathrm{~dB})$ as shown in Figure 3. The HP Mismatch Error Limits Calculator, can be used for making these mismatch calculations.
To furher increase measurement aceuracy, HP provides an individually measured calibration factor curve with each power sensor. This curve (sec Figure 4). which represents the frequency response of the sensor, is used in conjunction with the Cal Factor control on the power meter to compensale for erfective efficiency and mismateh loss. Although calibration factor is measured only al discrete points, HP also sweep frequency tests each potver sensor to assure that no narrow band anomalies exist.


Figure 4. An individually measured calioration facior curve is supplied with each power sensor.

In most applications it is sufficient 10 correct for the various losses associated with ilye sensor by using Calibration Factor data. However, source mismatch is also a fuclor in any power measurement and, as already noled. The combiliation of source and load SWR can result in scrious mismatch errors. Uncertainty can be reduced in $X$ and $P$ band by using an HP 870A Slidescrew Tuncr, ahead of the sensor. When a cuner is used. only correction for effective efficiency is neccrsary.

In addition to calibrating each power sensor, HP also thoroughly lesis each power metor to assure basic instrumentution accuracy of at leas! $\pm 1.0 \%$ on all analog models and $\pm 0.5 \%$ on all digital models.

The accuracy of power measured on HP
power meters is directly traceable to slanderds defined by the Nalional Bureau of Standards (NBS). The uncertainty of this uransfer is explicitly stated in the calibration factor uncertainty dita given in the data sheet. This information, when added to the other sourses of uncertainty, allows measurements to be defined in terms of primary standards with statements such as " 1.23 mW $\pm 4.2 \%$, tracenble to NBS." Figure $\$$ shows how this total uncertainty is computed.
Information on virtually all aspects of microwave power measurement, includiug detailed descriptsons and illustrations of instruments, measurement tecimiques, error analysis, and applictions, is contained in Application Note 64. Suurces of measurement error and systematic methods for error reduction allow selection of ine best procedure for specific applications. Application Note 64, entilled "Microwate Power Measturement," is available on request through your Hewlen-Packard Sules Office.

## Peak power measurement

A frequent requirement in microwave work is the measurement of peak power in a periodic pulse. This may be done by various indireet lechniques using thermocouples or thermistors. Hewlell-Paekard produces a versatile instrument that conveniently measures peak power directly in the 50 MHz to $2 \mathrm{CH}_{2}$ frequency renge. This instrument the model 8900B) wilizes a video comparator lechnique to bring a known de voltage, supplied by the instrument, in a known impedarce, to a level which is equal to the pulse being measured. This allows simple measurement or peak pulse power with a basic accuracy of 1.5 dB even when the waveform is nol roctangular. A custom calibration chari increases accuracy to 0.6 dB for critical applications.

## Noise measurements

The lowest level signal which can be passed through a device and successfully recovered is determined by the amount of noise added by that deviece 11 is therefore important to be able to measure noise characteristics so that minimum level performance can be speciTied

To this end, Hewlett-Packard manufactures a wide variety of noise sources and noise ligure meters. The HP system of noise measurement automatically computes the ratio of power, both before and after the insertion of exocss noise, and presents this ratio directly in JB o ${ }^{\circ}$ noise figure.

Figure 5. Sources of unceriainty in power measurements

Source of Unceriainly	Typital Values		Correciabie 10
	Thermocouple ol Diode	Thermisior	
Mismatch	$\pm 2-66$	土4-14\%	Neghabte ${ }^{3}$
Calibration'	$\pm 2-3 \%^{2}$	$\pm 2$ - 2 \%	2-3\%
Instrumentation	$\pm 0.5-1.0 \%$	$\pm 0.5-1.0 \%$	$0.2 \%$
Olher Sources ${ }^{4}$	Negligible - $\pm 1.0 \%$	Negligible $\pm 1.0 \%$	$\begin{aligned} & \text { Negligible - } \\ & \pm 1.0 \% \end{aligned}$
Total	$\pm 4.5-11 \%$	$\pm 5.5-18 \%$	$\pm 2.2-4.2 \%$
${ }^{4}$ Traceable to NES Prodable uncettainty.   ${ }^{2} 1.2 \%$ uncertainty of 50 MHz retcence oscillater bss neen added.		rhequires. laborious, time consuming tuning at each trequency.   'Zeco set, zero carry-over, noise $\pm 1$ count (digial instruments)	

## POWER \＆NOISE FIGURE METERS

Thermocouple power meter


## 436A Power Meter

The HP Model 436A Power Meter is a general purpose digital power meler intended for manual and atiomatic RF und microwave power measuremens．It is compatible with the entire series of 8480 power sensors．Depending on which power sensor is used，the 436A can measure power from $-70 \mathrm{dBm}(100 \mathrm{pW}) 10+35 \mathrm{dBm}(+3 \mathrm{~W})$ al Trequencies up to 18 GHz ．
The logically organized and uncluttered froms panel，and the conve－ nience of push－button operation and digital display make the 436A both easy to interpret and easy to use in any application．The auto ranging capability allows for＂hands－off＂operation．
The 436A measures cither absolute or relalive power．It displays ab－ solute power in either watis or dBm，while relative power is displayed 1 d d ．
The 436A Power Meser also 位U保es optional programmability； both Hewlet1－Packard Interface Bus（HP－IB）and BCD interiaces are available．Thesc interfacos allow full remote control of all power meter functions（CAL function can be programmed to cither 100 percent or the CAL（actor which has been manually set on the fromt panel）．These options may be added by the user at a lates lime．

## Specifications

Frequency Range： 100 kHz to 18 GHz （depending on Power Sensor used）．

## Powar Range

WIth 8481A，8482A or 84日3A sensors： 50 dB with 5 rull scale tanges of 10 and $100 \mu \mathrm{~W}$ ； 1,10 and 100 mW ．The display is aiso cal－ ibrated in dBm and dB from -20 dBm to +20 dBm full scale in 10 － dB sleps．
With 8481H or 8482H gensors： 45 dB with S full－seale ranges of 1 ． 10 and 100 mW ，I and 3 wats．The display is also calibrated in dBm and dB from 0 dBm to +30 dBm Full scale in $10-\mathrm{dB}$ steps，and a 5 － dB step from +30 dBm to +35 dBm ．
With 8484 A sensor： 50 dB with S full seale ranges of $1.10,100$ $n W: 1,10 \mu \mathrm{~W}$ ．The display is also calibrated in dBm and dB from -60 dBrm to－ 20 dBm full scole in 10 dB steps．

## Accuracy

Insirumentation
Watt mode：$\pm 0.5 \%$ in ranges I through $4 ; \pm 1.0 \%$ in range $S$ ． dBm mode： $\pm 0.02 \mathrm{~dB} \pm 0.001 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ in range I through 4：$\pm 0.04$ $\mathrm{dB} \pm 0.001 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ in range 5 ．
dB （ AEL ）mode： $\pm 0.02 \mathrm{~dB} \pm 0.001 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ in ranges I through 4 ： $\pm 0.04 \mathrm{~dB} \pm 0.001 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ in range 5 ．

Zero：automacic，operated by a front－panel switch．
Zero Sel：$\pm 0.5 \%$ of full scale on most sensitive range．lypical．$\pm 1$ count on oher raoges．
Zero Carry Over：$\pm 0.2 \%$ of full scale when zeroed on the most sensitive range．
Noise：with 8481A，8482A and 8483A sensors；$\pm 0.5 \%$ of full scale peak－to－peak on the most sensitive range eypleal．Less in higher ranges．

## Long Term

Zero Drith（ $\mathrm{hrs}_{\text {）：}} \pm 2 \%$ of full scale on most sensitive range（typical at constint temperature）．
Response TIme：（0 to 99\％or reading）
Range I＜10 seconds（nost sensitive range）
Range $2<1$ second
Ranges 3 through $5<100 \mathrm{mscc}$
Typical，measured al recorder ouppul）．
Reference Oscillator intermul so MHz oscilator with Type N femule connecior on Iront pancl or rear pancl（Opuion 003 only）．

Power oulput： 1.0 mW ．Factory sel to $\pm 0.7 \%$ traceable to the Na － Lional Bureau of Slandards．
Aceuracy：$\pm 1.2 \%$ worst case（ $\pm 0.9 \%$ rms）for one year $\left(0^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$ ）．
Cal Factor： 16 －position switch normalizes meter reading 10 account for calibration factor．Range $85 \% 10100 \%$ in $1 \%$ steps．
Cal Adjustment：front－panel adjusiment provides capability 10 ad－ just gain in meter to match power sensor in use．
Recorder Oulput：proportional to indicalad power with I vall cor－ responding 10 full scale and 0.316 volis to -5 dB ： $1 \mathrm{k} \Omega$ oulput impedance，BNC connector．
RF Blanking：open collector TTL：low corresponds to blanking．
Dlsplay：digital display with four digits． $20 \%$ over－range capability on all ranges．Analog meler：uncalibrated peaking metcr to see fast changes．
Power：100，120，220．or $240 \mathrm{~V}+5 \%,-10 \%, 48$ to 440 Hz ，less than 20 watts（less than 23 with Option 022 or 024 ）．
Walght：net， $4.5 \mathrm{~kg}(10 \mathrm{bb})$ ．Shipping， $5.5 \mathrm{~kg}_{\mathrm{E}}(12 \mathrm{lb})$ ．
Olmenslons： 134 mm high． 213 mm wide． 279 mm deep $(51 / 2 \times 8 \% / 8 \times$ 11 in．）．
Accessorles Furnished： 1.5 m （ 5 fi ）cable for power sensor； 2.3 m （ 7.5 n ）power cable．Main plug shipped to match desúnation require－ ments．

## Accessories Availab！e

To rack mount one 436A by itself order：＊
5020－8862 Rack Mount Flange（two provided）．
$0050-0515$ Front Horizonial Lock Links（four provided）．
$0050-0516$ Rear Horizontal Lock Links（iwo provided）．

Optiona
Price
002：inpul connector placed on rear pancl in parallel
with front
003：inpul connector and reference oscillator oulput on rear pancl only
add $\$ 25$
add $\$ 10$
009： 3 m （ 10 ft ）cable for power sensor
010： 6.1 m （20 fi）cable for power sensor
011： 15.2 m （ 50 ft ）cable for power sensor
012： 30.5 m （ 300 ft ）cable for power sensor
013： 61 m（200 n）cable for power sensor
022：digital input／outpu！，fully compatble wilh HP
Interface Bus（HP－｜B）
024：digital inpul／oulput BCD Interface
436A Power Meter
add $\$ 30$
add $\$ 55$
add \＄105
add $\$ 155$
add $\$ 260$
add $\$ 375$
add $\$ 275$


## 435A Power meter

The 43SA Power Metcr is an analog power meler，compasible with the entire scries of 8480 pawor sensars．Depending on which sensor is usod，the 435 A can measure power from -65 dBm to +35 dBm ．full scale，al frequencies from 100 kHz to 18 GHz ．This versalile instru－ mont alsu fealures＜ 1 bo Instrumentation uncertainty，low noise and driff，auto－zero，recorder outpul，optiond ballery operation．and long cable optinus（up 10200 it ）．

## 11683A Range calibrator

The 11683 A calibrator is specifically designed for use with the 835 A and $436 \wedge$ puwer meters．Is allows verification of full－scale meter read－ ings on all ranges，as well as meter tracking．Simply connect the cable between the power metes and calibrator．The CAL ADJ control．on the power meter，is used to set the meter to full scale on the I mW range．The citibrator and meter are then stepped through the other ranges veritying accursicy within $\pm 1 \%$ plus noise and drin．The II683＾also has a polarity swizch which tests the Aulo－Zero circuit．

## Specifications

## 435A power meler

Frequency range： 100 kHz to 18 GHz （depending on power sensor used）．

## Power range

43SA calibrated in watts and dB in 5 dB steps．
Wlth 8481A，8482A，or 8483A：$-25 \mathrm{dBag}(3 \mu \mathrm{~W}) 10+20 \mathrm{dBm}(100$ mW）「ull scarle．
With B481H or $8482 \mathrm{H}:-5 \mathrm{dBm}(0.3 \mathrm{~mW})$ ） $0+35 \mathrm{dBm}(3 \mathrm{~W})$ full scale．
WIth 8484A：$-65 \mathrm{dBm}(300 \mathrm{pW})$ to $-20 \mathrm{dBm}(100 \mathrm{~W})$ rull scale． Instrumentalion uncertalnly：$\pm 1 \%$ of fulk scale on all ranges（ $0^{\circ}$ to $55^{\circ} \mathrm{C}$ ）．
Zero carryover．$\pm 0.5^{\%}$ of full scale when zeroed on the most sensi－ live range．
Reference Oscillator：internall 50 M Hz oncillator with Type N female connector on front panel or rear pancl（Oplion 003 only）．

Power output： 1.0 mW ．Factory set to $\pm 0.7 \%$ Iraccable to the Na－ lional Burcau of Standards．
Accuracy：$\pm 1.2 \%$ worst ciase（ $\pm 0.9 \%$ rms）for one year $\left(0^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$ ）．
Noise and drith：（\％of full scale peak on mosi sinsitive range；sypical． al constant（emperature）．
8481A，8482A，8483A：＜I．5\％：less on higher rances．
8481H，8482M：＜1．5\％：＜ $25^{\circ}$ of full scale on top range：lexs on other ranges．
8484A：＜5ce：liss on higher ringes．
Respones Itme： 2 seconds on $3 \mu \mathrm{~W}$ range． 0.75 sceond on $10 \mu \mathrm{~W}$ range． 0.25 second on $30 \mu \mathrm{~W}$ range，and 100 masec on alk other ranges． （Typical，time constant nicasured at recorder outpul．）
Zero：outomatic，operated by front panel switch．
Cal factor：16－Position switch normalizes meter reading to account

for calibration factor or effective afficiency．Range $85 \%$（o $100 \%$ in 1 券 sleps．
Recorder output：proporional to indicated power with I volt corre－ sponding to full scale；I $k \Omega$ output impedance，BNC connector．
RF blanking output：provides a contacl dosure 10 ground when auto－zero mode is engaged．
Cal adt：front panel adjustment provides capability to adjust gain of meter to match power sensor in use．
Power： $100,120,220$ ，or $240 \mathrm{~V}+5 \%,-10 \%, 4810440 \mathrm{~Hz}$ ，less than 4 watts（exss than 10 walts fior option 001 when recharging battery）．
Weight：nel， $2.6 \mathrm{~kg}(5 \mathrm{lb}, 12 \mathrm{oz}$ ）．Shipping， $4.2 \mathrm{~kg}(9 \mathrm{lb}, 3 \mathrm{oz})$ ．
Dimeneions： 155 mm high． 130 mm wide，and 279 mm deep $\left(6 /{ }^{3} \times\right.$ S1／8 $\times 11$ in．）．
Accessories furnishad： 1.52 m （ 5 I ）cable for the power sensor； 2.29 os（ $71 / 2 \mathrm{fi}$ ）power cable．Mains plug shipped to match destination re－ quirenents．

## Accessories avaliable

11076 A carrying case．
50608762 rack adapter frame（holds three insiruments the size of the 435A）．
Combining cases
1061A： 286 mm （ $11 \% \mathrm{in}$ ）deep．
1052A： 416 mm （ $161 / \mathrm{in}$ ．）decep．
The combining cases aooept the 1i－module Hewlelt－Packard instru－ ments for bench use or rack mounting．See l0S\＄A data sheet for de tails．

## 116日3A Aange calibrator

Calibratlon functions：outputs corresponding to meter readings of 3 ． 10．30， 100 and $300 \mu \mathrm{~W}: I .3,10,30$ ，and 100 mW ．
Calibration uncertainty：$\pm 0.25 \%$ in all ranges．
Power：IIS or $230 \mathrm{~V} \pm 20 \%$ ； $50-400 \mathrm{~Hz}$ ．less than 2 W ．
Welght：net， 1.13 kg （ 2 lb 8 or ）．Shipping． 1.9 kg （ 4 lb 3 oz ）．
Dlmensions： 88.9 mm high， 133.35 mm wide，and 215.9 mm deep （ $31 / 2 \times 51 / 4 \times 81 / 2 \mathrm{in}$ ．）．

## Optlons

Price
001：rechargeable battery installed．provides up 1016
hours of conlinuous operation
add $\$ 100$
002 inpul connector placed on rear panel in parallel whih front
003：input connedor and reference oscillator oulput on rear panel only
009： 3.05 m （10－foo1）cable for power sensor add $\$ 30$
010： 6.10 m （20－foot）cable for power sensor add $\$ 55$
019： 15.24 m （ 50 －foot）cable for power sensor add $\$ 105$
012： $30.48 \mathrm{~m}(100-5001) \mathrm{cable}$ for power sensor add $\$ 155$
013： $60.96 \mathrm{~m}(200$－foot cable for power sensor add $\$ 260$
Model number and name
11683A range calibrator
$\$ 525$
435＾power meter
$\$ 850$

## Power sensors



8482A


## 8480 Series power sensors

The 8880 Series sensors are designed for use with the 435A or 436A power meters. They cover a Irequency range of 100 kHz to 18 GHz and a power range of $-70 \mathrm{dBm} 10+35 \mathrm{dBm}$. These sensere feature very low SWR which results in a significant reduction in measurement uncertainty due 10 mismatel. Each sensor is individually calibrated for CAL FACTOR to allow compensation for power sensor efficiency and mismatch due to sensor SWR. The new model 8484A high sensilivity power sensor offers an extended range capability down to - 70 $d \mathrm{Br}$ with exceptional temperature slability. Models 8481 H and 8482 H have an inicrnal attenuator 10 allow measuremenis 103 W .

## 8481A Power sensor

Wide frequency and amplltude range
Measure power from $0.3 \mu \mathrm{~W}$ to 100 mW . full scale. over a frequency range from 10 MHz to 18 GHz with a single power sensor.

## Low SWR reduces measurement uncertainty

A silicon monolithic thermocouple is used as the sensing element and its small physieal size allows reduction of SWR to $<1.10$ over the range of $50 \mathrm{MHz} 102 \mathrm{GHz} ;<1.18$ up $1012.4 \mathrm{GHz}_{\text {; }}$ and $<1.28$ to 18 GHz This assures low mismatch uncertainty, usually the largest single source ol error in power measurement.

## Indluidually callbrated

Each sensor is individually calibraled, uraceable to the National Bureau of Standards. and a Cal Factor control on the meter compensates for powir sensor efficiency al any frequency. In addition, a precise Automalic Network Analyaer printou! at 17 frequencies for Cal Factor and reflection coefficient in magnitude and phase is supplied. This mears you can climinate mismatch uncertainty by witculating the mismalch error.


8484A

## 8481H Power sensor

Higher power version of the 8481A power sensor
Measure power from 30 KW to 3 W , full seale. ever a frecuency range from 10 MHz 1018 GHz with a single power sensor.

## B482A Power sensor

AF sensor (similar to the 8481A power sensor)
Measure power from $0.3 \mu W$ to 100 mW . full scale. over a frequency range from 100 kHz 10 4.2 GHz with a $S W R<1.20$ over the range of 300 kHz to $) \mathrm{MHz}$; $<1.10$ befween I MHz and 2 GHz and $<1.30$ to $\triangle \mathrm{GHz}$.

## 8482H Power sensor

Higher power verslon of the 8482A power sensor
Mcasure powet from $30 \mu \mathrm{~W}$ to 3 W , full scale, over a frequency range from 100 xHz 10 4.2 GHz with a single power sensor.

## 8483A Power sensor

75 ohm RF gensor (simllar to the B4B2A power sensor)
Measure $75 \Omega$ source power from $0.3 \mu \mathrm{~W}$ to 100 mW . full scalc, over a frequency range from 100 kHz to 2 GHz with a SWR $<1.18$ over the range of 100 xHz 10 2 GHz .

## 8484A Power sensor

## High sensitivity sensor

Measure power from 100 pW to $10 \mu \mathrm{~W}$ over a 「requency tange of 10 MHz 10 I8 GHz with a single power pensor.

## Low noise and drift

Noise and deife have been reduced to a minimum in this sensor, thus making readings at low power levels reliable and accuratc. Noise and drif when used with the 435A power meter ate lypically lens than S名 of full scale on the 300 pW range - only IS pH . Noise and drift are even less with the 436A power meter.

## 8480 Series Specifications

Model	Frequency Range (GHz)	Hominal Impedance	SWR Marimum (Reflection Cotincieni)	Power Rance	Marimum Power	Dimenstons mm (in.)	Shipping Meighl ki (b)	85 Connecior	Price
8481A	$10 \mathrm{MHz}_{2}-18 \mathrm{GHz}$	5081	$\begin{gathered} 1.1(0.048) \\ 50 \mathrm{MHz}-2 \mathrm{GHz} \\ 1.18(0.082) \\ 30 \mathrm{mHz}-50 \mathrm{MHz} \\ 2-12.4 \mathrm{GHz} \\ 1.28(0.123) \\ 12.4-18 \mathrm{GHz} \end{gathered}$		300 mW Av. 15 W Peak $30 \mathrm{~W} \mu \mathrm{~S}$ (Der pulsb)	$\begin{gathered} 30 \times 38 \times 105 \\ (13 / 1, \times 14 \times 414) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (1) \end{aligned}$	$N(0)$	$\$ 400$
Option 001								APC. 7	$\begin{aligned} & k d d \\ & \$ 75 \end{aligned}$
84814*   (Farmerly 8481A-H01)	$10 \mathrm{MHz}-18 \mathrm{GHz}$	500	$\begin{gathered} 1.2(0.091) \\ 10 \mathrm{MHz}-8 \mathrm{GHz} \\ 13(0.13) \\ 8-12.4 \mathrm{GHz} \\ 1.5(0.20) \\ 12.4-18 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 30 \mu \mathrm{~W} \\ \text { to } \\ 3 \mathrm{~W} \end{gathered}$	3.5 WAv . 100 W Peak $100 \mathrm{~W} \mu \mathrm{~s}$ (Der puise)	$\begin{gathered} 30 \times 38 \times 149 \\ (13 / 40 \times 1 \% \times 5 \%) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (1) \end{aligned}$	$N(\mathrm{~m})$	\$495
8482\%	$100 \mathrm{kHz}-4.2 \mathrm{GHz}$	5012	$\begin{gathered} 1.1(0.048) \\ 1 \mathrm{MHz}-2 \mathrm{CHz} \\ 1.2(0091) \\ 300 \mathrm{kHz}-1 \mathrm{MHz} \\ 1.3(0.13) \\ 2-4.2 \mathrm{GHz} \\ 1.6(0.231) \\ 100-300 \mathrm{~Hz} \end{gathered}$	$0.3 \mu \mathrm{~W}$   to   100 mW	$\begin{gathered} 300 \mathrm{~mW} \text { Av. } \\ 15 \mathrm{WPeak} \\ 30 \mathrm{~W} \mu \mathrm{~s} \\ \text { (0er pulse) } \end{gathered}$	$\begin{gathered} 30 \times 38 \times 105 \\ (13 / 16 \times 14 \times 442) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (1) \end{aligned}$	$N(m)$	\$400
8482H ${ }^{*}$ (Formerly 8182A.HOI)	$100 \mathrm{kHz}-4.2 \mathrm{GHz}$	$50 \cap$	$\begin{gathered} 1.2(0.091) \\ 100 \mathrm{kHz}-4.2 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 30 \mu \mathrm{~W} \\ \text { to } \\ 3 \mathrm{~W} \end{gathered}$	3.5 WA A 100 W Peak $100 \mathrm{~W} \mu \mathrm{~s}$ (per pulse)	$\begin{gathered} 30 \times 38 \times 149 \\ (13 / 14 \times 14 \times 5 \%) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (1) \end{aligned}$	N (m)	\$495
8483A	$100 \mathrm{kHz}-2 \mathrm{GHz}$	781	$\begin{gathered} 1,18(0.082) \\ 600 \mathrm{kHz}-2 \mathrm{GHz} \\ 1.8(0.286) \\ 100-600 \mathrm{~Hz} \end{gathered}$	$0.3 \mu \mathrm{H}$ to   100 mW	$\begin{aligned} & 300 \mathrm{~mW} \text { Ay. } \\ & 10 \mathrm{~W} \text { Pealh } \\ & 30 \mathrm{~W} \mu \mathrm{~s} \\ & \text { (0er pulse) } \end{aligned}$	$\begin{gathered} 30 \times 38 \times 105 \\ \left(\left\{3 / 16 \times 14 \times 4^{1 / 6)}\right.\right. \end{gathered}$	$\begin{aligned} & 0.5 \\ & (1) \end{aligned}$	$\begin{gathered} N(m) \\ 75 \Omega \end{gathered}$	\$400
8484A	$10 \mathrm{MHz}-18 \mathrm{GHz}$	502	$\begin{gathered} 1.15(0.070) \\ 30 \mathrm{MHz}-4 \mathrm{GHz} \\ 1.2(0.091) \\ 4 \mathrm{GHz}-10 \mathrm{GHz} \\ 13(0.13) \\ 10 \mathrm{GKz}-18 \mathrm{GHz} \\ 1.4(0.17) \\ 10 \mathrm{MHz}-30 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 0.1 \mu \mathrm{~W} \\ 10 \\ 10 \mu \mathrm{~W} \end{gathered}$	$\begin{gathered} 200 \mathrm{~mW} \text { Av. } \\ 200 \mathrm{~mW} \text { Peak } \end{gathered}$	$\begin{gathered} 40 \times 50 \times 170 \\ (19 / 16 \times 2 \times 611 / 10) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (1) \end{aligned}$	$N(m)$	\$550

- Only spectications listed in this table. apply 10 8481H arta 8482i No other specifications are Implied.


## Uncertainty of calibration factor data for 8482A and 8483A

Fiequency (MH7)	Sum olUncerlainlies$(\%)^{1}$		ProbableUncertainiles(\%)	
	8482h	84837	8482A	8483A
0.1	1.85	3.05	1.33	1.79
0.3	1.85	3.05	1.33	1.79
1.0	1.85	3.05	1.33	1.79
3.0	1.85	3.05	1.33	1.79
10.0	1.85	3.05	1.33	1.79
30.0	1.85	3.05	1.33	1.79
500	1.45	1.75	1.03	1.07
100.0	295	3.25	1.58	1.61
300.0	2.95	3.25	1.58	1.61
10000	2.95	3.25	1.58	1.61
2000.0	3.45	3.75	1.92	1.94
4000.0	2.95	-	1.58	-

Uncertainty of calibration factor data for 8481A ad 8484A

Erequancy (GHz)	Sum of Uncerianties (\%)		ProbableUncerlainties$(\%)^{2}$	
	84818	8484月	84814	8484
1.0	2.95	-	158	-
2.0	3.45	4.70	1.92	2.25
4.0	2.95	4.36	1.58	1.97
8.0	2.95	4.55	1.58	200
82	2.85	4.47	1.46	1.91
10.0	2.85	4.42	1.46	1.89
12.4	2.85	4.71	1.46	1.98
14.0	505	7.00	2.95	324
160	5.45	7.62	3.07	3.40
18.0	5.45	7.15	3.07	3.30

[^22][^23]
## Thermistor power meters <br> Models 432A and 432B

- High accuracy
- Automatic zero
- Long cable options
- Analog recorder outpuis
- BCD digital output (432B)


432A


## 432A and 432B Power meters

DC brldge circuit: Using de inslead of the conventional 10 kHz bias current results in three benefies: 1) No signal entission from the mount to disturb sensitive circuils, 2) meler zeroing is independent of the impedance connected to the RF input of the thermistor mouni, 3) (lac instrument is not a lleeted by capacilance changes caused by movement ol the thermistor mount eable.
High securacy-no thermoelectrlc error: high actafacy over a wide tenperature range is featured on the 432 Power Meters. By mess suring the outpul voleage of the thermistor bridges, and computing the corresponding power. cven higher accuracy of $\pm 0.2 ?: \pm 0.5 \mu W$ can be oblsined.

Accuracy is mainlained on even lle most sensifive range because the error due to thermaelectic cffect is ruduced to a negligible level. Callbrafed mounts: each thermisior mount is furnished with data stating the Calibration Factor* and Effective Efficiency" at various frequencien acoms the operating range. For casy and accurate power measurements, the front panel of the 432 contains a calibration factor control, calibrited in l's. seps from $88: \pi$ for losses in the mount and eliminates the need for calculation.
 meswered by the power meter to the miccowave powet meitent on and absorted by the mount, respectively.

Instrument type: automatic, self-halancing powner meter for use with temperasure-compensated thermistur mounl.

## Specilications

## Power range

432A: seven sanges with full scole readings of $10,30,100$, and 300 $\mu \mathrm{W} .1 .3$, and 10 mW ; ulso calibrated in dBm from $-20 \mathrm{dBm} 10+10$ dBm full seale in 5 dB steps.
492B: four ranges with full scale readings of 10 and $100 \mu \mathrm{~W}$. and I and 10 mW .

## Nolese

Less lban $0.25 \%$ of full scalc peak.

## Response time

Al recorder output, 35 ms time constants (typical).

## Fline zero

Automatic. operated by front panel switch.

Zero carryaver
Less than $0.50 \%$ of full scale when zecoed on most senstive range.
RFI
Meets all condirions specified in MIL-1-6181D.

## Meter

432A: Lat-band suspension, individually calibrated, mirror-backed seales. Milliwall scale more 1 han $108 \mathrm{~mm}\left(41 / 1^{\circ}\right)$ long.
432B: three digits with one digir overrange. $20 \%$ oversange capability on all ranges.

## Callbratlon factor control

13-position swich normalizes meter reading 10 account for thermislor mount calibration factor. Range $100 \%$ to $88 \%$ in 1 ? situs.

## Thermistor mount

External temperatuse-compensated thermistor mounts required for operalion (HP 478. 8478B, and 486 Series: mount resistance 100 or 200 obms).

## Pecorder outpurt

Proportional 10 indicaled power with I voli corresponding to fullscale. I kll outpul impedance.

## BCD outpul

8. 4, 2, I code: " "" positive. TTL compatible logic. Operates with HP 505SA Digital Recorder. "Print" and "Inhibis" lines available. (432B only.)

## Bridge oulputs

(VRF and VCOMP): direct connections to the thermistor bridges; used in instrument callbration and precision power midsurements.

## Power consumption

432A: 115 or 230 V ac $10 \%$. $5010400 \mathrm{~Hz}, 2 \frac{1}{2}$ walls. Oplional rechargeathle ballery provides up to 24 hours continuous operation. Aulomalic ballery rucharge.
432B: 115 or $230 \mathrm{Vac} 10 \%$, 50 10 400 Hz .10 wates.

## Weight

432A: ncl. $3.1 \mathrm{~kg}(6 \mathrm{lb} 14 \mathrm{oz}$ ): shipping, $4-7 \mathrm{~kg}$ ( 10 lb 5 oz ).
432日: nel. 3.1 kg ( 6 lb 14 oz ); shipping, $4.7 \mathrm{~kg}(10 \mathrm{lb} \mathrm{Soz}$ ).

## Dimenslons

130 mm wide 155 mm high. 279 mm decp ( $51 / \mathrm{s}^{\prime \prime} \times 6 y_{3} 3^{\prime \prime} \times 11^{\prime \prime}$ ).

## Accessories Purnished

1.52 in ( 5 [ $)$. cable for Hewiett-Packard temperaluse-compensated thermistor mounts: $2.29 \mathrm{~m}(7 \mathrm{fl} / \mathrm{f})$ power cable. Mains plug shipped 10 match destination requirements.

## 432A, 432B Power meler options

Prlce
001: rechargeable battery installed, provides up to 24 hours continuous operation (432A only)
002: inpul connector placed on rear panel in purallel with fronl
D03: input connector on rear parci only
Nole: themistor mount cable impedance is part of the 432 input bridge circuit. For cables over 10 reet long, the bridge is matched to specific cable oplions. so the various cables should not be interchanged.)
009: $3.05 \mathrm{~m}(10 \mathrm{n})$ cabli for 100 -ohm or 200 -ohm mouni
010: 6.10 m (20 ft) cable for 100 ohm or 200 -ohm mount
011: $15.24 \mathrm{~m}(50 \mathrm{fi})$ cable for 100 -ohm or $200-0 h \mathrm{~m}$ mounl
012: 30.48 m ( 100 fi ) cable for 100 -ohm or 200-ohm mouni
013: $60.96 \mathrm{~m}(200 \mathrm{n})$ cable for 100 -ohm or 200 -ohm mouni
Model number and name
432A Power meter
432B Power meicr
$\$ 1325$

# POWER \& NOISE FIGURE METERS <br> Thermistor mounts, Peak power calibrator \& power meter calibrator Models 4784, 8478B, 486 Serles, and Models 8900B \& 8477A 



## Temperature compensated thermistor mounts

High efliciency snd good RF match are characteristic of the HP 478A and 9478B Coaxial and 486A-Series Waveguide Thermistor mounts which, in conjunction with the 432 Power Meter, provide you with high accuracy cven in routine power measurements. These thermistor mounis are teroperature-zompensated for low drift, even in the presence of thermal shocks. permitting measurement of microwave power as low as one microwatl. Each mount contains data showing Calibration Factor and Effective Efficiency at six frequencies, directly traceable to the National Burcau of Standards at those frequencies where NBS provides calibration service.
Specifications

H: Madel	frequency   Thit. OHI	Malmurn SHR	Operating resistance ( $\quad \mathrm{hms}$ )	Price
412 ${ }^{\text {a }}$	10 MHz to 10 GH :	1.75, 10 to 25 MHz 1.3, 25 MHz to 7 GHz $1.5,7$ to 10.6 Hz	2.00	\$15
847881	$\begin{gathered} 10 \mathrm{MHz} \text { to } \\ 18 \mathrm{GHz} \end{gathered}$	1.75. 10 to 30 MHz 135,30 to 100 MLE 1.1, 0.1 to 1 GHz $1.35,1$ to 12.4 GH [.6, 12.4 to 18 GHz	200	233
\$4B6A	2.60103 .93	1.35	100	H50
64862	3.25 .5105 .85	1.5	100	573
M85A	5.30108 .20	1.5	163	\$395
H886A	7.051010 .0	1.5	100	123
X4EEA	8.20 to 12.4	1.5	100	523
Hatha	10.06150	1.5	100	$\$ 395$
P485	12.41018 .0	1.5	100	5290
RS86a ${ }^{2}$	18.0 to 25.5	2.0	200	5 E 95
1486 ${ }^{\text {a }}$ ?	28.5 to 40,0	2.0	200	475

[^24]

## 89008 Description

The HP 8900 B peak power calibrator provides a convenient means for measuring the peak RF power of pulses in the range from 50 to 2000 MHz . The power level is read out directiv on the panel meler and is completely independent of repelition rate and pulse width ( $>0.25$ $\mu \mathrm{sec}$ ).

## Specifications

Radlo frequency mearurement characteriatics
Frequency range: 50 10 2000 MHz .
RF power range: $10-200 \mathrm{~mW}$ peak full scalc (may be readily increased through use of external atemuators or directional couplers).
RF power accuracy: $\pm 1.5 \mathrm{~dB}( \pm 0.6 \mathrm{~dB})$ with custom callbration curve furnished with insirument).
RF power preclsion: 0.1 dB .
RF puise width: $>0.25 \mu \mathrm{~s}$.
RF repetition rale: 1.5 MHz maximum.
AF impedance: SO ulms.
RF YSWR: <1.2s.
Monitor output
Level: $>0.2$ volt for 20 mW input (nummal)
Impedance: 150 ohms nominal.
Bandwldth: $>7 \mathrm{MHz}$.
Phyaical characteristics
Dimensions: 197 mm wide. 156 mm high, 279 mm decp ( $74 / 4 \times 61 \times /{ }^{\prime \prime}$ x $\mathrm{II}^{\prime \prime}$ ).
Weight: net. $4.5 \mathrm{~kg}(10 \mathrm{lb})$. Shipping, $5.9 \mathrm{~kg}(13 \mathrm{lb})$.

## Power

IOS to 125 or 210 to 250 volss. 50 to 60 Hz

## 8477A Description

The 3477A Calibrator is specifically designed for use with the 632 Power Meter. It altows you to verily full-scale meter readings on all ranges. and meter tracking. Simply conncer three cables between the power meter and calibrator, no charts or additional instruments are required.

## Specifications

Galibration polnta: outputs corresponding to meter readings of: $0.01,0.03,0.1,0.3,1.0,2.0,3.0$ and 10 mW (for mount resistance 5 wilch seltings of boih 100 and 200 ohms).
Callbration uncertainty: $\pm 0.2 \%$ on the top five ranges, and $\pm 0.5 \%$ on the 0.01 and 0.03 mW ranges from $+20^{\circ} 10+30^{\circ} \mathrm{C}$.
RFI: meets all conditions specified in MIL-1-6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 5(0)-400 \mathrm{~Hz}$. approximately 2 W .
Weight: nel. $2.0 \mathrm{~kg}(41 / \mathrm{ib})$. Shipping. $2.9 \mathrm{~kg}(61 / \mathrm{lb})$.
Dimenalons: 155 mm high. 130 mm wide, 203 mm decp $\left(6 / 3^{2} \times 5 / /^{\circ}\right.$ $\times 87$.

Model number and name
8900 B Peak power calibralor
8477A Power meter calibrator

Noise figure meters; sources<br>Models 340B, 342A; 343A, 345B, 347A, 349A

- Reads noise figure directly in dB
- Completely automatic measurement to 18 GHz
- No periodic recalibration needed
- Measure noise figure of radars, receivers, and amplifiers


3408


Flgure 1. Nolse figure measurement.
In microwave communications, radar, cic, the weakest signal that can be deteced is usually determined by the amount of noise adted by the receiving systen. Thus, any decrease in the amounl of noise gencrated in the recciving system will produce ar increase in the output signal-to-noise ratio equivalent to y cortesponding increase in received signal. From a performance standpoinf, an increasc in the sig-nal-to-noise ratio by reducing the amount of noise in the receiver is more economical than incriasing the power of ite iransmitter.
The quality of a receiver or amplifier is expressed in a ligure of merit, or noisc Cigure. Noise figure is the ratio. expressed in dB , of the actual output noise power of the device to the noise power which would be available if the device were perfect and merely amplified the thermal noise of the inpul termination rather than contributing any noise of iss own.

- Compare unknown noise sources against known noise levels
- Adjust parametric amplifiers for optimum noise figure


The Hewleti-Packard sysiem of automatic noise figure measurement depends upoll the periodic insertion of a known excess noise power at the input of the device under test. Subsequent delection of noise power results in a pulse train of two power levels. The power ratio of these two levels contains the desired noise figure information. Hewletl-Packard noisc figure meters aulomatically measure and present this ratio directly in dB of noise ligure.

Noise figure is diseussed in detail in Hewlett-Packard Applicalion Noic 57, which is avalable from your local Hewlen-Packard field office upon request. Application Nole $\$ 7$, "Noise Figure Primer," derives noise ligure formulas. describes general noise figure measurements and discusses accuracy considerations. One of the measurtment systems discussed in Application Nole 57 is shown in Figure 1. The portion of the diagrans within the dushed box is a simplified block diagram of the HP 340B and 342A Nowic Figure Meters, and the exeess noise source could be any of the noise seurees described on these pages.

## Operation

HP noisc ligure melers and noise sources offer ume-savine and cosereducing advantages. Their ease of operalion and conlinuous, automatic metering of noise figure reduce the ime required for alignment and adjusiment and simplify measuremenis so ibat ihey can be done by nonteclonical personnel. No periodic rocalibration of the meters is needed, and accupate alignment is casy, so high-level. on-line performance is assured.
In operation, a noise soutce is connected to the input of the device under lest. The IF output of the device is conntected to the 340B or 342A. The noise ligure meter gates the noise source on and off. When the noise source is on, the noise level is that of the device plus the noisu source. When the noise source is off, the noise level is that of the device and its icmination. The noise figure meter automutically compares the two conditions and dixplives noisc ligure directly in dB . Power to operate the noise source is supplied by the noise figure miler. Simply connect the noise source. adjust drive current using the controls and meter on the 340B or 342A, and the noise source is ready for operation.

## Noise tigure meters

Model 340B Noise Figure Merer, when used with an HP noise source, rutomatically meseurcs and continuously displays noise figure for ircepuencies of 30 and 60 MHz . On special order up to four cusiom froyucnciss between 10 and 70 Mliz and some frequencies outside this range, cua be supplied.
Nodel 342A is similar lo Model 340B. except thal it aparates on five frequencess: 60, 70, 105, 200, and the basic eunc-amplifice frequency of 30 MH . L!p 10 six custom frequencies belween 10 and 200 MHz , including 21.4 MH ; , are available on special order.

## Noise sources

343A VHF nolse source: Specifically for IF and RF amplifier noise measırement, a temperature-limited diode souree with broadband noisce sutpui Irnom $1010600 \mathrm{MH} \angle$ with 50 -ohm source impedance and luw SWR.
345B IF nolse source: Operates at either 30 or 60 MHz , as selected by a switch; another selector permits matching 50-. 100-, 200-. and 400-ohm imprdances.
347 A Wavegulde nolse source: Argor gis dixcharge tubes mounted in waveguide etetions: lor waveguide bands 3.95 through 18 GHz . they provide uniform noise throughout the range; maximum SWR is 1.2 .

349A UHF nolse source: Argon gas discharge luber in Type $N$ coaxial configuration for atomatic noise figure readings, 400 to 4000 MHz .

## 340B and 342A Specifications

Noise flgure range: with a 5.2 dB noise source, 0 to 15 dB , indication 10 inlinity, wilh a 15.2 dB noise source. 3 to 30 dB . indication to inlinity.
Accuracy (exclualng source accuracy): noise diode scale: $\pm 0.5$ $\mathrm{dB}, 01015 \mathrm{~dB}$; gas tube scald: $\pm 0.5 \mathrm{~dB}, 10102 \mathrm{~dB} ; \pm 1 \mathrm{~dB}, 31010 \mathrm{~dB}$ and 25 to 10 dB .
Input frequency: 340 B : 30 or 60 MHx . selecled by switch: $342 \mathrm{~A}: 30$, 60. 70. 105, and 200 MHz , selected by switch. Other frequencies available: prices and delals on reyuest.
Bandwldth: I MHz minimunl.
inpul requirements: -60 so -10 dBm (noise source on); corresponds to gain between noist sourac and input of approximntely 30 to 100 dB for 5.2 dB noise source and 40 to 90 dB for 15.2 dB noist source.
Inpul impedance: 50 ohms nominal.
AGC output: nominal $010-6 \mathrm{~V}$ from rear binding posis.
Recorder output: I mA maximum into 2000 ohms maximum.
Power Input: II5 or 230 volis $\pm 10 \% .50$ to $60 \mathrm{~Hz}, 185$ to 435 wats, depending on noise source and line voliage.
Power output: sulficient to operatc 343A. 345B. 347A or 349A Noise Sources.
Dlmenslons: cabinct: 527 msm wide, 324 mm high, 368 mm deep $\left(201 / 4^{n} \times 121 /{ }^{\circ} \times 1412^{n}\right)$; rack mount: 483 mm wide, 266 mm high. 353

Welghts: nel 19.4 kg ( 43 lb ). shipping 23.9 kg ( 53 lb ) (cabinel); nel 16.2 kg ( 36 lb ), shipping 22.5 kg ( 50 lb ) (rack mount)

Accessory furnished: one 340A-16A Cable Assembly. connocts noise figure meler 10 347A or 349A Noisc Source

## 343A Specifications

Frequency range: 1010600 MH .
Excess nolse rafio': $101030 \mathrm{MHz} 5.20 \mathrm{~dB} \pm 0.20 \mathrm{~dB} ; 100 \mathrm{MHz}$ $5.50 \mathrm{~dB} \pm 0.25 \mathrm{~dB} ; 200 \mathrm{MHz}, 5.80 \mathrm{~dB} \pm 0.30 \mathrm{~dB} ; 300 \mathrm{MHz}, 6.05 \mathrm{~dB} \pm$
$0.30 \mathrm{~dB} ; 400 \mathrm{MHz}, 6.30 \mathrm{~dB} \pm 0.50 \mathrm{~dB} ; 500 \mathrm{MHz}, 6.50 \mathrm{~dB} \pm 0.50 \mathrm{~dB}$ $600 \mathrm{MHz} 6.60 \mathrm{~dB} \pm 0.50 \mathrm{~dB}$
Source impedance: 50 ohms nominal.
Reflection coefficient: $<0.09$ ) (I.2 SWR). 10 (o $400 \mathrm{MHz}:<0.13$ ( 1.3 SWR ), 400 to 600 MHz .
Nolse generator: temperalure-limited diode.
Dimenslons: 70 mm wide. 63 mm high. 127 mm deep $\left(2^{3 / /^{\circ}} \times 21 / 2^{*} \times\right.$ 5").
Welght: nut $0.34 \mathrm{~kg}(3 / 4 \mathrm{lb})$; shipping $0.9 \mathrm{~kg}(2 \mathrm{lb})$.

## 345B Specifications

(Same weight and dimenstons as 343A)
Spectrum center: 30 or 60 MHz , selected by switch.
Excess noibe ralio': 5.2 dB
Source impedancer; $50,100,200$ or 400 ohms, $\pm 4 \%$, as selected by switch; less than $1 p F$ shunt capacitance.
Nolse generator temperaturevlimited diade.

## 347A Specifications

$\begin{aligned} & \text { HP } \\ & \text { Model } \end{aligned}$	$\begin{aligned} & \text { Range } \\ & \text { (GHK) } \end{aligned}$	Excess noise rallo ${ }^{1.2}$	Approx. length	
			(in.)	(mm)
6347A	3.95-5.85	$15.2 \pm 0.5$	19	483
1347A	5.30-8.20	$152 \pm 0.5$	19	483
H347A	7.05-10.0	$15.6 \pm 0.5$	16	406
X347A	$8.20-12.4$	$15.7 \pm 0.4$	14*	375
P347A	12.4-18.0	$15.8 \pm 0.5$	14\%	375

 10この).

## 349A Specifications

Frequency range: 400 to 4000 MHz , wider with correction.
Excesg nolse ratio': $15.6 \mathrm{~dB} \pm 0.6 \mathrm{~dB},{ }^{2} 400$ to 1000 MHz 15.7 dB $\pm 0.5 \mathrm{~dB}{ }^{2} 1000104000 \mathrm{MHz}$
Source impedance: 50 ohms nominal.
SWR: $<1.35$ (lired), $<1.55$ (unfired) up $102500 \mathrm{MHz}<1.55$ (fired or unfired), 2600 to 3000 MHz ; $<2.0$ (Iired), $<3.0$ (unfired) 3000 (o 4000 MHz.
Dimenslons; 76 mm wide, 51 nym high, 381 mm long ( $3^{\prime \prime} \times 2^{n} \times 15^{\prime \prime}$ ) Weight: nct $1.4 \mathrm{~kg}(31 / \mathrm{lb})$; shipping $2.7 \mathrm{~kg}(6 \mathrm{lb})$
Model number and name Price
340B Noise Figure Meler (cabinel)
340BR Noisc Figure Meter (rackmount)
342A Noise Figure Meter (cabinet)
342AR Noise Figure Meter (rackmount)
$\$ 1320$
343A Noisc Source
$\$ 1305$ $\$ 250$
343A Noise Source Oplion 001: spare noise dodas cali-
brated and supplijed with instrument
add $\$ 60$
345B Noise Source $\$ 400$
349A Noise Source
$\$ 475$
G347A Noise Source
\$750
H347A Noise Source
J347A Noise Source
P347A Noise Source $\$ 700$
X344A Noise Source


${ }^{1}$ Includes factor for insertion loss.


## Microwave test equipment product line

Hewictt-Packard offers a complete line of microwave test equipment from which systems can be assembled for making accurate reflections, Iransmission and frequency measuctments. Equipment ranges from incxpensive CW systems which measure a magnitude response 10 poweriul network analyzers which furnish a dynamic CRT display of swepl frequency magnitude and phase. Measurcment icchniques and equipment funclions are discussed briefly in the following paragrapiss. More detailed information is avalable in Application Noles 64 and 183. Complimentary copies are available from Hewlell-Packard sales offices.

HPalso offers the 1026A Mienowave Lab. oratory Kit for instruction in microwave measurement lechniques. Complete coverage of this kit is contained in the new eatalog noted below.

## New coaxial \& waveguide catalog and microwave measurement handbook

This new calalog offers complete coverage of the entirc line of HP precision microwave accessorics over 300 products, including couplers. detectors, attenuators, mixers, terminations, and much more. In addition, included are sections on applications of microwave measuring echniques, a waveguide standard data chart, equipment selection matrix, and a reference hecrature listing.

This comprehensive coverage of componenis and techniques is a valuable reference for anyont making microwave measurements. Free copies are oblainable through your local HP sales office, or by sending the literature request card at the back of this catalog.

## Frequency measurements

HP manufintures a complete line of frequency counters including active counters (e.g. elecironic counters, frequency convertcrs, and Iransfer oscillaton) and passive counters. Where the aecuracy of active devices is nol required, pessive devices offer direel readout al a considerable saving in cost. Passive iransmission-lype frequency meters, such as the HP 532, 536A, and 537A. are two-port devices that absorb part of the input power in a tunable caviry. When the cavity is toned to resonance. a dip occurs in the transmited power level. This dip can be observed on a meler or oscilloscope display

of the detected FF voltage. Frequency is then read from a calibrated dial driven by the cavity luning mechanism. The frequency meIcrs achieve accuracies of a few parts in 104 .

## Impedance measurements

Impedance-matching a lond to its source is one of the most important considerations in microwive transmission systens. If the load and source are mismatehed, park of the power is rellected back along the iramsmission line loward the source. This reffeetion net enty limis maximum power iransfer, but also can be responsible for erroneous measurements of other parameters or exen cause circuil damage in high-power applications.

The signal refleeted from the load inlerferes with the incident (forward) signal, causing standing waves of vollage and current along the line. SWR, which is the satio of standing wave maxime to minima, is directly related to the impedance mismatch of the load. The standing wave ratio (SWR), there fore, provides a valuable means of determining impodance magnitude and mismatch. There are 1 wo common methods for measut. ing SWR; slotted line measures the ratio of standing wave maxima to minima while a refectometer separates the incident and reHeeted voltage waves and then measures their ratio.

Network analyzers, such as the 8410 sys. tem, give a more complete and convenient impedance characterization by providing simultaneous phase and amplitude informa. tion. For more details sce page 425 or this caalog.

## Slotted Ilne teciniques - single frequency

Standing-wave ratio can be measured direcily with a sloned line. The sloned line has a probe that is loowely coupled to the RF fied d in the line, thus sensing relative amplitudes of the standing-wave pattern as the probe is moved along the line. The ratio of maxima to minima (SWR) is displayed dircilly on a SWR meter, such as the HP 4 15E.

A typical slotted-line sel up consists of a CW signal source: a low pess filier 10 elimi. nate spurinus responses from the source: the sloted-hne: the device under test, and an SWR neter.

## The swept slotied Ine

A measuring gystem which combincs the speed and convenience of swepl-frequency measurements and the inherent accuracy of the slatied line can be built around the HP 8178 Swept Slotted Line Sysiem. The selup is similar to the single frequency method except that the source is replaced with is sweep oseillator, the slonted line is an 817 B and the $415 E$ is replaced by the HP $8755 \mathrm{~A} / 181 \mathrm{~A}$. This sysien will operate throughoul the frequency range from 1.8 to 18 GHz . The measurement results are displayed on a storige oscilloscope as an envelope of the SWR in dB. See Figure ). At any given frequeney. The ratio of the maximum and minimum amplilude of the envelope is the SWR. A plat of SWR can be generated in a few scconds and retained on the CRT for evaluation or photography. Accuracy of sloued-line measuremens is limited primarily by dic residual SWR of the line iscelf. 1.01 in waveguide and 1.02 to 1.06 in coax depending upon the frequency and iype of connecior.


Figure 1. Mult-sweep slatied hine measurement. Vertlcal scate $0.5 d 8 / \mathrm{cm}$.

## Aeflectometer techniques

The reflection cocificient $\langle p$ ) of a device or system is another useful term in establishing the impedance mateh of microwave devices. The following relationships of $\rho$ and SWR are frequently used in impedance work:
$\rho=\frac{\mid E \text { reflected } \mid}{\mid E \text { incident } \mid}=\frac{S W R-I}{S W R+1}$
Reflection cocficient ( $\rho$ ) is a linear quantity varying between zero and onc. The logarithmic expression of $\rho$ is known as retorn loss and delined as: $\mathrm{dB}=-20$ LOGmin lm . A reflection coefficient of 1.0 (cotal reflection) therefore, corresponds 10 zero dB remern loss. Reflection cocficient is measured by sepa-
rating the incident and reflected waves propggating in the ransmission line connecting the source and lond. The reflectometer uses either coaxial or waveguide touplers 10 accomplish this sepiration. Reflectometers permix dynamic oscilloscope displays or permanent $X-Y$ recordings of reflection coefficient or return loss accoss complete operating bands.

The reflectometer echatique is an economical way for making swepm measurements (see Hewlell-Packaru Applicarion Note 65 for more information). However, greater speed and convenience is possible wilh the HP 8755 Scries Frequency Response Test Sels. Measured data can be either ploted on an X-Y recordes or read directly from a fully calibrated CRT displey. See Figure 3.

Accuracy of reflectometer messurements is limited by directional coupler directivity. A residual SWR of 1.02 ( 40 dB directivity) is common in waveguide and 1.02101 .1 in coax depending on the frequency range and connectors.

## Altenuation measurements

Altenuation is delined as the decrease in power (at the load) caused by inserting a deviee between a $Z_{0}$ source and load. Under this condition, the measured value is a property of the device alone. The term $Z_{0}$ is used to describe a unity SW'R condition where the load and source impedance cqual the transmission line impedance.

There are three eimmon methods for measuring RF allenuation: 1) square-law detec(ion wilh audie substitution, 2) disect RF substitution. and 3) linear deicclion with IF subslitulion.

## Square-law detecilon technique

Figure 2 shows a waveguide susten for swept attenuation measorements of 251030 dB.


Figure 2. Swept sttenuation system for measurements up to 30 dB .

With the 8620A swecping the frequency range of intercst, a mero-dB reference level is established on the X-Y recorder without the test deviec in the system. The device is then inserted as indicated in Figure 2 and ins attenualion versus frequency determined by the amplitude decrease from the reference level previunsly established.

A much improved square-law delection technique usce the HP 8755 L Frequency Ro
sponse Test Set. The setup diagram in Figure 3 permits simulaneous measurements of altenuation and return loss over a contínuous 60 dB dynamic range. Readout is cither on a CRT display calibrated direcily in $ل B$ of an


Figure 3. Setup for simultaneous swept measurement of transmission and retleclion.

X-Y recorder. The 8755L has if frequency range of 15 MHz to 18 GHz .

## RF substibution technlque

Swepl attenuation measuromests up to 45 to 50 dB can be made using the RF pre-inserun X-Y recorder system shown in Figure 4. Coupler tracking and delector errors ate elisoinated by plotting a calibration grid on the $X=Y$ recorder prior to the actual measurement. The grid is plotted by setting in specific values of amenuation on the 382A near the anticiputed test device altenuation. The 382A is then sel 100 dB and the test device inseried as shown in Figure 4. A final swecp plots attenuation of the test device over the calibration grid.


Figure 4. RF pre-insertion technique for swept attenualion measurements.

## IF subalitution technique

The IF substitution technique of altenualion messurement involves conversion of the microwave frequency io a consani, much lower frequency for wbich very ateurately calibrated attenuators are available. Delec. lion al a consiant IF frequency improves the systen sensitivily permitling measurements over a wide ( $>60 \mathrm{~dB}$ ) dynamic range.

The 8410 Network Analyzer is an instrument where if substilution is used; thus allowing accurate measurements to be made over 3 frequency range of 110 MHz to 40 GH 2

## MICROWAVE TEST EQUIPMENT

Coaxial instrumentation table

## NEW




## MICROWAVE TEST EQUIPMENT <br> Waveguide instrumentation table

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \multicolumn{10}{|c|}{Frequency Coverage by Band-GHz} \\
\hline Instrument Name \& Uses \& Familis Model Number \& \[
\begin{aligned}
\& 5 \\
\& 2.6 \\
\& 3.95
\end{aligned}
\] \& \[
\begin{gathered}
G \\
3.95 . \\
5.85
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& 5.30 . \\
\& 8.20
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{H} \\
7.05 \\
10.0
\end{gathered}
\] \& \[
\begin{gathered}
x \\
8.20 . \\
124
\end{gathered}
\] \& \[
\begin{aligned}
\& \bar{M} \\
\& 10.0 . \\
\& 15.0
\end{aligned}
\] \& \[
\begin{gathered}
p \\
12.4 . \\
18.0
\end{gathered}
\] \& \[
\begin{gathered}
X \\
18.0 . \\
26.5
\end{gathered}
\] \& \[
\begin{gathered}
R \\
26.5 . \\
40.0
\end{gathered}
\] \\
\hline Adaplers \& \begin{tabular}{l}
Intarconned cozxial-wavequide systefis. \\
Intarconnect two diflerenl waveguide sy3lems
\end{tabular} \& \[
\begin{aligned}
\& 281 A \\
\& 281 B \\
\& 292 A \\
\& 292 B
\end{aligned}
\] \& X \& \(\chi\) \& X \& \(\times\) \& \[
\begin{aligned}
\& x \\
\& x \\
\& x
\end{aligned}
\] \& x \& \begin{tabular}{l}
\(\chi\) \\
\(\times\) \\
\(\times\) \\
\hline
\end{tabular} \& X \& \\
\hline Altenualors. Variable \& Measure reffection coefficient. insetion loss. translet charactelistics by RF sulbstitution. reduee power levels, improve source firismatch. \& \[
\begin{aligned}
\& 382 A \\
\& 375 A
\end{aligned}
\] \& x \& X \& \(x\) \& x \& \(x\)
\(\times\)
\(\times\) \& \& \(x\)
\(x\) \& \(\chi\) \& \(\chi\) \\
\hline Defeciors Cryslat \& Dereet RF power, CW or pulsed: Measure reflection coeflicient. insertion loss. \& \[
\begin{aligned}
\& 424 A \\
\& 422 A \\
\& 4858
\end{aligned}
\] \& x \& \(x\) \& x \& x \& \[
x
\] \& \(\chi\) \& \(x\) \& \(x\) \& \(x\) \\
\hline Directional Couplers \& Sample high power, level dower, measure reflection coelficient. improve mismatch. \& \[
\begin{aligned}
\& 752 \mathrm{~A} \\
\& 752 \mathrm{C} \\
\& 752 \mathrm{D}
\end{aligned}
\] \& \& \& \begin{tabular}{l} 
x \\
\(\times\) \\
\(\times\) \\
\(\times\) \\
\hline
\end{tabular} \& \(x\)
x
x
X \& \begin{tabular}{l} 
x \\
x \\
x \\
\\
\hline
\end{tabular} \& \& \(x\)
x
x
x \& \(x\)

x \& $$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$ <br>

\hline Filers Low Pass \& Reduce harmonies irom signal sources. \& 362A \& \& \& \& \& X \& X \& $\times$ \& X \& x <br>

\hline | Frequency |
| :--- |
| Melers | \& Measure Irequency. \& \[

$$
\begin{aligned}
& 532 \mathrm{~A} \\
& 532 B
\end{aligned}
$$
\] \& \& \& $\times$ \& X \& x \& \& $\times$ \& x \& $x$ <br>

\hline Mixers \& Mix trequerilies, genemate harmomics. \& $$
\begin{aligned}
& 932 A \\
& 11521 / \\
& 11517 A
\end{aligned}
$$ \& \& \& \& \& X \& \& $x$ \& x \& x <br>

\hline Noise Soulces \& Measure noise ligure of microwaye соmponenis. \& 347 A \& \& X \& $x$ \& $\times$ \& $x$ \& \& $\times$ \& \& <br>

\hline Modulators, \& Modulate RF signals with AM, pulse modulation with low incidental FM. \& $$
\begin{aligned}
& 8735 \mathrm{~A} \\
& 8735 \mathrm{~B}
\end{aligned}
$$ \& \& \& \& \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$
\] \& \& \& \& <br>

\hline Power Sensors Thermustor \& Measure microwave power: user with HP 432 Meler. \& 4864 \& $x$ \& x \& X \& X \& X \& X \& k \& $x$ \& X <br>

\hline Shorls Fixed Slibing Swictied \& Establishi measurement Dlanes. reflecilion phase and magnitude reterences. \& $$
\begin{aligned}
& 920 \mathrm{~A} \\
& 9208 \\
& 923 \mathrm{~A} \\
& 930 \mathrm{~A}
\end{aligned}
$$ \& \& \& x \& X \& $x$ \& $x$ \& $x$ \& $x$ \& $x$ <br>

\hline Slide screw luners Phases Shilers \& Correcl discontinuifies in wsveguide. Provide phase conlrol. \& $$
\begin{aligned}
& 870 \mathrm{~A} \\
& 885 \mathrm{~A}
\end{aligned}
$$ \& \& \& x \& \& x

x

x \& \& | x |
| :--- |
| $\times$ |
|  |
|  | \& \& <br>

\hline Slotted Line Systems \& Measure SWR, wavelength, impedance: lixed anu swepl.frequency sloted line measurements \& $$
\begin{aligned}
& 8108 \\
& 8158
\end{aligned}
$$ \& \& \& $\chi$ \& $\chi$ \& X \& \& $x$ \& $\chi$ \& $x$ <br>

\hline Termirations Fixed and Slioing \& Fixed loads for lerminating waveguide systems, sliding loads lor separating load refleclions from olther system reflections. \& \[
$$
\begin{aligned}
& 910 A \\
& 910 B \\
& 914 A \\
& 91 \angle B
\end{aligned}
$$

\] \& \& \& | $x$ |
| :--- |
| $x$ | \& | $k$ |
| :--- |
| $x$ | \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$
\] \& \& $x$ \& $\chi$ \& $\times$ <br>

\hline
\end{tabular}

- Flat frequency response
- Low SWR
- Specifications traceable to NBS
- Fully tested with HP Automatic Network Analyzer ation. catalog.
$\$ 290$
$\$ 400$
$\$ 710$



## How to order

When ordering, the attenuation value must be specified. The option numbers correspond to the attenuation value. Example: Option 003 denates 3 dB attenuation while Option 030 denotes 30 dB altenu-

Order example:


NEW Coaxial of Wanegulde Catalog and Microwave Measurement handbook 80 pages. Use request card at back of this

Model number and name Price
$11581 \mathrm{~A}: 3,6,10,20 \mathrm{~dB} 8491 \mathrm{~A}$ set
11582A: 3, 6. 10. 20 dB 8491 B sel
IIS83A: 3, 6, 10. 20 dB S492A set

## 8491A/B, 8492A, 8493A/B fixed attenuators

Hewletr-Packard coaxial lixed attenuators provide precision athen. uation, Nlat frequency response, and low SWR over broad frequency ranges at low prices. Altenuators are available in nominal attenuetions of $3-6 \mathrm{~B}, 6 \mathrm{~dB}$ and $10-\mathrm{dB}$ increments from 10 dB 1060 dB . These attenuators are swept-Irequency tested to insure meeting specifiealions at all frequencies.
11581A, 11582A, 11583A attenuator sets
A set of four Hewlett-Packard attenualors, 3, 6, 10 and 20 dB are furnished in a handsome walnul accessory case. The 11581A set consists of 8491A attenuators. A set of 8491B attenuators is contained in the 11582A. white the I1583A is comprised of 8492A attenuators. In addition to the calibration stamping on the bodies of the attenuators, the set includes a calibration report. The calibration report is ocrified traccable to the National Bureau of Standards, and includes accuracy of bolh the attenuation and the reflection coefficients at selected frequencies.
These sels are idwal for calibration labs or where precise knowledge of attenuation and SWR is desired.

8491A/B, 8492A, 8403A/B specifications

Yodel	$\begin{aligned} & \text { Attemalion } \\ & \text { Copfioms } \\ & \text { (dB) } \end{aligned}$	Trequency $\mathrm{CH}_{\mathrm{H}}$	$\begin{gathered} \text { swa } \\ \text { михіпим } \end{gathered}$	$\begin{aligned} & \text { Wnimum } \\ & \text { input } \\ & \text { Power } \end{aligned}$	Altenustion Recarmy								Connetor	Nmomions man (l\|n.)	$\begin{aligned} & \text { Shloping } \\ & \text { Woin } \\ & \text { (ib) } \end{aligned}$	Frice Spuelly caplion)
						$\begin{aligned} & 3 \mathrm{BE} \\ & \text { (00tion } \\ & \text { 006) } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~d} \\ & \text { (boul } \\ & \text { (010) } \end{aligned}$			20 18 (0, 0 ilion 040)	$\begin{gathered} 50 \mathrm{~d} \\ \begin{array}{c} \text { (0pilion } \\ \text { (0.50) } \end{array} \end{gathered}$					
$\operatorname{g}_{3} / 30 \mathrm{~dB}$	3.6.16.20.30	06.12 .4	$\begin{aligned} & 12: d e \cdot 8 \mathrm{AHF} \\ & 1.3: 8-12.46 \mathrm{KH} \end{aligned}$	$\begin{aligned} & \text { 2WAv. } \\ & 100 \text { WPean } \end{aligned}$	103 dB	$\pm 0.3 \mathrm{~dB}$	$\pm 0568$	$\pm 0.548$	$\pm 148$	-	-	-	$\mathrm{N}(\mathrm{m}, 1)$	$\begin{gathered} 619 \times 20.6 \\ (21 / 14 \times 29 / 10) \end{gathered}$	$0.17$	463
10.8080	10.50.60				-	-	-	-	-	$\pm 1.5018$	$\pm 1388$	$\pm 248$				590
$\begin{array}{\|c\|} \hline 84968 \\ 3 \cdot 30 \mathrm{~dB} \end{array}$	3,6,14,20,30	de. 18		$\begin{aligned} & \text { ?WAV } \\ & \text { Ioc W Pesh } \end{aligned}$	$\pm 0.368$	$\begin{array}{\|c\|} \hline 10 . j 48 \\ \text { 5.j } 48 \mathrm{BR} \\ 124.18 \mathrm{GK} \end{array}$	$\pm 0.56$	$\begin{array}{c\|}  \pm 1.0 \text { स日, } \\ 124.106 H_{7} \end{array}$	t1 d	-	-	-	$N(m, 1)$	$\begin{aligned} & 81.9 \times 20.5 \\ & (214 \times(1 / 1,1) \end{aligned}$	$\left.\begin{array}{l} 0.17 \\ (6 \end{array}\right)$	515
10.60 ¢88	40,50,60				-	-	-	-	-	$\pm 1.588$	$\pm 1.568$	$\pm 268$				8258
${ }_{3}^{2 / 30 \mathrm{dR}}$	3,6,10,20,30	dc 18			40.368	$\begin{array}{\|c\|} \hline \pm 0.3 d 8 \\ \pm 0.4 d 8 \\ 12.4 .186 \mathrm{~Hz} \end{array}$	$\pm 0.508$	$\begin{gathered} \pm 0.5 \mathrm{~dB} \\ \pm 1.0 \mathrm{~dB} \\ 12.4 .18 \mathrm{GH} \mathrm{I} \end{gathered}$	$\pm 1$ d	-	-	-	ARC. 7	$\begin{aligned} & 69.9 \times 20^{6} \\ & (21 \times 1 / 10) \end{aligned}$	$\begin{gathered} 0.20 \\ 0.01 \end{gathered}$	5153
(4)-50 [18	40,30.60				-	-	-	-	-	41,508	$\pm 2508$	$\pm 208$				3190
$\begin{gathered} 84939 \\ 3: 200 \mathrm{~B} \end{gathered}$	3.6.10.20	ac-12.A	1.2010 .8 skr 1.3: 8.12 .4 GH	2WA. 100 WFEA	$\pm 0.388$	403 dB	$\pm 1588$	$\pm 0.548$	-	-	-	-	SNA (nul)	$\begin{aligned} & 39.7 \times 12) \\ & (13.1 \times 4) \end{aligned}$	$\left(\begin{array}{l} 0.11 \\ (4 \otimes) \end{array}\right.$	370
3088	30				-		-	-	$\pm 108$	-	-	-				173
$\begin{gathered} 84938 \\ 3.20 \mathrm{~dB} \end{gathered}$	36.10.20	$8 \mathrm{c} \cdot 18$	1.2. 80.86142 1.3 月-12 $4 \mathrm{GH}:$ 1.5:12.4.18 GH2	$\begin{aligned} & 2 \mathrm{H} \text { dy } \\ & 100 \text { w Ped } \end{aligned}$	$\pm 0.368$	$\begin{gathered} \pm 0368 \\ \pm 0.48 \\ 124-18677 \end{gathered}$	$\pm 0.508$	$\begin{gathered} \pm 0.5 \mathrm{~dB} \\ \pm 10 \mathrm{~dB} . \\ 12.4 .18 \mathrm{GHI} \end{gathered}$	-	-	-	-	SMA (m, ${ }^{\text {a }}$ )	$\begin{aligned} & 397 \times 127 \\ & (18,0 \times 4) \end{aligned}$	$\begin{gathered} 0.11 \\ (4 \alpha) \end{gathered}$	585
30 ¢8	30				-	-	-	-	2188	-	-	-				19

## MICROWAVE TEST EQUIPMENT

## Coaxial step attenuators



355C


355D

$2 \%$ of the dB reading to 18 OHz ) and low SWR (eypically less than 1.3 up to 18 Griz ) over the specified firequency range.
Attenuator sections are inserted and removed by low-torque camactuated contacts. These contacts are gold-plated leaf-springs that ensure long life (over a million steps) and high repeatablily (lypically 0.03 dB ).

The $G$ and $H$ programmable models offer the same high performance as the manual models with the addition of fast swithing solenoids.
The 20 millisccond maximum swiching time is a significant advan. tage for automatic testing and other applications where speid is of prime importance. Once switched. the sotenoids are held in place by strong, permanent magnets able to withstand shocks over 10 G 's.

Altenualion programming is done through a 12 -pin connector. For casc of connection to the driving circuit. each attenuator is provided with a five-fool cathe assembly that includes the mating connestor. Thesc attenuaters can be incorporated inco aulomatic me:tsuring systerns that are controlled by either a computer or a desk top calculator. By using the HP 59306A Rclay Actuator and a power supply as the driver mechanism. the attenuators are casily integrated into a HewlellPackard Interface Bus (HP-IB) antomated system.
Equivalent versions of these altenuators, for incorporation in cquipment (i.e., "OEM") are available under HP model numbers 33320. 33121, and 33322.
Performance to specifications is verified by fully (esting each allenuator with the HP Automatic Network Analyzer. Specifications ane traceable to the National Bureau of Standards.
How to order the 8494/5/6 Series attenustors
To order, basic model number, suffix lettes, and connector option must be specified:
Ordering example:


Prices shown in tables for 8494/5/6 models apply to Type $\mathbf{N}$ (f) (Opi 001) and SMA (Г) (Opt 002).

APC. 7 (Opl 003) | Price |
| ---: |
| add $\$ 50$ |

NEW Coaxial and Wovegulde Calalog and Microwave Measuremenl Handbook 80 pages. Usc request card al back of this catalog.


Specifications 355 series，8494／5／6 series

Modisl and （Sthichion   （Sinhohind Hode）	FrequencyRance（GH）	Incremental Mtenusilan （dB）	$\begin{gathered} \text { SHR } \\ \text { (Sunsimum } \\ \text { (S0: Nominal) } \end{gathered}$	$\begin{gathered} \text { Insurtion } \\ \text { Loss } \\ (0, d 8 \text { serting }) \end{gathered}$	Mremations Ascurcy	Power Ratire	$\begin{gathered} \text { Minlmum } \\ \text { Lie } \end{gathered}$	Solunoid Charselertatia			Dimansions $m m(\mid n$.	$\begin{aligned} & \text { shipping } \\ & \text { Worlft } \\ & \text { if (ib) } \end{aligned}$	Connectora	Pilat
								Yolust	Surith soned	Switch Power				
3！5   （Mancial）	dc－1	$\begin{gathered} 0-12 \\ 10 \mathrm{steps} \end{gathered}$	$\begin{aligned} & \text { 1.2: } \mathrm{dc}-0.25 \mathrm{GHz} \\ & 1.3 \mathrm{dc}-0.5 \mathrm{GHz} \\ & 1.3 \mathrm{dc}-1.0 \mathrm{GHz} \end{aligned}$	$035 d 8$＠a！ $6 \mathrm{H}_{2}$ $0.756 \mathrm{~B} @ 0.5 \mathrm{GHz}$ 1.5 dB © 1.06 Hz （0．1） $18+$ 1.39 88／GH7）	4010 h 6.1000 h ？ $\pm 0.3 \mathrm{ol} \mathrm{uc}-0.5 \mathrm{GH}$ $\pm 0,35 \mathrm{~dB} \mathrm{ds}-1.0 \mathrm{GHz}$	D． 5 H Hr ． 350 W\％Fok	0.5 millon steps				$\begin{aligned} & 152 \times 10 \times 67 \\ & (6 \times 24 \times 2 k) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (3) \end{aligned}$	$\begin{aligned} & \text { anC (1) } \\ & \text { See } \\ & \text { Nole } \end{aligned}$	\＄715
$355 E$ iProgram． moblie）								15－18V	＜ 55 misec	3.0 W				\＄360
3550   （Manual）	dc－ 1	$\begin{gathered} 0-120 \\ 10 \mathrm{~dB} 51005 \end{gathered}$		0.250840 .10 .142 0.75 JB ＠ 0.5 GHz 1.5 dB © 1.06 Hz $0.31 \mathrm{~dB}+$ $13964 / \mathrm{CH} 3 \mathrm{3}$		0.5 W Av． 350 W Pesk	0.6 million sleps				$\begin{aligned} & 152 \times 10 \times 51 \\ & (5 \times 24 \times 2 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 18 \\ & (3) \end{aligned}$	gNC（1） See Nete 1	5215
355 F （Program． mble								15－180	＜ 65 msee	3.0 W				3360
g494A   （Man！	$s \mathrm{c}-\mathrm{s}$	$\begin{gathered} 0-19 \\ 1 \Leftrightarrow 8 \text { Steps } \end{gathered}$	1.5	$0.65080 .5 \mathrm{~F} / \mathrm{I} / 2$ 0.69 dB © 10 CH H 0.96 d 88 © 4.0 GHz （0．606B + $0.098 \mathrm{~B} / \mathrm{GH} \mathrm{H})$		I whr． 100 W Peak 10 siec TML	$\begin{array}{\|l} \hline \text { I million } \\ \text { steps } \end{array}$				$\begin{gathered} 170 \times 19 \times 4.3 \\ (6.6 \times 3.13 \times 1.7) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (2) \end{aligned}$	Soe Note 2	sus
gA9dG （Pragram． mablej								20－30	$<20$ msee	1．7W				\＄650
84948 （Mantsal）	dc－ 18	$\begin{aligned} & 0-I I \\ & 10 \text { stegs } \end{aligned}$	$\left\{\begin{array}{l} 13 \mathrm{dc}-8 \mathrm{CH} \\ 1.6: \Delta \mathrm{c}-12 \mathrm{GHz} \\ 1.9: \mathrm{dc}-18 \mathrm{GH} \end{array}\right.$			I Wint．   100 W Peak 10 нse： mish	1 million sleps				$\begin{gathered} 170 \times 79 \times 13 \\ (6.6 \times 3.13 \times 1.7) \end{gathered}$	$\begin{aligned} & 0.9 \\ & \text { (2) } \end{aligned}$	$\begin{gathered} \operatorname{Sed}_{\text {Nole }} \end{gathered}$	5575
899 dH （Prozann－ msble）								$20-30 \mathrm{~V}$	$<20$ msec	1.1 W				5500
8495 A   （Manural）	Ac－d	$\begin{array}{c\|} 0-70 \\ 10 d 8 \text { steps } \end{array}$	1.3	0.868 © 0.5 GHz 0.5 SB＠ 1.0 GHz 0.7 dB 6 4.0 GHz $10: 8 \mathrm{~B}+$  		IWAn 100 ＇d＇Prat 10 HKG max	$\begin{aligned} & 1 \text { million } \\ & \text { stept } \end{aligned}$				$\begin{aligned} & 141 \times 19 \times 13 \\ & (5.5 \times 31 \times 1.1) \end{aligned}$	$\begin{aligned} & 0.9 \\ & \text { (2) } \end{aligned}$	$\operatorname{Sentex}_{\text {Nole }} 2$	1315
88956   （Progiom－   mosic）								$20-30 \mathrm{~V}$	$<20$ msec	2．7w				\＄513
84959 （Chanual）	ds－ 18	$\begin{gathered} 0-70 \\ 10 \mathrm{da} \operatorname{sen} \mathrm{cos} \end{gathered}$	$\begin{aligned} & 2.35-\mathrm{dr}-8 \mathrm{GHz} \\ & 1.5 \mathrm{dc}-12.6 \mathrm{CH} \\ & 1.7 \mathrm{bc}-38 \mathrm{GH} \end{aligned}$	0.318 © 10 CH ：   1.3 dB 6124 GHz      $10.828+$   $0.01 \mathrm{~dB} / \mathrm{CHz}$		IWAR．   100 H Dest   10 uroc   तीs	$\begin{array}{\|l} \text { I million } \\ \text { sieps } \end{array}$				$\begin{aligned} & 141 \times 79 \times 13 \\ & (3.5 \times 3.1 \times 17) \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (2) } \end{aligned}$	$\begin{gathered} \operatorname{Sen}_{\text {Note }} \end{gathered}$	S435
gad95 （Poogism） mabley								$20-30 \mathrm{~V}$	＜20 mex	2．）W				5875
84564 （Manual）	$d c-1$	$\begin{gathered} 0-110 \\ 10 \mathrm{~dB} \text { steps } \end{gathered}$	1.5	0.66 B 6 G G CHz 0.1 dE \＆ $1 . \mathrm{CHHz}$ 1.018 © 8.0 GH （0．6 $08+$ 0.05 d （G／G1）	$\pm 1.69$   4 in 68 IIam Attur．Selling	1 W Ay．   100 WPas 10 цレé max	$\begin{aligned} & 1 \text { milliron } \\ & \text { \&egs } \end{aligned}$				$\begin{gathered} 40 \times 79 \times 13 \\ (6.6 \times 313 \times 1.9) \end{gathered}$	$\begin{aligned} & 0.9 \\ & \text { (2) } \end{aligned}$	$\begin{gathered} \mathrm{Sfe} \\ \text { Mox ? } \end{gathered}$	435
B436G   （Frogant   msbiril								$20-30 v$	$<20$ msec	2.7 W				\＄696
$\begin{aligned} & \text { 84968 } \\ & \text { (Montul) } \end{aligned}$	$\Delta c=18$	$\begin{gathered} 0-110 \\ 10 \mathrm{aB} \text { sleps } \end{gathered}$				I Way 100WFest 10 usec mac					$\begin{gathered} 170 \times 19 \times 13 \\ (6.5 \times 3.13 \times 1.5) \end{gathered}$	$\begin{aligned} & 0.9 \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { Ser } \\ & \text { Nole ? } \end{aligned}$	5575
8496 H （Program． （mable）								20－30v	＜20 mser	27n				5900

Nole I：355C／0／t／F connector apilors（BILL（1）standira）
Dptara $001 \mathrm{~N}(\mathrm{f})$

## Continuously variable attenuators and OEM step attenuators



## 393A, 394A Attenuators,

## 500 MHz to 1 GHz and 1 GHz to $2 \mathbf{~ G H z}$

Each of these coaxial variable attenuators uses the principle of a directional coupler to achieve a wide range of attenuation aver a full oclave. The HP 393A covers 5 to 120 dB from 500 to 1000 MHz ; HP 394A covers 6 to $\$ 20 \mathrm{~dB}$ from 1 to 2 GHz . With special high-power terminations they handle up to 200 watts average. Since these instruments are variable directional couplers, they are parlicularly useful for mixing signals while maintaining isolation.

## 33300/01/04/05 Programmable step attenuators

These step attenuators provide a fast and precise means for electrically controlling the level of signal attenuation in automatic test sysecms. They are available in four basic configurations: $0-70 \mathrm{~dB}$ in 10 . $d B$ stcps ( 33300 ). 0-42 dB in $6-d B$ steps (33301): 0-11 dB in I-dB steps ( 33304 ) and $0-110 \mathrm{~dB}$ in $10-\mathrm{dB}$ steps ( 33305 ). Magnelic latching solenoids ( 12 or 24 voles) are used to switch individual autenustion elements into and out of contact with a 50 -ohme teansmission líne. A and $B$ are "no indicator contacs" and $C$ and $D$ are "with indicator contacts." Three digit connector options must be specified.

## 33320/A/B/G/H, 33321A/B/G/H, 33322A/B/G/H Manual or programmable step attenuators

These compact step attenuators are configured for designing into microwave syseems and instruments, wherever conirol of power level is required from de to 18 GHz or 0 to 121 dB .


33321B


Manual or electrically programmable versions are available with microwave performance identical to 8494-5-6 Series step attenuators described on the previous two pages. Physically, 33320 Series units have no base or knob and the clectrically programmed versions have an additional $S V$ coil option for compalibility with TTL type power supplies.

The manual versions take less than $\{$. $s$ square inches of panel space. The following table provides a cross-reference to 8490 Series model numbers for performance specifications. The 33320 Series of attenuators are provided with SMA fomale connectors. Other conncetors ase available on special request. Contact HP for detailed speciifications and discount price quotalions on larger quantities.
NEW Coaxlal \& Waveguide Catalog and Microwave Measurement Handbook 80 pages.
catalog.
33320 Series vs 8490 Series cross reference

	$\begin{gathered} \operatorname{lng} \\ \hline 08) \end{gathered}$		$\begin{gathered} \text { Similay } \\ \text { Moldid } \\ \text { (Papas 20-31) } \end{gathered}$	$\begin{aligned} & \text { Thequnc) } \\ & \substack{\text { sifftiv }} \end{aligned}$		$\begin{gathered} \text { Comparmbe } \\ \text { Veriton } \end{gathered}$
				1 CH	$18 \mathrm{GH}_{2}$	
Msnul	$\begin{gathered} 11 \\ 10 \\ 10 \\ 10 \end{gathered}$	1 10 10		A	析	
Progrommale	$\begin{gathered} 11 \\ 110 \\ 110 \end{gathered}$	1 10 10	$\begin{aligned} & 8846 \\ & 8949 \\ & 84969 \end{aligned}$	6	H	
I-9 Ouantity onees lor $333201-2$ Aitenualors are $\$ 10$ leas than Itheir corraponding 3448.5.6 Prices.						

393A, 394A, 33300/01/04/05/A/B/C/D specifications

Modid	Made al Oerition	$\begin{aligned} & \text { Frequency } \\ & \text { Bumpe } \\ & \left(6 \mathrm{R}_{3}\right) \end{aligned}$	$\begin{gathered} \text { SMR } \\ \text { (50n Hominal) } \end{gathered}$	Amcurats	Increment Altmasilan (dB)	Mrximum mestuad Atharualion ( 0 a 8 Setlap)	Pown Asiling	Solundid Charactelaties			Olmentions $\operatorname{man}$ (in)	\$hippine Wolthe   (b)	M Comactery	Price
								Yeldse	Switch Spend	Sirlct Pran				
313A	Msinux	0.5-1	$\begin{aligned} & 25.5-1508 \\ & 1515-3068 \\ & 1.4 .30-12088 \end{aligned}$	$\begin{gathered} \pm 1.25 \mathrm{~dB} \mathrm{or}^{\prime} \\ \pm 175 \% \end{gathered}$   whizicrar ls grexter	5-120 dt Continuouedy Vytisole	-	200 Why	-	-	-	$\begin{aligned} & 305 \times 160 \times 70 \\ & (12 \times 5 \% \times ? \times 1 \end{aligned}$	41   (9)	N(1)	81250
354A	Manual	1-?	$\begin{aligned} & \text { 2.5: } 6-1068 \\ & \text { h. } 1.10-15 d B \\ & 1.6 .15-1206 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 1.23 \mathrm{d9} \text { or } \\ & \pm 2 \mathrm{sq} \\ & \text { mirsever is } \\ & \text { grealis. } \end{aligned}$	6-12C dB Conlinilously Vandate	-	200 W dv.	-	-	-				31230
$\begin{gathered} 3,300 \\ 4,8 \\ \text { C,0 } \end{gathered}$	Progism	$0 \mathrm{c}-18$		$\begin{aligned} & \pm 38 \text { of sellimp } \\ & \text { to } 13.4 \mathrm{GHz} \\ & \pm 42 \text { at sething } \\ & 1018 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 0-10 \mathrm{~dB} \\ 10 \mathrm{~dB} \operatorname{sices} \end{gathered}$	$\begin{gathered} 0.5 \mathrm{\sigma O} \\ +0.098 / \mathrm{GKr} \end{gathered}$	2 WAy 500 WPCesh (with 10 uste may dulse walih)	$\begin{gathered} A \text { and } C \\ \text { models } \\ 121615 \mathrm{~V} \end{gathered}$	$<50$ msec.	3.36	$\begin{gathered} 209.5 \times 381 \times 318 \\ (84 \times 14 \times 14) \end{gathered}$	$1.4$(J)	3 digil connecter onition must be specified. 1m dipit is always 0 . 2nd digit elers ta ingost jro deget refers to outsul.	$\$ 785$ $\$ 815$
$\begin{array}{r} 3301 \\ \alpha 0 \\ 6,0 \end{array}$	Progrsm	te - 18			$\begin{gathered} 9-4268 \\ 688 \text { steas } \end{gathered}$	$\begin{gathered} 0.5 \mathrm{~dB} \\ +0.08 \mathrm{~dB} / 0 \mathrm{~Hz} \end{gathered}$								$\begin{array}{r}\$ 785 \\ \$ 815 \\ \hline\end{array}$
$\begin{array}{r} 33304 \\ A . B \\ C .0 \end{array}$	Program	$16-18$	$\left\{\begin{array}{l} 1.45: \mathrm{dc}-8 \mathrm{GHI} \\ 1.55: \mathrm{dc}-12.4 \mathrm{CHz} \\ \text { (with (1) } \\ \text { conneator) } \end{array}\right.$		$\begin{aligned} & 0-\int 1 A B \\ & I \sigma \text { steps } \end{aligned}$	$\begin{gathered} 0.7 \mathrm{dg} \\ +0.1 \mathrm{~dB} / \mathrm{GH} \mathrm{I} \end{gathered}$		$\begin{aligned} & \text { Onn D } \\ & \text { models } \\ & 24 \text { lo } 30 \mathrm{~V} \end{aligned}$			$\begin{gathered} 266.7 \times 38.1 \times 31.8 \\ (10 \mathrm{n} \times 14 \times 14) \end{gathered}$	14   (3)	apitan code:   C. $\begin{aligned} & 1 \\ & \text { (1) }\end{aligned}$   I: $N$ (n)   23 mim (f)   $3.7 \mathrm{~mm}(\mathrm{~m})$   5: SMA (I)   6. SMA ( $m$ )	$\$ 1050$ $\$ 1080$
3305 4.8 40	Pragrsm.	K-13			$\begin{aligned} & 0-11048 \\ & 10 \pm 8 \text { sieds } \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{d8} \\ &+0.1 \mathrm{~dB} / \mathrm{Ghz} \end{aligned}$								51050 $\$ 1080$

- High accuracy
- Excellent repeatability
- Low SWR
- Frequency coverage to 40 GHz




## 382 Series, precision variable attenuators

Operation of these direct-reading. precision attenuators depends on a mathematical law, rether than on the resistivity of the altenuating material. Accurite attenuation from 0 to 50 dB (0 to 60 dB for S 382 C ) is assured regardless of temperature and humidily. The instruments can handle considerable power and feature large, easily read dials. In addition. the S382C achieves both long eloctrical length and short physical dimensions through dieleetcic loading. The result is an S band allenuator which is only 64$\}$ millimeters ( $241 / 4$ inches) long and yet is more accurate than previously available units.

## 375A General purpose variable attenuators

Variable llap altenuators provide s simple, convenient means of adjusting waveguide power tevel or isolating source and load. They consist of a slotted section in which a matched resistive strip is inserted. The degree of strip penetration determines altenuation. A dial shows average reading over the frequency band, and a shielded dust cover reduces external radiation and eliminates hand capacity effects. Altenuguion is variable from 01020 dB . Dial calibration is accurste within $\pm 1 \mathrm{~dB}$ from 0 to $10 \mathrm{~dB} . \pm 2 \mathrm{~dB}$ from 10 to 20 dB . Maximum SWR 1.15.

NEW Coaxial \& Waveguide Catalog and Mlcrowave Measuremenl Handbook 80 pages. Use request card at back of this catalog.

382 Series, 375A Specifications

Modal	$\begin{gathered} \text { Fiequency } \\ \text { Ranfe } \\ \langle\text { GHI }\rangle \\ \hline \end{gathered}$	SWR   Marlmum	Accuracy	$\begin{gathered} \text { AHtanuallon } \\ \text { Rance } \\ \text { ladB } \\ \hline \end{gathered}$	Maximum Reshdual AHenuation $(0 \mathrm{~dB}$ Soliné $)$	Marmum Power (watts)	Wavoguide Size Nom. O.D, ma (la.) EIA	Equivalent flange	Dimensions mm (in.)	Shipplng Welpht le (lb)	Price
S382C	2.8-3.95	$\begin{gathered} 1.2 \\ (2.6-3 \mathrm{GHz}) \\ 1.15 \\ (3-3.95 \mathrm{GHz}) \end{gathered}$	$\pm 1 \%$ of reading or 0.188 whichever greater $\pm 2 \%$ above 50 dB	0-60	148	10	$\begin{gathered} 76.20 \times 38.10 \\ 13.0 \times 1.5\rangle \\ \text { WR284 } \end{gathered}$	UG 584/U	$\begin{aligned} & 641 \times 152 \times 203 \\ & (254 \times 6 \times 8) \end{aligned}$	$\begin{aligned} & 9.9 \\ & (22) \end{aligned}$	51960
G382A	3.95-5.85	1.15	$\begin{aligned} & \pm 2 \% \text { of reading } \\ & \text { or 0.I } \mathrm{dB} \\ & \text { whichever greater } \end{aligned}$	0-50	1 dB	15	$\begin{gathered} 50.80 \times 25.40 \\ (2 \times 1) \\ \text { WR187 } \end{gathered}$	UG.407/U	$\left.\begin{array}{l} 803 \times 245 \times 197 \\ (31 \% \times 9 \% \times 7 \times 1 \end{array}\right)$	$\begin{gathered} 13.8 \\ (30.8) \end{gathered}$	\$1700
1382A	$5.3-8.2$	1.15	$\begin{aligned} & \pm 2 \% \text { of reading } \\ & \text { or } 0.1 \mathrm{BB} \\ & \text { whichever grealer } \end{aligned}$	0-50	$1 d 8$	10	$\begin{gathered} 38.10 \times 19.05 \\ (1.5 \times 0.75) \\ \text { WR137 } \end{gathered}$	UG.441/U	$\begin{aligned} & 635 \times 200 \times 157 \\ & (25 \times 74 \times 63118) \end{aligned}$	$\begin{aligned} & \hline 1.7 \\ & (17) \end{aligned}$	\$1400
H382A	7.05-10.0	1.15	$\pm 2 \%$ of rezding or $0.1 d 8$ whichever grealer	0-50	$1 d B$	10	$\begin{gathered} 31.75 \times 15.88 \\ (1.25 \times 0.62) \\ \text { WR } 112 \\ \hline \end{gathered}$	UG.138/U	$\begin{array}{\|c\|} \hline 508 \times 202 \times 165 \\ (20 \times 71 / 16 \times 64) \end{array}$	$\begin{gathered} 6.8 \\ (15) \end{gathered}$	51450
X382A	2-12.4	1.15	$\begin{aligned} & \pm 2 \% \text { of reading } \\ & \text { or } 0.1 \mathrm{~d} 8 \\ & \text { whichever grealer } \end{aligned}$	0-50	1 dB	10	$\begin{gathered} 25.40 \times 12.70 \\ (1.0 \times 0.3) \\ \text { WR90 } \end{gathered}$	UG.135/U	$\begin{array}{r} 397 \times 194 \times 119 \\ (15 \% \times 7 \% \times 41 / 1 \text { n }) \end{array}$	$\begin{aligned} & 3.6 \\ & (8) \end{aligned}$	\$700
P382A	12.4-18.0	1.15	$\pm 2$ 名 of iezding or 0.1 d 8 whichever grealer	0-50	1 AB	5	$\begin{gathered} 17.83 \times 9.93 \\ (0.702 \times 0.391) \\ W 962 \end{gathered}$	UG-SI9/U	$\begin{aligned} & 318 \times 191 \times 121 \\ & (121 / \times 74 \times 41 / 4) \end{aligned}$	$3.6$   (8)	5700
K382A	18.0-26.5	1.15	$\pm 2$ of reading or 0.1 dB whichover grealer	0-50	108	2	$\begin{gathered} 12.70 \times 6.35 \\ (0.5 \times 0.25) \\ W R A 2 \end{gathered}$	UG-597/U	$\begin{aligned} & 194 \times 156 \times 121 \\ & (7 \% \times 6 \% \times 4 \times) \end{aligned}$	$2.7$   (6)	31400
R382A	26.5-40.0	1.15	$\begin{gathered} \pm 2 \% \text { of reading } \\ \text { or } 0.1 \mathrm{~dB} \\ \text { whichever greater } \end{gathered}$	0-50	108	1	$\begin{gathered} 9.14 \times 5.59 \\ (0.36 \times 0.22) \\ W R 28 \end{gathered}$	UG.595/U	$\begin{aligned} & 162 \times 156 \times 121 \\ & (64 \times 64 \times 4 \%) \end{aligned}$	$2.7$ (6)	\$1400
X375A	$8.2-12.4$	1.15	$\begin{gathered} \pm 1 \mathrm{~dB} \\ (0-10 \mathrm{~dB}) \\ \pm 2 \mathrm{~dB} \\ (10-20 \mathrm{~dB}) \end{gathered}$	0-20	0.5 dB	2	$\begin{gathered} 25.40 \times 12.70 \\ (1.0 \times 0.5) \\ W B 90 \end{gathered}$	UG-39/U	$\begin{aligned} & 198 \times 89 \times 47.6 \\ & (74 \times 34 \times 14) \end{aligned}$	1.4   (3)	5300
P375A	12.4-18	1.15	$\begin{gathered} \pm 1 d 8 \\ (0-10 d 8) \\ \pm 2 d 8 \\ (10-20 d B) \end{gathered}$	$0-20$	0.5 dB	1	$\begin{gathered} 17.83 \times 9.93 \\ (0.702 \times 0.391) \\ \text { WR } 62 \end{gathered}$	UG-419/U	$\begin{aligned} & 184 \times 89 \times 47.6 \\ & (74 \times 31 / 2 \times 1 / 1) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (3) \end{aligned}$	\$330
Circular Flange Adaplers Available: For K-Band, Specily II515A (UG-425/U) For R-Band, Specily (15)6A (UG-381/U)											$\begin{aligned} & \$ 110 \\ & \$ 110 \end{aligned}$

## Coaxial dual-directional couplers

## Models 770 series, 11692D

- Broadband coverage
- High directivity
- Close tracking



## 774D-777D Dual-directional couplers

The economical 774D-777D couplers cover frequency spreads of more than two-to-one, each centered on one of the important VHF/UHF bands. With their high directivity, and a mean coupling accuracy of $\pm 0.5 \mathrm{~dB}$ these couplers are ideal for reflectometer applications. Furthermore. the close tracking of the auxiliary arms makes these couplers parucularly uscful for reflectometers driven by externally leveled sweep oscillators such as the HP 8690 B and $8620 \wedge / B$. The forward signal is detocted and used to tevel the oulpul of the sweep oscillator while the reflected signal, alter detection, is applied to the display device. Changes in the leveled power due to the coupling vanation in the forward arm are viriually canceled by a similar coupling variation in the reverse arm.

## 778D Dual-directional coupler

The HP 778 D is a 20 dB dual dircecional coupler with a frequency range of 100 MHz 102 GH . High directivity and close tracking (lypically 0.7 dB and $4^{\circ}$ ) of the auxiliary arms make it ideal for rellestometer measurements of complex seflection cocfficient.


## 11692 D Dual-directional coupler

This high directivily, dual directional coupler is a precision insirument designed for broadband swept reflectometer applications in the $\underline{2}$ 1018 GHz frequency range. With its wide frequency coverage, the I1692D coupler can replace several couplers. This adds economy, convenience, end a significant reduction in selup and calibration time to swept reflection and uansmission measurements.
778D Options Price
011: APC-7 ouipui connccior. $N$ remale inpui connectors
add $\$ 25$
012: N male ouiput connector. N female inpul consectors
$\mathrm{N} / \mathrm{C}$
11692 O Otions
001: N female input and output connectors N female auxiliary connectors
002: N female input $N$ male outpul. and $N$ female auxilary conncetors
NEW Coaxial \& Waveguide Catalog and Microwave Measurement Handbook 80 pages. Use request card at back of this catalog.

## 774D, 775D, 776D, 777D, 778D and 11692D Specifications

Model	frequonte Ranget (CHI)	Mamins ${ }^{*}$ Couplin! (d8)	Haimum Cougling Yarstion (dB)	Minimum Olnclivily (dB)	SWR Primaty Line Maximum ( 50 O Nom.	SMR Ausilmy 2 mom Matimum (50si Ham.)	Mnimun Primsty Line Fown	$\begin{aligned} & \text { Aurlfury } \\ & \text { Arn (and Ave } \\ & \text { Pover } \end{aligned}$	Muimum Primsty Une Reshos lows (dB)	Primayy Lloed Auxiliary Rem Connedorn	Oimangions minn( 10. )	Snippints Welighl Lf (体)	Frice
110	0.225-0.850	20	$\pm 1$	10	1.15	12	50 W Arg. 500 W Pesin	0.5 w	0.30	$\begin{aligned} & N(m,!4) \\ & N(3,1) \end{aligned}$	$\begin{gathered} 230 \times 30 \times 15 \\ (91 / 19 \times 34 \times 14) \end{gathered}$	$\begin{aligned} & 1.8 \\ & (4) \end{aligned}$	5475
1750	0.450-0.940	20	$\pm 1$	40	1.15	1.2	50 W Avg.   500 W Pear	0.5 W	0.10	$\begin{gathered} N(m, r)\rangle \\ \otimes(1,1) \end{gathered}$	$\begin{gathered} 236 \times 30 \times 45 \\ (91 / 14 \times 34 \times(6) \end{gathered}$	$\begin{aligned} & 1.8 \\ & \text { (4) } \end{aligned}$	3 HT
1760:	$0.965-1.90$	20	$\pm 1$	10	1.15	1.2	50 Wave 500 lí Pzad	OSW	0.33	$\begin{aligned} & N(m, 1) / \\ & N(1,1) \end{aligned}$	$\begin{gathered} 161 \times 59 \times 45 \\ (63 / 15 \times 2 \% \times 14) \end{gathered}$	$\begin{aligned} & \text { 1.4 } \\ & \text { (3) } \end{aligned}$	513
1710	190-4.0	20	40.4	30	1.2	1.23	50 W Ave seo W Peax	0.54	0.15	$\begin{aligned} & N[\pi, \bar{n}) i \\ & N(1, i, i \end{aligned}$	$\left(\begin{array}{c} 225 \times 64 \times 29 \\ (84 \times 23 \times 15) \end{array}\right.$	$\begin{aligned} & 1,4 \\ & \text { (3) } \end{aligned}$	5300
1280	$0.10-2.0$	20	a)	$\begin{gathered} 360.1-1 \mathrm{CHI}^{\circ} \\ 3: 1-2 \mathrm{H}, \\ \text { (12s) gort) } \end{gathered}$	1.1	1.1	50 Whag. S00 Wh peah	03W	1.3	$\begin{aligned} & \mathbb{N}\langle\pi, 1\rangle \\ & \mathcal{N}(t, 1) \end{aligned}$	$\begin{aligned} & 125 \times 111 \times 30 \\ & (164 \times 16 \times(6) \end{aligned}$	$\begin{aligned} & 23 \\ & \text { (5) } \end{aligned}$	1350
116920	20-18.0	$2 ?$	$\pm 1$ \|reident 10 1ps DOII	$\begin{gathered} 30.2-8 \mathrm{GHz} \\ 2 \mathrm{~B} \cdot \mathrm{~B}-\mathrm{EOCHIf} \end{gathered}$	$\begin{aligned} & 1.32-1746 \mathrm{Hy} \\ & 1.8124-186 \mathrm{~Hz} \end{aligned}$	1.3	50 W Aug 2SO w Peak	0sw	15	$\begin{aligned} & N(1)- \\ & A P C .1) \\ & N(1,1) \end{aligned}$	$\begin{aligned} & 405 \times 133 \times 43 \\ & (16 \times 54 \times 11 \end{aligned}$	$\begin{aligned} & 2.8 \\ & (6) \end{aligned}$	11550
- Nominai Coupline Ceughing factor, Coupling Attenvaton are terms that descibe the same parameter.   $\ddagger 26$ d8 wilh Type N cennection on the lest port.   $\dagger$ Masximum auxiliary atm tracking: 0.3 ac for 7760   - $3000 \mathrm{OB}, 0.1$ to 2 GHz . mput pori.													

- Broadband coverage
- High directivity



## 779D Directional coupler

The HP 779D spans more than wo octaves from 1.7 to 12.4 GHz with excellent directivily. With increased coupling factor (typically 24 dB), the 779D is useful down to 500 M Hz . Upper frequency uscifulness extends to 18 GH , with directivity reduced to about 15 dB .

The 779D is normally supplicd with type N connectors on all ports. On special order, a precision APC-7 connestor can bc supplied on any. or all. ports.

## 790 Directional couplers

The 790 direcional couplers are ultra-flat, high direcuvity couplers which are ideal for power-monitoring applications in coaxial systems. Oulpul coupling (ralio of oulpul power from main and auxiliary arms) is specificd rather than coupling factor. Thus, no corroction factor is required 10 account for inscrtion losses in the main am.

## 11691D Directional coupler

The broadband frequency coverage or the II69ID coupler makes it ideal for leveling and power monitoring applicalions of broadband sources in the 21018 GHz frequency range. Its high directivity makeg if possible to achicve execllent source match ${ }^{3}$ not available with broadband directional delectors.

- Flat frequency response
- Low SWR



116910

## 780 Series directional detectors

The 780 scries delectors are directional couplers wilh buill-in crystal detectors. The couplers have nat frequency response and good directivity, while the detectors have good frequency response plus high sensitivity. The conliguration of the directional delector reduces the number of ambiguilies over the standard system of scparate coupler and delector and makes pussibletighter correlation betwen main-arm power and detected signal. The directional detector is well suited for swoep ossillator leveling and can also be used to monitor power with a voltmeter or oscilloscopc.
779D Options
Price
010: N female (inpui connector, N male output connector, N female auxiliary connection.

N/C
APC: APC. 7 conncclors on any or all ports, on special
order.
Contact $\mathrm{HP}^{3}$
116910 Options
001: $N(\Gamma)$ input and outpul connector, $N(f)$ auxiliary connectors
less $\$ 30$
002: $N(f)$ inpus, $N(m)$ output connector, $N(f)$ auxiliary connector
NEW Coaxlal Waveguide Calalog and Microwave Measurement Handbook 80 pages. Use requesi card al back of this calalog.

779, 790 series, 11691D specifications

Model	Fresuency Ranty (CH2)	Man Oulpul Coubling (d6)	Doutpul Couplint Yariation (AB)	Mlainum Oliaclivity   (dA)	5WR   Mimary int Marimum ( 50 OH Hom.)		Equivifom ${ }^{1}$ Source Malch	Madmum Pylmary Une Powit sla.s anc Dun dycle	Mxyimum Invarllon loss (60)	Plonacy Lined Aurtiary Amb Connucions	Otmanstoms min (in.)	Stripoing Mpiphl 4 ( 18$)$	11:\%
1190	17-12	$28 \pm 0.5$	$< \pm 0.73$	$\begin{aligned} & 17-\langle\mathrm{GNz} 30 \\ & 8-12.4 \mathrm{GHz} 26 \end{aligned}$	1.2	1.3	12	50 w Avg. 500 W Pbak	0.5	$\begin{gathered} \mathrm{H}\{\mathrm{~m}, 1\rangle\rangle \\ \mathrm{N}, \mathrm{i}) \end{gathered}$	$\begin{aligned} & 196 \times 114 \times 26 \\ & (1 \times 44 \times 1) \end{aligned}$	$1 \mathrm{~d}$   (3)	16.3
1960	0.96-211	$20 \pm 0.5$	$\pm 0.2$	30	113	12	1.13	30 W Avs.	0.6	$\begin{gathered} N(m, 1) / \\ N(f) \end{gathered}$	$\begin{aligned} & 132 \times 26 \times 62 \\ & (6 \times 14 \times 364) \end{aligned}$	$\begin{aligned} & 0 \dot{1} \\ & \text { (2) } \end{aligned}$	3313
1970	19-4.1	$20 \pm 0.5$		26	1.16	1.35	1.16	50 WAyz	0.5	$\begin{gathered} N(\pi . M) \\ N(1) \\ N \end{gathered}$	$\begin{gathered} 124 \times 29 \times 68 \\ (414 \times) 4 \times 2 \% 2\} \end{gathered}$	$\begin{aligned} & 0.9 \\ & \text { (2! } \end{aligned}$	335
7986	3.7-8.3	$10 \pm 0.3$	$\pm 0.3$	20	1.25	1.2	1.25	10 WAYg	08	$\begin{gathered} N(m, l) / \\ N(1) \end{gathered}$	$\begin{aligned} & 124 \times 34 \times 99 \\ & (44 \times 15 \times 34) \end{aligned}$	$\begin{aligned} & \text { Ey } \\ & 1 ? ? \end{aligned}$	34.0
11691]	7-18	27   Nominal	$\pm 1$	$\begin{gathered} 2-8 G H z=30 \\ B-18 G H F=26 \end{gathered}$	$\begin{gathered} 2-126 \mathrm{fH}_{\mathrm{C}} \mathrm{I} 3 \\ 17.4-18 \mathrm{GH} \mathrm{l} .5 \end{gathered}$	1.3	1.2	50 WAVR 250 W Pes	2	$\begin{gathered} A P C \cdot-\operatorname{APC} / / \\ N(1) \end{gathered}$	$\begin{aligned} & 405 \times 133 \times 13 \\ & (15 \times 54 \times 15 \end{aligned}$	$\begin{gathered} 2,25 \\ (5) \end{gathered}$	1935

: Difference in of between power out of pnmaty line ace a wiliary am.

- Includes loss due to coupling.
${ }^{1}$ The apparent SWR at the outgut pan al a directional caupler when used in a closed loop leveling sysien
- Directivity is 24 dB in 2 to 8 GHz frequency mage with Igoe N cearecter on the inpot port.


## 780 series specifications

Madel	frapusicy    (6H7)	low Level somilivily ( $4 V / \mu \omega)$	Mremum Coupling Baristlon (d8)	Minimum Olrecivity   (08)	$\begin{gathered} \text { Sint } \\ \text { Primary } \\ \text { Une } \\ \text { Maimum } \end{gathered}$	Equintorll Soursa Malch	Harlmum Prinury Une Power	Marimum Primary Une Resjul Los (d)	Primary Line' Morilag derin Conneciol	Lencth mm (In.)	Shipolne Wrigh If (b)	Price
7860	0.55-2.11	$>4$	$\pm 0.2$	30	1.15	1.13	164tus	0.25	$\begin{aligned} & \mathrm{N}(\mathrm{~m} .19! \\ & \text { EKC I! } \end{aligned}$	152   (6)	$\begin{aligned} & 0.9 \\ & (2) \end{aligned}$	\$456
7870	1.9-4.1	$>1$	$\pm 0 . ?$	26	1.15	116	10 WAvg	0.35	$\begin{aligned} & N\{\pi, 1\rangle / \\ & \text { ENS. }\langle 1 ; \end{aligned}$	$\begin{gathered} 124 \\ \{4 i\} \end{gathered}$	0.3   (2)	H50
788C	$1.1-8.3$	> 40	$\pm 0.3$	20	1. 20	125	1 Whes	0.80	Nimis!   ENC: ( H )	$\begin{gathered} 124 \\ (4 \div 1) \end{gathered}$	$\begin{aligned} & 0.9 \\ & (2) \end{aligned}$	550
1898	$8-12.4$	$>20$	$\pm 0.5$	17	1.40	1.35	1 W AVE	010	$\begin{gathered} \mathrm{N}(\mathrm{~m} .1 \cdot \mathrm{I}) / \\ \mathrm{BNC}(1 ; \end{gathered}$	$\begin{aligned} & 295 \\ & (11 \%) \end{aligned}$	$\begin{aligned} & 0.9 \\ & \text { (2) } \end{aligned}$	\$72

[^25]－Low SWR
－Coverage to 40 GHz


## 752 Series waveguide directional coupler

The HP 752 Series couplers are specilied to meet a wide variety of mierowave applications．Every coupler has a minimum direcivity of 40 dB over its entire frequency range．Each coupler is swepl－fre－ quency tested to ensure that the main guide $S W$ R and directivity spec． ifications are accurate．Performance characteristics are unafleced by humidity，temperature，and time，making these units espocially useful in microwave＂slandards＂measurcments．
The 752 couplers are an cosential part of many mierowave measure－ ment sysiems．Allenuation measurements，reflectomeler setups．power measurements，source leveling，and network analysis are juse a few areas in which these couplers arc used．


Ordering information
When ordering a coupler，the complete model number as listed in the table below must be specified．Example：If a 20 dB coupler that op－ erates in the frequency range of 12.4 GHz to 18 GHz is desired，the model number P753D musi be ordered．


NEW Coaxial \＆Wavegulde Calatog and Microwave Mea－ surement Handbook 80 pages．Use request card at back of this catalog．

## 752 Series Specifications

Modef	Frequency Rance （GH2）	Naminala Coupling （dB）	Mean Coupilint Accuracy （dB）	Maximum   Coupling   Uartation   （d）	Hipimum Directivily （dB）	SHR   Primary Lne Marimym	SHR   Ayylliary   Arm Maximum	Equivalent Flane	Maximum Primary Une Power （Watts）	Wavequide Size Mom O．D． mm（ln．） ElA	Length $\operatorname{mon}\langle\mathrm{ln}$ ．	Shipging Helght Kg（如）	Price
752A	5．85－8．2	3	$\pm 0.4$	$\pm 0.5$	40	1.1	1.15	UG－441／U	2		673 （26K）	5.8 （13）	87i， 4
J752C	5．85－8．2	10	$\pm 0.4$	$\pm 0.5$	40	1.05	1.15	UG－441／U	10	$(1.50 \times 0.75)$	$849(259 / 16)$	5.8 （13）	3796
J7520	5．85－8．2	20	$\pm 0.4$	$\pm 0.5$	40	1.05	1.15	UG－441／U	100		649 （25\％／16）	5.8 （13）	\＄700
H752A	7．05－10．0	3	$\pm 0.4$	$\pm 0.5$	40	1.1	1.15	UG－138／U	2		473 （18\％）	1.8 （4）	3450
H752C	7．05－10．0	10	$\pm 0.4$	$\pm 0.5$	40	1.05	1.15	UG－138／U	10	$(1.25 \times 0.625)$	445（17\％）	1．8．（4）	ن
H7520	7．05－100	20	$\pm 0.4$	$\pm 0.5$	40	1.05	1.15	UG－138／U	100		445 （17\％）	1.8 （4）	\＄450
K752A	8．2－12．4	3	$\pm 0.4$	$\pm 0.5$	40	1.1	1.15	UG－135／J	2		424（1811／16）	1.4 （3）	\＄350
8752C	8．2－124	10	$\pm 0.4$	$\pm 0.5$	40	1.05	1.15	UG－135／U	10	$(1.00 \times 0.50)$	399 （151／16）	1.4 （3）	5350
X 7520	8．2－12．4	20	$\pm 0.4$	$\pm 0.5$	40	8.05	1.15	UG－ $135 / \mathrm{J}$	100		399 （1511／6）	1.4 （3）	\＄350
P752A	124－18．0	3	$\pm 0.4$	$\pm 0.5$	40	1.1	1.2	UG－419／U	2		349 （1346）	0.9 （2）	3350
P752C	12．4－18．0	10	$\pm 0.4$	$\pm 0.5$	40	1.05	1.2	UG－419／U	10	$(0.102 \times 0.391)$	311 （124／4）	0.9 （2）	3350
P7520	12．4－18．0	20	$\pm 0.4$	$\pm 0.5$	40	1.05	1.2	UG－419／U	100		311 （124）	0.9 （2）	シ3＇י：
K752A	18．0－26．5	3	$\pm 0.7$ ．	$\pm 0.5$	40	1.1	12	UG－595／J	1		270 （10\％）	0.45 （1）	S42S
K752C	18．0－26．5	10	$\pm 0.7$	$\pm 0.5$	40	1.05	1.2	UG－595／U	5	$(0.50 \times 0.25)$	252 （915／14）	0.45 （1）	S425
K7520	18．0－26．5	20	$\pm 0.7$	$\pm 0.5$	40	1.05	1.2	UG－595／U	50		252 （915／16）	0.45 （1）	5425
R752A	26．5－40．0	3	$\pm 0.7$	$\pm 0.5$	40	1.1	1.2	UG－599／U	1		295（11\％）	0.45 （1）	\＄500
R752C	26．5－40．0	10	$\pm 0.7$	$\pm 0.5$	40	1.05	1.2	UC．599／0	5	$(0.36 \times 0.22)$	219 （8\％）	0.45 （1）	ざい尤
R7520	26．5－40．0	20	$\pm 0.7$	$\pm 0.6$	40	1.05	1.2	UG－599／U	50		222 （823，12）	0.45 （1）	\＄51．11
Cucular flange adaptors available：For K－Band，specily 11515A（UG－425／U）   For R－Eand．specity $11516 A(U G-381 / U)$													$\begin{array}{\|l} \$ 110 \\ \$ 110 \\ \hline \end{array}$

- High resolution, easy-10-read dial




Frequency meters 536A, 537A (coaxial), 532 series (waveguide)
These direct-reading frequency metcrs measure frequencies from 5.30 to 40 GHz in waveguide and from 960 MHz to 12.4 GHz in coax quickly and accurately. Their long scale length and numerous calibration marks provide high resolution with is particularly useful when measuring frequency differences or small frequency changes. Frequency is read direclly in GHz so interpolation or charts are nol required.
The instruments comprise a special transmission section with a high-Q resonant cavity which is tuned by a choke plunger. A 1-dB or greater dip in output indicates resonance: virtually full power is transmitted off resonance. Tuning is by a precision lead screw. springloaded to eliminate backlash. Resolution is enhaneed by a long, spiral
scale calibrated in small frequency increments. For example. Model X 532 has an effective scale length of 1956 mm ( 77 inches) and is cali. brated in $5-\mathrm{MHz}$ increments. Resentability is extremely good and all frequency calibrations are visible so chat measurement point is directly indicated. Overall accuracy of each frequency meter includes allowance for 0 to 100 percent relative humidity and temperature variation from $131033^{\circ} \mathrm{C}$. Except for the J532A, shere are no spurious modes or resonances. Because of the wide frequency range of the JS32A, frequencies from 7.6 to 8.2 GHz can excite the $T E_{1}$, mode when the dial is set betweer 5.3 and 5.6 GHz .
NEW Coaxtal \& Wavegulde Catalog and Microwave Measurement Handbook 80 pages. Use request card al back of this catalog.

## 532A Series, 536A and 537A specifications

Model	Frequency Range (GHz)	Didal Acourscy (\%)	Overill Accuracy (\%)	Minimum Dip at Resonance (dB)	Calibrallon Increment (MHi)	$\begin{aligned} & \text { Maweguide She } \\ & \text { Nom. O.D. mm (in.) } \\ & \text { EIA } \end{aligned}$	Equivalomí Flange (Conneclior)	Dimensions mm (ln.)	Shipging Heighl kt (lb)	Price
536A	0.96-4.20	$\begin{aligned} & 0.15: 0.96 \\ & \text { 1o } 16 \mathrm{Gz} \\ & 0.10: 1 \% \\ & 4.2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.22: 0.96 \\ & 101 \mathrm{GH} \\ & 0.17: 110 \\ & 4.2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.6: 0.96 \\ & \text { to } 1 \mathrm{GHz} \\ & 1: 110 \\ & 4 \mathrm{GHz} \\ & 0.6: 4 \mathrm{l} \\ & 4.2 \mathrm{GHz} \end{aligned}$	2	Coaxial	(7ype N)	$\begin{gathered} 152 \times 232 \times 152 \\ (6 \times 94 \times 6) \end{gathered}$	$\begin{gathered} 5.9 \\ (13) \end{gathered}$	\$ 875
537A	3.7-12.4	0.100	0.170	1	10	Coaxial	(Type N)	$\begin{aligned} & 118 \times 146 \times 89 \\ & (4 K \times 5 \times \times 34) \end{aligned}$	$\begin{aligned} & \hline 2.3 \\ & \text { (5) } \end{aligned}$	\$ 650
1532A	5.30-8.20	0.033	0.065	1	2	$\begin{gathered} 98.1 \times 19.05 \\ (14 \times 4.5 \\ \text { WR137 } \end{gathered}$	UG.44I/U	$\begin{aligned} & 159 \times 232 \times 114 \\ & (64 \times 9 \% \times 4 K) \end{aligned}$	$\underset{(5.0)}{11}$	51050
H532A	7.05-10.0	0.040	0.075	1	2	$\begin{gathered} 31.75 \times 15.88 \\ (1 \times \times 4) \\ W R 112 \end{gathered}$	UG.138/U	$\begin{aligned} & 159 \times 203 \times 111 \\ & (64 \times 8 \times 4 K) \end{aligned}$	$\begin{aligned} & 4.1 \\ & \text { (9) } \end{aligned}$	\$1050
X532日	8.20-12.4	0.050	0.080	1	5	$\begin{gathered} 25.4 \times 12.7 \\ (1 \times 27) \\ \text { WR90 } \end{gathered}$	U0.39/u	$\begin{gathered} 114 \times 156 \times 13 \\ (4 k \times 64 \times 2 \%) \end{gathered}$	$\begin{aligned} & 1.8 \\ & (4) \end{aligned}$	\$575
P532A	12.4-18.0	0.068	0.100	1	5	$\begin{gathered} 17.83 \times 9.93 \\ (0.702 \times 0.391) \\ \text { WR62 } \end{gathered}$	UG-419/U	$\begin{aligned} & 114 \times 159 \times 70 \times 70 \\ & (41 / \times 64 \times 24) \times 24 \end{aligned}$	$\begin{aligned} & 1.8 \\ & (4) \end{aligned}$	\$ 575
K532A	18.0-26.5	0.077	0.110	!	10	$\begin{gathered} 12.7 \times 6.35 \\ (0.50 \times 0.25) \\ \text { WR42 } \end{gathered}$	UG.585/J	$\begin{aligned} & 114 \times 137 \times 73 \\ & (4 \% \times 5 \% \times 2 \%) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (3) \end{aligned}$	\$ 350
R532A	26.5-40.0	0.083	0.120	1	10	$\begin{gathered} 9.14 \times 5.59 \\ (0.360 \times 0.220) \\ W R 28 \\ \hline \end{gathered}$	UG.599/U	$\begin{gathered} 114 \times 140 \times 70 \\ (44 \times 54 \times 2 \times) \end{gathered}$	1.4   (3)	\$ 750
Circular llange adapters ayalable: For K-Band, Specily 11515A (UG-425/U) For R-Band. Specify 11515A (UG-381/U)										$\begin{aligned} & \$ 110 \\ & \$ 110 \end{aligned}$

## TP MICROWAVE TEST EQUIPMENT

## Coaxial crystal detectors

Models 420A/B, 423A/B, 8470A/B, 8471A, 8472A/B

Flat frequency response

- High burnout protection



## 423B, 8470B, 8472B Low-Barrier Schottky (LBS) detectors

The Low-Barrier Scholtky (LBS) detectors are a state-of-the-art addition to the HP family of high performance delectors. The integration of a Low-Barrier Schotaky diode and special thin-Film matching circuil provides significant improvements in Matness, SWR, higher sensitivily withoul bias, ruggedness, and burnoul protection over point-contact models. Designated as ' B ' models of the well known 423/8470/8472 family, the LBS line offers ultra high performance at an economical price. The 423B and 8470 O Option 012 provide Type N connector versions to 12.4 GHz and 18 GHz respectively. The standard 8470 B and 8472B offer APC-7 and SMA connector versions. Matched pairs (Option 001) offer matched deleclor tracking. A vidco load (Option 002) extends the square-law to at least $0.1 \mathrm{~mW}(-10$ dBm). Field-replaceable detector elements are available.

- Low SWR
- Field replaceable detector elements



## 420A/B, 423A, 8470A, 8471A, 8472A pointcontact detectors

These point-contact detectors have been widely used for many years and provide high performance al an economical price. The 8470A, 8470A Oplion 012, and 8472A provide APC-7. Type N, and SMA connector versions to 18 GHz . Like the 423A and 424A Crystal Delectors, the 8470A and 8472A combine extremely flat frequency response with high sensitivity and low SWR, making them extremely usciul as the deteciing element in closed-loop leveling systems, and their per Jormance is surpassed only by the LBS models. Matched pairs are available for applicstions requiring close detector tracking, and all but the 8472A can be supplied with video loads for optímum conformance 10 square law. Field-replaceable delector elements are available. A!l models excepl 8471A may exbibil some RF leakage at outpul connector below : GHz RF.
NEW Coaxlal \& Waveguide Catalog and Microwave Measurement Handbook 80 pages. Use request card at back of this catalog.
Coaxial erystal detectors specifications

Madel	freguency Runtr (GH1)		Frequency Retparse ( 6 B)	SWA Maximum (30n Nom)	Low larel semalivily		Shan-lems Huimums Inpul (<1 min.)	Dillon 001   Hatthed Bir	Oplion 002 Squatelim Land	Oplion 103   Poultyo Polarthy	Inpul Connestor	Price
4238	$0.01-12.4 \mathrm{CHz}$	LES	$\begin{aligned} & \text { 20.2/octive } \\ & 108 \text { ith } \\ & \pm 03 \text { nuer Ill } \end{aligned}$	$\begin{aligned} & 1.15108 \mathrm{GHz} \\ & 131012.4 \mathrm{GHz} \end{aligned}$	$>\underset{\mu \mathrm{FW}}{20.5 \mathrm{mW/}}$	200 mw	1 Wall	$\begin{aligned} & \pm 0.2 \pi 810 \\ & 12.4 \mathrm{GHz} \end{aligned}$	Y¢	Y	N (m)	5190
423A	$001-124 \mathrm{GHz}$	Poin! Contacl	$\begin{aligned} & \pm 02 \% \mathrm{atave} \\ & 108 \mathrm{Gkr} \\ & \pm 05 \text { overall } \end{aligned}$	$\begin{aligned} & 1.264 .3 \mathrm{GHz} \\ & 1.35 \mathrm{CO} 7 \mathrm{GHz} \\ & 151012.2 \mathrm{GKz} \end{aligned}$	$\begin{gathered} >0.4 \mathrm{~mW}) \\ \mu \mathrm{W} \end{gathered}$	100 mW	0.1 Wall		Y ${ }^{\text {r }}$	Yes	$\mathrm{H}(\mathrm{n})$	8155
84700	$0.01-18.0 \mathrm{GHz}$	1 BS	$\begin{aligned} & \pm 0.2 / \mathrm{c} \text { ciave } \\ & 108 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 115 \mathrm{SO} \mathrm{GHz} \\ & 131: 15 \mathrm{GHz} \end{aligned}$	$\begin{gathered} >0,5 \mathrm{~m}(\%) \\ \mu W \end{gathered}$	200 mw	1 W th	$+02 d \mathrm{da}$ 126 GHz	Yes	Yes	APC. 1	\$230
Odian 012			$\pm 0.6618 \mathrm{CHz}^{\text {c }}$					18 GHz			$\mathrm{N}(\mathrm{m})$	5215
8670 A	$0.01-18.0 \mathrm{CHz}$	Polnt Contact	$\pm 0.2 \% \text { cava }$ $108 \mathrm{GHP}$	1.2104 .5 GHz 135 to / GNe	$>0.4 \mathrm{~mW}$	100 mm	0.1 Wall	$\underset{8 \mathrm{CHz}}{ \pm 0.2 \mathrm{AB} \mathrm{to}}$	Yes	Yas	APC 7	$\$ 195$
0 OLam 012			$\pm 1.01018 \mathrm{CHI}$	1.71018 chl				12.4 GH ? $\pm 0.601810$ 18 GHz			$N(m)$	5180
84728	$0.01-18.0 \mathrm{GHz}$	Ls	$\pm$ 20, oclave   15 BGH $\pm 0.3$ to $12,4 \mathrm{GH}:$ $\pm 0.5 \mathrm{ll} 18 \mathrm{fHz}$		$\begin{gathered} >0 \operatorname{mW/I} \\ \mu \mathrm{~W} \end{gathered}$	200 mW	1 WatI	$\begin{aligned} & \pm 0.20860 \\ & 129 \mathrm{GH} \\ & \pm 036 \mathrm{Blo} \\ & 18 \mathrm{GHz} \end{aligned}$	No	Yes	$\begin{aligned} & \text { SMA } \\ & (\mathrm{m}) \end{aligned}$	$\$ 215$
88728	$0.01-18.0 \mathrm{GHt}$	Polat! Conctact	$\begin{gathered} \pm 0.2 / 0 \mathrm{ctiave} \\ 108 \mathrm{GHz} \\ \pm 0.501212 \mathrm{GHz} \\ \pm 101618 \mathrm{GH} \end{gathered}$	13102.5 GHz   $13510 / 5 \mathrm{~Hz}$   1.510124 GHz   1.7 D IB CHy	$\begin{gathered} >0.4 \mathrm{~mW} / \\ \mu \mathrm{W} \end{gathered}$	100 mm	0.1 \%ril	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \mathrm{lo} \\ & 8 \mathrm{GHz} \\ & \pm 0.3 \mathrm{AB} 10 \\ & 12.4 \mathrm{GH} \\ & \pm 0.68 \mathrm{Bl} 10 \\ & 18 \mathrm{GHz} \end{aligned}$	No	Yes	$\begin{aligned} & \sin \\ & (\pi) \end{aligned}$	8100
												$\begin{array}{r} \text { Add } \\ \text { S20/Uni\| } \end{array}$
												$n / C$
$420 A^{1}$	$0.01-1240 \mathrm{~Hz}$	Poinl Contact	$\pm 3.5$ overan	30	$\xrightarrow[\mu \mathrm{W}]{\substack{\mathrm{W} \\ \hline}}$	100 mW	0.1 Watl	No	Ste Note 11	No	( ${ }^{(m)}$	870
9877 ${ }^{\text {a }}$	$100 \mathrm{kHz}-3.2 \mathrm{CHz}$	$\begin{aligned} & \text { Fenint } \\ & \text { Contacl } \end{aligned}$	$\begin{aligned} & \pm 0,6, \text { fypscal) } \\ & \pm 01,\left\{00, \forall H_{z}\right. \end{aligned}$	$\begin{aligned} & 1.3 \text { liypieal) } \\ & \text { son } \end{aligned}$	$>\underset{\mu W}{>0.35 \pi / 2}$	3 Vms	3 Y 1 ms	Hp	No	Positiva Outpul ODtion 004	$\begin{aligned} & \text { BNC } \\ & (m) \end{aligned}$	33
												\$120
												$\begin{aligned} & \text { A01 } \\ & 110 \end{aligned}$

- Flat response
- High sensitivity

- Low VSWR
- Field replaceable detector elements


J424A

## 422 Serles, 424 series, $X 485 B$ waveguide crystal detectors

The 422A and 424A family of crystal detectors combine high sensilivily with flat frequency response and low SWR 10 provide wave guide band coverage from 2.61040 GHz . For reflociomeler applica-
Waveguide crystal detector specifications
lions in which bolh hat frequency response and square-law chsracteristics are important, these models can be supplied as malched pairs (Option 001) and also with an optimum square-law load (Option 002). Model X 485 B is a runcuble delector moun which accepis IN2I crystal or bolemeter (not supplied).
NEW Coaxial \& Waveguide Catalog and Microwave Measurement Handbook 80 pages. Use request card at back of this catalog.

Hodel	Fiequency Range (6H2)	Frequency Response (dB)	Option 001 Malched Pair Tracking (dB)	Option 003 Square-Law Load	Minimum Low-level Sensitivily $(m V / \mu W)$	Marimum High-Level Senslivily (mif)	SWR Marimum	$\begin{gathered} \text { Haximum } \\ \text { Power } \\ \text { (Ay oI Pk) } \\ (\mathrm{mW}) \end{gathered}$	Wavequide Size Nom. O.D. mm (in.) EIA	Equivalent Fange	Length min (ln.)	$\begin{array}{\|c} \begin{array}{c} \text { Shipping } \\ \text { Weight } \\ \text { KI (b) } \end{array} \\ \hline \end{array}$	Prica
SA24A	2.6-3.95	$\pm 0.2$	$\pm 0.2 \mathrm{~dB}$	Yes	0.1	035	1.35	100	$\begin{gathered} 76.2 \times 38.1 \\ (3 \times 1.50) \\ \text { WR284 } \end{gathered}$	UG.584/	$\begin{gathered} 62 \\ (2.44) \end{gathered}$	$\begin{aligned} & \hline 0.9 \\ & \text { (2) } \end{aligned}$	\$240
C424A	$3.95-5.85$	$\pm 0.2$	$\pm 0.2 \mathrm{~dB}$	Yes	0.4	0.35	1.35	100	$\begin{gathered} \hline 50.8 \times 25.4 \\ (2 \times 1) \\ \text { WR187 } \end{gathered}$	UG A07/U	$\begin{gathered} 52 \\ P 2.06) \end{gathered}$	$\begin{aligned} & 0.45 \\ & \text { (1) } \end{aligned}$	\$225
J424A	$5.3-8.2$	$\pm 0.2$	$\pm 0.208$	Yes	0.4	0.35	135	100	$\begin{gathered} 38.1 \times 191 \\ (1.50 \times 0.15\} \\ w .137 \end{gathered}$	UG.441/	$\begin{gathered} 48 \\ (1.88) \end{gathered}$	$\begin{aligned} & 0.23 \\ & (0.5) \end{aligned}$	\$225
H424A	7.05-10.0	$\pm 0.2$	$\pm 0.2 \mathrm{~dB}$	Yes	0.4	0.35	1.35	100	$\begin{gathered} 31.7 \times 15.9 \\ (1.25 \times 0.625) \\ \text { WRI12 } \end{gathered}$	UG.138/U	$\begin{gathered} 80 \\ (1.56) \end{gathered}$	$\begin{aligned} & \hline 0.23 \\ & (0.5) \end{aligned}$	\$225
$\times 424 \mathrm{~A}$	82-12.4	$\pm 0.3$	$\pm 0.3 \mathrm{~dB}$	Yes	0.4	0.35	1.35	100	$\begin{gathered} 25.4 \times 12.7 \\ (1 \times 0.5) \\ \text { WR90 } \end{gathered}$	UG•135/U	$\begin{gathered} 35 \\ (138) \end{gathered}$	$\begin{aligned} & 0.23 \\ & (0.5) \end{aligned}$	\$190
$\times 4858$	8.2-12.	-	-	No	-	-	1.25	-	$\begin{gathered} 25.4 \times 12.7 \\ (1 \times 0.5) \\ \text { WR90 } \end{gathered}$	UG.135/J	$\begin{gathered} 164 \\ (6.5) \end{gathered}$	$\begin{aligned} & 0.9 \\ & (2) \end{aligned}$	\$300
M424A	10.0-15.0	$\pm 0.5$	$\pm 0.5 \mathrm{~dB}$	Yes	0.3	0.50	1.5	100	$\begin{gathered} 21.6 \times 12.1 \\ (0.850 \times 0.475) \\ \text { WR75 } \end{gathered}$	Cover	$\begin{gathered} 25 \\ (1.00) \end{gathered}$	$\begin{aligned} & 0.23 \\ & (0.5) \end{aligned}$	\$300
P424A	12.4-18.0	$\pm 0.5$	$\pm 0.5 \mathrm{~dB}$	Yes	0.3	0.50	1.5	100	$\begin{gathered} 17.8 \times 9.9 \\ (0.702 \times 0.391) \\ \text { WR62 } \end{gathered}$	UG-419/U	$\begin{gathered} 24 \\ (0.94) \end{gathered}$	$\begin{aligned} & 0.22 \\ & (0.5) \end{aligned}$	\$220
K422A	18.0-26.5	$\pm 2$	$\pm 188$	No	$\begin{gathered} 0.3 \\ \text { 〈lypical〉 } \end{gathered}$	-	2.5	100	$\begin{gathered} 12.7 \times 6.4 \\ (0.500 \times 0.250) \\ W 842 \end{gathered}$	UG-595/U	$\begin{gathered} 51 \\ (2.00) \end{gathered}$	$\begin{aligned} & 0.45 \\ & (1) \end{aligned}$	\$475
R422A	26.5-40.0	$\pm 2$	$\pm 18$	No	$\begin{gathered} 0.3 \\ \text { (lypical) } \end{gathered}$	-	3	100	$\begin{gathered} 9.1 \times 5.6 \\ (0.360 \times 0.220) \\ W R 28 \end{gathered}$	UG-599/U	$\begin{gathered} 51 \\ (2.00) \end{gathered}$	$\begin{aligned} & 0.45 \\ & \text { (1) } \end{aligned}$	\$460
All Models-0plion 001 Malched Pair													Add \$20/Unit
All Models-Oplion 002 Oplimumin Saude													Add \$20/Unit
Noi All Modols-Option 003 Posilive Outpul													N/C
Circular Flange Adaplers Availablé For K-Band. Spectity IISI5A (UG.425/J)Fol R-Band, Specily 11516 (UG.381/U)													$\begin{aligned} & \$ 110 \\ & \text { silu } \end{aligned}$



## 816A Coaxial slotted section, 1.8 - 18 GHz

(Used with 809 C Carriages and 447B or 448A/B Detector Probes).
The 816 A consists of (wo parallel planes and a rigid center conductor. This configuration virually eliminates radiation and minimizes the effect of variation in probe penetration and centering. It is filted with one APC-7 and one lype $N$ remale connccior.
816A Speciñcationg
Frequency: 1.8 - 18 GHz .
Realdual SWR: APC-7, 1.02-1.04 depending on frequency coversge.
Length: 248 mm ( $91 / \mathrm{inches}$ ).
Weight: net, 0.68 kg ( $1 / 1 \mathrm{lb}$ ), Shipping, 1.4 kg ( 3 Ib ).
Accersorles furnished: IIS12A lype N male shorl; I1565A APC-7
Option 011: both connectors APC-7.
Option 022: type N (m) connector in lieu of APC-7.

## 447B Detector Probe

Model 447 consists of a crystal diode detector plus a small antenna probe for sampling energy in HP 816 A Coaxial Slotted Lines. The untuned probe is extremely sensitive over its frequency range of 1.8 to 18 GHz . The 447B fils HP 809 C Carriage or other earriages with a 19 mm ( $1 / 44^{4}$ ) mounting hole.

## 448A/B Slotted line sweep adapter probes 1.8 18 GHz

The 448A consists of a short slotted line and iwo matched detectors wilh adjustabie probes. One deloctor levels the signal source, the other monitors the standing waves in the B16A.
The 448B consists of a shor section of sloted line and two adjustable probes filted with Type $N$ connectors for mating with the detectors of the 8755 Frequency Response Tesi Set.
NEW Coaxial \& Waveguide Catalog and Microwave Measurement Handbook 80 pages. Use request card at back of this caralog.
Moder number and name Price
447B detector probe
448A slotied line swoep adapter probes $1.8-18 \mathrm{GHz}$
448B slotted line sweep adapier probes $1.8-18 \mathrm{GHz}$
$\$ 550$
805C coaxial sloted line system $0.5-4 \mathrm{GHz}$
809C sloted line cerriage
$\$ 500$
816A coaxial slolled section $1.8-18 \mathrm{GHz}$
$\$ 525$
Oplion 011: both connectors APC-7
add $\$ 25$
Option 022: type $N(m)$ and $N(1)$
817A sloted line system $1.8-18 \mathrm{GHz}$
$\$ 1700$
817 B sloted line sysiem $1.8-18 \mathrm{GHz}$
$\$ 1400$


## 809C Carriage

The 809 C Carriage operstes with the four 810 B Waveguide Sloted Sections and the 816 A Coaxial Slotted Section. It is compatible with the 444A and 442 B probes. The carriage has a centimeter scale with a vernier reading to 0.1 mm , and provision is made also for mounting a dial gauge if more accurate probe position reading is required.

## 810B Slotted sections, $5.3-18 \mathrm{GHz}$

Waveguide slotied line measurements in the frequency range $5.3-18 \mathrm{GHz}$ are made using the 8108 Slotted Section, the 809 C Carriage and 444A Probe or 440 A plus 442B Probe combination.

## 810B Specifications

HP   Model	Frequency   range (GHz)	Fils Waveguide   size OAA	Equatralent	Pilce
J8108	$5.30-8.20$	WR137	UG441/U	$\$ 375$
H810日	$7.05-10.0$	WRIL2	UG138/U	$\$ 375$
X8108	$8.20-12.4$	WR90	UG135/U	$\$ 375$
P810B	$12.4-18.0$	WR62	UG419/U	$\$ 375$

## 444A Untuned probe, $2.6-18 \mathrm{GHz}$

The 444A Untuned Probe, for use with HP 810B Waveguide Slotled Sections, consists of a crystal, plus a small antenna in a convement housing. The probe is held in position by frietion or may be fixed by a locking ring. No turing is required and sensitivity cquals or exceeds many elaborale single and double-iuned probes. The 444A lits the 809 C Carriage or other carriages with a $/ 4 \mathrm{inch}(19 \mathrm{~mm}$ ) mounting hole. Frequency range is 2.6 to 18 GHz . Accessory furnished: 11506 A Probe Exiension Kit.

## 440A Detector mount

The 440A is a sunable mount used for detecting RF energy in coaxial systems or in conjunclion with the HP 442B in waveguide or coaxial sloted sections. Delector (nol supplied) can be a IN21 or 1N23 Crystal or 821 Series Barretter.

## 442B Eroadband probe, 2.6-12.4 GHz

Model 442B is a probe whose depit of penetration into a slolled section is variable. Held in position by friction, it may be fixed in place by a locking ring. Samplod $R F$ appears al a lype $N$ jack. II can be connected to a 440A Delector Mount to form a sensitive and convenient luned RF detector for HP 8 IOB Waveguide Slolted Sections. The

442B fils the 809 C Carriage. Frequency range is 2.6 to 12.4 GHz .

## 814B Carriage

The HP 814 B Carriage is designed for use with the K81SB ( 18 to 26.5 GHz) and R815B ( 26.5 to 40 GHz ) Waveguide Slolled Sections and HP 446B Untuned Probe. The carriage is equipped with a dial indicator for aceuraic reading. Slouted sections are casily interchanged.

## 815B Slotted sections, $18-40 \mathrm{GHz}$

(used with 814 B carriage and 446 B detector)
The 815B Waveguide Slotted Soctions are designed to fit the 814B Carriage. Like the lower-frequency slotted sections, each 8158 is pre-cision-manufaclured, broached and checked with precision gauges for careful control of guide wavelengit. The slot is tapered to insure a low SWR.

## 815B Specifications

	K8158	A8158
Frequency range (GHz):	181026.5	28.51040
Residual SWR:	1.01	1.01
Overal I lengith:	$192 \mathrm{~mm}\left(79 / 16^{\circ}\right)$	$192 \mathrm{~mm}\left(79 / 10^{\circ}\right)$



## 446B Broadband detector

The HP 446B is a broadband detector and probe which consists of a modified INSI silicon diode in a carefully designed shielded housing. No luning is required, and probe penetration may be varied quickly and easily. Designed for use with the 814 B Carriage, the 446 B has a frequency range of 18 to 40 G .
NEW Coaxial \& Wavoguide Catalog and Microwave Measurement Handbook 80 pages. Use request card al back of this cutalog.
Model number and name ..... Price440A Delector Mount$\$ 195$
442B RF Probe ..... $\$ 150$
444A Unluned Probe ..... \$105
446 Broadtand Uniuned Probe ..... $\$ 350$
814 B Slotled Line Carriage Assembly ..... $\$ 850$
K8ISB Waveguide Slotied Line Section ..... $\$ 695$
R815B Waveguide Slotted Line Section ..... $\$ 725$

interchangeable connectors, $N$-male. $N$-female and APC-7. The 911A is supplied with SMA male and female.

## 908A, 909A Coaxial fixed terminations

The 908A and 909A icrminations are low-reflection loads for terminating $50 \Omega$ coaxial systems in their characteristic impedance.
905A, 907A, 911A Specifications

HD   Model	Freqomay DNE	Iond SMR	Power ming	Lendth in. (mm)	Shippint - $\quad$ ich	Prict
9051	$1.8-18 \mathrm{GHz}$	1.05	IW dre 5 kiv pi	$\begin{aligned} & 1 i i_{i} \\ & (4: 0) \end{aligned}$	$\begin{gathered} 3 \mid \mathrm{b} \\ (1.44 \mathrm{~d}) \end{gathered}$	3350
90/A	$1-18 \mathrm{CH}$	$\begin{gathered} 1.1,1-1.5 \mathrm{GH} r_{1} \\ 1.05,15-18 \mathrm{GH} t \end{gathered}$	1 W avg. SANOK	$\begin{aligned} & 30 \mathrm{~V} \\ & (718) \end{aligned}$	$\begin{gathered} 9 \mid \mathrm{b} \\ \langle 4.1 \mathrm{~kg}\} \end{gathered}$	8225
9118	$2-18 \mathrm{GHz}$	$\begin{aligned} & 11,2-8 \mathrm{GHz} \\ & 105 \mathrm{~S}-18 \mathrm{GH} 1 \end{aligned}$	I Wave 5 AW	$\begin{aligned} & 14 k \\ & (280) \end{aligned}$	$\begin{gathered} 316 \\ (1.4 \mathrm{k}) \end{gathered}$	1360

908A, 909A Specifications

HP Maded	fraquency Monje	Imporanct	SWR	Pownir Railn!	Canneiol	Prict
90RA	6-16Hz	3) 0 hms	1.05	WW sve, 1 kHF	N male	\$ $\$ 0$
9094	$\mathrm{dr}-18 \mathrm{Ckr}$	30 ahmis	$\begin{gathered} 1.65 \\ \mathrm{D}-16 \mathrm{CHz} \\ 11 . \\ \$-124 \mathrm{GHz} \\ 1.25 \\ 12.4-18 \mathrm{GH}, \end{gathered}$	2 H 34 300 Woh	APC. ${ }^{\text {d }}$	595
90SA   Dibien 012   and   Oblian 013	60-18648	50 olics	$\begin{gathered} 106 \\ 8-16 \mathrm{~Hz} \\ 1.11 . \\ 4-12.8 \mathrm{CHz} \\ 1.3 \\ 128-18 \mathrm{GHz} \end{gathered}$	2 ware . 300 W	0p1 01?   N male   OpH 51.   N temale	Sublact $\$ 13$

## 11511A, 11512A, 11565A Coaxial shorts

These shorts are used lor establishing measurement planes and known renection phase and magnitude in $50 \Omega$ cosxial systems.
NEW Coaxial \& Waveguide Catalog and Microwave Measurement Handbook 80 pages. Usi request card at back of this catalog.

Modal number and name
IISIIA $N$-female shori
IISI2A N-male shori
II565A A PC- 7 short

## 910A/B, 914A Waveguide

 fixed and movable terminationsThe 910A/B are fixed terminations for waveguide systems. The 914A/B are similar to the 910A/B, except that its absorptive clemen: is movable and a lockable plunger controls the position of the element,

## 910A/B, 914A/B Specifications

Model	Firguancy   Ranje ( $\mathrm{CH}_{2}$ )	SWR	Power   Roling	Iypr	$\begin{aligned} & \text { Wavequids } \\ & \text { Slope } \\ & \text { (Ein) } \end{aligned}$	Price
M104	S.s-8ic	1.02	1 malt	havel	WRI37	\$150
H9104	7.05-10.0	1.02	1 ws ${ }^{\text {d }}$	Pired	WR112	$\$ 125$
Y910	8.1-12.4	1.015	1 watt	lived	WRSO	185
P9104	12.4-18	1.02	1 malt	Ifred	Wrg?	\$85
G918A	3.95-5.85	1.01	2 moll	sulding	WR131	\$330
M134	5.3-8.2	1.01	2 watl	slitung	WF137	$\$ 350$
H914A	7.05-70.0	1.01	1 axd	sloding	WF1 13	8350
X914B	8.2-124	1.01	1 \% $\mathrm{n}_{1} 11$	3llding	WFPD	5185
P914d	12.4-19	1.01	${ }^{1}$ ! wat!	slidire	WR62	\$125
KG148	18-4,5	1.01	y $\mathrm{m}_{\text {at }}$	sliding	WR42	H50
P9148	26.5-45	1.01	$\mathrm{H}_{6} \mathrm{mat}$	3lofing	Wh28	3113

920A/B, X923A, X930A Waveguide shorts
The $920 \mathrm{~A} / \mathrm{B}$ are movable shorls. adjustable through at least half a wavelength at the low end of the band. The X923A is also a movable short, but is adjustable through about wo wavelengibs at 8.2 GHz . The X930A is a shorting switch. SWR is less than 1.02 in "open", greater than 125 in "shor1,"
920A/B, X923A, X930A Specifications

Hadel	frequancy   Exing (GH)	Warequide Sizo (ik	Piki
2920	5.3-8.2	Wel3 ${ }^{\text {a }}$	\$245
H920	705-10.0	WR11?	3250
X973A	$8.2-128$	WF90	5253
P9208	$128-18$	WRG2	1245
צ9808	120-26.5	WR42	4450
R9208	26.5-40.0	WR28	3? 35
X9304	8.2-128	Wr930	1350

- Effective elimination of undesirable signals
- Low insertion loss through passband.


## 

preseloctors for the HP 8555A Specirum Analyzer. As such, they permit the maximum utilization of the analyzer's broad spectrum-width capability while ensuring virtually spurious-free displays.

NEW Coaxial \& Waveguide Catalog and Microwave Measurement Handbook 80 pages. Use request card at back of this catalog.

These Hewlett-Packard low-pass and bandpass filters facilitate microwave measurements by climinating undesirable signals (such as harmonies) from the measurement system. Suppression of such signals is parlicularly important in applications such as broadband reflection and transmission measurements or slotted line measurements, where harmonies gencrated by the signal source could otherwise impair measurement accuracy. These fillers also can be used as


- No spurious response


## 360 Series coaxial specifications

Hoder	Cut-oft Frequency $\mathbf{M H z}$	Insertion Loss	Rejection	Impedance	USMR   Maximum	Connectors	Overall Length mem (in)	Shipping Height kI (ib)	Price
360A	100	Less (han 1 dB below 0.9 times cul-otl requency	Grealer than 50 dB at 1.25 limes cul-oft irequency	5012	$<16$ to weth hin 100 MHz of cut-0fl	Type N (M. I)	$\begin{gathered} 276 \\ (10 \%) \end{gathered}$	$\begin{aligned} & 0.9 \\ & (2) \end{aligned}$	\$195
3608	1200			$50 \Omega$		Tyoe $\mathrm{N}(\mathrm{M}, 1)$	$\begin{gathered} 183 \\ (7 / 1)) \end{gathered}$	$\begin{aligned} & 0.9 \\ & (2) \\ & \hline \end{aligned}$	\$195
360C	2200			$50 \Omega$	$\begin{aligned} & <1.5 \mathrm{lo} \\ & \text { with } \\ & 200 \mathrm{MHz} \\ & \text { of cul-oH } \end{aligned}$	Tyde N (M. I)	$\begin{gathered} 274 \\ \left(10^{25 / 12}\right) \end{gathered}$	$\begin{aligned} & 09 \\ & (2) \end{aligned}$	\$140
3600	4100			5012	$\begin{aligned} & \text { <l.6 lo } \\ & \text { within } \\ & 300 \mathrm{MHz} \\ & \text { of cul.0H } \end{aligned}$	Pyds $\mathrm{N}(\mathrm{M}, 1)$	$\begin{aligned} & 187 \\ & (7 *) \end{aligned}$	$\begin{aligned} & 0.45 \\ & (1) \end{aligned}$	\$140

362 Series waveguide low pass filter specifications

Hodel	Passband GHz	$\begin{aligned} & \text { Slopband } \\ & \text { GHz } \end{aligned}$	Passbanó Insertion Loss	Slopband Rejection	SWR   Maximum	Wavegulde Slue	Eqalvalent Flange	Lengh mim (in)	Shipplns Weight kg ( b )	Price
$\times 362 A$	8.2-12.4	16-37.5		At least 40 dB	1.5	WR 90	UG-39/U	$\begin{gathered} 136 \\ 511 / 32 \end{gathered}$	$\begin{aligned} & 0.9 \\ & (2) \end{aligned}$	\$650
M352A	10.0-15 5	19-47			1.5	WR 75	Cover	$\begin{gathered} 114 \\ (415 / 32) \end{gathered}$	$\begin{aligned} & 0.9 \\ & (2) \end{aligned}$	\$8.20
P362A	12.4-18.0	23-54			1.5	WR 62	UG.419/U	$\begin{gathered} 94 \\ (311 / 16\rangle \end{gathered}$	$\begin{gathered} 0.37 \\ (1302) \end{gathered}$	5720
K3E2A ${ }^{\text {d }}$	18.0-26.5	$31-80$			1.5	WR 42	U6.595/J	$\begin{gathered} 64 \\ (24) \end{gathered}$	$\begin{gathered} 0.15 \\ (5.30 \alpha) \end{gathered}$	\$520
R362A ${ }^{\text {I }}$	$255-40.0$	47-120	$<268$	$>3568$	1.8	WR 28	UG.599/U	$\begin{gathered} 12 \\ \left\langle 1^{21 / 32}\right\rangle \end{gathered}$	$\begin{gathered} 0.11 \\ (402) \end{gathered}$	\$185
Circular Flange Adapters available' for K-Band, Speclly 11515A (UG-425/U). For R-Band, Soecify [1516A (UG-381/U).										\$110

8430 Series coaxial bandpass filters specifications

Hodel	Passband Frequency (GHz)	Maximum Passband Insertion Loss	Rejectlon Band Allenuation				Dimensions		Shipping Weight		Price
			Below Passband		Rbout Passband						
			Frequency		Frequency						
			$\left(\mathrm{GH}_{3}\right)$	Altenuation	(GHz)	Allenuation	(mm)	(in.)	(kg)	(Ib)	
8430A	1 to 2	208	$\leq 0.8$	$\geq 50 \mathrm{~dB}$	2.21020	$\geq 45 \mathrm{~dB}$	$180 \times 121 \times 25$	$54 \times 4 \% \times 1$	1.4	3	5670
84312	2 to 4	2 dB	51.6	$\geq 50$ 68	4.41020	$\geq 45 \mathrm{~dB}$	$140 \times 76 \times 25$	$54 \times 3 \times 1$	1.4	3	\$600
8432A	4 to 6	2 dB	$\leq 3.5$	$\geq 50 \mathrm{~dB}$	6.51020	24508	$114 \times 51 \times 25$	$8 y_{2} \times 2 \times 1$	0.9	2	S S 10
8433A	6108	2 dB	$\leq 5.5$	$\geq 50 \mathrm{~dB}$	8.51020	$\geq 45 \mathrm{AB}$	$102 \times 38 \times 25$	$4 \times 1 / 2 \times 1$	0.9	2	\$5,00
8434A	81010	$2 \mathrm{d8}$	$\leq 7.5$	250 dB	10.51017	245 dB	$118 \times 25 \times 25$	$43^{3} \times 1 \times 1$	0.9	2	\$58in
8435A	4108	2 dB	$\leq 3.2$	$\geq 50 \mathrm{~dB}$	8.81020	$\geq 4508$	$92 \times 45 \times 25$	3\% $\times 15 \times 1$	0.9	3	$\$ 410$
8436A	81012.4	2 dB	55.9	$\geq 50 \mathrm{d8}$	13.510 .17	245 dB	$73 \times 25 \times 25$	$21 / \times 1 \times 1$	0.45	$!$	\$410



X885A


HP 870A luners consisl of a waveguide slotted section with a preci-sion-buili carrlage on which an adjuslable probe is mounted. The po sition and penelration of the probe are adjusted to sel up a reflection which cancels out an exisling reflection in a system.
Probe penelration into the guide is varied by a micrometer drive. Position of the probe along the guide is adjustod by a thumb-operated wheel, and position can be read 100.1 mm on a vernier scale. An SWR of 20 can be corrected to 1.02 , with a maximum loss of 2 dB , and small SWRs can be corrected exactly.

## 934A, P932A harmonic mixers

The 934A and P932A simplify frequency measurements from 2 to 18 GHz. They are also excellent as RF mixers in phase-stabilized signal sources. Both leature high sensitivity, yet require no tuning.
Specifications 934A, P932A

Model	$\begin{aligned} & \text { Froquency } \\ & \text { Ranfe ( } O H z \text { ) } \end{aligned}$	Marimum Input	Conneclor (wavequide slze)	$\begin{aligned} & \text { Min, video } \\ & \text { output" } \end{aligned}$	Price
934A	21012.4	100 mW	Type N	1.4 m ${ }^{\text {d }} \mathrm{D}$	5:95
P932A	12.4 to 18	100 mW	(E1A, WR62)	$0.4 \mathrm{mV} \mathrm{p} \cdot \mathrm{o}$	\$525

NEW Coaxlal \& Waveguide Catanog and Mlcrowave Measurement Handbook 80 pages. Use request card at back of this calalog.

## 885A Specifications

Model	$\begin{aligned} & \text { Fiequency } \\ & \text { Ranfe } \\ & \text { (GHz) } \end{aligned}$	Differentisl Phase Angle Ranjt	Differential Accuracy (the smalles of)	Insertion Loss	Insarilon loss Variatlon ys. Frequency	$\begin{gathered} \text { SWR } \\ \text { (rax.) } \end{gathered}$		Wavezulde Size Nom. O.D. mm (in.) EIA	Equivalant Flange	Length mm (in.)	Shlogon! Weight kg (b)	Price
1885A	5.3-8.2	$\begin{aligned} & -360^{\circ} 10 \\ & +360^{\circ} \end{aligned}$	$\begin{aligned} & \pm 3^{\circ} \text { or } \\ & 0.1 \Delta \phi \end{aligned}$	$<2 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	1.35	10	$\begin{gathered} 38.1 \times 19.05 \\ (1.5 \times 0.75) \\ \text { WR } 137 \end{gathered}$	UG.344/U	$\begin{gathered} 638 \\ (25 \%) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (18) \end{aligned}$	\$1700
X885A	8.2-12.4	$\begin{aligned} & -360^{\circ} 10 \\ & +360^{\circ} \end{aligned}$	$\begin{gathered} \pm 2^{\circ}\left( \pm 3^{\circ} 10-\right. \\ 12.4 \mathrm{GHz}) \text { or } \\ 0.1 \Delta \phi \end{gathered}$	$\begin{gathered} <108.8 .2= \\ 10 \mathrm{GHz} ; 2 \mathrm{~dB}, \\ 10-12.4 \mathrm{GHz} \end{gathered}$	$\begin{gathered} <0.3 \mathrm{~dB} \\ 8.2-10 \mathrm{GHz} \\ <0.4 \mathrm{~dB} \\ 10-12.4 \mathrm{GHz} \end{gathered}$	1.35	10	$\begin{gathered} 25.4 \times 12.7 \\ (1 \times 0.5) \\ \text { WR90 } \end{gathered}$	UC.39/U	$\begin{gathered} 397 \\ (15 \%) \end{gathered}$	$\begin{aligned} & 4.5 \\ & (10) \end{aligned}$	\$1200
P885A	12.4-18	$\begin{array}{r} -360^{\circ} 10 \\ +360^{\circ} \end{array}$	$\pm 4^{\circ}$ or $0.1 \Delta \phi$	$<3 \mathrm{~dB}$	$<0.58 \mathrm{~B}$	1.35	5	$\begin{gathered} 17.83 \times 9.93 \\ (0.702 \times 0.391) \\ \text { WR62 } \end{gathered}$	U6-419/U	$\left\|\begin{array}{c} 312 \\ (1215 / 16) \end{array}\right\|$	4.0   (9)	\$1300

870A Specifications

Model	Frequency hange (GHz)	Wavenulde site Nom. O.D. min (in.) EIA	Equivalent Flange	$\text { (min) }{ }^{\text {Length }}(\mathrm{ln} .)^{\text {a }}$		$\begin{aligned} & \text { Net Welght } \\ & \begin{array}{l} \text { (kp) } \\ \text { (lb) } \end{array} \end{aligned}$		$\left.\begin{array}{c}\text { Shipping } \\ \text { Welpht } \\ \langle\mathbf{k t})\end{array}(16\rangle\right)$		Price
$\times 870 \mathrm{~A}$	$8.20-12.40$	$\begin{gathered} 25.4-12.7 \\ (\times 0.5) \\ \text { WR90 } \end{gathered}$	UG-39/4	140	SH	0.34	4	0.9	2	SAE@
P870A	12.40-18.00	$\begin{gathered} 17.83 \times 9.93 \\ (0.702 \times 0.391) \\ \text { WR62 } \end{gathered}$	UG-4/9/U	127	5	0.23	4	0.9	2	\$460

Coaxial switches.
Nodels 8761A/B, 333118

## - High isolation <br> - Excellent repeatability



## 8761A/B Coaxial switch

The 8761 is a singlepole. double-throw coaxial switch with low standing-wave ratio, low insertion loss, and excellent isolation from de to 18 GHz . Mecbanically, the switeh is a break-before-make lype controlled by a latching solenoid. Any of seven coaxial connectors, or a 50-ohm termination, may be spacified for each porl.

## 8B71A/B Specifications

Characterlatic impedance: 50 ohms.
Frequency range: de 1018 GHz .
Standing-wave ratio: looking into one of the connected ports with 50 ohms (or built-in (ermination) on the other, third port open.

frequency	SWR Connector type		
	$7 \cdot \mathrm{~mm}$	H	3 -mm (SMA)
de -12.4 GHz	$1.15(1.20\rangle$	$1.20(1.25)$	$1.30(130)$
dc -18 GHz	$1.20(1.25)$	$1.25(1.30\rangle$	$1.35(1.35)$

SWR in parenlhesus applies to switch with built -in termination.
These specifications apply when connocted ports are of the same connector type; for mixed connector types. the larger of the two SWR5 applies. N -connector SWR speciñcations apply to Option 4 conneccors.
Insertion lags: $<0.5 \mathrm{~dB}$. de to $12.4 \mathrm{GHz} ;<0.8 \mathrm{~dB}$, de to 18 GHz . Isolalion: $>50 \mathrm{~dB}$. de $1012.4 \mathrm{GHz}>45 \mathrm{~dB}$, de 1018 GHz .
Power: safely handles 10 W average, 5 kW peak, withoul built-in termination; built-in termination rated al 2 W average, 100 W peak.
Switching energy: 1.5 W for 20 ms (permanenl magnel latching).
Solenold voltages (dc or pulsed): 12 to $15 \mathrm{~V} .8761 \mathrm{~A}: 241030 \mathrm{~V}$. B761B,
Switching speed: 351050 ms (including serding lime).
Llfe: >1,000,000 switchings.
Repeatability (typlcal): 0.03 dB after $1,000,000$ switchings.
Dlmensione: 41 $\times 38 \times 38 \mathrm{~mm}(1.6 \times 1.5 \times 1.5 \mathrm{in}$.) exclyding connectors and solenoid terminals.
Woight: net, 140 to 220 gm (S ta 8 oz ). Shipping, 220 to 300 gm (8 to [1 OZ).

## Ordering lnformafion

Spocify solenoio voltage and connectors (including built-in 50 ohm lermination) by the alphabetic suffix on the switeh model number and the eppropriate three-digit option number.

Pori 1 Port 2 Poric
87614 Option 001
Solenoid Voliage
A: 12-15 V: 日: 24-30 V

- Fast switching
- Magerc lacing



## 8761A/B Connector optione

Opllon   Code	Connector Tyot	Option   Code	Connector Type
0	N Jack	4	7 -mm Ior UT-250 Coar
1	N Plug	5	3 -mm Iack
2	7 -mm Jack	6	3 -mm Plug
3	7 -mm Plug	7	50n Terminalion

## 33311B Coaxial switch

The 33311 is i high-isolation ( 90 dB to 18 GHz ), single-pole. double-hhrow coaxial switsh with excellent characteristics through 18 GHz. It is designed for use in 50 ohm systems, and the unused port is automatically terminated internally with 50 ohms, thus eliminating the need for three-switch rees. This makes il particularly useful in syscems which require low SWR on their lines at all times. It is small and lightweighl. The switch is controlled by a latching solenoid and switching current is automblically cut ofl when switching is completed. Internal diodes suppress solonoid circuit transients.

## 33311B Spectications

Characterletic impedance: 50 ohms.
Frequency range: de to 18 GHz .
Connectorg: 3 mm (SMA).
Standing-wave ratio: 1.25 , de 1012.4 GHz : 1.40 , de to 18 GHz .
Insertion lose: $<0.5$, dc to 18 GHz .
Solenold voltage (de or pulsed): 24 volts. Diode protected to reduce voltage transients. Option 011, 5 V solenoids.
Life: > $\$, 000,000$ switchings.
Repeatabillty (typlcal): 0.03 dB after $1,000,000$ switchings.
Dimenslone: $54 \times 53 \times 14 \mathrm{~mm}\{21 / 4 \times 21 / 8 \times 1 / 10$ in. $\}$ excluding connectors and solenoid terminals.

Weight: net. 88 gm (3.1 oz). Shipping. $220 \mathrm{gm}(8 \mathrm{oz})$.
Optlone: O\&1, 5-voll soienoid voluge.
NEW Coaxial \& Waveguide Catalog and Mlcrowsve Measurement Handbook 80 pages. Use request card at back of this catalog.
Modal number and name Price
8761A/8 order must include option number
8761A/B Coaxial Switch (quantity 1-9)
$\$ 195$
8761A/B Cooxial Switch (quantity 10-24) $\$ 185$
8761A/B Coaxial Switch with buill-in termination add $\$ 35$
333118 Coaxial Switch (quanlity 1.9)
$\$ 395$
$33311 B$ Coaxial Switeh (quantity 10-24)
$\$ 365$

Adapters, waveguide stands, air lines
Models 281A/B, 292A/B, 11624A/25A, 11588A, 11606A, 11566A, 11567A

- Increase versatility of microwave measurements



## 292A/B Waveguide to waveguide adapters

Models 292A, B waveguide-to-waveguide adaplers connect iwo different waveguide sizes with overlapping frequency ranges. The 292A consists of a shorl tapered section of waveguide. The 292B is broached waveguide with a step Iransition between wavegulde sizes.

## 281A/B Coax to waveguide adapters

HP 281 A.B adapters transform waveguide impedanoe into 50 -ohm coaxial impedance. Power can be uansmitted in either direction, and cach adypter covers the full frequency range of its waveguide band with SUVR less than I. 25 .

## 11524A, 11525A, 11533A, 11534A Coax to coax adapters

Thesc coaxial adapters permit casy inlerconnection of 50 -ohm precision $7 . \mathrm{mm}$ (APC.7) connectors and s0-ohm Type N or SMA ( 3 -mm type) connectors.

## 11588 A Swivel adapter, 11606A rotary air line

The 11606 A rolary air line and the 11588 A swivel adapter are capable of a full $360^{\circ}$ of rotation. A combination of the air line and the adapter permits rigid coax movement in three dimensions. Even the most awk wardly shaped devices can be easily connected or disconnecled in a coax system with the aid of these components.
11566A, 11567A Air line extension
Impedance: 50 ohms.
Frequency: dc -18 GHz .
Reflectlon coefllelent: $0.018+0.001$ (frequency in GHz ).
Connector: $A P C .7$.
Lenglh: 11566A: $10.25 \mathrm{~cm} .11567 \mathrm{~A}: 20.25 \mathrm{~cm}$.
Welght: $0.45 \mathrm{~kg}(1 / 16) \mathrm{nct}$.

## Waveguide stand, waveguide holder

The IIS40A waveguide stand locks HP waveguide holders al any height from 70 to $133 \mathrm{~mm}\left(2 y_{1}^{* *}\right.$ to $\left.51 / 4^{*}\right)$. The stand is $64 \mathrm{~mm}\left(21 / 2^{\prime \prime}\right)$ high, and the base measuris $121 \mathrm{~mm}\left(41 /{ }^{\prime \prime}\right)$ in diameler. The waveguide holders are oficed in seven sizes to hold waveguide covering frequencies [rom 3.95 10 40 GHz . They consist of a molded plastic cradle with a center rod.


## 292A/B Specifications

$\begin{gathered} \text { HP } \\ \text { Model } \end{gathered}$	¢W\%	Lenth		Frequency range (6Hz)	Price
		mm	(In,)		
HX292B	1.05	38	11/2	8.201010 .0	\$105
M $\times 292 \mathrm{~B}$	1.05	60	2\%	10.01012 .4	Si35
MP292B	1.05	60	2\%	12.41015 .0	\$105
NP292A	1.05	60	2\%	15.01018 .0	595
NK292A	1.05	60	2\%	18.0 to 22.0	8100

## 281A/B Specifications

HP   Model	SWR	Frequency Range ( $\mathrm{CH}_{2}$ )	Waveguide Size EIA	Coaxial Connestor	Langh ${ }^{\text {a }}$		Price
					mm	( $1 h_{\text {a }}$ )	
S281A	1.25	2.60-3.95	W1284	N Female	140	51/3	
6281A	1.25	3.95-5.85	WR187	N female	95	$3 \%$	5100
J281A	1.251	5.30-8.20	WR137	N Female	51	2	575
H281A	1.35	7.05-10.0	WR112	N femate	4)	1\%	\$75
X281A	1.25	8.20-12 4	WR90	N Female	35		S75
$\times 2818$	1.25	8.20-12.4	WR90	APC-T	35	13	\$165
P2818	1.25	124-18	Wf62	APC-7	64	21/2	\$1.45

1 irom 5.3105 .5 cHz
Oplion 013 . Iurnished with stainiess steel N -temsil: conp:-iad. less 815.
3 Shuping weight lor all models, approximatily 0.45 NB 11 ld ).

## 11524A, 11525A, 11533A, 11534A Specifications

HP Model	Description	Shipping Helght	Price
11524A	APC. 7 Io NJ Itrale	110 gm (402)	\$85
11525A	APC. 710 N male	$140 \mathrm{gm}(502)$	585
11533A	APC. 710 SMA male	140 gm ( 502 )	\$135
11534A	APC. 710 SMA teatate	140 gm ( 5 02 )	\$135

## 11588A, 11606A Specifications

	Frapoancy Ronct 64	V5\%R	Commetion	Dinenatons $\operatorname{mm}(1 n)$	Shlpping Weltht K ( 18 )	Price
$11588 \lambda$	DC-12.4	1.11 l	7 mal male   7 mim rimait	$\begin{gathered} 42 \times 34 \times 30 \\ \left(15 \times 2 \operatorname{lin} \times 11_{n}\right) \end{gathered}$	$\begin{gathered} 028 \\ (10 \mathrm{ot}) \end{gathered}$	3278
115051	OC-12 ${ }^{\text {d }}$	1.1/1/	APC $)$   7 Tin Iemile	$\begin{aligned} & 100 \times 19 \\ & (4 \times 8) \end{aligned}$	$\begin{aligned} & 6 ; 15 \\ & 1!\|n\| \end{aligned}$	3231

1. Inserition loss <0.5 i8

2 Unul:?
Model number and name Price
11566A Air line extension ..... $\$ 135$
II567A Air line extension$\$ 135$11540A Waveguide stand$\$ 20$IIS43A to 48A Waveguide holde$\$ 15$$\$ 10$


The Hewletl-Packard Model 4ISE SWR meter is a low noisc, cunted amplifier-volmeter calibrated in SB and SWR For use with square law delectors. It is an exiremely ureiul instrument for mesisuring SWR, atennuation, and gain directly from metered scales, or as a cuned amplifier for driving an $\mathrm{X}-\mathrm{Y}$ recorder when making RF substitution muasurements. The 4ISE tesponds to a standard Iuned frequeney of 1000 Hz . This frequency is front panel adjustable over a range of 7 m , for exact matching to the internal 1 kHz modulation of the signal source being used. Amplifier bandwidth is also adjustable from is to 130 Hz . The narrow bandwidth allows maximum sensitivity at CW frequencies whlle the wider bandwidths ensble swept lests io be displayed on an ascilloscope or $\mathrm{X}-\mathrm{Y}$ recorder.

A precision 60 dB stienualor with an accuracy of $0.05 \mathrm{~d} 8 / 10 \mathrm{~dB}$ assures ligh accuracy in making substitution measurcments. An ex-pand-offse feature allows any 2 dB range tis be expanded to full scale for meximum resolution. Linearity is $\pm 0.02 \mathrm{~dB}$ on expanded ranges and is limited only by meter resolution on normal seales. This performance, logether with the inherently low noise figure, allows maximum messurement range with exceptional resolution and linearity.

The Model 4156 operates with either crystal or bolometer deteccors. Bolh high and low-impedance inpuls are available for crysial derectors. Precise bias currents or 4.5 and 8.7 mA (200n) are available for operation with bolometers as selected at the front panel. This bias is peak limited for positive bolometer protection.

Both as and de outputs located on the rear panel allow use of the 4 ISE as a high-gain funcd amplifier or for X-Y recorder operation. In addition, the 4 ISE can be operated with an internally mounted battery pack (optron 001) for completely portable use.

## Specifications

Sensitivity: $0.15 \mu \vee$ rms for full-scale deflection al maxinum bandwidth () $\mu \vee$ rms on high impedance crystal inpul).
Nolse: af leasi $7.5 \&$ below full scale al rated sensitivity and 130 Hz bandwidth with input lemmated in 100 or 5000 e; noise figure tess than 4 dB .
Range: 70 dB in 10 and 2 - dB steps.
Accuracy: $\pm 0.05 \mathrm{~dB} / 10 \mathrm{~dB}$ step: maximum cumulative error between any two 10 dB steps, $\pm 0.10 \mathrm{~dB}$; maximum cumulative error between any two 2 dB sleps. $\pm 0.05 \mathrm{~dB}$; linearity, $\pm 0.02 \mathrm{~dB}$ on expand seales, determined by inherent meter resolution on normal seales.

Input: unbiased low and high impedance crystal (50-200 and 2500 10.000 optimum source impedance respectively for low noise); biased crystal ( V into 1 k ) : low and high current bolometer ( 4.5 and $8.7 \mathrm{~mA} \pm 3 \%$ into 200!), positive bolunicter protection; input connector. BNC fernalc.
Input trequency: 1000 Hz adjustable 7\%; other frequencies between 400 and 2500 Hz availathe on special order.
Bandwlath: variable, $15-130 \mathrm{~Hz}$; typically less than 0.5 dB change in gain from minimum to maximum bandwidth.
Recorder output: 0-IV de into an open circuil from 10000 source impedance for ungrounded recorders; oulpul connceior, BNC ítmale.
Amplifer output: $0-0.3 \mathrm{~V} \mathrm{~ms}$ (Norm), $0-0.8 \mathrm{~V} \mathrm{~ms}$ (Expand) into at least 10,000 n for ungrouoded equipment: output connector, dual banana jacks.
Meter acalese calibrated for squarc-law defectors: SWR: 1-4,3.210 (Norm); I-1.25 (Expand). $\mathrm{dB}: 0-10$ (Norm); 0-2.0 (Expand): ballery: charge siate.
Meter movement: Lau-band suspension, mdividually calibrated mirx ror-backed seales: expanded dB and SWR scales greater than 108 mm ( $4 / 4^{*}$ ) long.
RFI: conducted and radiated leakage limits are below unse specified in MIL-J-6181D.
Power: $115-230 \mathrm{~V} \pm 10$ 忽, $50-400 \mathrm{~Hz}$, I W: optional rechargcable baltery provides up 1036 hr centinuous operation.
Dimenslone: 190 mm wide. 155 mm bigh, 279 mm deep ( $73 /$ /:" $\times$ $63 / 3^{\prime \prime} \times 11^{\prime \prime}$ ).
Welght: ncl $4 \mathrm{~kg}(9 \mathrm{lb})$. Shipping 5.9 kg ( 13 lb ).
Accessory avallable: 11057 A handle, fits across top of insirument for carrying convenience.
Combining cases: 1051 A .286 mm deep ( $11 / / \mathrm{c}^{\prime \prime}$ ). 1052 A 416 mm deep (16 1/4").
Model number and name Price
41SE SWR meler $\quad \$ 700$
Option 001 : rechargeable batlery installed \$105
Option 002: rear pancl inpul connector in paratlet with
front panel connector
1051 A Combining case $\quad \$ 250$
1052 A Combining casc $\$ 290$
11057A Handle kit
55

- 15 MHz to 18 GHz frequency range
- Absolute and ratio measurement capability

60 dB dynamic measuring range

- Excellent stability with time and temperature


Swept amplitude measurements over a 「requency range of 15 MHz to 18 GHz can be made using the 8755 Frequency Response Test Set. This versalile measuring system consisis of an 87SSA plug-in for 180 series oscilloscope displays, three 11664A Schottky diode delectors. and anll 6658 modulator. The dual channel 8755 allows simultaneous sivept-frequency display of two ratio measurements or measures absolute power al the push of a button. The 8755 offers a number of advantages besides covering a wide frequency range; the ll665B modulator allows AC signal processing enabling virtually drift-iree operation with fime and temperature compared to non-modulated systems. Use of Scholiky diode detectors, which are completely interchangeable, enable a -50 dBm sensitivity as compared $10-35 \mathrm{dBm}$ wilh crystal delectors. This means a 60 dB dynamic measuring range is availabic with solid statc sweepers having a 10 mW oulput ( 8620 Family). Front panel controls are casy to understand and operate. Each channel is scparate, bul identical, and all funclions are push but10n conlrols. A direct reading digital dB ofr-set thumbwheel allows the magnisude of any displayed signal to be easily determined. An offset cal vernier is used to average frequency response variations of directional couplers and detectors, and to compensate for coupling faclors.

## Typical applications

## Simullaneous insertion and return loss

A common measurement set-up for using the 8755 is shown in the diagram. A dual directional coupler enables the "R" detoctor to sample incident powes while the " $A$ " detector measures reflected power. The ratio " $A / R$ " then provides return loss information while the "B/R" trace displays insertion gain/loss data simuluneously. A reallime display of a bandpass filter is shown in the photo. The ability to monitor the effect of adjustments on both parameters is especially advantageous for production use. Directional devices, including a 40 MHz to $18-\mathrm{GHz}$ rellectomeler bridge, decade range directional couplers, and a compleie farmily of oclave band couplers are available for ruflectometer sciups.

## Active devtee gain and harmonle content

Both the absolute power and ratio capability of the 8755 are useful when testing accive devices. Using the sel up shown in the diagram on the following page. swepl frequency gain of a test amplifier is determined by selseting the " $A / R$ " puxhbutton. Absolute input and output levels can be measured by depressing individual delector channels. The " $B / R$ " ralio gives a meabure of harmonic content dependent on the range of bandpass filler used. This lechnique enabies a quick measure of amplificr harmonic content to be made on a swept basis.

lis wide frequency coverage and simplicity of operation make the 8755 well-suited for a number of other mierowave applieations. Antenna measurements are simplified since the AC system enables use of long extension cables on detectors without performance degradetion. Cable measurements, including fault location, are made quickly and accurately using the HP 11667A power splites. Amplifier measurenenss including gain, harmonic content, and I dB gain compression, can be made while zero de offsel recorder oulputs enable hard copy resulus. Since the 8755 responds only to the 27.8 kHz modulated signal. LO feedihrough can be aliminated from moxer measurements. Accurate SWR measurements from 1.8 to 18 GHz can be made using the HP 817B Swepi Slorted Line. Simultaneous reflection and transmission measurements from 40 MHz to 18 GHz can be made using the HP 11666A Bridge with the HP 8620C/86222A/86290A broadband solid state sweepers.

## Specifications

## 87555L and 87555M Syslems

Functlon: the 8755 L and 8755 M are configured test sets complete with plug-in and display, three delectors, and modulator.
Frequency renge: 15 MHz 1018 GHz .

## Measurement range

Single channel: $+10 \mathrm{dBnt} 10-50 \mathrm{dBm}$ (noise level).
Ratlo of two channela: 60 dB

## Frequency respones (ralio measurement):



Curve does not innclude mismatch or coupler ambigurties.
Rallo measurement accuracy:


Accuracy curve shows system uncertainly for a relalive measurement with +10 dBm incidene at the test detector when the $0-\mathrm{dB}$ reference is set. Accuracy when calibration levels below +10 dBm are used remains the same. exeepl the additional $0.2 \mathrm{~dB} / \mathrm{dB}$ uncertainty should be added for measurements below -45 dBm . This curve includes sys1 tm noise, offsel uncertainty, and crossialk, and assumes the reference detector power remains fixed between calibration and test. Sysicm Jrequency response is specified separately.
Detector return loss:


Impedance: 5012
Resolution: each channel independent, 10. 5. 1 or 0.25 dB per division.
Oftsel: each channel independent $\pm 59 \mathrm{~dB}$ in 1 dB steps.
Recorder oulputs: 0.5 voli/division; zero de offsel.
Marker and blanking lnputa: accepts both positive and negative marker and blanking inpuls.
Yemperature range: operation, 0 to $55^{\circ} \mathrm{C}$ : slorage $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. Temperature drift typically $0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ from $5^{\circ} 1055^{\circ} \mathrm{C}$.
Standard connectors
11664A detectors: Type N-male
11665B modulator: liput N.femalc, output N-malc.
Dimenslons
8755L (182T display): 202 mm wide, 338 mm high, 499 mm deep
( $\left.715 / 16^{\circ} \times 51 / 32^{\prime \prime} \times 211 / 3^{2}\right)$.
8755M (182TR diaplay): 125 mm wide, 133 mm bigh, 543 mm deep ( $1614^{*} \times 51 / 33^{*} \times 21 \frac{\left.1 / n^{\prime \prime}\right)}{}$.

## Walght

8755L: net 15.5 kg ( 34.3 lb ). Shipping 23 kg ( 52 lb ).
8755M: net 14.5 kg ( 31.8 lb ). Shipping $22 \mathrm{~kg}(50 \mathrm{Jb})$.


New 11656A Refleclometer Bridge
Rellocion measurements covering from 40 MHz to 18 GHz with one coupling device can be made with the Model Il666A Refoctometer Bridge. Operation of this lype of coupling device is based on principles of the resistive Wheastonc Bridge extended to microwave irequencies. When three bridge arms are S0N, the voltage across corners of the bridge is directly proportional to the rellection coefficiont of the device connected in the fourth arm. Equivalent direcilitity is then a measure of how well the bridge circuit is balancod with a 50 s. icrmination connected. (Ideally this would create a voltage mull representing infinse return loss.) The high equivalent dircelivily achecvable over wide bandwidths makes the bridge conliguration atlactive.

The II666A is completely dedicated to the 8755; Iwo Scloollky diode delectors (which sample the incident and reflected signals for ratioing by the 8755) are incorporated as an integral part of the bridge unit. The cflective external leveling achieved by ratioing ibus isolates the measurement port from source/bridge input mismatch. With the addition of an external II664A delector, two simultancous ralio measurements of insertion and return loss can be made. Small size combined with its wide frequency range and high directivity make the Jl866A ideal lor produclion use.
Specifications 11868A (connected to the 8755A A alyzer) Frequency Range: 40 M Hz to 18 GHz .

Frequency   Range	Equivalent   Directivity	Equlvalent   Oulput SWR
4010100 MHz	30 dB	1.25
0.1 to 1 GHz	38 dB	1.25
1102 GHz	36 dB	1.25
2104 GHz	33 dB	1.25
4108 GHz	29 dB	1.25
81012 GHz	27 dB	1.27
121018 GHz	26 dB	1.52

## Frequency tracking

(between incident and reflected arms): $\quad \pm 1.6 \mathrm{~dB}$
(between incident and lest porl, including $\pm 0.5 \mathrm{~dB}$ from II664A delecior).

$$
\pm 2.1 \mathrm{~dB}
$$

Nominal coupling: 6-dB incident arm.
$9-d B$ renlected arm.
9-dB ransmission loss.
Inpul SWR: 1.8
Maximum input power: +15 dBm .
Connectors: Type N.Fenale on input and outpui. APC- 7 Optional
Dimensions: 69.9 mm wide $\times 69.9 \mathrm{~mm}$ high $\times 46.6 \mathrm{~mm}$ decp $\left(2.75^{\prime \prime}\right.$ $\times 2.75^{\circ} \times 1.83^{\circ}$ ). Cable length, $1219 \mathrm{~mm}\left(48^{\prime \prime}\right)$.
Welght: пel, $0.7 \mathrm{~kg}(1.5 \mathrm{lb})$. Shipping, 2.26 kg ( 5.13 lb ).
Accessories \{urnished: IISI2A short. Type N-Malc (11565A shon. APC-7 with Options 002 and 003 ).
11667A Power splitier
The 11667 A Power Splitter is recommended when making wideband iransmission measurements using the 87SS Test Set. This wo-resistor type spliter provides excellent outpul SWR at the auxiliary arm when used for sourec leveling or ratio measurement applications. The 0.25 dB tracking between oulput arms over a frequency range from de 10 is GHz allows wideband measurements to be made with a minimum of uncertailty.
Frequency range: de 1018 GHz
Impedance: 50

Inpui SWR

$\mathrm{dc}-4 \mathrm{GHz}$	$\mathrm{dc}-8 \mathrm{GHz}$
$\leq t .15$	$\leq 1.25$

$$
d c-18 \mathrm{GHz}
$$

Equlvalent oulpul SWR;
(leveling or
$\begin{array}{llll}\text { ratio measurcment } & 1.10 & 1.20 & 1.33\end{array}$
Oulput tracking:
$\begin{array}{llll}\text { (belween oulpul arms) } & 0.15 & 0.20 & 0.25\end{array}$
Inaertion losa: 6 dB nominal (input to cither output).
Maximum inpul power: +27 dBm .
Connectors: Type N female on all ports.
Dlmensions: 50 nim wide, 46 mm high, 19 mm dexp $\left(2^{*} \times 11 / 1 \mathrm{~m}^{\prime \prime} \times\right.$ 1/4*)
Welght: nct. 0.06 kg ( 2 oz ). Shipping 0.22 kg ( 8 oz ).
1167日A low pass fitter kit
The Il678A Low Pass Filter Kit contains five Illers conveniently matched 10 HP 8620 sweeper bands. These filters hava $<1.1$ dB inserlion lase with $>40 \mathrm{~dB}$ rejection at 1.25 fc . Filter use is recommended to reduce undesirable harmonics causing errors in broadband uclector measurements.
Frequency ronge: low pass filters, cutoff frequency $\mathrm{rc}_{\mathrm{c}}$ : $11688 \mathrm{~A}, 2.8$ $\mathrm{GHz}: 11689 \mathrm{~A}, 4.4 \mathrm{GHz}$ : $11684 \mathrm{~A}, 6.8 \mathrm{GHz}, 11685 \mathrm{~A}, 9.5 \mathrm{GHz}$; 11686 A . $13.0 \mathrm{GH} \%$.
Connectors: N-Male, N.Femsle
Wetght: nel 0.44 kg (I lb). Shipping 1.2 kg ( 2.9 lb ).

## 11668 A Hkg pass fiter

The I 1668 A High Pass Filier accessory is recommended when moking measurements on active devices which have gain below 50 MHz . Use of the II668A. placed allef the I1665B, reduces the modulator drive fecdehrough from 8 mV to I mV and prevents possible amplifier saturation. Use of the Il668A filter is nol necessary for passive measurements since the feedthrough from the If665B is -65 dBm and causes no degradation in system performance.
Frequency range: 50 MHz to 18 GHz

	Ingertion   Loss	Return   Lose
$50-100 \mathrm{MHz}$	$\leq 2.5 \mathrm{~dB}$	$\geq 12 \mathrm{~dB}$
$100 \mathrm{MHz}-8 \mathrm{GHz}$	$\leq 1.0 \mathrm{~dB}$	$\geq 16 \mathrm{~dB}$
$8-12 \mathrm{GHz}$	$\leq 1.0 \mathrm{~dB}$	$\geq 14 \mathrm{~dB}$
$12-18 \mathrm{GHz}$	$\leq 1.5 \mathrm{~dB}$	$\geq 14 \mathrm{~dB}$

Meximum Input +27 dBm .
Connectors: N -icmalc, N -male
Weight: 0.13 kg ( 5 oz ). Shipping $0.28 \mathrm{~kg}(10 \mathrm{oz})$.


## Individual instrument specifications

## 6755A Plug-in

Function: swept amplitude analyzer for 180 series displays. Has inputs for three 11664 A delectors and supplies 27.8 kHz drive for 11665 B modulator.
Wolght: nel, $2.8 \mathrm{~kg}(6.3 \mathrm{lb})$. Shipping, 4.5 kg ( 10 lb ).
11685日 Modulator
Functlon: absorblive on-off modulator designed for and powered by the 875sA plug-ín.

Frequency   Range	Relurn Loss   On and Off	Inserlion Loss	
On	OIf		
$15-40 \mathrm{MHz}$	$\geq 10 \mathrm{~dB}$	$\leq 7.0 \mathrm{~dB} \quad \geq 35 \mathrm{~dB}$	
$40 \mathrm{MHz}-4 \mathrm{GHz}$	$\geq 15 \mathrm{~dB}$	$\leq 3.2 \mathrm{~dB} \quad \geq 35 \mathrm{~dB}$	
$4-8 \mathrm{GHz}$	$\geq 12 \mathrm{~dB}$	$\leq 3.8 \mathrm{~dB} \geq 40 \mathrm{~dB}$	
$8-12.4 \mathrm{GHz}$	$\geq 8 \mathrm{~dB}$	$\leq 4.3 \mathrm{~dB} \geq 45 \mathrm{~dB}$	
$12.4-18 \mathrm{GHz}$	$\geq 8 \mathrm{~dB}$	$\leq 5.0 \mathrm{~dB} \quad \geq 45 \mathrm{~dB}$	

Modulator drive feedthrough: $\leq 8 \mathrm{mV}$ (peak) at 27.8 kHz at cither porl when powered by the 8755 A . Reduced to $\leq 1 \mathrm{mV}$ (peak) using the 1)668A. (See 11669A High Pass Filler).

Drive current: nominally +50 mA in ON condition, -50 mA orr condition.
Welght: net. 0.17 kg (6 oz). Shipping, 0.9 kg (2 Ib),

11684 A Delectors
Funclion: hol carricr diode detecis envelope of the moduiated microwave signal, 10 MHz to 18 GHz .
Frequency response:


Note: Response of any 11664A detector falls within the shaded areas withoul any instrument adjusiments.
Welght: nct. $0.17 \mathrm{kE}(6 \mathrm{cz})$. Shipping. $0.9 \mathrm{~kg}(2 \mathrm{lb})$.

## Dlsplay units

The 8755A can be used with any 180 series display. However, the 180 " T " series displays are recommended. These mainirames provide long persisiance P 7 which reduces ficker on slow sweeps, negative z aecess blanking inpul, and zero DC offiset recorder outputs. Both 8755 L and 8755 M systems cornc with " T " displays. Retrofit kits are available.

## Ordering Inlormation

Two complete test systems have been configured for ordering convenience. The 8755 L is cabinet configured in a 182 T large screen display. The 8755 M provides the I80TR rack mount display. Both sysiems include the 8755A plug-in, three 116(4A delectors and the 11665B modulator with standard conncctor options only. To order a different mannframe or non standard connecior options each part of the system must be listed individually.

Model number and name	Price
875sL Complete cabincl test sel	\$3965
8755M Complete rack test set	\$4065
8755A Test set plug-in only	\$1520
$11665815 \mathrm{MHz}-18 \mathrm{GHz}$ modulator	\$395
Oprion 011 (npui N-female, OulpuiN female	N/C
Option 013 Input N -Semale, output APC-7	add \$25
Option 021 Input N -malc. output N -malc	N/C
Option 022 Input N -malc. output N -male	N/C
Option 023 Inpui N -malc, oulput APC. 7	add \$25
11664 a 15 MHz - 18 GHz delector	\$250
Option 001 APC-7 conneclor	add $\$ 25$
Option 002 SMA female connecior	N/C
Option 003 SMA male connector	N/C
I82T I.arge scroen cabinel scope display	\$1300
180TR Standard screen rack display	\$1400
181T Storage, cabinet display	\$2215
I8ITR Storate, rack display	\$2315
Accessarlea:	
11666A Refleclometer loridge	\$2100
Option 001 Inpui N. female. Output N-male	N/C
Option 002 Input N - femulc. Ouiput APC-7	add 550
Option 003 Inpui \& output APC-7	add \$75
11679 A 25 a delector extension cable	\$55
116798200 ft detoctor extension cable	\$195
11668 A 50 MHz bigh pass filler	\$150
Option DOI APC-7 input and outpul	add \$55
Option 002 Type N female inpul and output	N/C
11667A DC - 18 GHz power spliter	5475
Oplicon 001 Type N male input, rype N femate sutputs	N/C
Option 002. Type N remale inpul. APC-7 outputs	add \$75
11678A Low pass filter kil	\$450
Individual rillers, specify model number	\$90



## Why network analysis?

Characterizing the behavior of linear networks that will be stimulated by arbitrary sig. nals and interfaced with a variety of other networks is a fundamental problem in both synthesis and test processes. For example, the engineer designing a multicomponent network must predict with some certainty the final network performance from his knowledge of the individual components. Similarly. a production manager must know allowable tolerances on the products the manufaciures and whelher the final products meet the specified tolerances. Nelwork anglysis offers a soJution to these problems through complete description of linear network behavior in the frequency domain.
Neivork analysis accomplishes the doscription or both active and passive network by creating a data model of such component paramelers as impedances and (ransfur functions. However, these paramelers not only vary as a function of frequency but are also complex variables in that they have both magnitude and phave. Until the advent of the modern network analyzer, phase was dificull to messuse at CW irequencies and ofien involved laborious calculations; these measurements were accomplished by conventional oscilloscopes at lower frequencies and sloted lines al microwave frequencies. How. cver. swept network analyzers now mcasure amplitude and phase (the cotal complex quantity) as a function of frequency with less difficully than conventional CW measurements. Impedance and ransfer functions can

Shen be conveniently dixplayed on a swept CRT. X-Y recorder, or calculator (or compuler) conirolled peripherals such as a printer and/or a plotter. HP digital calculators fand compulers) also combine with network anafyzers 10 give new levels of specd and accuracy in swept meusurement that could only be allained previously by long and laborious calculations al CW frequencies.
Thus, network analysis satisfics the engineering need to characterize the behavior of linear nelworks quickly, accurately, and com. plectely over broad frequency ritnges. In design situations, this minimizes the lume required to test new designs and components, allowing more time to be spent on the design itself. Likewise, production test (imes may be minimized while reducing the uncertainties surrounding the lest.

## What is network analysis?

Network analysis is the process of efeating a data model of transfer and/or impedance characteristics of a linear network through sine wave lesting ouce the frequency range of interest. All network analyzers in the HP product line operate according to this definition.
Creating a data model is important in that actual circuit performance oflen varies considerably from the performance predicted by calculations. This occurs because the perfect circuil element doesn't exist and because some of the electrical characteristics of a circuit may vary with frequency.

At irequencies above I MHz lumped cle ments actually beceme "circuis" consisting of basic element plus parasities like siray ca. pacitance, lead inductance, and unknown absorptive losies. Since parasilics depend on the individual device and its construction they are aimust impossible to predict. Above i GHz component geometries are comparable to a signal wavelength, intensifying the varianoe in eircuit behavior due to device construction. Further, lumped-element circuir theory is uscless at these frequencies and distributed-element (or transmission-line) parameters are required to completely characterize a circuil.


Dala models of both transfer and impedanee functions musi be obeained 10 completely describe the lineas behavior of a circusil under test. At lower frequencies, h. y. and $z$-parameters are examples of transfer and/or impedance funclions used in network descriptiont al higher Irequencies, S-parameters are used to characlerize input-output imparances and transfer functions. Thereforc. a network analyzer musi measure some form or a circuil's iransfer and impedance functions to achieve its objective of complete network characterization.


Nelwork analysis is limited to the delini. tion of linear nelworks. Since linearity constrains networks stimulated by a sine wave 10 produce a sine wave outpur. sine wave testing is an ideal method for characterizing lincarf nelwork's amplitude and phase
response as a funcion of frequency. In nonlincar measurements phase is often meaningless and amplitude has 10 be defined with respect 10 individual frequency consonents. For nonlinear measuremenls see seclions on spectrum analyzers and wave analyzers.

## Network analyzers

Hewlett Packard Network Analyzers are instruments that measure Iransfer and /or impedance funclions of linear networks through sine wave testing. A network analyzer system accomplishes these measurements by config. uring its various components around the device under test. The first requirement of the measurement system is a sine wave signal source to stimulate the device under test. Sinee transler and impedance funcuons are ratios of various voltages and currents, a means of separating the appropriate signals from the measurement ports of the device under lest is tequired. Finally, the network analyzer itself must detoct the separated signals, form the desired signal satios, and display the results.

## Signal sources and signal separation.

In the general case, any sine wave source meeting the network analyzer's specilications can be used to stimulate the device under esi. For CW measurements a simple oscilfator may suffice: for greater CW frequency accuracy a signal generator or syntherizer may also be desirable. If the analyzer is capable of swept musurements, great economies in time can be achicued by slimulating the deviou under test with a siveep oscillator or sweeping syrthesizer. This allows quick and casy characterizasion of devices over broad frequency ranges. Some network analyzers will operate only with a companion souroe which both stimulates the device under test and acts as the aralyzer's internal oscillator.

At low frequencies is is not particularly diflicule to separate the appropriate voliages and currents required for 2 ransicer and impedance function measurements. Signal separation is merely the process of establishing the proper shorts, opens, and connections at the measurement ports of the device under test. As frequencies inerease the problem of signal separation usually involves lraveling waves on transmission lines and becomes correspondingly more difficult. Hewlent Packard manufactures lest sets (often called
'transducers') applicable for separating the spproprsate traveling waves in a variety of high frequency measurements.

## Broadband and narrowband detectlon

After the desired signals have been obtained from the test set (or transducer) they must be detected by the network analyzer; HP network analyzers can use one of two deloction methods. Broadband delection accepls the full frequency spectrum of the inpul signal while narrowband detection involves tuned receivers which convert CW or swepl RF signals to a constant IF signal. There are certain advantages to each detection scheme.

Broadband detection roduces instrument cost by eliminating the IF section required by narrowband analyzers but sacrifices noise and harmonic rejection. However, noise is nol a factor in many applications, and carcful measurement techniques, using filters, can eliminate harmonic signals that would otherwise preclude accurate measurements. Broadband systems are generally source independent while some namowband systems fequire companion tracking sources. Finally, broadband systems can make measurements where the input and output signals are not of the same frequency, as in the measurement of the insertion loss of mixers and lrequency doublers. Narrowband systems cannot make these measurements.

Narrowband delection makes a more sersitive low noise detection of the constant IF possible. This allows increased accuracy and dynamic range for frequency selective measufements (as compared to broadband sys. tems) and high resolution through IF substilution using precision IF altenvalors. Source dependent narrowband systems utilize a companion Iracking source not only to stimulate the device under lest but also 10 produce a signal offsel from the RF by a fixed frequency for tuning the analyzer's constant IF.

## Signal processing and display

Once the RF has been delected, the network analyzer must process the detected sig. nals and display the measured quantities. Ali HP network analyzers are mulachannel receivers utilizing a reference channel and al least one test channel: absolute signal levels in the channels, relative signal levels (ratios) beeween the channels, or relative phase difference between channels can be measured depending on the analyzer. Using these measured quantities, it is possible 10 either display directly or compute the amplitude and phase of transfer or impedance func. cions.

Amplitude measurements fall into two cat egories, relative and absolute: absolute measurements involve the exaet signal level in each channel while relative measurements involve the ratios of the \{wo signa\} channels. Absolute measurements are usually expressed in voltage ( ABV ) or in power ( dBm ). The units dBV are derived by taking the log ratio of an unknown signal in volis to a one volt reference. Similarly. dBm is the log ratio of unknown signal power to a one milliwar reference.

Relative ratio measurements are usually made in dB which is the log satio of an unknown signal (Tosi Channel) with a chosen reference signal (Reference Channel). This allows the full dynamic range of the instrumentation to be used in measuring vaciations of both high and low level circuil responses. For example, 0 dB implies the two signal levels have a ralio of unily while $\pm 20 \mathrm{~dB}$ implies a $10: 1$ voltage ratio between two sig. nals.

All network analyzer phase measurements are relative measurements with the reference channel signal considered to have zero phase. The analyzer then measures the phase differ ence of the cest channel with respeet to the reference channel.

Measurement results at CW frequencies may be displayed on analog meters, LED's. or calculator (or computer) controlled printers. Swepl frequency measurements of amplitude and phase may be displayed versus frequency on CRT's or X-Y plotters. Realtime dynamic displays are both fast and conveaient in either design opumization or production lesling.

## Low frequency network analysis.

Networks operating at frequencies below 10 MHz are generally charackerized by measuring the gain and phase changes through the network and the associated inpur and outpul impedance; $h, y$, and $z$-paramelers as well

as other lumped-component models are iypical analytical and computational tools used to represent these measurements. 'The first derivative of phase with respect 10 frequency. group delay, is an imporiant measurement of distortion in communications systems. Hew. lell-Packard produces a broad line of instrumentation capable of measuring all of these paramelers.

Phase information complements amplitude data in the measurement of low frequency parameters bocause it is more sensitive to nelwork behavior and because il is a required component of compler impedance and (ransfer functions. For instance, phase is more sensitive than amphtsde in determining the frequency of network resonances (poles) and anti-resonances (zerows). This is because the phase shilt of a network rransfer function is exactly zero al the frequency of resonance. Phase information is also vital in circuit design. parlicularly loop design, where phase margins are critical.

Phase data are also required to measure delay distorlion or group delay of networks. Delay distortion occurs when different frequency components of a complex wave. form experience nonlinear phase shifts as they are transmitted through a network. Group delay is a measure of this distortion and is defined as:

$$
\mathrm{T}_{\mathrm{g}}=\frac{\mathrm{d} \Theta}{\mathrm{~d} \omega}
$$

There are scveral tochnicues for measuring group delay: the nosi common lechniques are phase slope, amplitude modulation. frequency modulation, and frequency deviation. Most HP network analyzers can make measurements with at least onc of bese lechniques while scueral analyzers measure and display group delay directly. Choice of a group delay measurement lochniqui is dependent on the particular device under test and the resolution sequired.

An alternative method for measuring phase discortion is deviation from linear phase or differential phase. Deviations from linear phase can bu measured by introducing enough eloctrical length in the network analyzer's measurement channel co lincarize a device's phase shif. Once this has been accomplished it is possibic to observe any variations in phose shifi lincarity at high resolution. Since group delay is the derivative of phase $(\delta \theta / d \omega)$, nonlinearilies in phase shifi correspond directly 10 ebanges in a device's group delay. Introduction of electrical fengith in the measurement channel may be accomplished by physically adding cable, or it may be accomplished electronically on some nelwork analyzers.

## High frequency network analysis

Tolal voltage and current along a transmission line begin to vary periodically with distance as frequency increases. Consequenily, it becomes difficult to establish the requirco shorts and opens in the correct measurement plane to delerminc low frequency
parameters. Transmission-sine theory explains the variations in total voltage and current at high frequencies through forward and reversc traveling waves. Thus. Iraveling waves are the logical variables to measure at higher frequencies.


Seattering parameters or S-parameters were developed to characterize linear nelworks at high frequencies. S-parameiters define the ratios of reflected and transmitted traveling vaves measured at the network ports. Sis is the complex reflection coeflicient al port 1 and is the ratio of $E r_{1} / E i_{1}$, if $E i_{2}=0$ (porl 2 terminated in ils characieris. tic impedance). $S_{21}$ is the complex transmission coefficiest from pori I to por 2, Er $2 / \mathrm{Ei}_{1}$, if $\mathrm{Ei}_{1}=0 . \mathrm{Ei}_{4_{1}} \mathrm{Ei}_{2}, \mathrm{Er}_{1}$, and $\mathrm{Ei}_{1}$ are normalized voltages (voliage divided by the characteristic impedance of the systom) and represent the amplitude and phase of the traveling waves. By reversing the ports and terminating port I in its characteristic imperance, $S_{2:}$ and $S_{1,}$ can be similarly defincd. From these delonitions, the following equations can be derived:

$$
\begin{aligned}
& E r_{1}=S_{11} E i_{1}+S_{11} E i_{2} \\
& E r_{1}=S_{11} E i_{1}+S_{32} E i_{3}
\end{aligned}
$$

where ineident signals acd as independent variables determining the signals leaving the network. The de-linition of a S-parameter can be easily extended 10 multiport networks: measurement is also easily aocomplished by lerminating uddittonal porss in their characteristic impedances. Thus. S-parameters completcly describe linear network bchayior in the same manner as low fropuency paramelers.


S-parameters offer numesous advanlages 10 the microwave engineer beeause they are both easy 10 use and casy to measure. They arc casy 10 measure because the device is terminated in its characteristic impedance which
is accurate al high frequencies, allows sivept broadband frequency measurement withoul tuning, enhances the stability of active devices, and permits a test sel up lo be used for different devices. The design process is simpllfied because Sparameters are directly ap. plicable to now graph analysis. HP neiwork analyzers with the appropriate iest sets will measure and direcily display $S_{11}$ or $S_{12}$ as gain or allenuation and $S_{11}$ or $S_{2}$ as reflection coefficient. return loss or impedance. Also. Sparameters may be direcily related to h. y. and $z$-paramcters through algebraic transformations.

With the increased utilization of microwave frequenctes in a broad spectrum of applications, $S$-parameter measurements have become more imporiant and more generally used in designing both active and passive netwarks. Hewlert-Packard has developed a series of tutorials for measurement and design with S-parameters; Applicalion Noles 95. 117-1. 117-2, IS4, video lapes 4800586 and \$800600 deal with general S-parameter techniques, Furlher aids include special S-pafameter design seminars and a new sel of calculator programs "Microwave Circuit Design PAC" for compulationally aided design. A continuing program in all medias is underway to disseminalc information on both designing and lealing with S-paramcters.

## Additional capabilities

The computational capabilities of digital calculators and computers can complement the metwork analyzer's versatility through simplifying and speeding measurements, data procussing, and accuracy enbancement. Hew-lell-Packard has integrated network analyzers into computer systems and now offers some analyoers that may be easily interfaced with HP programmable calculators through the Hewlent-Packard Inierface Bus.

Precision design work and important manufacluring solerances demand highly accurate measuremenis, but most errors in network measurements are complex quantitie that vary as a function of frequency. making manual error correction prohibilive. Howcuer. the calculator or computer can make greal contributions 10 measurement confdence by quickly and tusily performing the complex malhematics for sophistieated error correction.

Aside from new levels of accuracy, calcu. lator (or computer) controlted network analyzurs can be programmed 10 sel up and make many measurements automatically. The measuramont process is further acoelerated by the culcularor's ability to store, Iransform, summarize, and output data in a variely of formats on a number of peripherals. These capabilities make the calculator contsolled network analyzer ideal for both computationally aided design or automalic production lealing.

## Network Analyzer Product Line

Hewlett-Packard offers a complete line of network analyzers capable of measurements hroughout the ) Hz to 40 GHz frequency range. Brief descriptions of the individual instruments are given so that you can determine which instrument most cconomically satisfies your measurement needs. Further information and detailed specifications on individual network analyzers are available on the following pages (sse matrix for specific page numbers).
3575A
The 3575A measures Phase and Amplifude or Gain. With the 3575A, the complete ro sponse picture is available al a reasonable cosi from a single instrument, over an 80 dB range, From I Hz to 13 MHz . The 3575A uses a broadband measurcment cochnique, which is attractive because the measurement is not constrained by an internal tracking source or dedicated external device. The 3575A is not dependent on the wave shape, thus measure ments can be made on a variety of wave forms such as triangle and square waves. Noise and harmonic tolerance further enhances the range of measurement, so the instrument is useful under bench conditions.

## 30404/3042A

The 3040 A is a network analysis system capable of measuring amplitude and phase to 13 MHz , Group dclay is an optional capabilily. The system consists of a synthesizer sig. nal source and a two-channel tracking detec10 . The system has a 100 dB dynamic range. and measures amplitude to a resolution of 0.01 dB and phase to a resolution of $0.01^{\circ}$. Measurement applications include filter do sign and production, amplifier testing, delay measurements on communications devioes. and measurements on any linear two-port device.
The 3042A is a rully automatic system which uses the Hewlet-Packard 9820A Calculalor (9821A or 9830A are optional) as a controlter. The memory computational power and decision making power of the culcula-tor-comiroller extend the measurements to complex nework solutions in the lab or rapid production line testing system. Accuracy can be improved by subtracling system errors from the measuroments by using the memory and algebraic powers of the calcula10 r .

## 8407A

The 8407A network analyzer tracks the 8601A generator/sweper (or the 8690B/ 8698 B swseper) from 100 kHz to 110 MHz . The 8407A achieves great swepl measure ment versatility through a scl of four different transducers. Measurement capabilities include:

1) Transmission (gain, loss, phase shif) and reflection (return loss, impedance) measured quickly and easily by sweeping over the frequency range of interest. Measurements can be made in $50 \Omega$ and $75 \Omega$.
2) Complex impedance $|Z|, 0$. or $R \pm j X$ over the wide impedance range $0.1 \Omega$ to $>10$ kn .
3) Voltage and current transfer functions (voltage or current gain, loss, phase shifi).
4) High impedance in-circuil probing.

A rectangular and polar display and various CRT overlays permil direal readings of parameters of interest as frequency is sivept. Applications are detailed in Application Noles 121-1, 121-2. A videotape "8407 Network Analyzer System." 800475, is also available.

## 8405A

The 8405A veetor voltmeter is a dual-channel RF millivoltmeter and phasemeter. It reads the absolute voltages on either of two channels and simultaneously determines the phase relationship between them. CW measurements can be made over the frequency range I MHz to I GHz .
Besides its use iar a volimeter, applications of the 840SA include:
I) Transmission measurements (gain, loss, phase shifi) and reflection measurements (impedance, return loss) in 500 systers.
2) Group delay and amplitude modulation index.
3) In-circuil probing.
4) S -parameters in 50 R systems.

Application Noles 77-1, 77-3, 77-4, and 91 are available for more detail on the above measurements.

## 8505A/8507A

The 8505A Network Analyzer provides measurement capability from 500 kHz to 1.3 GHz. Three RF inpul ports, each with 100 dB of dynamic range, make passible simultaneous network measurements of reflection and transmission parameters. Two independent yel identical display channels are each capable of displaying magnitude. phasc. deviation from linear phase and group delay of either the transmission or reflection characleristics of an RF Nelwork. These paramelers can be displayed in rectangular, polar coordinates or boih formats af the same time. The Swepl Source, which is an integral part of the analyzer, offers extreme frequency flex. ibility through seven different modes of operation.
The 8507 A is an Aulomatic Nelwork Analyzer using the 8505A with HP-1B interlace and the RP-9830 calculator as the controller. The "Learn" mode of operation extends the iraditional automatic operation to a new level of operator convenience. Accuracy enhancement, formating of data, and the speed and case wilh which dala can be accumulated and summarized are all nelwork measurement contributions made by the 8507A.

## 94108

The 8410 B nelwork analyzer system measures the transmission and reflection charao teristics of linear networks in the form of gain. attenuation phase shift, rellection coefFicient, normalized impedanee and S-paramcters in the frequency range of 110 MHz 1040 GH .

Harmonic frequency conversion of the RF 10 a constan: IF is accomplished by the 8411 A Harmonic Frequency Converter from 110 MHz to 12.4 GHz ; the 8411 A Options 018 operates from 110 MHz to 18 GHz . In the fruquency ranges $18-26.5 \mathrm{GHz}$ ( K -band) Hnd $26.5-40 \mathrm{GHz}$ (R-band), the K8747A and R8747A Reflection/Transmission Test unils use erystal mixers and a local oscillator to heterodyne the signals down into the range of the $84108 / 8411 \mathrm{~A}$. In this manner, waveguide components can be measured from 18 1040 GHz
The 8410 B is a ratiometer using both refarence and lest signal inpu(s: consequently. the sweeper outpul must be divided into channels. This is accomplished by a "Test Set" whose other majoc function can be to provide the switching required for making transmission and reflection measurements with minimum or no changes in the measuremenl selup. Hewlelt-Packard offers a total of twelve different lest sets covering various frequency ranges and switching funclions.

Another major instrument required in the 8410 measurement system is a und for the detection and display of the IF amplitude and phase. Throe plug-in displays (For the 8410 B mainirame) are available for this purpose: a phase-gain indicator with meter readouls for CW measurements: a phase-gain display for displaying log amplitude and phase versus frequency: and a polar display for displaying amplisude and phase in polar coordinates.
The 8410 B is capable of sivepi measurements over multi-octave bands through 18 GHz . Between 18 GHz and $40 \mathrm{GHz}, 2 \mathrm{GHz}$ windows may be vicwed. Measurements of more than 60 dB of attenualion and 40 dB or gain are possible. The line stretcher in the reference channel of most test sets is an imporfant feature making possible the equalization of elcetrizal lenglths in both channels for aceurate differential phase measurements.

The variely of test sels, displays, and accossories for measuring both passive and active devices makes the 8410 adaptable to a most any linear network measurement. Further information is available in Application Noles 117-1. 117-2. 95 and in videclape \#800473.

## 8540 Series

The 8540 series system ( 100 kHz to 18 GHz ) couples the network analyzer's ability 10 completely characierize a linear nerwork with the computer's ability to completely setup a measurement, store data. and solve complex mathematics. As a result, the automated system offers these advantages: incteaxed speed of measurement; increased accuracy through sophisticated error-correction techniques; ease of operation: and a varisble data oulpul formal (alphanumeric or graphic with hardcops, eassetle or CRT presentations).

Data can also be made readily accessible to computer aided design programs to assist designer in evaluating overall network performance based on component measufement date.

NETWORK ANALYZER PRODUCT LINE SUMMARY

Moder	frequami Pante	source	Mesurammi Capailition
357SA can Prace   Maler   Pras 4]4	$1 \mathrm{~Hz}_{2}-13 \mathrm{MHz}$	Hono	Gain Phase and Amplitube Low Prequetichialysa
Analrei Hes 411	Sars - 13 mbz	33200/6 or 33304/8	Amplilude and Plyast   Opilonal Graup Detsy   Guin el loss   Lineal Frasuency Sweco
3042A Automalis Networh Ansiyter Pugt III	$5 \mathrm{CH}-13 \mathrm{MHz}$	33308 Syahesurer	9820. 983 I. or 9830 Caloutator Conirol   Compta Netroor ansilysis   Decisisn Makins Abiilly   Compulstional Capobilly
8407 M Nfwoin   Analyzes   Fan 122	$100 \mathrm{~Hz}-110 \mathrm{mHz}$	asbia Generala! Empeper 86906/86986 5axtog Osellitar	Tansien 5ancl:ons, Impedance to 50L 7511 Systens   Comala imasomece of is is $>10 \mathrm{ha}$   gight impedance in- Cirtyil Probins   S-shametors in SOn, 750 systems
8405R Vector   Voiltmeles   Hiplid	$1 \mathrm{MH}_{\mathrm{H}}-1 \mathrm{CH}$   (CW)	$3200 \mathrm{BOCl\mid ll} 1 \mathrm{or}$ VHF   Sigul Generators.   608E (YHF). 6124 (UHY)   8654 (UHF), and 6640 A/B	Yoilmeter   Iraster §uncions. Impedance in 30 O sylems   Group Dolsy, Amplilude Modulation Indes   S. banameres in $50 \Omega$ sysiems
8SOSA Rf Network Anslirel Pite 416	$500 \mathrm{hHz}-1.36 \mathrm{~Hz}$	Sweol Soura induded	Complee lmpedance - $\Gamma$. Retann Loss. $R \pm$ ix Distotion - Groug Oelag. Oerlation Ifom Linear Plaze Digi(a) Readout ol toba while smeepmg siequency Courter :ncluded HP-IB inim Leam Node
B50)A Automalic RT Nefword Arslyetr Mal 40	500 kHg - 19 GHz	Swest Soure induard	3830 Cureutator Convoliter wilh 8505 A   HF. 18 mill learn Mode   Automatic Messurements with Oass Formating   Recursey impraved Meswiemients
BaldB Networn   Analyel   Page 48	$110 \mathrm{HHz}-40 \mathrm{GHz}$	8 820 as 8690 Setien Sweto Oscildion	iransmasion/Reflection Charactemstics    Wavfrul ise Measurements 8.2 GHz to 40 CHz Siparameless Continyous Multiocidyr Measurements mith 8620 Senim Surapers   DC Biss for Semlicondieqer Mesurrements
2562 A Aulormate Helmort Amalyer Pink 548	$100 \mathrm{MHz}-18 \mathrm{GHz}$	B620 or A890 Series Sweog Oscillation	Automalic Memprements of Transmission/Ratertion Characternvirs   Full Error Correction   Virlually No Frograriming Regured   Versatile Oulput: 28 Parame!er   Adonanumeric or Graphic. Hardecopy   Casselte gr Cathote-Ray-Tube

- Narrow Band Analysis
- Digital control and readout
- 50 Hz to 13 MHz



## Description

## 3040A Network analyzer

HP's 3040 A consists of a synthesizer stimulus and a detector to measure amplitude and phase. Ausi)able with this manual system are several automatic featuras including digibil frequency and amplitude sweeping, offisel capability for relative measurements, and group delay. With these leatures, it becomes possible to characterize networks over $S$ decades or very narrow bands of frequency without sacrificing accuracy. These fealures are nol found in more conventional network analyzers. The system provides frequencies from 50 Hz to 13 MHz , two channel amplítude measurements with 120 dB measurement range and 0.01 d resolution and phase measurements with $0.01^{\circ}$ resolution.

## 3042A Automalic system

A programmable calculator, couplod to the manual 3040A, provides a level of control and performance never before available in this price range. The calculator can be programmed to make complex tests. make decisions based on measured data, and perform mathematical manipulation of dala.
The calculator display and printer permit step-by-step production adjustments and pass/fail QA testing. The calculator memory permits storage of complex cest procedures and production data for such things as yield analysis. Programs of computer system complexity can
be casily handled with caleukator extended memory options. Computational capability allows system error corroction and engineering units data prexentation.

The system is provided in a cabinct, fully inlegrated and rested. It is available with 9820A, 9821 A , and 9830A conlrollers and a varicly of accossories including CRT and digital ploter.

## 3042A Sygtem controllers

Considering price/performance and ease of use. Model 9820A Calculator is the optimum controller for Hewlell-Packard's 3042A Automatic Network Analyzer System. Jts casy to learn algebraic tinguage makes it simple to write lest programs. even without prior programming experivence. HP's simple 9820A run procedure. along wilh conversational alphanumeric display and printer, enable relatively unskilled operators to perform complicated production tests with ease and repcalability.

While achieving programming and opcrating simplacizy. HP's Model 20 programming language has some of the best computer language Ieatures, including branching and subroutining capability. If also adds many of its own uniquc features such as immediate error detection and flexibic statement and program line editing. A buitt-an magnelic card reader facilliates recording programs :und data, and permits using prerecorded programs.


The real power of HP's 9820A as a controller is in performing online data analysis to calculate such parameters as $Q$ and bandwidih, to average out noise, and to do statistical analysis on measurement data.

HP's 9821A combines all of the 9820A features with a built-in cassette and cassette ROM for recording programs and data. Both programs and data can be recalled from cassette memory and run in the 9821A under program control with no operator intervention. One cassette can store up to 6000 data registers or 48.000 program keystrokes with numbered file search capability.

HP's 982 i A is the best solution for applications which call for several programs in succession or where large data storage capability is required.

Hewlett-Packard's 9830A is the optimum controller with basic language programming. II combines high level basic language with many unique programming and editing features which shorten programming time. The major portion of the keyboard duplicates that of a typewriter or Ieletype. Twenty special keys can be defined by functions or subprograms to simplify system programming. Program, data, and special function key storage is easily and quickly done on the built-in cassette memory with up 1040.000 word capacity ( 16 -bit words). Operator system interaction is greatly simplified with the 32 character alphanumeric display in $\mathrm{H} \mathrm{P}^{*} \mathrm{~s} 9830 \mathrm{~A}$ and 80 character 9866A Thermal Printer. Of the three controllers, the 9830A has the largest memory option with 7.9 K ( 16 -bit words) of user read-write memory.

## Specifications

3330 B
Frequency range: 0.1 Hz to $13.000,999.9 \mathrm{~Hz}$.
Frequency resolution: 0.1 Hz (8 digits + overrange).
Ampllfude: maximum 2.1 V rms into open circuit, maximum 1.05 V fms into 500.
Amplifude range: $+13.44 \mathrm{dBm} 10-86.55 \mathrm{dBm}$ ineo $50 \Omega 2$.
Amplifude resolutlon: 0.01 dB .
Oulput impedance: SOII (75S Option 001).
Levaled Irequency reaponse (10 kHz relerence):*

$$
10 \mathrm{~Hz} \quad 13 \mathrm{MHz}
$$


*Add $\pm 0.5$ बB for leveling switch in off position.
Amplitude allenuator accuracy: $\pm 0.02 \mathrm{~dB} / 10 \mathrm{~dB}$ (at 10 kHz ) stcp of attenuation down from maximum outpu( $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.
Amplitude accuracy (absolute): $\pm 0.05 \mathrm{~dB}$ at 10 kHz and +13.44 $\mathrm{dBm}\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$. (For absolute accuracy al other frequencies and amplitudes, add 0.05 dB to the leveled frequency response spec. plus the attenuator accuracy spec.)
Ampiltude etability ( $24 \mathrm{hr}, 25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ ): $\pm 0.01 \mathrm{aBm}$.


3570A Network analyzer
Frequenoy range： 50 Hz to 13 MHz
Channel $A$ and $B$ oulputs：electrically identical－equal in fre quency and amplitude to the signal generator output．
Output Impedance： $50 \Omega$ or $75 \Omega \pm 2 \%$ ．
Maximum oulpul：I $V$ rrms into $\mathrm{s} 0 \Omega$ or $75 \Omega$ ．
Channel A and B inpulas deecrically identical－both tuned to the signal generator＇s frequency．


Inpul Impedance： $\mid M \Omega \pm 2$ 㔫 shunied by $<30 \mathrm{pF}$ ．
input slgnal ranger，IV nms to $1 \mu \mathrm{~V}$ ms．
Input selectivity： $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 3 kHz bandwidths．
Amplitude messurements：$d B$ measurement reference is deter－ mined by the position of the＂Max／Ref lnput Voliage＂sivitch． Dfaplay resolution： 0.01 dB ．
Display range： 0 to－ 100 dB （using $A$ or $B$ mplitude function）．
-100 dB to +100 dB （using $\mathrm{B}-\mathrm{A}$ amplitude function）．

Amplitude accuracy（ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ）：
Absolute：no spec－may be calibrated to source using front panel adjustments．
Relalive（relatlve to 0 dB Inpul sor $1 \mathrm{~V}, 0 \mathrm{dBm}$ ，and 0.1 V range）：$A$ or $B$ amplitudc function（ $B-A$ specification determined by＇sum of Channel $A$ and $B$ accuracies）．

	－20d	$-70 \mathrm{~dB}$	$-80 \mathrm{d8}-100$
10 Hz BW， 100 Hz BW ． 3 khz BW I V range	$\pm 0.2 \mathrm{~dB}$	$\pm 0.5 \mathrm{d8}$	$\pm 1.5 \mathrm{~dB}$
3 KHz BW OIV and 0 dBm ranges	$\pm 0.2 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	No spec＊


Slabillty（ $8 \mathrm{hr} . \mathbf{2 5}^{\mathbf{2}} \mathrm{C} \pm \mathbf{1}^{\circ} \mathrm{C}$ ，after $\mathbf{3} \mathrm{hr}$ ．warmup）：

100 Hz and
3 KHz BW
10 Hz BW

0 dB	-20 dB	-80 dB
$\pm 0.05 \mathrm{~dB}$	$\pm 0.08 \mathrm{~dB}$	No spec
$\pm 0.08 \mathrm{~dB}$	$\pm 0.15 \mathrm{~dB}$	No spec

Tomperature coefficlenl（ $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ ）
100 Hz and 3 kHz BW： $\pm 0,02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ ．
10 Hz BW：$\pm 0.05 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ ．
Frequency response
A or B amplliude function：$\leq 0.5 \mathrm{~dB} \mathrm{p}$－p error，
B －A amplifude funclion：$\leq 0.1 \mathrm{~dB} \mathrm{p}$－p cror．
Phase measurements：phase reference is Channel A．
Display resolution： $0.01^{\circ}$ ．
Display range：$-179.5^{\circ} 10+179.5^{\circ}$（display recycles）．
A／－A reference offsot： $180^{\circ} \pm 0.1^{\circ}$ ．
Phase accuracy： $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ．
Phase linearlty：$\pm 0.2^{\circ}$ ．
Frequency response：（channcts al 0 dB ）．


Amplitude response：Channel 8 within 6 dB of Channel $A$ ．
0 dB

$-20 \mathrm{~dB}$		-70 dB	$-80 \mathrm{db}$	
$0.4^{\circ}$	$\pm 0.6^{\circ}$	$\pm 1^{\circ}$	No Soee	

For channels at different levels（specification determined by lowest ins－ pu1）．
0 dB

$-20 \mathrm{~dB}$		$-60 \mathrm{~d} \mathrm{\theta}$	$-80 \mathrm{~dB}$	
$\pm 1.3^{\circ}$	$\pm 1.5^{\circ}$	$\pm 3^{\circ}$	No Spec	

## Options

Price
3040A Network Analyzer
100：Sisndard S0n 3570A $\quad \$ 6230$
101：Siandard 75 3570 A 36230
3320 Fiequency synthesizer
300：Siandard 50n 3320B
$\$ 3665$
301：Siandard 758 3320日
$\$ 3665$
302：XTAL Oven（ $10^{-8} /$ day）add $\$ 345$
$3330 B$ Automatic syniheslzer
500：Standard S0n 3310B
$\$ 7015$
501：Standard 75』 3330B
$\$ 7015$
502：XTAL Oven（ $10^{-y} / \mathrm{day}$ ）
add $\$ 580$
504：Isolated Hewlett－Packard Interface Bus add $\$ 440$
3042A Automalic network analyzer
100：Standard 50＠System
101：Standard 75n System
104：1201B Oscilloscope $10 \times 10$ div．scale，RTIP
$\$ 23,800$
106：XTAL Oven（ $10^{-0} /$ day ）
add $\$ 2570$
The standard 3042A is supplied with a 1.7 k （16－bit word）memory 9820A．Ohter controliers and memories are available．


3575A option 001 dual panel meters

## Description

HP's 3575A Gain/Phase Meter is used for making network measurements over a seven decade frequency and 100 dB amplitude range. A number of diferent instrument conngurations are possible, allowing variations in the basic phase and amplitude measurements. The Mexibility also implies applications in such measurements as impedance. delay and complex rool location.
The outputs are phase in degroes and amphtude in dB or dBV . Phase and amplitude information is available from a LED digita) readout. analog outputs on the rear panel, or BCD outpuls in Option 002 or C03. Phase and amplitude readings can be ploted by band on log paper yielding a Bode plot, or analog outputs can drive an X-Y recorder to give the same information. A slorage scope can be used to display the frequency response; and BCD information can be used by a computer or HP caleulator.

## Phase

Two input signals are necessary for phase measurement: a reference signal and a phase shined signal. Both inpul channels have identical high impedance input circuits, so low vollage signals can be used on either channel and loading is eliminated. A $10: 1$ low eapucilance scope probe or a low impedance sermination reduces phase errors caused by capacitive loading. The $10: 1$ probe also extends the voltage renge to 200 V .
Phase angles are measured by the time difference betweon successive zero crossings of the two input signals. Because zero crossings are the only significani information used, the shape of the waveform is not significant. Square, iriangle and distorted waveforms will give the same answer as a sine wave.

## Hemmonics

HP's 3575A has been designed so measurement errors cannot occur with even harmonies or with in-phase add harmonies. This is an important inserument fealure as inpul signals always have some harmonic content. Most oscillators have harmonies 40 dB below the fundamental, and phase errors could sesult. HP's 3575A has been designed so errors from inpue signals are commensurate with the basic socuracy of the instrument.

## Nolse

HP's 3575A has unique logic circuitry (palent) which makes it lolerant of noise. This feature keeps the digits from racking when using low level signals and prevents ambiguous readings as the lower amplitude range of the instrumens.

The noise colerant 3575A is able to reject noise. A front panel switch selects the appropriate threedecade frequency range so plots and sweeps san be made withoul repealed adjustment and noise rejection is still achieved. HP's 3575A can be used over its wide amplitude and frequency ranges in the presence of noise and harmonics without external signal conditioning.

## Amplltude

Amplitude measurements fall into two categories and the amplilude of either channel or the ratio can be measurcd. The channel measurements are in dB where $0 \delta \mathrm{BV}=1 \mathrm{~V}$ rms. Measurements of ratio are in dB where 0 dB means channel levels are the same. If the input signal level is too low for phase or ratio functions to operate, a measurement of channel amplitude will reveal this. If the level is too high. digits will be blanked and the overload annunciator will indicale which channel is in overload.

A wide dynamic range log amplifier achieves a wide dynamic range without internal or external ranging. It uses eight $\log$ segments to achieve an 80 dB range. The 20 dB allenuator associated with each channol allows 100 dB of signal difference.

The amplifies in both chaonels continuously logs the inpue signal. Logged signals are then rectified to give a de voluge proportional to the log of the input. With the two de signals available, it is possible to measure either the level of Channel A or B to oblain log ratio by subtracting de vollage. Using this technique, amplitude ratio of waveforms (at different frequencies or different waveforms) can be measured.

The lechnique of subsracting Chansel A from B direcily yields gain or loss through a nelwork. By measuring input and oulput to find gain, the input stimulus isn't required to have a flat Irequency response. The stimulus can also have a distorted waveshape withoul affecting results. The Bode plot is then independent from the stimulus and in-circuit measurements are possible.

## Specificatlons

## Phase accuracy*


*Conditions: Temperature: $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ : Frequency range swich on fowest appicable range, Analog Outpot ac curacy (rear pane))
Input signai range: $200 \mu \mathrm{~V}$ rms to 20 V rms.

## Harmonic rejection

Even hármonics no crror.
Odd harmonics in phase no error.
Odd harmonies out of phase $0.57^{\circ}$ worst case error when tatal odd harmonic distortion is 40 dB below the fundamental.
Nolse tolerance: $2^{\circ}$ error for a 10 kHz 1 V sine wave on one charnel. One valt sine wave added to Gaussian noise (limited to a 1 MHz bandwidth and $30 \mathrm{~dB} / \mathrm{S}$ ratio) on the other channel. The 100 Hz to
1 MHz frequency range was used.

## Dleplay:

Range: $\pm 180^{\circ}$ with $12^{\circ}$ of overrange.
Resolution: $0.1^{\circ}$.
Pand moter accuracy: $\pm 3$ counts ( 0.3 degrees. $0.3 \mathrm{~dB} / \mathrm{dBV}$ ). The panel meter error most be added to the phase and amplitude errors to oblain the display error.

## Inputs

1mpedance: । M 30 pF .
Protaclion: $\pm 50 \mathrm{~V}$ dc. 25 V rms.
Response Lime to achleve $90 \%$ of Inal reading:

Frequency Range	Mate
	20 s
10 Hz 10100 kHz	25
100 Hz 10 I MHz	0.2 s
1 kHz 1013 MHz	20 ms

Rear terminal inputs are available is as special (3575A-C09). Digital (Opi. 002). $0,+5$ ground irue. Twelve lines to fully program all funclions.

## Outputs <br> Analog:

Phace: $10 \mathrm{mV} / \mathrm{deg}$ rec.
Amplifude: $10 \mathrm{mV} / \mathrm{dB}$ or dBV .
Ouiput impedance: $1 \mathrm{k} \Omega$.
Dightal (Opl. 002): $0 .+5 \vee$ ground true. 31 oulput lines ( $1-2-48$ BCD).

Digltal readout: $31 / 2$ digits with sign and annuncialors. Four readings per second, fixed.
Amphitude accuracy*

*Conditions: femperature: $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$, accoracy applies to dB Y and ratio meassrements with the same frequency on both channels for ratio measurements, the lowest livel channel delermines accuracy, anslog output accuracy (rear panel).
Amplifúúa functions: $A d B V, B d B V$ ir $B / A d B$.
Amplifude reference: ( $A \mathrm{dBV}, \mathrm{B} \mathrm{dBV} \mid \mathrm{V}$ rms $=0 \mathrm{dBV}$.
Display:
Rango: $A d B V . B d B V:-74 d B V$ to $+26 d B$ (in two ranges). $B / A$ d8: $-10010+100 \mathrm{~dB}$. (Both input signals must be within the range or 0.2 V rms to 20 V rnss).
Rezolution: $0.1 \mathrm{dBV}, 0.1 \mathrm{~dB}$.

## Opllons

001 Dual panel meters
HP's 3575A Opt. 001 is equipped with two digital readouts and two analog outputs for simultancous amplitude and phase readings. This option has no additional measurement capability over the standard instrument.
Dual analog outpuls: rear panel BNC connectors provide de output voltages that correspond to the respective panel meter readings.

## $002 / 003$ Programmable

3575 A Opt. 002 and Opt. 003 are equipped with dual panel meters and dual analog outputs (same as Opt. 001) plus BCD outputs and complete remote control capability. Option 002 has negative true output levels and Opt. 003 has positive true output levels. BCD information from the 3575A (Opt. 002 ) can be read by the 9810 or 9820 HP Calculators with appropriate interfacing.
908: Rack Flange Kir
add $\$ 10$

## General

Power: $115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $60 \mathrm{~Hz}, 40 \mathrm{VA}$.
Welght: net, 8.3 kg ( 18.4 fb ). Shipping, 11.3 kg ( 25.8 lb ).
Dimenslons: 425 mm wide $\times 88 \mathrm{~mm}$ high $\times 337 \mathrm{~mm}$ decp ( $161 /{ }^{4} \times$ $\left.3(5))^{4} \times 131 / 0^{*}\right)$.
Aecersories lumighed: exlender boards, line cable and 50 -pin connector (Opl. 002 and 003 anly).

Model number and name	Price   3575A, Opl. 001, Dual Readout
3575A. OpI. 002. Psogrammable (negative Iruc output $\$ 495$	
levels)	
3575A, OpI. 003, Programmable (positive Iruc outpul	
levels)	
3575A. Gain/Phase Meter	add $\$ 875$
$\$ 2875$	

TD NETWORK ANALYZERS

## RF network analyzer, 500 kHz to 1.3 GHz wiodolel 6505Â

- 500 kHz to 1.3 GHz
- 100 dB of dynamic range
- Digital readout of data while sweeping
- Group delay and deviation from linear phase
- Fully integrated sweep oscillator
- Complete family of related test sets


The HP 8505A is a high per「ormance RF network analyzer operating over the 500 kHz to 1.3 GHz frequency range. It aceurately and easily measures complex impedance, lransier functions and group delay of coaxial components and semiconductors. Because both magmitude and phase are mensured, it is possible to completely characterize the linear behavior of both aclive and passive networks.

Since magnitude and phage can be masared and displayed over 100 dB of dynamic range ( $-10(0-110 \mathrm{dBm})$, it is a sintple process for the 8305 , to measure transmission loss of hugh rejection devices such as fileers or gain and return loss of small signal devices like amplifiers. Distortion parameters like group delay. deviation from linear phase. and deviation from constant amplitude are measured in an equally straight-forward manner. Group delay is measured and displayed direcily to resolusions of I nsec per major division using a new linear FM measurement technique. A unique new elecirical line stretcher compensates for the linear phase shift of the device under test so that phase non-linearitics may be examined at high resolution ( $1^{\circ}$ per major division). Amplitude deviations with frequency can be similarly observed 10 resolutions 0.1 dB per major division with elear, crisp race stability. In addition, it is possible 10 read out amplitude, phase and delay digitally while sweeping al any onc of five continuously variable markers with resolutions of 0.01 dB, $0.1^{\circ}$, and 0.1 usec respeclively.

Many of the 8505A"s high performance features and operating convenienceh are derived from the fact that it is a completcly integrated systim including buth the sweep oscillator and the receiver. The basic instrument also includes a buile-in frequency counter, polar and reclangular displays on the same CRT. the new electronic line stretcher. group delay measurement, and frequency selective digital readings of amplitude, phase and delay while sweeping. The frequency dounter with resolutions up 10100 Hz adds jurther precision to the measuremenis by allowing frequency as well as amplitude, phase and delay to be read out al any of the five markers. The 8505A is fully and completely programmable in a straight-forward fashion using the HP-IB (Oplion 001). A fully configured calculator-based automatic network analyzer system. the 8507A, is offered (see page 420).

Companion instruments include the 11850A Three Way Power Splitter for high resolution transmission and transmission comparison measurements, the 9502A Transmission/Reflection Bridge for simultaneous iransmission and reflection measurements, and the 8503A S-parameter Test Set Cor completc characterization of two port devices in a single tesi set-up. Speciolly shiclded and phase balaneed cables are also availabie to minimite erosh-talk and tracking errors, Biasing inputs for semiconductor mensurements are available on the 8503A.


Figure 1. Group Delay of a Bendpass Filter: Using the 8505A's new |lnear FM measurement technlque, callbrated absolute group delay is slmply and accurately measured and displayed. The group delay at the marker ( 305 MHz ) is 55 nsec and cari be read out digltally. Ollsets can be used to bring any portion of the trace to the raference graticula and resolution increased to 1 nsec per major division.

## 8505A Specifications

## Source

Frequency ranges
Llnear full: 0.5 to $13 \mathrm{MHz}, 0.5$ to $130 \mathrm{MHz}, 0.5$ to 1300 MHz .
Log full: I to 10 MHz , ito 100 MHz , I to 1000 MHz .
Linear expand sweep modes
CW mode: CW 「requencies are sel to counter' accuracy with full 6 digit display resolution: frequency stability (over 10 minutes) is better than $0.01 \%$ of reading $\pm 0.01$ \% of range.
Start-Stop: two iudependent Slart-Siop sweeps wilb Allernale sweep capability; four digit readout of starl-stop settings accurate to $\pm 1 \%$ of frequency pange.
$C W \pm \Delta \mathrm{F}$ : swerps symmetrically from below to above the CW frequency setting by the $\pm \Delta \mathrm{F}$ set value; $\pm \Delta \mathrm{F}$ up to $10 \%$ of frequency range sclected: four digit frequency readouts are accurate $10 \pm 1 \%$ of the range.
Power oulput
Range: +10 dBm to -72 dBm adjusiable ourpui level
Power level accurecy: $0 \mathrm{dBm} \pm 1 \mathrm{~dB}$ at 30 MHz
Leveling: internally leveled to $\pm 0.5 \mathrm{~dB}$ fron $500 \mathrm{kH} z 101.3 \mathrm{GHz}$.
Source impedance: $50 n$; $\geq 16 \mathrm{~dB}$ return loss ( $<1.38$ SWR)
Spectral purity
Harmonlcs: sypically $\geq 25 \mathrm{~dB}$ below masn signal at +10 dBm oulput level: typically $>40 \mathrm{~dB}$ below main signal at -10 dBm ouspul level.
Residual FM:
$\leq 20 \mathrm{~Hz} \mathrm{mms}, 500 \mathrm{kHz}-13 \mathrm{MHz}$ range ( 1 kHz bandwidih)
$\leq 200 \mathrm{~Hz}$ rms. $500 \mathrm{kHz}-130 \mathrm{MHz}$ range ( 1 kHz bandwjdth)
$\leq 2 \mathrm{kHz} \mathrm{rms}, 500 \mathrm{kHz}-1300 \mathrm{MHz}$ range ( 10 kHz bandwid (h)
${ }^{1}$ Ste countur pertormance specitications for CW trequency accurser)
Does nol agply to log sweep.
${ }^{3}$ Overflow wath 4 lessor significent dight displayed; CW mode displays 6 sigrifitant digilx


Figure 2. Transmission Loss and Input Rellecilon Coeflicient of a Bandpass Filter: Simultaneous iransmission and reflection measurements with rectangular and polar displays are possible because the 8505A has three input channels and complete display sysiem.

Typical Nolee (SSB in 1 Hz BW ):
$\geq 70 \mathrm{~dB}$ below carrier I kHz awoy from carricr, 500 kHz to 13 M Hz $\geq 85 \mathrm{~dB}$ below carricr 10 KHz away from carrier, 500 kHz 10130 MHz
$\geq 100 \mathrm{~dB}$ below carrict 150 xHz away from carricr, 500 kHz to 1.3 GHz
Sweep times: 10 ms to 100 sec in decade ranges with vernier adjustment or Manual Scan with vernier control.
Trigger modes: auto; line sync; single scan or external sync. with a rrigger signal up to 50 kHz rep. rale $\geq 2 \mathrm{~V}$ p-p and a pulse width or $\geq 0.5 \mu \mathrm{~s}$.
Frequency markers and counter performance
Markers: five independent and continuously adjustable markers with frequency counter readout.
Frequency counter: swepi frequency counter measurevients are made at the marker sclected (1) through 5). High resolution Irequency measurements are provided through the four digit display and the counters two digit overflow capability.
Countar aceuracy²: $0.022_{i}^{c} \pm 2$ counls $\pm$ lime base accuracy Time base accuracy: $5 \mathrm{ppm} \pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \pm 3 \mathrm{ppn} / 90$ days.
Counter resolulion
20 me sweep time: 10 kHz on 0.5 to 13 MHz range;
100 xHz on 0.5 so 130 MHz range:
1 MHz on 0.5 to 1300 MHz range
100 ms sweep timet: 1 kHz on 0.5 to 13 MHz range: 10 kHz on 0.5 fo 130 MHz range: 100 kHz on 0.5 to 1300 MHz range
$>1$ see. aweep limet. 100 Hz on 0.5 to 13 MHz range: 1 kHz on 0.5 to 130 MHz range: 10 kHz on 0.5101300 MHz range.

## Recalver

General
Frequency range: 500 kHz to 1.3 GHz
Measuring Inputs: Threc identical mitasuring inpuls A, B. R wish full 100 dB dynamic range.
Noise Moor ( 10 kHz BW): -110 dBm From 2 to 1300 MHz : -100 dBm from 0.5 to 2 MHz .
Crosasik: isolation between channels $\geq 100 \mathrm{~dB}$.


Figure 3. Worst case Magnitude and Phase error due to crosstalk specilication of 100 dB .

Input Impedence: 50 n ; $\geq 20 \mathrm{~dB}$ return loss ( $<122 \mathrm{SWR}$ )
Maximum input level: choice of -10 dBm or $\mathbf{- 3 0} \mathrm{dBm}$ maximum input level for lass han 0.1 dB compression.
Damage level: +20 dBm or $\geq 50 \mathrm{Vdc}$.

## Magnitude

Ratio frequency rebponse (A/R, B/R): $\leq \pm 0.3 \mathrm{~dB}$ from 0.5 to 1300 MHz
Absolute frequency response ( $A, B, R$ ): $\leq \pm 1.5 \mathrm{dBm}$ from 0.5 MHz 101300 MHz
Dупаmic response accuracy: $\pm 0.08 \mathrm{~dB} / \mathrm{dB}$ from $-2010-40$ $\mathrm{dBm} . \pm 0.2 \mathrm{~dB}$ from $-1010-50 \mathrm{dBm} . \pm 0.5 \mathrm{~dB}$ from -50 to -70 $\mathrm{dBm}, \pm 1 \mathrm{~dB}$ from $-7010-90 \mathrm{dBm}$, $\pm 2 \mathrm{~dB}$ from -90 to -100 dBm . $\pm 4 \mathrm{~dB}$ from -100 to 110 dBm .
Reference affeel range: $\pm 199.9 \mathrm{~dB}$.
Reference offeal accuracy: $\pm 0.02 \mathrm{~dB} \pm 0.003 \mathrm{~dB} / \mathrm{dB}$ offset
Marker measurement resolution: 0.01 dB over any $\pm 10 \mathrm{~dB}$ range; 0.$) \mathrm{dB}$ for $\geq 10 \mathrm{~dB}$ range.

CRT display resolution: 20 dB to $0.1 \mathrm{~dB} /$ division in a 1.2 .5 sequence.
Maximum offset between - $\mathbf{1 0}$ and $\mathbf{- 3 0} \mathbf{d B m}$ inpul level pesilion: $\pm 0.2 \mathrm{dBm}$.
Maximum offset between 10 kHz and 1 kHz BW posilion: $\pm 0.2 \mathrm{~dB}$ for measurement levels $\leq-20 \mathrm{dBm}$.

## Phase

Frequency response: $\leq \pm 3^{\circ}$ from 0.5 to $750 \mathrm{MHz}: \leq \pm 5^{\circ}$ from 750 MHz to 1.3 GHz
Dynamic response accuracy': $\pm 0.02^{\circ}$ per dB from -20 to -40 $\mathrm{dBm}, \pm 0.5^{\circ}$ from $-1010-50 \mathrm{dBm}, \pm 1^{\circ} \mathrm{fram}-50 \mathrm{to}-70 \mathrm{dBm}, \pm 3^{\circ}$ from - 70 to -90 dBm .
Reference oftret range: $\pm 1700.0$ degrees
Relerence offsel accuracy: $\pm 1 \%$ of offsel
Marker measurement resolution: $0.1^{\circ}$ over $<100^{\circ}$ range and $1^{\circ}$ for $>100^{\circ}$ range.
CRT display resolution: $180^{\circ}$ (a $1^{\circ}$ per division in 8 stcps.
Maximum otisel between -10 dBm and $-\mathbf{3 0} \mathrm{dBm}$ Input position: $\leq \pm 2^{\circ} \mathrm{at}-40 \mathrm{dBm}$.
Maximum offeel between 10 kHz and 7 kHz AW poaltions: $\leq \pm 5^{\circ}$.

## Polar

Polar Specifications for Frequency Response. Dynamic Response Accuracy. Reference Offsel Accuracy. and Marker Measurement Resolution are the same as previous specifications for Magnitude and Phase.
${ }^{1}$ Opramic response excludes closstal
${ }^{1} \mathbf{3}$ units can be calibrated out.

CRT display resolution: magnitude graticulas at $20 \%$ of full scale spacing; Phase gralicules al $10^{\circ}$ increments around unit circle.
Full scale magnilude setlings: 1 (e.g. 100 dB ) 100.01 (e.g. $10-40$ dB ) in a $1,0.5,0.2$ sequence.
Polar display accuracy: actual value is within kess than a 3 mm cirele of displayed value.
Offsel tracking (dB affeet scale to linear expand scale); $\leq 0.5 \mathrm{~dB}$

## Delay

Frequency response: $\pm 1$ ns from 500 kHz 101.3 GHz
Delay accuracy: $\pm 3 \%$ of reading $\pm 3$ unjts ${ }^{3}$
(Unils $=$ no for 0.5 to 1300 MHz range, 10 ms for 0.5 to 130 M Hz range and 100 ns for 0.5 to 13 MHz range).
Marker measuremeni regolution: 1 ns on 0.5 to 1300 MHz sange ( 0.1 ns for $<10 \mathrm{~ns}$ ): 10 ns on 0.5 to 130 MHz range ( 1.0 ns for < 100 ns): 100 nsec on 0.51013 Mhz range ( 10 ns for $<10 \mu \mathrm{~s}$ ).
CRT deplay resolution: I ms/division on 0.5 to 1300 M Hz range: 10 กs/division on 0.5 to 130 MHz range: $100 \mathrm{~ns} /$ division on 0.5 to 13 MHz range.
Dlsplay range: 0 to 800 ns on 0.5 to 1300 MHz range: 0 co $8 \mu$ s on 0.5 10 130 MHz range; 0 to $80 \mu \mathrm{~s}$ on 0.5 to 13 M Hz range
Relerence offeet range: $\pm 1999$ units
Reference offeet eccuracy: $\pm 0.2$ unils, $\pm 0.3 \%$ of offset.

## Electrical length:

Electrical length ranges (metric):
(x) 0 to $\pm 19.9 \mathrm{~m},(X) 010 \pm 100 \mathrm{~m}$ on 0.51013 MHz range;
( $x$ ) 0 to $\pm 1.99 \mathrm{~m}$, (X) 0 to $\pm 10 \mathrm{~m}$ on $0.5: 0130 \mathrm{MHz}$ range;
(x) 0 to $\pm 19.9 \mathrm{~cm}$. ( $X>0$ to $\pm 1 \mathrm{~m}$ on 0.5 10 1300 M Hz range.

Dlaplay resolution (metric):
(x) $10 \mathrm{~cm},(\mathrm{X}) 1 \mathrm{~m}$ on 0.5 to 13 MHz range:
(x) $1 \mathrm{~cm} .(X) 10 \mathrm{~cm}$ on 0.5 to 130 MHz range:
(x) 0.1 cm . ( $X$ ) 1 cm on 0.5 to $; 300 \mathrm{MHz}$ range.

Linearlty (length): phase crror equals 0.006 f ( MHz ) (melefs).
Linear phase compensalton: $\pm 1700^{\circ}$
equivalent to $\frac{ \pm 1.4 \mathrm{~km}}{\text { Scan Widih(MHz) }}$ or $\frac{ \pm 4.7 \mathrm{~ms}}{\text { ScanWidih(MHz) }}$
Linearity (Phase): 0.2 電 of phase compensalion.
Accuracy: $\pm 3 \%$ of reading. $\pm 10^{\circ}$ per scan.

## General information

CRT reference posilion: seference lines for Channel I. Channel 2 and beam center (in Polar) may be independently set to any position on the CRT Display.
Dlaplay bandwidth: selectable bandwidith of 10 kHz , I kHz. 100 Hz , CRT overlays: Smilis Charis (3.16. I, 0.5, 0.2, 0.I (u).l scale) Log Charts ( $10 \mathrm{MHz}, 100 \mathrm{MHz}$ and 1000 MHz ).
CRT background Illumination: illummation control provided for CRT photography.

## Auxillary outputs

Channel 1 and 2 outpuls: $0.2 \mathrm{~S} \mathrm{~V} /$ Display division
Sweep output 0.25 V /display division wilh 2 k souree impedance
Pen lift DC coupled, 100 mA cureent sink.
8505A Opl. 001
The 8505A Hewlets-Packard Interface Bus option provides for data logging and remote conerol of the 8505 A . This option is added to the 8505 A by the addition of seven printed circuil cards. The remote user has esentially the same control of the instrument as does the manual user.
Power: II 5 or $230 \mathrm{~V} \pm 10 \%, 501060 \mathrm{~Hz}$ approximaltiy 240 watts.
Dlmensions: 432 mm wide, 267 mm bigh, 495 mm deep $\left(17^{\circ} \times 101^{\prime \prime}\right.$ $\times 191^{n}$ )
Welght: nel. $36 \mathrm{~kg}(86 \mathrm{Jb})$. Shipping, $48 \mathrm{~kg}(106 \mathrm{lb})$.
Options
Price
Opt. 001 Hewlett-Packard InterJace Bus add $\$ 2950$
Opl. 907 Front hand)e kit
add $\$ 30$
Opt, 908 Rack flange kit
add $\$ 20$
Op1. 909 Rack nange/froni handle kil
B505A 0.5 - 1300 MHz Network Analyzer
$\$ 22,500$


8502A


B503A S-Parameter test set
Frequency range: 500 kHz to 1.3 GHz
Impedance: 50月
Directivity: 240 dB

## Port match

Teat Pori 1 and 2: $\geq 30 \mathrm{~dB}$ Relurn Loss from 2 to 1000 MHz ( $\leq 1.065$ SWR): $\geq 26 \mathrm{~dB}$ Retum Loss from 1000 to 1300 MHz ( $\leq 1.11$ SWR): $\geq 20 \mathrm{~dB}$ relurn loss from 0.5 to 2 MHz (I. 22 SWR). Teal Porl 1 and 2 Open/Shorl Fatlo: $\leq \pm 0.6 \mathrm{~dB}$ Magnitude and $\pm 4^{\circ}$ from 2 to $1000 \mathrm{MHz} \pm 1.0 \mathrm{~dB}$ Magnitude and $\pm 7^{\circ}$ from 0.5 MHz to $2 \mathrm{MHz}: \pm 0.75 \mathrm{~dB}$ magnitude $\pm 6^{\circ}$ from 1000 to 1300 MHz .
Reference and Retiurn Porta: $\geq 23 \mathrm{~dB}$ Return Loss from 2 to 1000 MHz ( $\leq 1.15$ SWR): $\geq 20 \mathrm{~dB}$ Return Loss from 0.5 to 2 MHz and from 1000191300 MHz ( 1.22 SWR).
RF input port: 20 dB Retum Loss from $0.5101300 \mathrm{MHz}(\leq 1.22$ SWR).
Frequency response
Tracklng between test Port 1 and 2: $\leq 2 \mathrm{~dB}$ Magnilude and $\leq 20^{\circ} \mathrm{Ph}$ ase
RF Input to test Port 1 or 2: $\leq \pm 1.5 \mathrm{~dB}$ with a typical insertion loss of 13 dB .
Tracking beiween relerence and leat port 1 and 2:
Tranemlaton (S21, S12): $\leq \pm \mid \mathrm{dB}$ Magnilude and $\leq \pm 8^{\circ}$ phase.
Reflection (S11, 822): $\leq \pm 1.5 \mathrm{~dB}$ Magritude und $\leq \pm 10^{\circ}$ phase.
Maximum opersting level: $\leq+20 \mathrm{dBm}$
Damage level: I watl CW

## Conneolora:

Teat Porls: APC-7
All other RF Ports: Type $N$ female
DC bian inputs. BNC female
DC Blas input range: $\pm 30 \mathrm{~V}$ dc. $\pm 500 \mathrm{~mA}$.
Includes: four $19 \mathrm{~cm}\left(7.5^{\prime \prime}\right)$ cables with Type N male connectors.
Fecommended accessory: 11857 A Test Porl Exiension Cables
8503A OPT 001: Hewleti-Packard Interface Bus capability added.
Power: 115 or 230 volts $\pm 10 \%, 501060 \mathrm{~Hz}$. Approximately 10 watts.
Dimensions: 432 mm wide, $90 \mathrm{~mm} h 2 \mathrm{gh}, 495 \mathrm{~mm}$ deep ( $17^{*} \times 31 / 2^{*} \times$ 191/2)
Welght, net, $9.1 \mathrm{~kg}(20 \mathrm{lb})$. Shipping. $11.3 \mathrm{~kg}(25 \mathrm{bb})$

8502A Transmission/reflectlon brldge
Frequency range: 500 kHz to 1.3 GHz
Impedance: $50 \Omega$
Frequency response
Tranamieston: $\leq \pm 0.8 \mathrm{~dB}$ Magnitude and $\leq \pm 6^{\circ}$ phuse with a typical insertion loss of 12.5 dB .
Reflection: $\pm 1.5 \mathrm{~dB}$ Magnitude and $12^{\circ}$ phase with a typical in. sertion lass of 12.5 dB .
Directivity: $\geq 40 \mathrm{~dB}$
Teat port matoh : $\geq 30 \mathrm{~dB}$ Return Loss from $2101000 \mathrm{MHz}(\leq 1.065$ SWR): $\geq 26 \mathrm{~dB}$ Retum Loss from 1000 to 1300 MHz ( $\leq 1 . J \mid S W R$ ): $\geq 20 \mathrm{~dB}$ relurn loss from 0.5 to 2 MHz (1.22 SWR).
Teat port open/ahort ratio: $\pm 0.6 \mathrm{~dB}$ magnitude and $\pm 4^{\circ}$ phase from 2 to $1000 \mathrm{MHz} \pm 1,0 \mathrm{~dB}$ metgnitude $\pm 7^{\circ}$ phase from 0.5 to 2 M Hz : $\pm 0.15 \mathrm{~dB}$ nagnitude $\pm 6^{\circ}$ from 1000 to 1300 Mhz .
Reference and vellection port match: $\geq 28 \mathrm{~dB}$ return toss from 2 to $1000 \mathrm{MH} /$ ( $\leq 1.065$ SWR): $\geq 25 \mathrm{~dB}$ return $\operatorname{los} 50.5$ to 1300 MHz ( $\leq 1.12$ SWR).
Input port matche: 20 dB Relurn Loss ( $\leq$ ). 22 SWR)
Maxlmum operating level: $\leq+20 \mathrm{dBm}$
Damage level: $\geq 1$ watt $\mathrm{CH}^{\prime}$
PF attenualor range: 0 10 70 dB in 10 dB steps
DC blas inpul range: $\pm 30 \mathrm{~V} \mathrm{dc}, \pm 500 \mathrm{~mA}$.
RF connectore: Ty'pe $N$ femsle
Biss input connector: BNC fenale
Recommended scceseory: 11851A Cable Kit
Dimensions: 101 mm wide, 61.5 mm high. 204 mm deep $\left\{71 / 2^{N} \times 2 \frac{1}{10^{*}}\right.$ $\times 8^{\prime \prime}$ )
Welght: net, $1.7 \mathrm{~kg}\left(3 \mathrm{H}_{1} \mathrm{lb}\right)$. Shipping, $3.1 \mathrm{~kg}(7 \mathrm{lb})$.

## 11850A 3 Way power splitter

Frequency range: 500 kHz to 1.3 GHz
Impedance: $50 \Omega$
Tracking between any two oulput ports: $\leq \pm 0.05 \mathrm{~d} . \mathrm{B}$ Magnitude and $\leq \pm 0.5^{\circ}$.
Frequency response (ebsolute): input to outpul $\leq \pm 0.2 \mathrm{~dB}$.
Dutput maich: $\geq 32 \mathrm{~dB}$ Retum Loss ( $\leq 1.05$ SWR)
Inpul match: $\geq 20 \mathrm{~dB}$ Relurn Loss ( $\leq 1.2$ SWR)
Maximum operailing level: $\leq+20 \mathrm{dBm}$ inpui
Gurn-out level: $\geq I$ wall CW
RF connectors: Type $N$ female
Recommended accessory: 11851A Cable Kil
Dlmensions: 67 mm wide, 46 mm high, 67 mm deep $\left(25 \mathrm{~m}^{\prime \prime} \times 1 \% \times\right.$ $23 /{ }^{n}$ )
Welght. net. $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping 3.1 kg (7 lb).

## Accesā̃rles:

11851A RF Cable KIt
Contalns: fous 24 -inch. $50 \Omega$ phase matched cables with type $N$ mate connectars.

Recommended for use with 8502A Transmission/Reflection Test Unil and 11850A 3-Way Power Splitier.

## 11957A Tegt Port Extension Cables

Contalns: (wo precision 24 -inch 500 cables with APC- 7 connectors.
Recommended for use with 8503A S-Parameler Test Unit.

Options and accessories	Price
Opt. 001 Hewlett-Packard Interface Bus (8503A)	\$400
Opt. 907: Front handle kit (8503A)	\$15
Opl 908: Rack \ange kil (8503A)	\$10
Op1. 909: Rack flange/front handle kit (8503A)	\$20
11850A Power Splitter	\$450
11851A RF Cable Kir	\$285
II8S7A Test Port Extension Cables	\$550
Model number and name	
8502A Transmission/Reflection Bridge	\$1850
8503A S-Paramcter Test Sel	\$3700
-0ther ports demminted in 500.	

## NETWORK ANALYZER

Automatic network analyzer, 500 kHz to 1.3 GHz Model 8507A

- Improve productivity in lab and factory
- Accuracy enhancement
- Ease of operalion via HP-IB
- 9830A calculator coniroller
- New learn mode



## Description

The 8507A is the catculator-based automatic version of the x505A RF Network Analyzer. The synergism of the easy-to-use 9830 calculator with the "mosit programmable" network analyzer yet designed provides a powerful RF neluurk measurement tool for both lab and production user.

## Cost eftective solutions

In laboratory applications, cngineers gain greater circuil insight due to the speed and ease with which data can be accomutated and summarized with the 8507A. The cesy-to-use calculator programming format reduces programming time :a a fraction or what it would be for a corresponding computer propram. With just a few hours iruming, engineers with no previous programming expericace have been athe to write customized grograills "lich solve specialized measuremens problems. In production applications, the 8507A dramatically reduces the lime and cost of making complicated limit tests on all types of components. Testing programs with huil-in operator insiructions can mmimize training cost and assure uniform test precedures.

## System verification

The 8507 A has a simpic. foolproof prooedure for verifying system calibration. included with each systen is ? verification program itral set of faclosy ealibrated measurement standards. Comparing your measured results with the dilla on the supplied calibration card will instantly verify the proper operation of all the 8507A systera components. A separate calculator progran verifies proper operation of the 9830A systent cinniroller.

## Learn mode operation

The "Learn" mode of operation extends iraditional automatic aperation to a new level of operator convenience. A single key stroke call cause the calculator to accept (learn) a data string from the network analyzer which defines all of the manually set front panct control settings. Onse stored in the calculator (or permanently recorded) this data string can then be used to summatically return the network and. lyzer to its ex.eet original test conditions, , all without the operator ever writing a ingle program line!

## New programmablity fealures

1) Unique "marker mode" operation provides a real time swept display at the yante time data (frequency or thiplayed parameters) is buing ligecd.
So vilu can store dala at a lamited number of frequticiow and still te sure you haven't missed a glich.
2) Humali-engineered HP-IB coding does away with complex code isbles. To prograns a function, just type its name (shortened to first letder ir you like) and switch position number (numbered It N lefi to right).

## Flexibility of HP-ן⿴

Your RF measurement applicarion may require programmable power supplics or contact closures to drive the device under test or a DVM io monitor valtages.
It is truly simple to integrate an instrument of accessory module from the already large but still growing list of HP.IB interfaced devices.



## Accuracy enhancement

Each 8507 A system is supplied with a progrant that permies fiequency tracking. mismatch, and direcilivity crrors to be characterized by applying known standards. These stored system errors at up til 100 frequency points are then removed from meilsurement of the unknown to provide a degrec of accuracy far exceeding that possible with the standard 8505A.

## An example

The plois on the left show the result of soptware decuracy enhancement. Curve $A$ depicts raw measurements on a 50 dB relurn loss termination at the ind of a six-foot RG 214 cable - a typical applica. tion problem in esting in temperature chambers. Curve $B$ shows the results after calibrating at the end of the cable - a 25 dB improvement.

## Data In the lomm you need

With ibe BASIC language 9830A coniroller, it is a simple matter to oblaln customiged printed or plolted outpuls. Or you may want to store dala on a casserte for later analysis. Data cin be analyzed or statistically summarized directly, bypassing the laborious and efrorprone task of manually recording and re-entering data. Dats reformaling such 25 converling rcfum loss lo SWR or s-parameters to y-parameters is easily donc.

## 8507 Automatic network analyzer

Genaral - Includes:

- 8505A Network Analyzer with HP-1日 Interfacc
- 8503A S-Parameler Test Set with HP-IB Interface
- 9830A (8 K word memory) Controller with 9866A Printer, Sining Variable ROM, and Calculator/HP-IB interfuce including extended I/O ROM
- Calibration Kit. Sustenis Table. \& Cables
- Controller programs including accuracy enhancoment, verilicalion, and diagnostic programs
- System Assembly, checkout, installation

Power 115 or 230 V, $50-6011 \mathrm{~L}, 750 \mathrm{VA}$
Weight: ne1, 227 kg ( 500 lb ). Shipping. $272 \mathrm{~kg}(600 \mathrm{lb})$

## 8507A Calibration kits

85031A Verificallon and APC-7 Callbration hit
Included with 8507A. Contains Precision APC-7 Load. APC-7 Short, and two verification standards.

## 85032A Type N calibration kit

For use with 8507A. Contains 2 APC-7 to N-Male Adaplers, 2 APC- 7 to N-Female Adapters. I N-Malc Load. I N-Female Load, I N-Female Short. and I N-Male Shor.
65033A SMA Calibralion kit
For use with 8507A. Contains 2 APC-7 to SMA-Male Adapters, 2 A PC-7 10 SMA.Female Adaplers, 1 SMA-Male load. I SMA-Female Load, I SMA-Fcmale Shorl, and I SMA-Male Shorl.

## 85094A GR-900 Callbration kit

For use with 8507A. Contains 2 GR- 900 to A PC- 7 Adapters, I GR900 Lond. I GR-500 Short.
85035A APC-7 50 ohms to GR-874 75 ohm Calibration Klt Ior 8507A

Used for making 75 ohm accuracy enhanced measurements with the 8503A S-paranneter Fesi Scis and the 9830A Calculator. Conians two (2) GR-874 50 ohm 10 GR-874 75 ohm minmum loss pads, onc (I) GR-874 75 ohm icmmination, and one (I) GR. 874 shon circuit.

Model number and name	Prlce
8507A Automatic Network Analyzer	$\$ 48,225$
Opt 001 9862A Plotter and II27IB Plotier Control	
ROM	$\$ 3520$
Opt 002 Delele Systems Table	less $\$ 490$
85031A Verification/APC-7 Callibralion Kit	$\$ 600$
85032A N Catibration Kit	$\$ 725$
85033A SMA Calibration Kit	$\$ 360$
85034A GR-900 Calibration Kit	$\$ 415$
85035A GR-974 75ת Kir	$\$ 750$

\author{

- Complete swept characterization of linear networks <br> - Modular system flexibility <br> - $50 \Omega$ and $75 \Omega$ measurements
}


Swept measurements for either designing or resting are made with ease by HP's versatile 8407 Nelwork Anslyzer System. Since phase as well as magnicude is measured by a Nelwork Analyzer, the behavior of both active and passive linear neiworks ean be completely characterized from 100 kHz 10 110 MHz by swepi measurement.

Measurements of gain. loss, phase shift (compute group delay), retum loss, and complex reflection coeflicient are all possible in either 50 n or $75 \Omega$ sysicms. These mcasurements sllow the linear behavior of the nelworks under tast to be completely characterized by their complex S-Parameters. Swept complex impednace $\{Z \mid$ and $\theta$ (for $|Z|$ From $0.1 \Omega$ to $>10 \mathrm{k} \Omega$ ) as well as voltage and current transfer funclions is e also measured quickly and easily by the 8407 system. Typical lineur networks designed and tested with the 8407 are filters, amplifiers, attenualors, antennat, detectors, eables, and recording heads.

Much of the 8407's versalility stems from its modular construction which allows the system to perform a variety of measurements or be economicslly tailored to one application. The basic instruments of the 8407 system are: The HP 8407A Neivork Analyzer, one of iwo REQUIRED sources (HP 8601A Sweeper/Gencrator or HP 8690B/ 8698B Sweep Oscillator), choice of two plug-in displays (HP 8412A Phase Magnitude Display or HP 8414 A Polar Display), an optional digital marker (HP 8600A), and one of four transducers (HP 11652A, $11654 \mathrm{~A}, 11655 \mathrm{~A}$, or 1121 A ) depending on the muasurement, Because the 8407A is a tracking receiver, the HP 8601A and HP 8690B/ 8698 B are the only sources providing the VTO output required to operate the network analyzer. Thus, an operating system must be configured with one of the required sources, the network analyzer, a display and one or more of the transducers depending on the device under lest and the network parameters desired.

## Specifications

8407A
General: 8407A is a two input tracking recciver, using both inpuls (reference and test channels) to form their magnitude ralio and phase difference before routing to display.
Frequency range: $0.1=110 \mathrm{MHz}$.
Impedance: S0N, OpLion 008: $75 \Omega$. VSWR <I. 08.
Dymamic range: 80 dB .
Test input: DIRECT -10 10 -90 dBm signal range. ATTENU. ATED. +20 to -50 dBm signal range. Damage level $+26 \mathrm{dBm} / 50$ Vdc.
Reterence input. DIRECT level required, -10 to -60 dBm . AT TENUATED level required +20 to -20 dBm . Damage level +26 $\mathrm{dBm} / 50 \mathrm{Vdc}$.
Amplitude accuracy: FREQUENCY RESPONSE $\pm 0.2 \mathrm{~dB}$ for DI. RECT inpul (test input $>-60 \mathrm{dBm}$ ), $0.1-110 \mathrm{MHz} \pm 0.05 \mathrm{~dB}$ over any 10 MHz portion; may be calibrated out. Typically $\pm 0.05 \mathrm{~dB}$ for DIRECT inputs. (REFERENCE level of - 10 dBm ). DISPLAY REF. ERENCE. $<0.05 \mathrm{~dB} / 1 \mathrm{~dB}$ step, colal error $\leq 0.1 \mathrm{~dB}:<0.1 \mathrm{~dB} / 10 \mathrm{~dB}$ step, total ersor $\leq 0.25 \mathrm{~dB}$. ATTENUATED INPUTS, $40 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$. REFERENCE CHANNEL GA!N CONTROL. 20 dB and 40 dB steps $\pm 0.5 \mathrm{~dB} / \mathrm{stcp}$. CROSSTA LK,$>0.03 \mathrm{~dB}$ when test $/ \mathrm{ref}=-40 \mathrm{~dB}$ to <4 dB when test/ref $=-80 \mathrm{~dB}$.
Phase accuracy: FREQUENCY RESPONSE. $\pm 5^{\circ}$ for DIRECT input (lest input >-60 dBm), 0.1 to $110 \mathrm{MHz} \pm 2^{\circ}$ over any 20 MHz portion; may be calibrated out. Typically $\pm 2^{\circ}$ from $1-110 \mathrm{MHz}$ for DIRECT inputs (REFERENCE level of -10 dBin ). DISPLAY REF. ERENCE, $<0.5^{\circ} / 10 \mathrm{~dB}$ sIep; colal error $<3^{\circ}$. ATTENUATED inputs, $\pm 2^{\circ}$ from DIRECT inputs. REFERENCE CHANNEL GAIN CONTROL, $\pm 2^{\circ} / \mathrm{step}$. CROSSTALK, $<0.3^{\circ}$ when test $/ \mathrm{ref}=-40^{\circ}$ $10<11^{\circ}$ when (est/ref $=-80 \mathrm{~dB}$.
Powor 65 watls, $50-60 \mathrm{~Hz}, 115 / 230 \pm 10$ 姆 Vac.
Welght: nel. $14.6 \mathrm{~kg}(32 \mathrm{lb})$. Shipping. $17.8 \mathrm{~kg}(39 \mathrm{lb})$.
8412A
General: plug-in PHASE-MAGNTTUDE CRT Display. Displays magnitude and/or phase vs. frequency.
Amplilude accuracy: display, $0.08 \mathrm{~dB} / \mathrm{dB}$ from midscreen. Rear oulput: $0.03 \mathrm{~dB} / \mathrm{dB}$ variation from 0 volk oulpul.
Phase accuracy: DISPLAY. $0.065^{\circ} /$ degrec from midsercen. PHASE OFFSET, $0.3^{\circ} / 20^{\circ}$ step. $\leq 3^{\circ}$ for $360^{\circ}$ change, positive or negalive direction. VS. DISPLAYED AMPLITUDE, <1a/10 dB; 10tal $<6^{\circ}$ over 80 dB range.
Rear panel inputa: sweeping, 515 Vde. Blanking, -4 Vde blanks CRT. Z axis (marker), -5 Vde inlensified and +5 Vde blanks trace.
Rear panel oulputa: amplitude, $50 \mathrm{mV} / \mathrm{dB}$; phase, $10 \mathrm{mV} /$ degrec.
Power: 23 walls, supplied by 8407 A .
Holght: net, 7.8 kg ( 17 lb ). Shipping, $10 \mathrm{~kg}(22 \mathrm{lb})$.
Delailed specifications on page 422 .

## 8414A

Geneval: normolized POLAR coordinate display with magnicude calibration in 0.2 of full seale gradations. Full seale is determined by DISPLAY REFERENCE on 8407A; phase calibrition is in $10^{\circ}$ increments over $360^{\circ}$ range. Smith Chart overlays available.
Accuracy: all errors in amplitude and phase duc to display afe contained within a circle of 3 mm about measurement point.
Rear panel inputs: blanking. -4 to -10 Vde blanks CRT. Marker. intensified trace with -4 to -10 Vdc .
Rear panel oulputs; horizontal and verlical both $\pm 2.5 \mathrm{~V}$ for full scale deflection.
Power: 35 watls, supplied by 8407 A .
Weight: net, 5.9 kg ( 13 lb ). Shipping. $8.0 \mathrm{~kg}(18 \mathrm{lb})$.
Delailed specificarions on page 422.


B601A
General: GENERATOR/SWEEPER operaling in esther CW or SWEPT modes. Sweep modes are full, varíable slop frequency, and symmetrical (up to 10 MHz ). Features very low residual FM. spurious, harmonics, and drift. 8601A provides the VTO signal required to operato the 8407 A .
Frequency: $0.1-110 \mathrm{MHz}$ in two sweep ranges, $0.1-11 \mathrm{MHz}$ and I - 110 MHz .

Impedance: 500 , Opcion 008: 75§. VSWR <1.2.
Accuracy: $1 \%$ of frequency, $0.5 \%$ lincarity, and $2 \%$ of sweep width.
Callbrated output $\pm 0.25 \mathrm{~dB}$ flainess over fill range, outpul aecuracy $\pm 1 \mathrm{dBn}$ from $+10 \mathrm{to}-110 \mathrm{dBm}$.
Auxillary oulputs: sweep oul, blanking (for 8412 and 8414 ), VTO (required by 8407A), and auxiliary outpul ( 0.1 - 11 M Hz both ranges) For 8600 ecounter/digital marker.

Detailed specificationis on page 352.

## 8800A

General: DIGITAL MARKER used with 860IA generator/ sweeper so provide five continuously variable markers on a display while reading oul the frequency of any one marker. Six digit display.
Markers/accurecy: 5 markers aceurale at desired frequency $\pm$ ( $0.055^{\circ}$ sweep widh + sweep siability).
Counter trequency range: 0.1 - 15 MHz (automatically scales up by (en when 8601 A on $0.1 \sim 110 \mathrm{MHz}$ range).

Detailed specifications on page 352.

## $41652 A$

General; REFLECTION-TRANSMISSION KIT containing power splitter, 8721A DIRECTIONAL BRIDGE, procision lermantion. calibrating short, three BNC adapters, and Jour matched, low-leakage cables for bouh transmission and reflection measurements. All 50n BNC connectors. Oplion $00875 \Omega$.
Direclional bridge: 872lA: 6dB insertion loss and 60 B coupled to auxiliary arm. Frequency response $\pm 0.5 \mathrm{~dB}(0.1-110 \mathrm{MHz})$. Dircclivity $>40 \mathrm{~dB}$ ( 1 to 110 MHz ). Lad pori relurn loss $>30 \mathrm{~dB}$ ( $p<0.03$ ). Max inpue power $+20 \mathrm{dBm} .50 \Omega$. Option D08: $75 \Omega$.
Power spliter, 6 dB through each arm. Max input power +20 dBm . 50月.
$50 \Omega$ termination: relurn loss $>43 \mathrm{~dB}$.
Weight: nel. 0.7 kg (1.5 lb). Shipping, $1.2 \mathrm{~kg}(2.5 \mathrm{lb})$.
11654 A
General: passive probe kit for measuring current and voltage lrans-
fer functions and aceurate complex impedance below 11 MHz contains a pair each of six resistive divider probes (1:1, 5:1, 10:1, 20:1, S0: $1,100: 1$ ), current probes and a variciy o! adapiers.
Welght: net. 0.9 kg ( 2 lb ). Shipping, 1.4 kg ( 3 lb ).
11655A
General: swept or CW impedanoe probe mounling disectly to 8407A. Mount contains internal calibrator, $100 \Omega \pm 0.5 \%$ and $0^{\circ} \pm 2^{\circ}$; parasitics capacitances are calibrated out; and simple chants are available for calculating out residual resistances. Contains component adapter. probe to BNC adapter, probe to type N adapler, and various ground assemblies.
Frequency: $0.5-110 \mathrm{MHz}$ (usable to 0.1 MHz ).
Measuroment range; amplitude, 0.1 n to $>10 \mathrm{k} \Omega$; phase, $0^{\circ} \pm 90^{\circ}$.
CW sccuracy: amplitude $\pm 5 \% ; \pm 5^{\circ}$ for $|Z|>3.16 \cap$.
Swepl eceuracy: typically $\pm 5 \%$ in amplitude $(3-110 \mathrm{MHz}), \pm 5^{\circ}$ in phase ( $5-110 \mathrm{MHz}$ ): accuracy decreases below 3 MHz . Note all accurscy specs valid only for proper input levels and calibration.
Max external voltaga to probe: $50 \mathrm{Vde}, 5 \mathrm{~V} \mathrm{rms}$.
Weight: nct. 0.9 kg ( 2 lb ). Sluipping. 2.7 kg ( 6 lb ).

## 11658A

General: $50 \Omega$ to 750 matching resistor for matching the $50 \Omega$ of the 8407A 10 a $75 \Omega$ environment. Two 11658 A's are very useful for frequent 30 n to 750 changes. The $116: 8$. A's mount directly on the front panel of 8407A. FREQLIENCY, 0.1 - 110 MHz . INSERTION LOSS, 3.5 dB. RETURN LOSS, $>40$ dB. CONNECTORS, SOL BNC male and 75 I BNC female.
Not welght: 28 g (I OZ).
1121A
General: I:I accive probe for making measurements without disturbing circuitry and measuring voliage transler functions in systems dif. ferent from 50@. 10:1 and 100.1 dividers and BNC adapter also furnished.
Frequency response: $\pm 0.5 \mathrm{~dB}$ and $\pm 2 \%$ from $0.1-110 \mathrm{MHz}$ with a bandwidth ( 3 dB ) of $1 \mathrm{kHz} 10>500 \mathrm{MH} /$ and gain $0 \mathrm{~dB} \pm 1 \mathrm{~dB}$.
Inpul Impedance: 100 kR , shunt cepacilance of 3 PF at 100 MHz . With $10: 1$ or $100: 1$ divider. I M $\Omega$, shont capacitarce I PF at 100 MHz . Output impedance: $50 \Omega$ nominal.
Maximum Input: 300 mV rms, $\pm 80 \mathrm{~V} d c$; wilh $10: 1$ divider. 3 V rms, $\pm 350 \mathrm{~V}$ dc; with $100: 1$ divider, $30 \mathrm{~V} \mathrm{~ms}, \pm 350 \mathrm{~V} \mathrm{dc}$.
Power: supplied by 8407A through PROBE PWR jacks.
Welght: net. 0.7 kg ( 1.5 lb ). Shipping. 1.2 kg ( 2.5 lb )

## 05426A

General: bizs insertion network providing DC biasing to devices under test on RF iransmission lines. Operaung frequeney range is 0.1 -500 MHz with insertion lusi $<0.4 \mathrm{~dB}$ and retum loss $>28 \mathrm{~dB}$. Max biasing current of 750 mA and max bresing voltage of 70 V . Conneclors are BNC for DC biasing and APC. 7 for RF.
Weight: net, 0.5 kg (I (b). Shipping. 0.8 kg ( 1.7 lb ).

## 85428 B

General: $50 \Omega 1075 \Omega$ minimum loss pad. Pad operates from 0.1 - 110 MHz with an insertion loss of 5.7 dB and VSWR < 1.05 . Connectors are SOn BNC mati and $75 \Omega$ BNC Female.
Weight: nel, $0.1 \mathrm{~kg}(2 \mathrm{oz})$. Shipping. $0.2 \mathrm{~kg}(50 \mathrm{~L})$.
Model number and name: Price
8407A Neiwork Analyzer $\$ 4000$
Oplion 008
add \$115
8412A Phase Mugnilude Display \$2025
8414 A Polar Display
$\$ 1800$
8601 A Sivecper/Generztor
$\$ 2800$
Option 008
add $\$ 50$
8800A Digital Marker
$\$ 1500$
1 1652A Reflection/Transmission Kit \$440
Oplion 008
add $\$ 55$
Il654A Passive Probe Kil
$\$ 500$
I1655A Impedance Probe Kii
$\$ 1250$
11658A Matching Resiszor
530
121A AC Probe Kil $\$ 595$
85426A Bias Insertion Nelwork
$\$ 500$
85428B Minimum Loss Pad
$\$ 150$
8721A Directional Bridge
$\$ 180$
Option 008

- Accurate voltage anḍ phase measurement
- 1 to 1000 MHz


The 8405A Vector Voltmeter measures vollage veciors described by both magnitude and phase. This capability makes the 8405A a unique instrument for about any design and tess application in the frequency range ; to 1000 MHz .
In addition to absolute voltage measurements, capabilities inelude insertion loss and group delay of passband-fillers and other transmission devices, gain and phase margin or amplifiers, complex impedance of mixers, antennas, matching the electrical lengtis of cables, sparameters of transistors, amplitude modulation index. RF distortion meusurements and in-circuit probing.
The 8405A achieves this measurement versatility through its twochannel capability enabling voltage magnitude measurements in cither channel, thes allowing salio measurements, and phase difference measurements between the two channels. Gain or loss in excess of 90 dB and phase measurements with $0.1^{\circ}$ reselution over a $360^{\circ}$ phase range are possible.
Aceuracy is achieved through the 1 kHz bandwidth entailing responsc only to the fundamental frequency of the input signal. Also. phase-locked coherent sampling to translate 1 to 1000 MHz . RF signals 1020 kHz IF signals enables accurate detection of voleage mag. nilude and phase. Automatic phase-locked luning makes it possible to select the onc of 21 overlapping octave ranges which contains the input signal frequency by simply rolating a switch.

## Specifications

Frequency range: 1 MHz io 1 GHz in 21 overlapping octave bands: tuning automatic within each band.
Igolatlon between channelg: I to $300 \mathrm{MHz}>100 \mathrm{~dB}$ : 300 to 1,000 $\mathrm{MHy}>80 \mathrm{~dB}$.
Maximum Inpuli ac, $2 \vee$ pcak: dc. $\pm 50 \mathrm{~V}$.
Input Impedance (nominal): 0.1 Mn shunted by 2.5 pF : $1 \mathrm{M} \Omega$ shunted by 2 pF when 11576A 10:1 Divider is usod; 0.1 M 2 shunted by 5 pF when I0216A Isolator is used. AC coupled.

Voltage range (rms):

Channel	$1-10 \mathrm{MHz}$	$10-50 \mathrm{MHz}$	$500-1000 \mathrm{MHz}$
A	$1.5 \mathrm{mV}-1.0 \mathrm{~V}$	$300 \mu \mathrm{~V}-1.0 \mathrm{~V}$	$500 \mu \mathrm{~V}-10 \mathrm{~V}$
B	$<20 \mu \mathrm{~V}-1.0 \mathrm{~V}$	$<20 \mu \mathrm{~V}-1.0 \mathrm{~V}$	$<20 \mu \mathrm{~V}-1.0 \mathrm{~V}$

Voltmeter ranges; $100 \mu \mathrm{~V}$ to 1 V ms full scale in 10 dB steps. Vollage ratlo accuracy: $1.200 \mathrm{MHz}, 0.2 \mathrm{~dB}$ for -60100 dB ranges: $200-1000 \mathrm{MHz}, 0.2 \mathrm{~dB}$ for $-60 \mathrm{to}-10 \mathrm{~dB}$ ranges.
Phase range: $360^{\circ}$ indicaled on zero-center meter with end-scale ranges of $\pm 180^{\circ}$. $\pm 60^{\circ}, \pm 18^{\circ}$, and $\pm 6^{\circ}$.
Phase resolutlon: $0.1^{\circ}$ at any phase angle.
Phase meter olfset: $\pm 180^{\circ}$ in $10^{\circ}$ sleps.
Phase accuracy: $\pm 1.5^{\circ}$ (equal vollage Channel $A$ and $B$ ).
Accessorles furnished: iwo II576A 10:I Dividers. Lwo 10216A Isolators. two 10218A 8NC Adapters. six ground clipis for 11576A or 10216A; six replacement probe rips.
Bandwidth: I kHz
Power: 113 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , 35 W .
Weight nes, 13.9 kg ( 31 lb ). Shipping, 16.3 kg ( 36 lb ).
Dimenslons: 425 mm wide, 177 mm high. 467 mm deep $\left(1614^{\prime \prime} \times 7{ }^{\prime \prime} \times\right.$ $181 /$ ' $^{\prime \prime}$ )
11570A Accessory kit
5032 TEE: 11536 A: For monitoring signals on $50 \Omega$ transmission lines without terminating line. Kit contains two with type N RF filtings.
Power splititer: 1549A: All conneciors Type $N$ femate.
500 termination: 908A: for teminating 508 cosxial systems in their characteristic impedance.
Shorting plug: II512A: Shorting Plug, Type $N$ malc.
Moded number and name Price
8405A Vocior Vollmeler $\$ 3500$
Option 002, linear dB scalc
add $\$ 2 \mathrm{~s}$
11570A Aocessory Kil (measurement in 50 sh system only)

# NETWORK ANALYZERS <br> Microwave network analyzer， 110 MHz to 40 GHz Model 8410 S systems 

－Complete microwave measurement systems
－Measures all network parameters
－Multioctave swept frequency measurement
－System accuracy fully specified


8410 Opilon 310


84105 option 400


8410 S oplion 500

All 8410S Sysiems measure ransmission and reflection paramelers of coaxial or scmiconductor components in the form of gain，altenu－ ation，phase，reflection coeflieient or impedance．Each option has been configured und fully specified lor making general measurements within a frequency range or for pushbulton $S$－parameles measure－ ments on semiconductor devices in a variety of package siyles．The 8410 S Systems enable the operator to view a real time CRT display over oclave of muluoclave bands with a dynamic range of 60 dB am－
plitude and $360^{\circ}$ phase．Mulioctave，continuous network measure－ ments over the frequency range of 21018 GHz are possible when the 8410 B is used with the HP 8620／86290A Swaep Oscillator．
The 84 IOS Systems＂upper［requency limit for coaxial and semicon－ ductor measurements is 12.4 GHz ；however，individual instruments may be ordered inat will expand couxial measurement capability to 18 GHz（option 018 instruments）and waveguide me：isurements from 8.2 GHz to 40 GHz （8747A series）．

8410 S Network Analyzer Systems Table

GENERAL PUAPOSE MEASUREMENTS			All 8910 Systems include lie following Insirument Moder Numbers：8410日，84114，8412A＂，8414A and 11609A										
Frequency	Oplion No．	Heasurement Pon Configuration	管	$\underset{(x}{5}$	$\stackrel{\Phi}{\substack{5}}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	$\begin{aligned} & \text { 罵 } \end{aligned}$	僉	菌		$\begin{aligned} & \text { 覓 } \end{aligned}$	$\stackrel{\stackrel{Q}{6}}{\square}$	PRICE
0.11102 GHz	$110^{*}$	Cosxal（APC－7）		X						X		X	\＄16，970
0.11 to 12.46 Hz	$310 *$	Coxalal（APC．7）	$x$	X						X	$x$	$x$	522，20
21012.4 GHz	$210^{*}$	Coaxal（APC．7）	$X$								X	X	\＄16，095
semiconouctor charatierization													
0.11102 GHz	400	T018／1072 Packages		$X$		X	X						\＄17，805
0.11102 GHz	401	T05／1012 Packages		X		X		X					\＄17，805
0.51012 .46 Hz	508	T051 Package			X	$X$			$X$				520，205
0.5 to 12.46 Hz	501	HPAC－200 Package			X	X			$X$				520，205

## Specifications

## 8410S Common perlormance specifications

Functlon: All systems measure transmission and reflection parameters on a swept-frequency or CW basis with readout of attenuation. gain, phase shift, reffection coufficient, return loss, impedanee, depending on display unit.


8412A PMase-magnitude display: rectangular coordinatc dualchannel CRT.
Amplilude range: 80 dB .
Phase rarge: $\pm 180^{\circ}$.
Resolution
Selectable ampllude: $10.2 .5,1,0.25 \mathrm{~dB}$ /division.
Selectable phase: $90.45,10,1$ degroc/division.


8414A Polar display: Poler Coordinate CRT with megnitude calibration divisions at $20,40,60,80$ and $100 \%$ of full scate. Outer range setuable by IF gain conerol and amplitude versier.
Conneclors: RF Inpul. Typu N female stainless sleel; Measurement Porls, APC-7 precision $7-n m$ connectors.
Transmisolon measurement (using 8412A): accuracy curves show overall system unecrisinty when measuring amplitude and phase. Sources of error included are IF gain control, display accuracy. phase offset. system noise and cross-ralk. System frequency response is specified separately and is not included in accuracy curves.
Amplitude accuracy ( 60 dB dynamle range)
IF gain control: 69 dB in 10 dB and I dB steps.
$\left.\begin{array}{l} \pm 0.1 \mathrm{~dB} / 10 \mathrm{~dB} \\ \pm 0.05 \mathrm{~dB} / 1 \mathrm{~dB}\end{array}\right\} \quad \pm 0.2 \mathrm{~dB}$ maximum cumalative
Dleplay: $0.08 \mathrm{~dB} / \mathrm{dB}$ from midscreen.
Phase accuracy
Phase oftset: $0.3^{\circ} / 20^{\circ}$ slep: maximum $3^{\circ}$ for $360^{\circ}$ change.
DLsplay: $0.065^{\circ} / \mathrm{deg}$ rec from midscreen.
8410 S Options $100 / 1$ to specifications
Functlon: The 8410 S option $100 / 110$ measuremenl syslems give a 3 four s-parameters for a two-port network with pushbution case over lbe frequency range of 110 MHz to $2 \mathrm{GH}_{2}$. A choice in Log display units is made by selecting the Option 100 (8413A display) or Option IIO (8412A display) sysiem.

Frequency range: 0.11102 .0 GHz
RF input: 20 dB range becwecn -21 dBm and +7 dBm .
Source reflection coefflelent: $\leq 0.09,0.11-2.0 \mathrm{GHz}$.
Terminalion reflectlon coehticienli $\leq 0.11,100-200 \mathrm{MHz} \leq 0.09$. $200-2000 \mathrm{MHz}$.
Directlvity: $>36 \mathrm{~dB} 0.1 \mathrm{I}-1.0 \mathrm{GHzi}>32 \mathrm{~dB}$ I. $0-2.0 \mathrm{GHz}$.
Insertion loss, RF inpul to test port: 4 dB nominal.
Frequency response
Transmlsston: Ispically $< \pm 0.35 d B$ amplitude and $< \pm 3^{\circ}$ phase.
Reflaction: rypically $< \pm 0.06$ magnilude and $\pm 5^{\circ}$ phase with a short on the test port.
Transmisslon measurement accuracy; (sec common petiormance specificulions).
Reftectlon measurement accuracy (using 8414A): sources of error included in the accuracy equations are directivily, source match, und polar display accuracy.
Magnilude accusacy:
$\rho u= \pm\left(0.015+0.03 \rho \mathrm{~L}+0.06 \rho \mathrm{~L}^{2}\right) 0.11-1.0 \mathrm{GH} \ell$
$\rho \nu= \pm\left(0.025+0.03 \rho \mathrm{c}+0.06 \rho \mathrm{~L}^{2}\right) 1.0-2.0 \mathrm{GH} /$
$\rho u=$ magnitude uncertainty
$\mu_{\mathrm{L}}=$ measured reflection coeficient magnitude.


Phase accuracy:
$\Phi_{\mathrm{u}}=\sin ^{-1} p \mathrm{u} / \rho \mathrm{L}$ for $\Phi \mathrm{u}<90^{\circ}$
$\Phi u=$ phase uncertainty


Soe 8410 s inetwork analyzer systems table for prlee and instrument breakdown.

## 8410S Options 200/210 qpec/ficallons

Functlon: the 8410 S Option 200/210 measurement systems cover a frequency range of 2 to 12.4 GHz . With just one simple setup and caljbration both transmission and relledion mcasurements are easily made by pushing a button. A choice in Log display units is made by selecting the Option 200 (8413A display) or Option 210 (8413A display) sysitum.
Frequency range: 2.0 to 12.4 GHz
RF input: 20 dB range belween -14 dBm and +14 dBm .
Source rellection coefflclent: $\leq 0.09,2-8 \mathrm{GHz} \leq 0.13 .8-12.4$ GHz.
Terminalion rellection coetficlent: $50.09 .2-8 \mathrm{GHz}: \leq 0.13 .8-$ 12.4 GHz

Directivity: $\geq 30$ dB, 2 - 12.4 GHz .
Insertion loss, RF input io test port; 20 dB nominal.
Frequency response
Tranamisslon: cypically $< \pm 0.5 \mathrm{~dB}$ amplitude and $< \pm 5^{\circ}$ phase.
Rellecflon: typically $< \pm 0,06$ magnitude and $< \pm 7^{\circ}$ phasc will 3 short on the unknown pori،

Tpansmiaglon measurement accuracy: (sce common performance specificulions).
Poflecion measurement accuracy (using 8414A): soureer of error included in the accuracy equations are dirocivity, source match, and polar display accuracy.
Magnitude securacy:
$\rho u= \pm\left(0.0316+0.03 \rho L+0.09 \rho L^{2}\right) 2-8 G H z$
$\rho u= \pm\left(0.0316+0.03 \rho L+0.13 \rho L^{2}\right) 8-12.4 \mathrm{GHz}$
$\rho u=$ magnizude uncertainty
$\rho \mathrm{L}=$ measured refleclion coefficient magnitude


Phase accuracy:
$\Phi_{v}=\sin ^{-1} \rho \mu / \rho \mathrm{L}$ for $\Phi u< \pm 90^{\circ}$
$\Phi u=$ phase uncerainly


See 84105 network analyzer systems lable for prlce and instrument breakdown.

## 8410S Optlons 300/310 specifications

Funotion: the 8410 S Option $300 / 310$ measurement systems encompass both the 84105 Option 110 and 210 system specifications and flexibility. The two RF transducer units cover the frequency range of $110 \mathrm{MHz}, 10 \quad 12.4 \mathrm{GHz}$ and both offer calibrated line stretchers for extending the reference plane. Coaxial rotary joints and airlines mounted on the front of the transducer units allow easy conncetions to the test device. A choice in log display units is made by selecting either the Option 300 ( 8413 A display) or Option 310 (8412A display) system.

## See 84105 natwork analyzer syeleme table for price and Instru-

 ment breakdown.
## 84105 Optlons 400/401 specificellons

Function: the 84$\} 05$ Option $400 / 401$ S-parameter measurement sys$1 e m$ provides two port $S$-parameters for semiconductors in TO-18/TO-72 (Option 400) or TO-5/TO-12 (Option 401) packages. A short circtit Termination and a 50 ohm through section are included with each lype fixture for reference plane calibration.
Frequency range: 0.11 to 2.0 GHz
Translator DC blas selection: froni punel slide switches extablish proper dc biasing for both Bi-polar and FET transistors. The voltage and current conirols operatc independenily and are continuously adjustable over a curtent range of 0 to 500 ma and a voliage range of 0 to 30 V .
RF inpul: 20 dB rango between -21 dBm and +7 dBm .
Incident power at deulce under test, $+3 \mathrm{dBm} 10-25 \mathrm{dBm}$.
Bource rellection coefficient
Optlon 400: typically $<0,062$
Oplion 401: typically <0.067

Termination retlection coefficient

$$
\begin{aligned}
\text { Optlon 400: } 1 \text { ypically' } & <0.11,10010200 \mathrm{MHz} \\
& <0.09,0.2102 .0 \mathrm{GHz}
\end{aligned}
$$

Optlon 401: typically $<0.14,10010200 \mathrm{MHz}$ $<0.10 .0 .2102 .0 \mathrm{GHz}$

## Directivlty

Oplion 400: Ivpically <31 dB. 0.11 10 1.0 GHz
$<29 \mathrm{~dB}, 1.0102 .0 \mathrm{GHz}$
Oplion 401: iypically $<28 \mathrm{~dB}, 0.11$ 10 1.0 GHz $<27 \mathrm{~dB}, 1.0$ 10 2.0 GHz

## Fraquency reaponse

Tranamission: ypically $< \pm 0.35 \mathrm{~dB}, \pm 3^{\text {a }}$
Reflectlon: rypically $< \pm .5 \mathrm{~dB}, \pm 5^{\circ}$
Transmission measuremenl accuracy: (sec common performance specificarion).
Refectlon measurement accuracy (using 9414A): souroes of crror included in the accuracy equations are directivity and source match.

## Magnillude accuracy

Oplion 400:
$\rho u= \pm\left(0.029+0.048 \rho \mathrm{~s}+0.06 \mathrm{p}^{\text { }}\right) 0.11101 \mathrm{GHz}$
$\rho u= \pm\left(0.035+0.051 \rho 1+0.062 \rho \mathrm{~L}^{2}\right) 1.0102 .0 \mathrm{GHz}$
Option 401:
$\rho u= \pm\left(0.038+0.054 \rho \mathrm{~L}+0.067 p \mathrm{~L}^{2}\right) 1.0102 .0 \mathrm{GHz}$
$p u=$ magnitude unverlainly
$\rho L=$ measured reflection coeflicient magnitude
Phase accuracy:
$\Phi u=\sin ^{-1} \rho u / \rho<$ for $\Phi u<90^{\circ}$
$\Phi_{u}=$ phase uncertainly
See 84tos network analyzer syblems lable for price and instrument breakdown.

## 84105 Options $500 / 501$ specifications

Functlon: the s410S Option $500 / 501 \mathrm{~S}$-parameter measurement sys. tems provide the capability of biasing and measuring all four S-paramelers of strip-line transistors in the TO-51 (Option 500), HPAC200 (Option 501) packages. A short circuit termination and a 50 -ohm ihrough section are included with each fixiure for reference plane ealibration.
Frequency range: 0.5 to 12.4 Gz .
Translator do blas selection: 「ronl panel slide swisches establish proper de biasing for both Bi-polar and FET transisiors. The voliage and current controls operate independently and are conlinuously sdjustable over a current range of 0 to 500 ma and a range of 0 to 30 V de.
RF Input 20 dB range belween -7 and +13 dBm .
Incldent power st device under teet: $-27 \mathrm{dBm} 10-7 \mathrm{dBm}$ with $\ \mathrm{~N}$. CIDENT ATTENUATION sel to 0 dB .
Incident ationualion range: 01070 dB in 10 dB steps.
Source reflectlon coeffioient: (lypicilly) $<0.13,0.5$ to 8.0 GHz : $<0.14 .8 .0$ to 12.4 GHz .
Termination reflection coefficlent: (ispically) <0.13. 0.5108 .0 $\mathrm{GHz}: \pm 0.14,8.0$ 10 12.4 GHz .
Direcilvity: $>28 \mathrm{~dB}, 0.5$ to $4.0 \mathrm{GHz} ;>23 \mathrm{~dB}, 41012.4 \mathrm{GHz}$.
Frequency response: (iypically) $<1.0 \mathrm{~dB}, \pm 5$ degrees, 0.05 to 4.0 $\mathrm{GH} \check{<}<1.5 \mathrm{~dB} . \pm 5 \mathrm{deg}$ teer, 4.0 to $8.0 \mathrm{GHz} ;<2.5 \mathrm{~dB} . \pm 5$ degrees, 8.0 to 12.4 GHz .
Tranemiasion measurement accuracy: (see common performance spectificalions).
Reflectlon messurement accuracy: sources of error included in the accuracy equation are directivity and source match.
Magnitude accuracy:
$\rho \mathrm{u}= \pm\left(0.04+0.08 \mathrm{pL}+0.13 \rho_{\mathrm{L}} \mathrm{L}^{2}\right) 0.5$ to 4.0 GHz
$\rho \mathrm{u}= \pm\left(0.07+0.09 \rho \mathrm{~L}+0.135 \rho \mathrm{~L}^{2}\right) 4.0108 .0 \mathrm{GHz}$
$\rho_{u}= \pm\left(0.074+0.098 \rho L+0.14 \rho L^{2}\right) 8.01012 .4 \mathrm{GHz}$
$p u=$ magnilude unceriainty
$\rho \mathrm{L}=$ measurcd refluction cocficicnl magnitude
Phese accuracy:
$\$ u=\sin ^{-1} \rho \mu / \rho$. for $\Phi u<90^{\circ}$
$\phi u=$ phase uncertainty
See 8410 S network analyzer systems table for price and instru. menl breakdown.

Individual instruments
8410 family



8412A

$8413 A$


8414A


8418A

## Specifications

8410b/8411A Network Analyzer
Function: 84IJA convers RF sigmals to JF signals for processing in 8410 B mainframe 8410 B is the mainframe for display plug-in units. Mainlrame includes luning circuits (octave bands or multioctave bands when used will HP 8620/86290 sweep oscillator). IF amplifiers and preeision IF allenuator.
8410 B requency range: 0.11 to 18 GHz .
8411A trequency range: 0.11 to 12.4 GHz .
Option 018: 0.11 to 18 GHz .
8411A Input impedance: 50 ohms nominal. SWR < $1.5,0.11$ to 8.0 $\mathrm{GH} z_{;}<2.0,8.0$ to 12.4 GHz : ispically increases 10 a $10: 1 \mathrm{SWR}$. 12.4 to 18 GHz .
Channel isolation: $>65 \mathrm{~dB}, 0.1$ to $6 \mathrm{GHz}:>60 \mathrm{~dB}, 6$ to 12.4 GHz : $>50 \mathrm{~dB}, 12.4$ to 18 G Hz .

## Amplitude

Reterence channel: any 20 dB range between - 16 and -44 dBm .
Test channel: - 10 to -78 dBm from 0.11 to $12.4 \mathrm{GHz} ;-10$ to
-68 dBm from 12.4 to 18 GHz .
Maximum RF Inpul to elther channel: 50 mW .
IF gain control: 69 dB range in 10 dB and I dB steps with a maximum cumulative ersor of $\pm 0.2 \mathrm{~dB}$.

## Phase

Phase range: 0 to $360^{\circ}$.
Control: vernier control $>90^{\circ}$.
Connectors (8411A): APC.7.
Power 115 or 230 V ac $\pm 10$ 多, $50-60 \mathrm{~Hz} .70$ walls (includes 8411 A ).

## Welghl

8410 B : net. 14.9 kg ( 33 lb ). Shipping. 18.5 kg ( 4 ll lb .
8411A: nct, 3.2 kg ( 7 lb ). Shipping, 4.5 kg ( 10 lb ).

## Dimenelons

8410B: 425 mm wide. 191 mm high, 467 mm decp $\left(16 \%^{n} \times 71 / 2^{7} \times\right.$ $181 / x^{n}$ ).
8411A: 228 mm wide. 67 mm high. 143 mm deep $\left(9^{\prime \prime} \times 25 / 3^{\prime \prime} \times 55 / /^{\prime \prime}\right)$. exelusive of connectors and cable.
8412A Phase-magnitude dlsplay
Function: plug-in CRT display unil for 8410 B . Displays relative amplitude in dB and/or relative phase in degrees between reference and tesi channel inpuls versus frequency.

## Amplitude

Range: 80 dB display range with selectable resolutions of $10,2.5$. 1 and $025 \mathrm{~dB} /$ division
Accuracy: $0.08 \mathrm{~dB} / \mathrm{dB}$ from midscreen.

## Phase

Range: $\pm 180^{\circ}$ display range with selectable resolutions of $90,45$.
10. and $10 /$ division.

Accuracy: $0.065^{\circ} / \mathrm{degrcee}$ from midseteen.
Phese ottset: $0.3^{\circ} / 20^{\circ}$ step cumulative $<3^{\circ}$.
Power: 23 watts supplied by mainframe.
Weight: nel. 7.8 kg ( 17 lb ). Shipping, $10 \mathrm{~kg}(22 \mathrm{lb})$.
Dimenslons: 186 mm wide. 152 mm high. 395 mm decp $\left(79 / 32^{\prime \prime} \times 6^{\circ} \times\right.$ $159 / 10^{\prime \prime}$ ), excluding front panel knobs.

## 8413A Phase-galn indicator

Function; plug-in meter display unit for 8410 B . Displays rclative amplifude in dB between reference and rest channel inpus or relative phase in degrees. Pushbulton selection of meter function and range. Amplifude

Aange: $\pm 30$. $\pm 10$, and $\pm 3 \mathrm{~dB}$ full scale.
Accuracy: $\pm 3 \%$ or end seale.
Log Output: 50 millivolts per dB up to 60 dB rotal.
Phase
Range: $\pm 180, \pm 60, \pm 18, \pm 6$ degress full scale.
Accuracy: $\pm 2 \%$ of end scale.
Outpul: 10 millivolts per degree.
Phase offeet: $\pm 180$ degrees in 10 -degree steps.
Accuracy: $\pm\left(0.2^{\circ}+0.3^{\circ} / 10^{\circ}\right.$ slep) , ewmulative $<2^{\circ}$.
Power: additional is watts supplied by 8410 B .
Weight: net. 4.9 kg (II lb). Shipping, 6.7 kg ( 15 lb ).
Dlmensions: 186 mm wide. 152 mm high. 395 mm deep ( $7 \%_{17^{\prime \prime}} \times 6^{\circ} \times$ 15\%"").
8414A Polar display
Funotion: plug-in CRT display unit for 8410 B . Displays amplitude and plase data in polar coordinates on 5 -in. cathode ray cube.
Aange: normalized polar coordinate display; magnitude calibrauon $20 \%$ of full seale per division. Scale factor is a function of 'IF setiong on 8410 B . Phase calibrated in 10 -degree increments over 360 -degree range.
Accuracy: ertor circle on CRT $\pm 3 \mathrm{~mm}$.
Power: additional 35 watts supplied by 8410 B .
Weight: net. $5.8 \mathrm{~kg}(13 \mathrm{lb})$. Shipping, 8.1 kg ( 18 lb ).
Dimenslons: 186 mm wide. 152 mm high, 395 mm detp $\left(7 \% / 2^{\prime \prime} \times 6^{\prime \prime} \times\right.$ 15\%/10") excluding front panel knobs.
8418A Auxiliary pawer supply
Function: the 8418A power supply unit provides power for operation of the 8412A. 8413A or the 8414A display units. Used in conjunction with the 8410 B Network Analyzer, it provides the capability of viewing amplisude and phase readoul in both rectangular and polar coordinales simultancously.
Welght: ncl. 13.2 kg ( 25 lb ). Shipping. 19.7 kg ( 44 lb ).
Dimenslons: 483 mm wide. 177 mm high. 450 mm deep ( $19^{\prime \prime} \times 6^{31 / 1 y^{\prime \prime}}$ $\times\left(71 /{ }^{2}\right)$.
Model number and name Price
8410 B mainlrame
$\$ 3400$
Option 908: Rack Flange Kı1 add $\$ 10$
84IIA requency converter
$\$ 2680$

## Option 018

8412A phase-magnitude display
$\$ 2025$
8413A phase-gain display
$\$ 1600$
8414A polar display
$\$ 1800$
8418A auxilary power supply


6745A S-Parameter lest unit
Functlon: wideband RF power splitter and relleciometer with calibrated line stretcher. Pushbulton operated for cither \{ransmission or reflection measurements with network arialy\%er.
Frequency range: 100 MHz to 2 GHz .
Impedance: 50 ohms nominal.
Source rellectlon coefilcient; $\leq 0.057,0.1)$ to 2.0 GHz .
Termination reflection coefficlent. $<0.10,100$ to 200 MHz : $<0.063 .200 \mathrm{MHz}$ to 2.0 GHz .
Directivlty: $\geq 36 \mathrm{~dB}$. below I $\mathrm{GHz} \geq 32 \mathrm{~dB}$. I to 2 GHz .
Pelerence plane extension: 0 to 15 cm for reflection: 01030 cm for Iransmission.
Maxhmum RF power: 2 walls.
Connectors: RF inpul, type $N$ femalc; all olher connectors APC-7.
Rear panel programiming and bias Inputs
Optlon 001: oulpul connuctors iype $N$ female
Power: 115 or $120 \vee$ ac $\pm 10 \%$, 50 to $400 \mathrm{~Hz}, 40$ walls.
Welght: net, 15.4 kg ( $341 / 4 \mathrm{lb}$ ). Shipping, 18.0 kg ( 40 lb ).
Dlmenstons: 425 mm wide. 140 mm high. 654 mm deep $\left(16 \frac{1}{4} \times 512^{\sim}\right.$ $\times 25 \%^{\circ}$ ).

11604A Universal Extenston
Function: mounts on front of $8745 \lambda_{i}$ conneets to device under test. Rolary air-lines and rolary joints conncel to any iwo pon geomerry.
Frequency range: de to 2 GHz .
Impedance: 50 ohms nominal.
Reflectlon coaflelent 0.035 .
Acc. Included: semi-rigid coax. cable, HP Par1 \#11604-20021.
Welght: net. 1.8 kg ( 4 lb ). Shipping. $2.2 \mathrm{~kg}(5 \mathrm{lb})$.
Dimenslons: 32 mm wide, 127 mm high. 267 mm decp ( $11_{\mu^{\prime \prime}} \times \mathrm{s}^{\prime \prime} \times$ 101/2").
11600B/11602日 Transistor Fixtures
Function: mounls on front of 8745A S-parameter test set: holds devioes for $S$-parameler measurements irl a 50 -olim, coax circuil. Bolh fixiures provide bias for bipolar transiblors and FETs. Other devices also fil the lixtures (tunnel diodes, ele.).
Translator base patterns
Model 11800 B : accepts TO-18/厂O.72 packages.
Model 11802B: sccents TO-5/TO. 12 packages.
Callbratlon relerences: short circuil iemination and a 50 -ohm through-section.
Frequency ranges: dc to 2 GHz .
Impedance: 50 ohms nominal.
Rellectlon coefficlent $<0.05$. 100 MHz to $1.0 \mathrm{GHz}:<0.09$. 1.0 to 2 GHz .
Connectors: hybrid APC-7; Oplion 001. lype N iemale.
Welght: net, 1.1 kg ( $2 \mathrm{y} / \mathrm{lb}$ ). Shipping, 1.8 kg ( 4 lb ).
Dimenslons: 44 mm wide. 152 mm high. 229 mm dcep $\left(13 / 4^{\prime \prime} \times 6^{\circ} \times\right.$ $9{ }^{\text {¹ }}$ ).

## 8743A Refiection/transmigsion test unlt

Function; wideband RF power splitter and reflectometer with calibrated line sirctcher. Pushbutton operated for either (ransmission or rethection mensurements with nerwork andyzer.
Frequency range: 2 to 12.4 GHz (option 018: 21018 GHz ).
Impedence: 50 ohms nominal.
Source reflection coefficlent: $\leq 0.09 .2 .0$ ro $8.0 \mathrm{GHz}^{\leq} \leq 0.13,8.0$ to 12.4 GH c: <0.2. 12.4 to 18 GHz .

Termination rellection coeflicient: $\leq 0.13$ in reflecion mode. 2.010 $12.4 \mathrm{GHz}: 50.2$ in Iransmission mode. 2.0 to 12.4 GHz typically $<0.2,12.4$ 10 18 GHz .
Directlylty: $\geq 30 \mathrm{JB}, 2.0$ to $12.4 \mathrm{GH} \angle \geq 18 \mathrm{~dB}, 12.4$ to 18 GHz .
Reference plane extension: 0 to 15 cm [or reflection; 01010 cm for (ransmissic),
Conneclors: RF mpul, sype N remale; all other conneciors APC-7.
Power: 115 or 230 V ac $\pm 10 \%$. $50-300 \mathrm{~Hz}$. IS W.
Welght: nel, $12.1 \mathrm{~kg}(29 \mathrm{lb})$. Shipping, $15.3 \mathrm{~kg}(34 \mathrm{lb})$.
Dimenslons: 425 mm wide, 140 mm high. $467 \mathrm{~mm} \operatorname{decp}\left(16 /^{\prime \prime} \times 51 \%^{\prime \prime}\right.$ $\left.\times 183 / 8^{\prime \prime}\right)$.
11605A Flextble arm
Funclion: mounts on front of 8743A; connocts so device under test. Rotary air lines and rotary joints conncel to any two-porl geometry.
Frequency range: dc to 12.4 GHz . (Option D18, 2 lo 18 GHz ).
Impedance: 50 ohms nominal. Reflection cocilicient of ports: $\leq 0.11$, de 1012.4 .

Option 018: $\leq 0.23,2.010$ I2.4 GHz: $\leq 0.31,12.4$ to 18 GHz . Connectors: APC.7.
Welght: nct. 1.8 kg (4 |ts). Shipping. 2.7 kg ( 6 lb ).
Length: $257 \mathrm{~mm}\left(103_{2}{ }^{\prime \prime}\right)$ closid: $648 \mathrm{~mm}\left(2512^{*}\right)$ exiended.
Model number and name
Price
8745A test set
$\$ 4250$
Opion 001
N/C
I 1604 a universal sem
II600B/II602B Unamsistor fixlures
Option 001
8743A reflection/iransmission tesl sel
Option 018
11605A Ilexible arm
Option 018
$\$ 1450$
$\$ 800$
less $\$ 30$
$\$ 3750$


8717B


8740A


B741A


8742A

8746日 S-parameter test unlt
Function: wideband RF power divider and renectometer with calibrated line streteher and a selectable $0-70 \mathrm{~dB}$ ineident signal attenuator. Provides internal bias locs for completely charaterizing two porn active devices.
Frequancy range: 0.5 so 12.4 GHz .
Source and terminatlon reflection coetricient: $\leq 0.13$.
Dlrectivity: $\geq 30 \mathrm{~dB}, 0.5$ to $4.0 \mathrm{GHz}: \geq 26 \mathrm{~dB}$. 4.0 to 12.4 GHz .
Incldenl aftenuation: $0-70 \mathrm{~dB}$ in 10 dB sleps $\pm 5 \%$.
Reference plane extension: adds $0-15 \mathrm{~cm}$ ( 30 cm in transmission path).
Remote programming: ground closure to 36 Pin connector.
Transistor blasing: via 36 Pin connector.
Connectors: inpul type $N$ female, 1 est ports APC- 7
Option 001: provides 10 dB higher poiver level at the test port.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz , 110 VA max.
Weight: nct. $16.1 \mathrm{~kg}(35 \mathrm{lb})$. Shipping. $19.1 \mathrm{~kg}(42 \mathrm{lb})$.
Dlmenslons: 425 mm wide. 140 mm high. $467 \mathrm{~mm} \operatorname{deep}\left(16 \% \mathrm{~s}^{4} \times 51 / 2^{\circ}\right.$ $\times 1878^{\prime \prime} 7$.

## 11608A Transistor fixture

Functlon: provides the capability of completely characterizing siripline iransistors in either the TO-51 or HPAC-200 package styles. For special package stylu, a lhrough-líne microsırip and boll-in grounding struclure machinable by customer is available.

Frequency range: dc to 12.4 GHz .
Reflectlon coefficient; <0.05, of to 4 GHz ; 0.07 , 4.0 to 8.0 GHz : $<0.1 \mathrm{I} .8$ to 12.4 GHz .
Package styies
Optlon 001: Cusiomer machinable.
Option 002: TO-51 (0.250 diu.).
Oplion 003: HPAC-200 (0.205" dis.).
Galibpation reterences: opitions 002 and 003 only, short circuit terminalion and a 50 ohm through-sestion.
Connectors: APC .7 Hybrid (Option 100 type N femalc).
Welght: ret. 0.9 kg ( 2 lb ). Shipping, 1.4 kg ( 3 lb )
Dimenslons: 143 mm wide, 25 mm high, 89 mm deep $\left(5 s /{ }^{*} \times \mathrm{m}^{\prime \prime} \times\right.$ $\left.31 /{ }_{2}^{N}\right)$.

## 8717 Translator bias supply

The 8717B Transistor Bias Supply is an ideal power supply for manual or programmable transistor testing. It is particularly useful with the II600B. II602B, and 11608A Transistor Fixtures. The 8717B has two melers for independently monitoring current and voltage on any of the three leads of a Ifansistor under texi. Bias connections are conveniently selected for all transistor configurations with a front pantl swith. Special circuilry protects sensitive devicen from excessive current transients which commonly occur in less sophisticated supplies.
Vollage ranges: $1,3,10,30.100 \mathrm{~V}$.
Current rangeas: $0.1,0.3,1,3,10,30,100,300,1000 \mathrm{~mA}$.
Accurscy: 4\% of full sule for both current and voltage.
Optlon 001: programmable D/A converier.
Weight nct. 9.0 kg ( 20 lb ). Shipping, 11.0 kg ( 25 jb ).
Dimenslans: 425 mm wide, 86 mm high, 336 mm deep $\left(163 / 4^{\circ} \times 33 / \mathrm{g}^{\prime \prime}\right.$ $\left.\times 131 / h^{\prime \prime}\right)$.

## 8740A Transmlaston tegl unil

Function: RF power splituer ind calibrated line stretcher for aransmission measurement with network analyzer.
Frequency range: de to 12.4 GHz .
Output reflection coefficlent: $<0.07$. de to $7 \mathrm{GHz} ;<0.11,7.0$ to 12.4 GHz .

Connectora' RF inpur, lype $\mathcal{N}$ remale; outpui، APC-7.
Reference plene extension: elcctrical, 0 10 10 cm ; mechanical 1 - 10 cm .
Weight: net, 7.1 kg ( 16 lb ). Shipping, $9.4 \mathrm{~kg}(2 \mathrm{lb})$.
Dimensions: 186 mm widc. 152 mm high. 410 mm deip $\left(7 \% 2^{*} \times 6^{4} \times\right.$ $161 / 40^{*}$ ).
Recommended accessory: II587A accessory kit.
8741A and 8742A Reflection iest unlts
Functlon: wideband reflectometer, phase-balanced for swepl or single frequency impedance tests with 8410 B . Calibrated adjustable reference plane.
Frequency range: $0.11-2.0 \mathrm{GHz}(8741 \mathrm{~A}) ; 2.0-12.4 \mathrm{GHz}(8742 \mathrm{~A})$.
Direclivity: $\geq 36 \mathrm{dBO} 0.1 \mathrm{I}-1 \mathrm{GHz}, \geq 32 \mathrm{~dB} 1-2 \mathrm{GHz}(8741 \mathrm{~A}) ; \geq 30$ dB 2 - 12.4 GHz (8742A).
Connectors: RF input, ijpe $N$ female: all others APC. 7
Aeference plane extenslon: $0-15 \mathrm{~cm}$.
Accessorles furnished: II565A, APC. 7 short.
Welght: nel. 6.7 kg ( 15 lb ). Shipping. 8.9 kg ( 20 lb )
Dimensions: 186 mm wide, 152 mm high. 410 mm deep ( $7 \% 2^{\circ} \times 6^{\prime \prime} \times$ $163 / 1 n^{n}$ ).
Feeommended accessory: 11587A Accessory Kil
Model number and name Price
8746B Test Unil $\$ 7000$
Opiton 001
Oplion 908: Rack Flange Kiı
N/C
Il608A Transistor Fixture (must specily Option 001,
002, or 003)
Opion ODI
Oplion 002
$\$ 700$
Option 003
$\$ 700$
Option 100
less $\$ 30$
8717B Transistor Bias Supply
Oplion 001
$\$ 2500$
Oplion 908: Rack Flange Kit
add $\$ 670$
8740A Transmission Test Set
add $\$ 10$
B741A Reflection Teal Sel
$\$ 3025$

8742A Renecióon Test Sal
$\$ 2150$
$\$ 3025$


X8747A and P8747A


K8747A and R8747A


11587A


11650 A


11609A


11589A and 11590A


1 1599A


11607A

P, X 8747 A Reflection/transmission test units
Function: waveguide selup for measuring reflection and transmission parimeters of waveguide devices with the network anslyzer.
Frequency range: X8747A: 8.2 - 12.4 GHz P8747A: $12.4-18 \mathrm{GHz}$.

K, R 8747 A Reflection/tranamission test units
Function: waveguide setup for measuring rellection and Iransmission parameters of waveguide devices with the network amalyzer: down-converts with built-in mixers to the frequency range of the 8411 A .
Frequency range: K8747A: $18-26.5 \mathrm{GHz}$; R8747A: $26.5-40 \mathrm{GHz}$.

## 11587A Accessory kit

Functlon: accessories normally used for trensmission and reflection tests with the 8740A, 8741A, and 8742A.
Wolght: net, 1.34 kg ( 3 lb ). Shipping, 2.23 kg ( 5 lb ).

## 11650A Accessory kh

Function: aceessories normally used for transmission and reflection tests with the 8745A and 8743A.
Welght: net, 1.34 kg (3 lb). Shipping. 2.23 kg (5 lb).

## 11609A Cable kit

Function: interconnecting cables normally required for network measurements using the 8410 A network analyzer.
Welght: net, 0.9 kg (2 lb). Shipping. 1.36 kg (3 lb).

## 11589A and 11590A Bias networks

Function: auxiliary units for use with the $11600 \mathrm{~B}, 11602 \mathrm{~B}$ and 11608A transistor fixtures. These bias networks provide de bias to the center conductor of a coaxial line white blocking the de bias from the input RF circuit.
Frequency range: $11589 \mathrm{~A}-0.1$ to 3.0 GHz : $11590 \mathrm{~A}-1.0$ to 12.4 GHz
Connectors: BNC for de biasing; type N female for RF (Oplion 001: APC-7).
Wolght: net, $0.3 \mathrm{~kg}(9 \mathrm{oz})$. Shipping, 0.5 kg (1 16 ).
Dimenaions: 76 mm wide. 29 mm high. 114 mm deap ( $3^{\circ} \times 11 / x^{*} \times$ $\left.41 / 2^{*}\right)$.

11599A Oulck connect adapter
Funcllon: quickly connects and disconnecti the 8745A and the transistor Inxiures or 11604 A universal exiension.
Weight: net, 397 gm (140\%). Shipping, $652 \mathrm{gm}(2 \mathrm{lb})$.
Dimenslons: 76 mm widc. 127 mm high. 108 mm deep ( $3^{5} \times 5^{*} \times$ 41/2").

## 11807A Small signal adapter

Functlon: used with the 874SA S-parameter test sel. The incident signal levels to the test device are reduced to the $-2010-40 \mathrm{dBm}$ range.
Welght: nel, $4.1 \mathrm{~kg}(45 \mathrm{lb})$. Shipping. $4.5 \mathrm{~kg}(10 \mathrm{lb})$.
Dimensions: 413 mm wide. 60 mm high, 244 mm decp ( $161 / \mathrm{m}^{\prime \prime} \times 2 \frac{1}{\mathrm{~m}^{m}}$ $\times 93 / 4^{*}$ ).

Model number and name	Price
X8747A Waveguide Test Sel	\$3100
P8747A Waveguide Tesi Set	\$3250
K8747A Waveguide Test Sct	\$9000
R8747A Waveguide Tcsi Sel	\$9500
11587A Acoessory Kil	\$1040
11650A Accessory Kit	\$840
II609A Cable Kis	\$100
IIS89, Bias Network	\$350
Option 001	add \$30
Il590A Bias Neiwork	\$400
Oplion 00)	add \$30
II599A Quick Connect Adapter	\$175
11607^ Small Signal Adapter	\$800



Almost every elocironic circuit element has cribical specificalions in the frequency domain. The frequency responsc of Glters. mixers, modulators, amplifiers, oscillators. and dulcetors must be quantified for satisfactory overall circuit performanec. This seetion discusses the definition and use of three lypes of insiruments for frequency response signal analy'sis: spectrum analyzers. wave analyzers, and distorion analyzers.

Each of these instruments quantifies the magnizude of CW signuls lbrough a specific bandwidih, just the same as a funed voltmeler. Bui each measurement rechnique is different. The spectrom sthalyzer is a swepl receiver that provides a visual display of amplitude versus frequency. It shows on a single display how energy is distributed as a function of frequency, displaying the absolute valuc of Fouricer components of a given waveform. The Fourier analyoer uses sampling and transformation lechnique 10 form a Fourier spectrum display that has phase as well as amplitude information. The wave analyzer is the truly tuned volimeter, showing on a meter the real time amplitude of the energy in a specific frequeney window and zunable over a specific frequency range. The disIortion analyzer performs an almost reciprocal function to that of the wave analyzer. It collectively measures the encrgy outside a specific bandwidth. luning out the fundamental signal and displaying the energy of the harmonies and other distorion products on a
meter.
Figure I shows a graphical representation of the way the threc analycers view a simple CW signal and one harmonic. The lime domain scan of the CW signal is presemed in I.a. A (t) is the complex voltage waverorm as it would be viewed on an oseilloscope. The


Figure 1a. Wavelorm
$t$


Figure 1b. Specirum and Fourler enalyzers
dashed lines represent the vector components of the signal: $A_{1}$ (t). the fundamental and $A_{2}(1)$, the sucond harmonic. In $I$.b. the spectrum analyzer displays the frequency spectrum showing boith vector components and their amplitude stalionship. Specirum analysis is useful from $5 \mathrm{H}_{2}$, 10 over 40 GH .


Figure 1c. Wave analyzer


Figure 1d. Distortion analyzer

Fourier analysis is a real time spectrum analysis of the Fourier components of the waveform in a similar manner, using high precision digital lechniques. Hewlets-Packard Fourier analysis rechiniques are used up to 200 kHz where real time measurements need to be made. For more information on Fourier analysis, see page 466 . The wave analyzer in Figure l.c. mensures the amplitude and irequency of the signal in the frequency window to which it is tuned. This window can be moved to measure the amplitude of the second hurmonic, thereby making a precisc comparison with the fundamental. This lechnique is practical from 10 Hz to above 18 $\mathrm{MHz}_{2}$
The distortion analyzer as pictured in Figure I.d. rejects the fundamental to which it has been tuned and measures the energy everywhere else within the instrument's frequency spectrum. Distorion. as a percentage or in dB down from the fundamemal is displayed directly on a meter. Hewlell-Pack. and distortion analyzers cover 5 Hz to 600 kHz .
The following section probes each instrument lechnique. showing the particular strength and llexibility of each.

## Spectrum analyzer

To display useful informasion about a frequency scan. a specirum anolyzer must be sensitive, frequency stable, wideband free of spurious responses, and have calibrated accuracy in the CRT display. The exsmples which lollow best demonstrate the wide variety of information which can be measured on the spectrum analyzer.

## Measurements with the spectrum

 analyzerCW olgnal: the mosi basic spectrum anal$y$ sis measurement is the single $C W$ signal.


Pictured is a -30 dBm signal at 60 MHz . The zero frequency indicator is at the far left graticule.
Speciral purlty of a CW slgnal; one very important oscillator signal measurement is spectral purity. This 70 MHz carricr has power line related sidebands ( $\pm 60 \mathrm{~Hz}$ ) which are 65 dB down.

Such sidebands may result from power supply ripple. The 50 Hz /division spectrum enalyzer scan and the 10 Hz . unalyzer bandwidth provide the high degree of resolution required to sec these sidebands.


Frequency conversion products: the spuctrem analyzer is well suited for lirequency conversion measurements such as the

oulput of a balanced mixer as shown. With the 50 MHz local oscillator input at 0 dBm and a 5 MHz . 30 dBrn mixer signal, lwo sidebanos al 45 MHz and 55 MHz rasull. The sidebands are -36 dBm , giving the mixer a 6 dB conversion loss. Other information casily extracied from this spectrom analyzer display is the 60 dB local oscillator isolation and the 5 MHz signal has 41 dB isolation. Sccond order distortion products al 40 and 60 MHz are 40 d 8 below the desired mixer outputs.
Amplitude modulation: percent amplitude modulation is often more easily measured


Oscllloscope


Spectivitin Aüalyzer
with the spectrum analyzer than it is with the uscilloscope.

With the oscilloscope lime display, percent modulazion, M. is measured us a ratio of the signal's dimensions: $M=100 \cdot(6-2) /(6$ $+2\rangle=50 \%$. In the specturm analycer dis. play, whose vernical calibralion is $10 \mathrm{~dB} / \mathrm{di}-$ vision, the carrier and sidebands differ by 12 dB, the voliages in the sidebands are $1 / 3$ that of the carrier and again. $M=50^{\prime} \%$. Al the same lime the second and third hirmonic distorlion of the sidebands can be measured at 28 and 44 dB respoclively.
Frequency modulalion: information transmited by FM can be thoroughly characterized by the spectrum analyzer.


Low deviation FM is applied to a 60 MHz carritr in the lirst pholo. The deviation has been adjusted for the second carricr null (M) $=S .52$ ). The sidebands spacing is 10 kHz the modulation frequency, therefore, $\Delta$ f reik $=$ $5.52 \times 10 \mathrm{kHz}=552 \mathrm{kHz}$.
The second photo is an example of high devialion FM. The Iransmission bandwidah is 2.5 MHz .

Pulsed CW power: by viewing the spectra of a repetitive RF pulse on the spectrum an. alyzer. pulse widith average and peak power. oceupied bandwidih, and duty cyele can be determined.


From tho speciral output shown the puise's complete characterislies are determined: 6.3 GHz RF al 0 dBm . pulsed al 50 kHz rale. The pulso width is $1.3 \mu \mathrm{sec}$.
Nolse: spectrum analysis is effcclive in measuring impulse noise, random noise, carrier to noise ratio. and amplifier noise figure.
Frequency response: using a tracking signal source and a spectrum analyzer the frequency response of filiers can be displayed wilh case.


In this case, ars audio filter used in a communications system is being measured. Since the input reference tevel to the filler is -13 dBV . the insenion loss at 2.4 kHz is 4 dB . Extremely high $Q$ devices can be measured with this syslem.

## Spectrum analyzer capablities

To be useful in making measurements in the frequency domain, the andyezer must be capable of making quantitative measurements. Specificalisy, an anslyzer must:

1) make absolute frequency measurements
2) make absolute amplltude measurements
3) operate over a large amplliude dynanic range
4) have high resolution of frequency and amplitude
5) have high sensitivity
6) provide mears of abserving, preserving. and recording its output in a convenient and rapid manner by using variable persistence, digital storage and adaptive swcep.
Hewlett-Packard spectrum analyzers excel in those six measures of performance.

Let us consider each of these performance slandards in grester detail.
Absolute frequency messurements: there are two ways to measure absolute Irequency with a Hewlett-Packard specirum analyzer. The absolute frequency can be read off the slide-rule type of frequency dial. Accuracy in this case is approximately $17 \%$ of full seale. When the spectrum analyzer is used in conjunction with a tracking generator (a source whose frequency is the same as the apalyzer tuning frequency) arcuracy much better than $1 \%$ can be achieved by counting the generulor output.

Absolute amplifude measurements: all Hewlect-Packard specirum analyzers are absolutely calibrated for amplitude measurements. This means the spectrum analyzer indicates to the user what the log/reference level or linear sensitivity is regardless of con(rol settings. An uncalibruted warning light makes operation of the analyzer easy and foolproof.
Dynamic range: the dynamic range of a spoctrum analyzer is defined as the difference between the input signal level and the average noise level or distortion products whichever is greater. Hence, dynamic range can be either distorion limited, noise limited or display limited.
Frequency and amplilude reaclution: frequency resolution is the ability of the analyzer to separate signals closcly spaced in frequency. The frequency resolution of an analyzer is a function of three factors: I) minimum IF bandwidth, 2) IF filter shape factor. 3) spectrum analyzer stability.

The minimum I $F$ bandwidth ranges down to 1 Hz on Hewlell-Packayd specirum analyzers.
One way to define IF filcer shape factor is the ratio of 60 dB bandwidth to 3 dB bandwidth. Filter shape factor specifies the seloce tivity of the IF filter. Hewlett-Packard spedtrum analyzers have IF filter shape factors as low as II:I.
Analyzer frequency stability also limits resolution. The residual FM (shorn term stability) should be less than the narrowest If bandwidth. If not, the signal would drift in and out of the IF pass band. Hewlet1-Packard analyzers have excellent stability. The residual FM rangos from <l Hz at low fre quency, $10<100 \mathrm{~Hz}$ at microwave frequencies. enabling the measurement of noise sidebands. The stabilization circuitry is completely automatic and foolprool. No signal recentering, phase-lock loop, manual search, or chocking is required.
Amplitude resolution is a function of the vertical seale callbration. Hewletl-Packarò analyzers offer both log calibration for observing large amplitude variations (10. 2 and $1 \mathrm{~d} \mathrm{~B} / \mathrm{div}$ ) and linear calibration for observ. ing smadl amplitude variations.
Senaiflufity: sensitivity is a measure of an analyzer's ability to detece small signals, and is often defined as the point where the signal level is equal to the noise level or $(S+N) / N$ $=2$. Since noise level decreases as the bandwidth is decreased, sensitivity is a function of bandwideh. The maximum altainable sensitivity ranges from -150 dBm to -125 dBm with Hewlell-Packard analyzers.
Variable persietence, digital storage, and adoptlve sweop: high resolution and sensitivity both sequire narrow bandwidths and consequently slow sweep raies. Because of
these slow sweeps. variable persistence is virtwally indispensable in providing a brigh, steady. ficker-free trace. (In effect, variable persistence allows one to vary the length of Lime a trace remains on the CRT.)

Hewlent-Packard low frequency analyzers bave iwo features which make measurement and CRT pholography simple. Digital storage gives the CRT display a dot matrix connected by line generstors for an unbroken. and unírorm inlensity sean. Adaptive sweep is the second Feature. On the very slow sweep times required wheo using the I Hz bandwidth adaptive sweep allows the scan so sweep rapidly when no signals occur. At signals above a presel level the swoep is slowed for an accurate measurement. The measure ment time savings can be greater than 20:I.

## Tracking praselector

The only way to simultaneously avoid spurious, multiple. harmonic and image responses, is to filter the RF signal through a tracking preselector. This is an electronically unted bandpass filter that automatically tracks the analyzer's cuning. A preselector improves the spurious-free range of the analyzer from less than 70 dB to 100 dB .

## Tracking generator

A wacking generator expands the measurement capability of the spectrum analyzer by providing a signal source which tracks the tuning frequency of the analyzer. The sourco/receiver combination can be used to measure insertion loss, frequency response. relurn loss and precision frequency count.

It helps make these additional measuroments with incteased distorion-free dynamic range sensitivity and selectivity. The tracking generator is also an excellent stable swecping signal genecator. The residual FM ranges from $\pm 1 \mathrm{~Hz}$ for low frequency racking gencrators to $\pm 400 \mathrm{~Hz}$ for microwave tracking gencrators.

## Automatlic spectrum analyzers

The medsurement capability or a spectrum analyzer can be greally enhenced by allowing a small compuer to control instrument functions and record frequency and amplitude information. Data can be gathered and processed into a varicty of formats at a very rapid rase. Through comprehensive self-calibration, automatic sperirum analysis offers amplitude aecuracy of up to $\pm 0.2 \mathrm{~dB}$ with 0.02 dB resolution. User cost savings are realized through faster, more comprehensive measurements, lower operator skill require ments, and unattended operation capability.

Further discussion of computer based automatic spectrum analysis can be found on pages $548,549$.

## Wava analyzer

Wave analyzers are known by several dif. ferent names: frequency selective voltmeter.
earrier frequency volimeter, and iuned oscillator and selective level mefor. These mames describe the instsument's lunction rather well.

An mentioned in the introduction to this section a wave analyzer can be thought of as a linite bandwidih window Filter which can be luned throughout a particulas frequency' range.


Flgure 2. Wave analyzer tunable filter
Signals will be selectively measured as they are framed by the frequency window. Thus, for a particular signal, the wave analyzer can indicate its frequency (window position) and amplitude. Amplitude is read on an amalog meler: frequency is read on either a mechanical or electronic readout. It has the advantage of aceuracy, resolution, ease of operalion and low cosi.

The uses of wave analyzers can be categorized inso three broad areas: 1) amplitude measurement of a single component of a complex frequency spectrum, 2) amplitude measurement in the presence of noise and interfering signals and, 3) measurement of signal energy appearing in a specified, well defined bandwidth.

## Wave enalyzer considerations

## Frequency characteristlos:

Range: should be selected with the future in mind as well as present requirements.
Accuracy and resolutlon: should be consistent with available bandwidths. Narrow bandwidths require frequency dial accuracy to place the narrow window in the proper position for measurement. Accuracy of inscruments with selectable bandwidths is determined by the basic certier frequency accuracy of the IF bandwidth filters in addition to the local oscillator frequency accurucy. Ac curacy is usually specified as 4 lixed frequency error al any point on the dial. thus meaning poorer percentage accurdey at the low frequency stitings.
Readout: usually a frequency dial but newer instruments use a frequency counter whose aceuracy and cuse of use outweigh the increased cose.
Stabilly: frequency slability is imporian when using narrow bandwidths and for long
lerm signal monitoring. Stability is best achieved with aulomalic frequeney control (AFC). AFC locks the local oscillator to the ineoming signal and eliminates any relative drifl belween the (wo. It serves as a tuning aid 10 pull the signal to within the passband eliminaring peaking ibe frequency conirol. The AFC always lunes within the passband improving accuracy on repelitive measurements.
Sweep: some instruments are equipped with sweep to allow use ah a specirum analyzer. Readout is a CRT or X.Y rocorder.

## Amplitude characteristics:

Range: the amplitude range is determined by the input altenuator and the internal noise of the instrument. Sensitivity if defined as the lowest measurable signal equal to the noisc level for a unity signal-to-naise ratio (often called tangential sensitivity). Sensitivity will vary with bandwidth and input impedance.
Dynamie range: delined as the dB ratio of the largest and smallest signals that can be simulianeeusly accommodated without eausing an error in the measurement.
Attenuators: the amplitude range switch is an attenualor in the input and IF stages. Iniermodulation distortion is lowest when the input amplifier has the minimum sigral applied and the IF gain is greatest. Conversely the internal noise. important when making sensitive measurements, is lowest with maximum input signal and lowest IF gain. The two attenuator instruments allow this transfoy of gain belween input and IF to be accompliahed easily.
Accuracy: amplitude accuracy is a function of frequency, input atenuator response. IF altenualor performance. calibration oscilla. tor stability and accuracy. and meter tracking Often specifications are broken up to separately describe each contributor.
Aesdout: amplitude readoul is usually a meter calibrated in $d \mathrm{~B}$ and/or volis. Linear voltage meters are used 10 allow the user to ser down into the noise at the boltom of the scale. Digital readouts ate not used because of their slow response and lack of directional and positional information. This is important since the readout is used as a tuning indicator 10 sbow prescnec of a signal in the passband and when it hats reached a peak. Expanded seale meters allowing expaosion of any I or 2 dB portion of the scale into a full scale presentation allow resolulion of input level changes of a few hundredihs ol a dB. This is useful when the wave analyzer is used as a sensiuve indicator in bridge or comparison measurements. The expanded sealc meter is included in some instruments and is an optional accessory on others.

## input characterlstics:

Impedanco: may be high impedance bridging input or lerminaling impedance to match
standard Iransmission lines. High frequency measurements require matched systems 10 avoid error-producing standing waves on inlerconnecting cables. The measure of impedance accuracy is usually relurn loss or rellection coefficient ( $R L=20 \log p$ ). In lower frequency instrumethls, percent accuracy is used. High inpul impedance instruments are usually poorer in frequency and noise performance and are usually low frequency instruments. High impedanoe at high frequencies is accomplished by using a bridgìng probe to place the impedance at the point of measurement. The probe maly be active with unity gain or passive with $20-30 \mathrm{~dB}$ insertion loss. Inpul arrangement; input may be balanced 10 ground or unbalanced. Communicauions sysiem usage sypically requires balanced inpul. Siandard 600 and 135/1s0n balanced inputs are limited in frequency to tess than 1 MHz and $124 \Omega$ balanced to less than 10 MHz in most insiruments. The impedance may be balanced to ground with the center point grounded or may be completely isolaled from ground. Unbalanced inputs do not have froquency range limitations.

## Typical application

Frequency reaponse lesting: with its BFO oulpul, the wave analyzer is particularly useful for measuring filter and amplifier frequency responses. An alternative approach is to drive the device whit a flat ascillator and measure ins output with an aecorate broadbund voltmeter. However, this secilnique can lead to some very misleading results. If a noteh filter is being measured, the rejection can only be as great as the largesi distortion component of the ơriving signal. Reasoning shows that when the driving signal's fundamontal is runed to the noteh eenter firequency. it will be filered ouc. allowing all of its harmonics to be passed and measured.
A similar problem exists when trying 10 measure the response of a high-pass filler. The fundamental is again rejected while the harmonic distortion components are being passed and measured.


Figure 3. Only signal delected by wave analyzer. For example, the notch of a fllter can be accurately measured to its full depth.

To be sure that the measurement will be accurate. Hewlett-Packard wave unalyzers track and detect only the BFO fundamental components. The notch of the filter will then be accurately' measured to its full depth.

## Dislortion analyzers

The goal of audio and communications equipnient is to reproduce input signals faithfully at the output. System nonlinwarity distors the waveshape of the signals. Poor reproduction brought abour by disturtion will appear to the user of audio equipment as a change in the quality or as noise: to the user of communications gesr, il appears as cbannel crussalk.
Distorition in amplifiers, created by nonJinear circuits. consisıs of frequency cumponents present in the oulput that are not con. tained in the inpui signal. An ac signal that appears to be a pure sinc wave as viewed on an oscilloscope may have some harmonic dis. tortion. The total of ihese frequency components present in the signal, in addition to the fundamental frequency. can be measured quickly and casily with Hewletr-Packard distortion analyzers.
One type of distortion analyzer contains a narrow band rejection filter which, when promes! luned, removes the fundemental irequency so that the amplitude of the remaining components can be metasured simuttaneously. Hewlen-Packand distortion anatlyzery are used for fast equamtintive measurements of tolal harmonic distortion and notse.

## Total harmonic distortion analysla

This measurament lechnique compares the amplisude of the harmonics to that of the fundamental. The defining equation is:
(1) total harmonic distortion =

$$
\frac{\left(\text { harsmonics }{ }^{2}\right.}{\text { fundamenial }}
$$

A frequency-selective volumeter is needed to measure the fundamental. and either a selecove vollmeter with a wide dynanic range or a frequency rejoction circuil with a true ms detector is needed to meassie the harmonits. The frequency rejection circuit nulls the fundamental and passes its harmonics to the detector with no attenuation so that the ratio between the fundamental and harmonics can be determined.

A less expensive way to measure the toul harmonic distortion, however, is to use a rejection filter and a broadband detector. Since the fundamental is not direcily measured. the equation becomes:
(2) $\mathrm{THD}=$
harmonies:
$\overline{(\text { fundamental })^{2}}+$ (harmonics 2
If the distortion is less than 10\%, the denominator of equation 2 will be within $15 / 6$ of the denominator in equation $I$, which is as accuratc as any frequency sclective volimeter

There are two dificulties in making total harmonic distortion measurements. First. 10 get a measurement within the desired accuracy. the harmonic content of the test signal
must not be more than a third of the dstorwon expected to be caused by the sysiem. Second. the chore of nulling the fundamental can be fime-consuming Oscillators that meet the distortion requircments and nulling equip. ment, which has recently become available. can overcome the difliculties.

## Automatic null

Since the nulling of the fundamental is normally the time-consuming purtion of total harmonic distortion measurchem, ereal savings can be realized, especially in production line cesting with an andlyzer which automatitadly reicets ine fundamental. The time saved is as much as 25 seconds of it 30 -second measurcment. With automatic nulling, the accuracy of the null achieved is no longer a function of operator training, manual dexterily. or signal source frequeney drin.
The allalyter will maintain a muld even though there is aslow drift in the input frequency. This ability to "pull" the null has opened the door to a number of applications: where the toal harmotic disturtion measuremenus were not ruadily applicd in the past, Among them are:

1. Single-frequency producion line testing of such components as integrated-circuil amplifiers or transiormers.
2. Optimizing the performance of an oscillator.
3. Correcting distortion in signal generalors which produce sine waver by mixing or by nonlinear shapirg.

Signal analyzers selection guide Spectrum analyzers

Frequency gange	Amplituda Calibration Range	Bandwioths		Model Description	Companion insiruments	Page
		Min	Max			
$5 \mathrm{~Hz}-50 \mathrm{hHz}$	-150 to +3088 m	1 Hz	300 Hz	3580A Spectrum Analyzer	8443A Tracking generator ( $100 \mathrm{XH}_{2}-110 \mathrm{MHz}$ )/Counter	448
$20 \mathrm{~Hz}-300 \mathrm{kHz}$	$-130 \mathrm{lo}+10 \mathrm{~d} 8 \mathrm{~m}$	10 H	10 kHz	85568 Tuning Section Plug. In (See Nole 1)		456
$10 \mathrm{~Hz}-13 \mathrm{kHz}$	$-14010048 \mathrm{~m}$	3 Hi	10 kHz	3044A/45A Spectrum Ana. lyzer		445
$1 \mathrm{KHz}^{\prime}-110 \mathrm{MHz}$	-130 to +10 dBm	10 Hz	300 hHz	85538 [uning Seclion Plug.in (See Nole 1)		458
						458
$10 \mathrm{kHz}-350 \mathrm{NHz}$	-120 to $+20 d 8 m$	1 kHz	3 MHi	8557A Spactrum Analyze!		$\begin{aligned} & 141 \\ & 850 \end{aligned}$
$100 \mathrm{kHz}-1250 \mathrm{MHz}$	$-12210+10 \mathrm{dBm}$	100 Hl	300 kHz	Plug. In (See Nole 2) 8554 B Tuning Sector Plug-In (Seg Nole 1)		141 452
					8444A Tracking Generator $(500 \mathrm{kHz}-1250 \mathrm{MHz})$	460 463
$100 \mathrm{kHz}-1500 \mathrm{MHz}$	$-11510+3088 \mathrm{~m}$	1 kHz	3 MHz	8558A Spectrum Analyzer Plug-In (See Note 2)		452
	$-13010+1088 m$	100 Hz	300 KHz	8555A Iuniag Section Plug-In (See Nole I)	$\begin{aligned} & 8444 \mathrm{~A}(500 \mathrm{kHz}- \\ & 1300 \mathrm{MHz}) \end{aligned}$	460 483
$10 \mathrm{MHz}-40 \mathrm{CHz}$						462
					8ASAA Tracking Genaraior ( 10 NHz - 1300 MN N )	$\begin{aligned} & 460 \\ & 463 \end{aligned}$
					84458 Aulortudic Pieseleclor ( $10 \mathrm{MHz}-18 \mathrm{GHz}$ )	462

[^26]Distortion analyzers

Frequency Range	Auto Nulling	Hi-Pass Filier	lo-Pass Filles	AM Detector	Gear Reduction Tuning	Model Mo.	Page
					$x$	3314	442
				$X$	$x$	332A	442
			X	$X$	$X$	332A ODL H05	442
	X	$\chi$				333A	442
	$X$	X		$x$		$334 A$	442
	X		$X$	$x$		334A Opl. H05	442
$10 \mathrm{~Hz}_{2}$ to 100 kHz	X	$X$				43334	\$44

Wave analyzers

Frequency Range	Selective Bandpasses	Dynamic Range		Freg. Readouls	Type of Inpuls	Type of Oulputs	Modes of Operation	Model Number	Page
15 Hz 1050 kHz	$\begin{array}{r} 3 \mathrm{~Hz} \\ 10 \mathrm{~Hz} \\ 30 \mathrm{~Hz} \\ 100 \mathrm{~Hz} \\ 300 \mathrm{~Hz} \end{array}$	$0.1 \mu V-300 V$   full scale	$>85 \mathrm{~dB}$	S-place digital	Banana lacks	rec: 5 V Lull scale, wilh pen lit BFO. Local oscillator, luning loudspeaker. and headphone jack	AFC. normal, BFO	$\begin{aligned} & 35814 / \\ & 3581 \mathrm{C} \end{aligned}$	$\begin{aligned} & 438 \\ & 490 \end{aligned}$
1 kHz lo 18 MHz 18 ranges		$\begin{aligned} & -120 \mathrm{to} \\ & +23 \mathrm{dBm} \end{aligned}$	$>72$ d8	7 place Decade Counler	$75 \Omega$ acceots   WECO 358A   $124 \Omega$ actepls   WECO 408A   $135 \Omega$ accepls   WECO 305A   External fre.   quency   standard	```Recorder: I V de full scale I k al source Aux: \(1 \mathrm{MHz}_{2}(1 \vee \rho \cdot \rho)\) \(30 \mathrm{MHz}(40-70 \mathrm{mV})\) rms LO: \(\left(30-48 \mathrm{MH}_{2}\right) 60\) io 90 mV mms Audio: +13 dBm into \(600 \Omega\)```	AM, Beal LS8, USB	$\begin{aligned} & 3120 / \\ & 3320 C \end{aligned}$	498
I kHz to 1.5 MHz		$\begin{aligned} & 10 \mu v-100 v \\ & \text { full scale } \end{aligned}$	$>7518$	Oial	Banana lacks	rec: 1 mA dc into $1500 \Omega$ lull scale   BIO: 0.5 V into $135 \Omega$ meler al foll scale outpul impedance 135 ?	AFC, normal Bf0. USB. LSE AM	310A	439
1 hHz 10 18 MHz 18 ranges   or		$200 \pi V-3.2 V$   Iull scale or   $-12010+2388 \mathrm{~m}$   $-13040+13 \mathrm{~d} 8 \mathrm{~m}$   (600n only)	$>7248$	7-place decade counter	BNC \& probe 11530A bridged/ terminated balanced or untalanced or		AFC. AM. beal LSB. USB	$\begin{aligned} & 312 A / \\ & 313^{\circ} \end{aligned}$   or	440
I kHz to 22 MHz 18 ranges					WE-477B inqul unbalanced			$\begin{aligned} & 312 A / \\ & 313 A / \\ & 0 p: H 01 \end{aligned}$	\$40
					or   BNC inpu! $50 \Omega$ unbalanced			or   312A/   313A   Opt H05	



## Description

Hewlell-Packard's 3581A Wave Anulyzer separates and measures the amplitude and frequency of spectral componenls. This inexpensive insirument offers accurate amplitude and frequency sesolution in a portable, easy to use measuring tool. Since not all signals originatc from a slable frequency source, the 3581A incorporates an AFC circuit which locks to a drifting signal for stable, accurate measurements.

HP's 3581A has other important features that are necessary when making measurements of small voltages from transducers and harmonics signals, Its $30 \mathrm{n} V$ sensitivity becomes important for these measurements. Battery operution or balaneed input option can be used to reduce the line related interference common in low lavel measurements so only the real spectrum is measured.
Digital readout of tuned frequency is located abose the analog meter. It has been grouped with the meter for ease of reading. Resolution of the digital resdout is 1 Hz for any frequency between 15 Hz and 50 kHz . Readout is updated live limes per second so delay between tuning and reading is minimized.

Four meter scales are used to provide a wide range of display's. Two seakes are used for linear voltage readings. Two log scales provide either a 90 dB or 10 dB display. In any case. the larec meler with its mirror backing can present readings in $d B \mathrm{~V}$ or dBm or volts. A meter was specifically chosen for amplitude display rather than digital readout because it is edsier to peak a meter reading and because it's much casier to ect a feel for noixe or other a mplitude variations by watching the metes. The same voltage used to drive the meter is also avallable on the rear pancl for driving $\mathrm{X}-\mathrm{Y}$ recorders.

## Specifications*

Frequency characteristics
Range: is Hz so 50 kHz .
Dlsplay: 5 digil LED readoul.
Pesolutlon: 1 Hz .
Accuracy: $\pm 3 \mathrm{~Hz}$.
Typical atability: $\pm 10 \mathrm{~Hz} / \mathrm{hr}$ aller I hour and $\pm 5 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.
Automatic frequency conirol (AFC) hold-In range: $\pm 800 \mathrm{~Hz}$.
Amplitude characteristics
Instrument range
Linear: $30 \vee 10100 \mathrm{nV}$ full scale.
Log: +30 dBm or $\mathrm{dBV} 10-150 \mathrm{dBm}$ or dBV .

Amplliude accuracy:	$\log$	Lincar
Frequency response, $15 \mathrm{~Hz}-50 \mathrm{kHz}$	$\pm 0.4 \mathrm{~dB}$	$\pm 4 \%$

Dynamic range: $>80 \mathrm{~dB}$.
Nolse sidebands: greater than 70 dB below CW signal. 10 bandwidths away from signal.
Spurlous responses: $>80 \mathrm{~dB}$ below input reference level.

## Sweep characterlatios

Scan width: 50 fizi to 50 kHz . These seans can be adjusied to cover a group of feequencies within the oversll insirument range.
Sweep error IIght: this LED indicales a sweep that is coo fast to capture full response When the light is on. response will be lower than it should be.
External trigger: a short to ground stops the normal sweep. Opening the short then enables a sweep.
Input characteristics
Impedance: I Mn, 30 pF .
Maximum input level: $100 \mathrm{~V} \mathrm{~ms} . \pm 100 \mathrm{~V} d c$.
Oulput characleristics
Tracking gencratur oulput talso known as BFO or Iracking oscillator oulpul).

## Restored oulput

Range: 0 to 2 V ms .
Frequency response: $\pm 3 \% 15 \mathrm{~Hz}$ to 50 kHz .
$\mathrm{X}-\mathrm{Y}$ recorder analog outputs
Verlical: $0: 0+5 \mathrm{~V} \pm 2.5 \%$.
Horlzontal: $010+5 \mathrm{~V} \pm 2.55$.
Impedance: l ka.
Pen litt: contact closure so ground during sweep.

## Geлeral

Power requiremants: 100 V .120 V .220 V or $240 \mathrm{~V}+5 \%-10 \%, 48$
Hz to $66 \mathrm{~Hz}, 10 \mathrm{VA}$ typical.
Dlmenslons: 412.8 mm high $\times 203.2 \mathrm{~mm}$ wide $\times 285.8 \mathrm{~mm}$ deep ( $161 / 4^{N} \times 8^{N} \times 131 / /^{*}$ ).
Weight: $11.5 \mathrm{~kg}(23 \mathrm{lb})$. Option 001: $13.5 \mathrm{~kg}(30 \mathrm{lb})$.
Option 001, battery: 12 hours from full charge. Intermal batlery is protected from deep discharge by an sutomatic eurnoff. Useful hife ol this batlery is over 100 cycles.

Model number and name	Price
Oplion 001: batiery	add \$360
3581A Wave Analyzer	\$3095
- Woze lof conplete specitiations,	

 communications xersiot: of the H:P3SBIA wave analyzer.


## Description

Model 310A High Frequency Wave Aralyzer separates the various Irequency components of an input signal so that the fundamental. harmonies, or intermodulation producis can be determined and analyzed. Any signal component between 1 kHz and 1.5 MHz may be selected for measurement. Model 310A also functions as an efficient tuned voltmeter for aceurately measuring relative or absolute signal lovels, as a signal source for selective sesponse measurements, and as either an AM reeciver of earrier insertion oscillator for demodulating single sideband signats.

## Specifications

Frequency range: 1 kHz to 1.5 MHz ( 200 Hz bandwidth); 5 kHz to 1.5 MHz ( 1000 Hz bandwidth): 10 kHz 101.5 MHz ( 3000 Hz bandwid(h).
Frequancy accuracy: $\pm(1 \%+300 \mathrm{~Hz}$ ).
Frequency scale: linear graduation, I div per 200 Hz .
Selectivity; 3 IF bandwidihs, $200 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ and 3000 Hz midpoint of the passband $\left(C_{0}\right)$ is readily distinguished by a rejection region I Hz wide between the 3 dB poinis.

	$\begin{gathered} 200 \mathrm{HI} \\ \text { bandwidth } \end{gathered}$	1000 Hz bandwidth	3000 Hz bandwidth
Rejectlon*	frequency ( $\mathrm{H}_{2}$ )	Irequency (Hz)	frequency ( Hz )
$\geq 3 \mathrm{~dB}$	$10 \pm 108$	$i_{0} \pm 540$	$1_{0} \pm 1550$
$\geq 50$ هB	$\mathrm{I}_{0} \pm 500$	$\mathrm{I}_{0} \pm 2400$	$10 \pm 7000$
$\geq 75 \mathrm{~dB}$	$\mathrm{I}_{0} \pm 1000$	$\mathrm{I}_{0} \pm 5000$	$1_{0} \pm 17000$

*Rejection increases smosthly heyond the -75 dB polnts
Voltage range: $10 \mu \mathrm{~V}$ to 100 V full scalc, tanges provided by inpol attenuator and meter range switeh in sleps of $1: 3$ or 10 dB .
Voltage accuracy: $\pm 6 \%$ of full scale.
Internal calibrator stability: $\pm 1 \%$ of full scale.

## Dynamic range: > 75 dB .

Noise and spurlous responee; at lcail 75 dB below a full-scale reference set on the 0 dB position of Range switch.
Input resislance: delermined by snpul attenuator: 10 kg on moss
sensitive range, 30 kR on next range. 100 kR on outher fanges: shunt capacitance $<100 \mathrm{pF}$ on three most sensitive ranges. $<50 \mathrm{pF}$ on other ranges.
Automalle frequency control: dynamic hold-in range is $\pm 3 \mathrm{kHz}$ minimum at 100 kHz : tracking speed is approximately $100 \mathrm{~Hz} / \mathrm{s}$ : locks on signal as low as 70 dB below a full-scale reference sel on the 0 dB position of the Range switch.
Restored-frequency output: restored signal frequency maximum output is al least 0.25 V (meter al full scale) across $135 \Omega$. with approximately 30 dB of level control provided; outpul impedance approximately $135 \Omega$.
BFO oulput; 0.3 V across 1350 with approx. 30 dB of level conirol provided; oulput impedance approx. $135 \Omega$.
Fecorder output: IV de into an open círevit from 10003 source impedance for single-ended recorders: oulput of $1 \mathrm{~m} \wedge$ dc into 1500 n or less available on special order.
Recelver function (aural or recording proviaion): internal carrier reinsertion oscillator is provided for demodulation of cilher normal or inverted single sideband signaks: AM signal also can be detecled.
FFI: conducted and radiated leakage limits are below those specified in MIL-1-6181D.
Power: 115 or $230 \mathrm{~V} \pm 1058$, 50 to $66 \mathrm{~Hz}: 20.5 \mathrm{VA}$ max.
Dimenslors: 426 mm wide $\times 274 \mathrm{~mm}$ high $\times 467 \mathrm{~mm}$ deep ( $161 / \mathrm{m}^{\prime \prime} \times$ $10 \% 1^{\circ} \times 181 /{ }^{\circ}$ ): hardware furnished for conversion to rack moune 483 rom wido $\times 266 \mathrm{~mm}$ high $\times 416 \mathrm{~mm}$ deep behind paocl ( $19^{\prime \prime} \times 10^{14} \xi_{32}{ }^{*}$ $\times 16 \frac{1}{8}{ }^{7}$ ).
Weight: nel, $20.3 \mathrm{~kg}(45 \mathrm{Ib})$. Shipping, $23.4 \mathrm{~kg}(52 \mathrm{lb})$.

## OpHons

O01: intermal frequency calibrator providing check points every 100 $k \mathrm{~Hz}$ : interpolation accuracy (between check points): $\pm 2 \mathrm{kHz}$ up to 1.4 $\mathrm{MHz}, \pm 3 \mathrm{kHz}$ berween 1.4 and 1.5 MHz .
002: dB scale uppermost on meter face and extended to -25 dB .
Model number and name ..... Price
310A. Opt. 001 Internal Frequency Calibrator ..... $\$ 130$310A. Opt. 002 DB Scale$\$ 34$
I 10001A Cable Assembly ..... $\$ 16$1015, A Adapler$\$ 17$
310A Wave Analyzer ..... $\$ 3510$


## Description

Hewlett-Packard Model $312 \mathrm{~B} / 313 \mathrm{~A}$ is a frequcney selective valtmeter/tracking oseillator operating in the frequency range of all commercially available carrier and radio systems. The set is capable of making iransmission and noise measurements with unparalieled speed and accuracy. A 312D is available with special features for telocom. munications applications, See page 498.

HP's 312 B uses a frequency synthesizer for tuning that is automatically phase locked in 1 MHz sleps. Tuning between lock poinss is in. dicated on a 7-place digital rcadout with 10 Hz plus lime-base accuracy. Coupled with this digital indication of unambiguous frequency is an autmatic tuning aid known as automatic frequency control (AFC). The AFC will dutomatically fine lune frequency to the center of the sel's passband, and automatically correct any' relalive frequency drift between the set and the signal being measured. Long icrm monitoring of signals is porsible willout periudic readjusiment. High frequency accuracy coupled with AFC gives clear. instantancous tuning and eliminates the need to search for signals.

Input and IF attenuators allow a maximum of dynamic range without concern for overloading the set. Altenuators can be easily set for
minimum distomion or noisc performance. Altenuator semings are indicated clearly on 3 lighled annunciator which, when gdded 10 meter Indication, grees a fast, crror-l'rec indicution of input level. An accessory expanded scale meter allows 0.02 dB resolution of input level for accurate measurements.
The instrument is equipped with both balanced and unbalanced inputs to fit any meisuring situation withoul the need for external ac. cessory iransformers. A wide seleclion of inpul impedances, either bridging or terminated, is provided along with provisions for an ac. cessory high impedance, balanced bridging probe 10 climinate measurement crrors. The set always indicates directly in dBm or voles at ans' impedance. eliminaling imce consuming calculations or conversion chars.
Threx selectable bandwidths are provided for all measurement situations. A narrow 200 Hz bandwadth is used for highly selective measurcments. a 1000 Hz bandwidth for gencral measuremenis, and a 3100 Hz bandwidth for noise measurements.

Demodulation of upper or lower sideband chanocls with an audio output is provided for monitoring noise. Iralfic, or lones in any channel. The accurate digital frequency readout requires only a quick ref-
erence to the system frequency charts to determine frequency for perfect dernodulation. No tuning around for ataral sounding demodu. lation is required. In this respect. Model 312B can be thought of as a single-channel, tuneable, multiplex, receive terminal,

HP's Madel 313A Tracking Oscillator provides an accurate, fla output at the frequency to which the 312B is toned for frequency response measurements. Ouiput frequency is quickly and easily set by the digital tuning indicator on the selective voitmeter.

Output level is easily set by a 3 -digit presentation with 0.1 dB resoIution. Output level is also easily read and remains constani with changes in frequency requiring no time consuming resetting of level al each new frequency.

A built-in meter provides an expanded scale display of the 3128's nicter indication with 0.02 dB resolution of input level.

## 312B Specifications (new)

Tuning characieristlos
Frequency range: 1 kHz 10 18 MHz in 18 overlapping bands. 200 kHz overlap belween bands.
Frequency accuracy: $\pm 10 \mathrm{~Hz}+$ time base accuracy. Frequency indicaled on in-line digital readout with $\pm=10 \mathrm{~Hz}$ resolution.
Selectlvily:

Bandwidh   Hz	$\mathbf{3 d B}$   BW	60 dB   日F
200 Hz	$200 \mathrm{~Hz} \pm 10 \%$	$<470 \mathrm{~Hz}$
1000 Hz	$1 \mathrm{kHz} \pm 10 \%$	$<2350 \mathrm{~Hz}$
3100 Hz	$3100 \mathrm{~Hz} \pm 10 \%$	$<6680 \mathrm{~Hz}$

Amplitude characteristics

## Amplilude measurement range

50n to 150n: - $120 \mathrm{dBm} 10+23 \mathrm{dBm}$.
B00 : : $-130 \mathrm{dBm} 10+13 \mathrm{dBm}$.
Voltage: $200 \mathrm{~m} V$ full scale to $3.2 \vee\{501\}$ reference).
Amplitude accuracy
Frequency response (bridging input uith extermal termination of 509 $\pm 1 \%$ ).
1 kHz to $10 \mathrm{kHz}: \pm 0.5 \mathrm{~dB}$ ( $5 \%$ of reading).
10 kHz to $10 \mathrm{MHz}: \pm 0.2 \mathrm{~dB}$ ( $2 \%$ of reading).
10 MHz to $18 \mathrm{MHz}: \pm 0.5 \mathrm{~dB}$ ( $5 \%$ of reading).
Matching Impedance: 500, 600, 75 , 1240. 1350. $150 \Omega$ or $600 \Omega$. balaneed or unbalanced on 312B.
Distortion
Harmonically rolaled, 1 kHz 101 MHz : $>35 \mathrm{~dB}$ below zero reference. 1 MHz to $18 \mathrm{MHz}>69 \mathrm{~dB}$ below zero reference. Residual response (with no inpul and reference level in any position: 72 dB below zero refierance).
Receiver characterislics
Recelver mode outputs
AM: diode-demodulaled uudio.

Beal: beat frequency audio centered at $f_{0}$.
LSB: product-demodulated audio, carrier reinserted al $\mathrm{F}_{0}+1.8$
kHz .
USB: product-demodulated audio. carrier reinserted at $f_{0}-1,8$
kHz
Audlo oulput level; $>0.5 \mathrm{~V}$ rms into $10 \mathrm{k} \Omega$ winh full-scale metor dellection.
Recorder outpul level: IV $\pm 0.1 V$ with full-scalc meter deflecfion across open circuit.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz} 1066 \mathrm{~Hz}, 100 \mathrm{VA}$.
Dimenslons: 425 mm wide $\times 266 \mathrm{~mm}$ high $\times 467 \mathrm{~mm}$ deep ( $163 /{ }^{4} \times$ $\left.1015 / 0^{\prime \prime} \times 18:^{\prime \prime}\right)$.
Welght: ne: 20.7 kg ( 46 lb ).

## 313A Specifications

Frequency range
As tracking oscilistor, same as 312 B ( 18 MHz ).
As slgnal source: 10 kHz to 22 MHz in one bind. continuous tuning.
Frequency accuracy
As iracking osclllaior: $35 \mathrm{~Hz} \pm 4 \mathrm{~Hz}$ above 312 B luning.
As slgnal source
$10 \mathrm{kHz} 102 \mathrm{MHz} \pm 1 \%$ of max dial selting.
2 MHz to $8 \mathbf{M H z} \pm 3 \%$ of mas dial seting.
8 MHz to $22 \mathrm{MHz}: \pm 5 \%$ of max dial seting.
Frequency stability
Ae signal source: short-rerm ( 5 min ) drifl $<1 \mathrm{kHz}$ in stable environment afler warmup.
Frequency response: $\pm 0.1 \mathrm{~dB} .10 \mathrm{kHz}$ ta 22 MHz .
Amplitude slablilty: $\pm 0.1 \mathrm{~dB}$ fo: 90 days $\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$.
Maximum output: 0 dBm or $+10 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$, selectable at front panel.
Oulput altenuator: 3-section attenutior provides 0 dB to 99.9 dB altenuation in 0.1 dB steps.
Attenuator accuracy
0.9 dB section ( 0.1 dB sleps): $\pm 0.02 \mathrm{~dB}$.

9 dB seclion (1 dB steps): $\pm 0.1 \mathrm{~dB}$.
90 dB secllon ( 10 dB sleps): $\pm 0.1 \mathrm{~dB}$ so $50 \mathrm{~dB} . \pm 0.2 \mathrm{~dB} 1090 \mathrm{~dB}$.
Oulput Impedance; $75 \Omega$ unbilaped.
Harmonlc distortion: more than is dB below fundariental.
Recorder output: $\pm 0.3 \mathrm{~V}$ for full-scale deflection. Output imped. ance $1 \mathrm{k} \cap$, BNC female connector.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $1000 \mathrm{~Hz}, 30 \mathrm{VA}$ max.
Dlmensions: 425 mm wide $\times 132.6 \mathrm{~mm}$ high $\times 467 \mathrm{~mm}$ desp $\left(16 \frac{3}{9}\right.$
$\times 5 \% y^{\prime \prime} \times 18 /^{\prime \prime}$ ).
Welght: net 11.3 kg (25 (h).
Opitans
808: Rack Flange Kit
Price
Model number and name
3128 Selective Volimeter
313A Tracking Oscillator add $\$ 15$
$\$ 3510$
$\$ 1970$


## Description

Hewlett-Packard's models 331A, 332A, 333A and 334A Distortion Analyeers measure total distortion down to 0.1 右 「ull seale at any frequency between 5 Hz to 600 kHz i harmonics are indicaled up 103 MHz . These instrumen1s measure noise as low as 50 microvols and measure voltages over a wide range of level and frequency. Refer to lable below for available models and features.

Model Ho.	Auto Nulling	HiPPass filter	Lo-Pass Filter	$\begin{gathered} \text { AN } \\ \text { Detector } \end{gathered}$
331 A				
332A				X
332A Oot H05			$\times$	X
333 A	X	X		
334A	$X$	X		X
334á Opl H05	X		$X$	$\chi$

Option 001, for each model, fcatures VU meter characterisuics conforming to FCC requirements.

## Automatic fundamental nulling

Automatic fundamental nulling sputds up the normally ime-consuming portion of the measuremen. This is done by manually nulling with the coarse luning and bslance controls to leas than $10 \%$ of the Set Level Reference. The automatic mode is used to complete rejecion of the fundamental on more sensitive ranges without any further manual luning.

## High-pass fliter

In order to reduce the effect of hum components. a high pass filier is provided which altenuates frequencies below 400 Hz . The filter may be activated by a front pancl switch when measuring distortion of sigmals greater than ikHz in frequency.

## Amplifude modulatlon detector

HP's models 332A and 334A Analyzers are provided with an umplitude modulation delcetor having a frequency range from 550 kHz 10 greater Iban 65 MHz .
The high impedance de restoring peak detector which ulilizes a semi-conductor dode measures distortion al carrier levels as low as a voll. Input to the delector is located on the rear of the insirument. HP's model 334 is similar to Model 332A, hut is provided with Automatic Fundamental Nulling and a High-Pass Filter. The switchable RF Delector as the input of the instroment has a frequency range of 550 kHz 1065 MHz . Input connector is located on the rear pancl of the instrument.

## High impedance voltmeter

The transistorized metering eircuit of HP 331A through 334A catploys feadback to insure stability and a ful frequency response from 5 Hz 103 M Hz . The volimeter mode offers 13 ranges in 10 dB steps. Range is from $300 \mu \vee$ to 300 V rms full scale. The bendwidh is 5 Hz 103 MHz for 1 mV to 30 V ranges; 5 Hz to 500 kHz for 100 V to 300 V ranges; and 20 Hz to 500 kHz for the $300 \mu \mathrm{~V}$ range. Average responding melur is calibrated to rms value of a sine wave.

## vu Option avallable

Optlon: 001 provides an indicating meter having VU ballistic characeristies.
Distortion analyzers: meet FCC requirements.

## Madels H05-3324, HOS-334A

Two solid-state distortion analyzers offer extended frequency fange. greater sel level sensitivity, improved seleativity, greater overall aceuracy. and unprecedented ease of usc. The units meet FCC requirements on broadcast distortion levels. Both models measure toral distorion down to $0.1 \%$ full scalc. Model H05-334A features automatic fundamental nulling ( $>80 \mathrm{~dB}$ rejection). The HOS-332A and 134A have a switchable low pass liller to reduce effect of unwanted high frequencies (noise, elc.) when measuring low frequency signals with high accuracy. Also included is a 3 MHz volmeter, $300 \mu \mathrm{~V}$ to 300 V full scalc. Boih models have an AM detector covering 550 kHz to $>65$ MHz al carrier levels as low is I V.

## 331A Specifications

Distortlon meseurement range：any fundamental frequcncy， 5 Hz 10600 kHz ．Distorion levels of 0.1 家－100\％are measured full scale in 7 ranges．
Distortion measurement accurscy
Harmonle measurement accuracy（full scale）：
Fundamental Inpul Less than 30 V

Rance	$\pm 3 \%$	$\pm 6 \%$	$\pm 12 \%$
$100 \%-0.3 \%$	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	$10 \mathrm{~Hz}-3 \mathrm{MHz}$	
$0.1 \%$	$30 \mathrm{~Hz}-300 \mathrm{hHz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz}-1.2 \mathrm{MHz}$

Fundamental Input Greater Than $\mathbf{1 0 V}$

Range	$\pm 3 \%$	$\pm 6 \%$	$\pm 12 \%$
$100 \%-0.3 \%$	$10 \mathrm{~Hz}-300 \mathrm{kHz}$	$10 \mathrm{~Hz}-500 \mathrm{xHz}$	$10 \mathrm{~Hz}-3 \mathrm{MHz}$
$0.1 \%$	$30 \mathrm{~Hz}-300 \mathrm{kHz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz}-1.2 \mathrm{MHz}$

Ellminatton characterletles：iundamenlal rejection $>80 \mathrm{~dB}$ ．Sec－ ond harmonic accuracy for a fundamental of 5 to 20 Hz ：belter than $+\mathrm{I} \mathrm{dB}: 20 \mathrm{~Hz}$ to 20 kHz beller than $\pm 0.6 \mathrm{~dB} ; 20 \mathrm{kHz} 10100 \mathrm{kHz}$ bel－ ler than－1 dB； 100 kHz to 300 kHz hetler ihan $-2 \mathrm{~dB} ; 300 \mathrm{kHz}$ to 600 kHz betier dan -3 dB ．
Distortion Iniroduced by instrument：$>-700 \mathrm{BB}(0.0 \mathrm{M}$ ）from 5 Hz $10200 \mathrm{kHz} .>-64 \mathrm{~dB}(0,06$ 笏）From $200 \mathrm{kH} / 10600 \mathrm{kHz}$ ．Mcler indi－ cation is proportional to average value of a sine wave．
Frequency calibralion accuracy：better than $\pm 5{ }^{9} 9$ from 5 Hz 10300 kHz ．Belter than $\pm 10 \%$ from 300 to 600 kHz ．
Input Impedance：distortion roode：I $\mathrm{M} \Omega \pm 5 \%$ shurled by $<70 \mathrm{pF}$ （ $10 \mathrm{M} \Omega$ shusted by $<10 \mathrm{pF}$ with HP 1000 ）A $10: 1$ divider probe）．
Voltmeter mode：I $\mathrm{M} \Omega \pm 5 \%$ shunled by $<35 \mathrm{pF} \mid 10300 \mathrm{~V}$ ms：I $\mathrm{M} \Omega \pm 5$ 若 shunted by $<70 \mathrm{pF} .300 \mu \mathrm{~V}$ to 0.3 V rms．
Input lavel for distortion measurements： 0.3 V rms for $100 \%$ sel level or 0.245 V for 0 dB sel level（up to 300 V may be attenuated to set level reference）．
DC leolaton：signal ground may be $\pm 400 \mathrm{~V}$ oc from external chas－ sis．
Voltmeter range： $300 \mu \mathrm{~V}$ to 300 V ms full scale（ 13 ranges） 10 dB per range．
Voltmeter accuracy：（using front panel input terminals）

Rance	$\pm 2 \%$	$\pm 5 \%$
$300 \mu \mathrm{~V}$	$30 \mathrm{~Hz}-300 \mathrm{hHz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$
$3 \mathrm{mV}-30 \mathrm{Y}$	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	$5 \mathrm{~Hz}-3 \mathrm{MHz}$
$100 \mathrm{~V}-300 \mathrm{~V}$	$10 \mathrm{~Hz}-300 \mathrm{hHz}$	$5 \mathrm{~Hz}-500 \mathrm{kHz}$

Noise measurements：voltmeter residual noise on the $300 \mu \mathrm{~V}$ ange： $<25 \mu \mathrm{~V}$ rms，when terminated in 600 （shielded）ohms，$<30 \mu \mathrm{~V}$ rms terminaled with a shielded $100 \mathrm{k} \Omega$ resistor．
Outpul： $0.1 \pm 0.01 \mathrm{~V}$ rms open circuit and $0.05 \pm 0.005 \mathrm{~V}$ rms into 2 k／f for full scale meter deflection．
Output Impedance： $2 \mathrm{k} ?$ ．
Power supply： 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to 66 Hz ，approximately 4 VA ．

## 332A Specifications

Same as Model 33IA except as indicated below：
AM detector：high impedance DC restoring peak decector with semi－ conducter diode operates from 550 kHz to greater than 65 MHz Broadband inpul，no tuning is required．
Maximum inpul： 40 V p－p AC or 40 V peak Iransient．
Distorilon introduced by detector：carrier frequency： $550 \mathrm{kFz}-1.6$ $\mathrm{MHz}:<50 \mathrm{~dB}(0.3 \%)$ for $3-8 \mathrm{~V}$ rins carriers modulated $30 \%$ ． 1.6 MHz $65 \mathrm{MHz}:<40 \mathrm{~dB}(\mathrm{I} \%)$ for 3.8 V rms carriers modulyted $30 \%$ ．
 carners motulated 308

## 333A Specifications

Same as Model 331A except as indicaled below：
Automalle nulling mode：set level：al least 0.2 V rms．
Frequency ranges：$X I$ ，manuâl mull tuned to leas than $3 \%_{0}$ of set level；lotal frequency hold－in $\pm 0.5$ és about iruc mantal noll．X 10 through X 10 k ，manual null iuned to less than 10 of set level；total frequency hold－in $\pm 1$ 多 about true manual null．
Automatk null accuracy：$\$ \mathrm{~Hz}$ to 100 Hz ：meter reading wishis 0 to +3 dB of manuat null． 100 Hz 10600 kHz meter reuding within 0 to $+1 . S \mathrm{~dB}$ of manual nuld．
High－pass flter： 3 dB point at 400 Hz with 18 dB per octave roll off． 60 Hz rejection $>\$ 0 \mathrm{~dB}$ ．Normally used only with fundamental fre－ quencies greater than 1 kHz ．
Power supply：same as Model 331A．

## 334A Specifications

Same as Model 333A except includes AM Detccior described under Madel 332A．

## H05－332A and H05－334A Specifications

Same as HP 332A and 334 A excupt as indicaled below：
A low－pass filler is added in Model H0．5－332A and is substituled for a high－pass filter in Model HO5－334A．
Frequency range： 5 Hz to 30 kHz ，switchable to 3 MHz ．
Low－paes filter： 4 pole． 3 \＆B down at 30 kHz ．
Meter range swlich：calibrated and reierenced in $\mathrm{dBm}(0 \mathrm{dBm}=$ ？ mW inio 600n）．

## General

Dimensions： 426 mm wide $\times 126 \mathrm{~mm}$ high $\times 337 \mathrm{~mm}$ deep（ $16 \%_{4} \times \times$ $5^{\prime \prime} \times 13 \not / 1^{\prime \prime}$ ）．
Welght：nel， 7.98 kg （I7\％lb）．Shipping． $10.35 \mathrm{~kg}(23 \mathrm{lb})$.
Model number and name Price
Option OOI，indicating meter has VU characteristics
conforming to FCC requirements for AM／FM and TV
brogdeasling
add $\$ 23$
HOS－332A（mecls FCC requirements）
add \＄127
H05－33\＆（mees FCC requirements）
331A Distortion Analyzer
332A Distorion Analyer
33A Distortion Analy＜L
$\$ 1130$
334A Distortion Analyacr
$\$ 1160$


## Description

## General

Hewlett-Packard Model 4333A Distorion A nalyzer measures total harmonic distortion down $100.01 \%$ full seale al 41 spol frequencies beiween 10 Hz and 100 kHz ; harmonies are indicated up to 600 kHz .
Automatic fundamental nulling reduces critical manual nulling operations where only coarse luning of the frequency vernicr ( $\mathbf{~} 8 \%$ of spol frequency) to less than $3 \%$ of set level reference is required.
A 1 kHz high-pass fiter which may be aclivated by a froml pancl switch is available for reducing the effects of hum components below 400 Hz .
A high sensilivity volemeter mode ofters 13 ranges in 10 dB steps: range is from $100 \mu$ V to 100 V rms full scale. The bandwidth is 10 H 2 10600 kHz for the $300 \mu \mathrm{~V}$ to 100 V ranges and 10 Hz 10200 kHz for the 100 V range. Meter indication is proportional to the average value of the sine wave and calibrated in rms volis/ /\%: dB scale is calibrited dBV.

## Specifications, Model 4333A

Dislortion measurement range; distonion levels of $0.01 \%$ to $100 \%$ arc measured full scale in ninc positions of meter range.
Frequency range for distortion measurement: frequency and muluplicr controls 41 spol frequencies (not including ouerlapping points) for choosing between 10 Hz Ihrough 100 kHz in a I, I.S. 2. 3. 4, 5. 6. 7. 8. 9. 10 sequence. Any sel frequency is variable more ihan $\pm 8 \%$ with frequency vernicr.
Distorlion measurement accuracy

> Hamontc measurement accuracy (full scale):

Range/Accuracy	$\pm 3 \%$	$\pm 6 \%$
$100 \%-0.03 \%$	$10 \mathrm{~Hz}-400 \mathrm{kHz}$	$10 \mathrm{~Hz}-600 \mathrm{hHz}$
$0.01 \%$	$10 \mathrm{~Hz}-100 \mathrm{kHz}$	$10 \mathrm{~Hz}-200 \mathrm{kHz}$

## Elimination characteristics

Fundamental rejection:
$>100 \mathrm{~dB}$. 10 Hz to 10 kHz (multiplier $\times 10 \times 100 . \times 1 \mathrm{~K}$ )
$>95 \mathrm{~dB}, 10 \mathrm{kHz}$ to 100 kHz (mulliplier $\times 10 \mathrm{~K}$ )
second harmonic accuracy: beller than $\pm 0.6 \mathrm{~dB} .10 \mathrm{~Hz}$ to 100 xHz

Distortion introduced by inslrument:
$>-95 \mathrm{~dB}(0.0018 \%)$ from 10 Hz 1010 kHz (mulloplier $\times 10 . \times 100 . \times$ I K)
$>-90 \mathrm{~dB}(0.0032 \%)$ from 10 kHz to 30 kHz (mulliplier $\times 10 \mathrm{~K}$ )
$>-85 \mathrm{~dB}(0.0056 \%)$ from 40 kHz 10 100 kHz (multiplier $\times 10 \mathrm{~K}$ )
Input
Impedance: $100 \mathrm{k} \Omega \pm 56$ shunted by $<80 \mathrm{pF}$
Single ended, low side chassis ground
Input level for distortion measurement: for $100 \%$ ( 0 dB ) sel level 1.0 V rms to 130 V rms. Nhinimum input for auto nulling is 1.0 V rms. Vollmeler range: $100 \mu \mathrm{~V}$ to 100 V ms full scale ( 13 ranges) 10 dB per range.
Frequency range for voltage measuremeni:
$10 \mathrm{~Hz} 10600 \mathrm{kHz}:(300 \mu \mathrm{~V}-100 \mathrm{~V}$ range $)$
10 Hz to 200 kHz : ( $100 \mu \mathrm{~V}$ range)
Voltmeter accuracy:

gange/Accuracy	$\pm 2 \%$	$\pm 5 \%$
$100 \mu \mathrm{~V}$	20 Hz to 50 kHz	10 Hz 10200 kHz
$300 \mu \mathrm{~V}$ to 100 V	20 Hz to 300 kHz	$10 \mathrm{~Hz} t 0600 \mathrm{kHz}$

Voltmeter resldual noise ( 6000 termination);
$300 \mu \mathrm{~V}$ range: $<25 \mu \mathrm{~V}$ rms
$100 \mu \mathrm{~V}$ range: $<10 \mathrm{mV}$ ms
Monflor output; 0.1 V rms $\pm 0.01 \mathrm{~V}$ rms open circuil for full scale meter indication. $2 \mathrm{k} \Omega \pm 10 \%$ oulpul impedance.
High-pass filter: 3 dB point at 400 Hz with 18 dB per octave solloff. Normally used only with rundamental frequencies greaser than I kHz.

## General

Power supply: $100,120,200,240 \mathrm{~V} \pm 10 \%, 481066 \mathrm{~Hz}$, approximately II VA. Rear terminals are provided for external battery sup. ply Posituc and negative voltages berwen 22 V and 40 V are required. Current drain from each supply is less than 200 mA .
Welght: net, $7.5 \mathrm{~kg}(163 \mathrm{lb})$. Shipping. $9.9 \mathrm{~kg}(22 \mathrm{lb})$.
Dimenslons: 42.6 cm wide ( 16.75 in .) $\times 13.3 \mathrm{~cm} \mathrm{high}(5.23 \mathrm{in}$.) $\times$ 34.9 cm decp ( 13.75 im .)

Optlons	Price
907: Front Hande Kit	add $\$ 15$
908: Rack Flange Kil	add $\$ 10$
909: Rack Flange \& Fronı Handle Combination Kit	add $\$ 20$

# SIGNAL ANALYZERS <br> 10 Hz to 13 MHz Spectrum Analyzer Model 3044A/3045A 



HP-IB 3045A Syslem with opilonal 9821A Calculator and 9862A Ploller

## Description

HP spectrum analysis systems, 3044A/3045A, are designed for applications where it is necessary 10 quantify the specirum with good frequency sod ampllitude accuracy. HP's model 3044A is a basic system consisting of a HP 31308 Syndiesizer and a HP 3571A Spectrum Detector. For more sophisticated applications, a programmable caleulalor is combined with the Speetrum Detector and Synthesizer. This configuration is called the HP 3045A Automatic Spectrum Analyzer system.

To maintain frequency accuracy, a synthesizer with sweep capability is used to time the delector. Because the characteristies of the synthesizer don't change over the full frequency range, frequency analysis at the lower lrequencies is just as accurate as at the higher frequencies. This is an important point to consider for the many applications where the full 13 MHz is nol needed.
The detector complements the synthessizer in that the amplitude readous is also digita. Now a speciral component's amplitude can be determined with greater accuracy and resolution. Calibrations in dBV or 18 m for 50 or 75 ohms are easily done with the digital scheme.

Because nol all measurements demand the accuracy of digital readings, analog outputs are provided for arther displays.

## Applications

The following applications are provided to show where the systems might be used and the resulis that can be expected. A wide range ol applications was ehosen so the applicability to other situasions should in. volve only minor changes.

## Characterizing bandpass fillers

In some respects, ithis is a neework analyzer problem. In cases where phase and group delay are not importani, the spectrum analyzer can characterize the Jrequency response as well as a network analyzer and it can characteriye other parameters which can'i be done wilh a network analyzer. Figure I shows an expanded plot of the top of a tiller using a 3044A system and an $x \cdot y$ recorder. The nexibility and bencfin of digital control of the synthesizer sweep is apparent in the plot which starts at 8148 kHz and ends 318151.5 kHz . Bocause the synthesizer was used to drive the filter at a known zero dBme we can easily usc the offsel feature to find the insertion loss which in this case was 12.65 dB . Plows of Filiers with difierent insertion losses could be plotied withoul having to change the $x-y$ recorder setlings becausc the analog outputs include this offect. Further lasts of the filter could now be performed that would not be possible with a network analyer. Measurements of intermodulation distortion could be made using iwo additional signal sources.

## Sideband analysis

This is a more traditional spectnm analysis using HP's 3044 A and 1201B Oscilloscope. Figure 3. is a polaroid picture of the spectrum. The carsjer frequency was supposed to be at 10.7 MHz . Therefore, the synthesizer was set up with a 10.7 MHz center frequency and a $\pm 500$ Hz sweep about the eenter firequency. From the picture, it is apparent that the catrier frequency is about where it should be. It is possible to move the center frequency in 0.1 Hz steps with the step buctons and look for the peak responses to more aceurately identify the carrice frequency.

Using the ? Hz resolution handwidth, 60 Hz sporious responses are reveated. Noise products also appear very close to the carries. Here the wide dynamic range of the system exposes thit responses that are more than 70 dB below the carrier.

## Distortion measurements

The speeurum analyzer system can be very powerful for characierizing the complete response of amplifies. Gain, noise, spurious distorLion and frequency response can all be done with one setup. This example of distortion measurement is one part or the total characterizalion that can be done.
Distortion of audio frequencies as they pass through amplifiers is measured by several methods. Total harmonic disturtion is found by measuring the harmonic oulpul assuming a pure sinewave inpul. Here again the 3045A offers bencitis through calculation power. Ahter the user enters the fundamental frequency, the calculator takes over and makes measurements at the appropriate frequencies and calculates the percentage distorion. Figure 2 shows the type of user-oriented printout that is possible using the 9830A Calculator and the 9866A Primter. The other caleulators have builh-in printers which cosuld give the same cype of printoul.
Intermodulation distortion enn similarly be measured as part of the same system provided the sources are available.

## Modulation messurements

Both AM and FM modulation show up vory well in the frequency domain Figure 4 shows a rypical wide band FM signal. This mea. surenient could be made with the same selup as Figure 2. A more sophisticated measurement was made using the 3045A. The calculator is used to program the insiruments for measurements al the carrier and sideband frequencies. From the data, the modulation index was calculated to be 1.53 with a calculator bessel algorithm. This is a good ex. ample of using the 3045A to make measurements that are not casy with a simple spectrum analyzer.


Figure 1. This bandpass filter was characterized using a 3044 A systam and an $x$-y recorder. By expanding the $Y$-axls so only 5 dB are covered. the ripple and 3 dB points are very alsy to Identily.


Figure 2. Using a 3045A system, an amplifier can be completely characterized for total harmonle disiortion as well as intermodulation distortion, noise. spurious, irequency response and galn


Figure 3. A 3044A was used 10 analyze close In spurious and nolse of a 10.7 MHz cartiel. The sweep covers 1 kHz around the carrier.


Flgure 4. Wideband FM modulation wlin a 5.3 MHz carrier.

## Telemelry

One of the most poweriul applications for the spectrum analyzer is in monitoring frequency multiplexed telemetry or alam systems.
The operaling system may have many channels at different levels. When spurious signals appear or channels drop out. it is difficult to see them on a CRT. The 3045 A system can be used to show just the problems. This is done by storing the spoetrum of the system when it is running properly. Figure sa shous a part of such a lelemetry system. Then subsequent specirums are suburacted from the normal spotIrum. Channels thal drop out or lose gain will appear as negative points as shown in Figure 5b. Sparious signals that were not present before will appear as points above the nuise level. Ruther than looking over the entire spectrum for problems, the system shows them graphically with enough frequency accuracy so the channel with problems can be quickly identificd. The syseem can be made more automatic by including printout of the probable cause of the problem.
This technique applies to many other applications where differences in the spectrum are to be examined.


Figure 5a. This represents a portion of a frequency multiplexed system operating normally. Notice that not all channels are operating al the same level.


Figure 5b. The difference between a normal system and one that has probiems is immediately apparent. One of the channels has dropped oul.

## 3044A/3045A Specifications

(using HP's 3330A or 3330 B as local oscilhar)

## Frequency specilicaitions

Pange: 10 Hz to 13 MHz
8weep width: single sweep or concinuous sweeps of 10,100 , or 1000 steps of frequency increments from 0.1 Hz lo 1.3 MHz with 0.1 Hz resolution.
Digital frequency readout: indicales center, minimum, or maximum freyuency during continuous scans and actual frequency during single scans
Stability: $\pm 1 \times 10^{-8}$ per day. $\pm 1 \times 10^{-3}$ per month.

Resolulfon: 3 dB resolution bandwidehs of 3 Hz to 10 kHz in a 1.3 . 10 sequence.
Selecllvity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ resolution bandwidth <11:1.
Smoothing: provides video filcering with a bandwidth of $1 / 30$ th the resolution bandwidth on sll but the 3 Hz and 10 Hz bandwidths.

## Amplitude speciflcations

Absolule amplltude range: $-130 \mathrm{dBm} 10+20 \mathrm{dBm}$ in 10 dB steps:
-140 dBV to +10 dBV in 10 dB steps.
Dightal ampltiude readout: $\pm 199.99 \mathrm{~dB}$ with 0.01 dB resolution.
Dynamle range: 70 dB
Average noise level: -127 dBV with 1 kHz -resolution bandwidth.
Distortion responsee: $>80 \mathrm{~dB}$ below input range seting.
Spurious responses: $>70 \mathrm{~dB}$ below input range setling.
Power line related responses: $>70 \mathrm{~dB}$ on +20 dBm through -30 dBm in ranges. $>60 \mathrm{~dB}$ on -40 dBm range. $>50 \mathrm{~dB}$ on -50 dBm range.

## Amplltude accuracy

Frequency response: $\pm 0.25 \mathrm{~dB}$ ( 250 kHz refertnce)
Input range: $\pm 0.05 \mathrm{~dB}$ per siep, $\pm 0.15 \mathrm{~dB}$ Iotal accumulation


Input specificalions
input connector: BNC
input impadance: $50 n, 75 \Omega>30 \mathrm{~dB}$ relurn lass I M $\sqrt{ } \pm 5$ \% shunted by 30 pf
Maximum input leyel: +20 dBn
Output characierlatics
Verticel output: $10 \mathrm{~dB} / \mathrm{Vdc} \pm 13.5 \mathrm{~V}$ range
Horlzonial outpul: $0-10 \mathrm{~V}$ de (From 3330B)
Probe power: $+15 \mathrm{~V},-12.6 \mathrm{~V}$; 150 ma max.

## Specifications

(using HP's 3320A / B as local oscillator)
Spurlous responses: 60 dB below input range.
Average nalae level: - 127 dBV with 1 kHz -resolution bandwidth.
General Informalion
Amplitude stability and temperature coefficient;

$10 \mathrm{kHz}, 3 \mathrm{kHz}, 100 \mathrm{~Hz}, 30 \mathrm{~Hz} .10 \mathrm{~Hz}$, EW 's			
$\pm 0.05 \mathrm{~dB}$	$\pm 0.08 \mathrm{~dB}$		$\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$

$1 \mathrm{kHz}, 300 \mathrm{~Hz}, 3 \mathrm{kHz}$ BW s


Sweep rate: 1000 steps -2.5 sec max.
100 sleps -250 msec max.
10 steps - 25 msec max.
Reading rate: manual tunc mode $-4 / \mathrm{sec}$
Response Ilme: 0.3 msec to f sec in a $1.3,10$ sequence for the 10 kHz 103 Hz BW rapectively.
Display reference: relative measurements may be made by selting the display reference switch to relative and pressing the enter offset bulton.
Programmability: all controls, except power switches, are programmable using the HP-IB format.
Programmed reading rate: >17 readings/sec.
Model number and name Price
There are many oprions available to change the sysiems configuration. Those listed below are the basic choices.
3044A Spectrum Analyzer
(order oplion 100 and either opuion 200 or 304 )
Oplion 100 standard 3571A
Oplion 200 standard 50 ohm 3320A $\$ 2335$
Option 304 standard $50 \mathrm{ohm} 3330 \mathrm{~B} \quad \$ 7020$
3045A Spectrum Analyzer
Oprion 100 standard $50 \Omega$ system
\$23.295
Option 121 9821. 1.7 k memory and internal cassette $\$ 1090$
Option 130 9830^/9866A and internal casselte \$4935

## 5 Hz to 50 kHz spectrum analyzer

 Model 3580A

## Description

Hewlell-Packard's 3580A Spextrum Analyzer has been optimized for frequencies between 5 Hz and 50 kHz . The largest single problem in this frequency range has been the display. Digital slorage CRT uxhibits display at high specd on a conventional CRT from a digital memory.

Sweep time required ss another problem with low frequency analysis. Spectrum of interest is usually above a noise or threshold: it is possible to speod swecp. When signals are encountered again, swoep slows down to reproduce full response. Spced gain to a factor of ten becomes possible with this adaptive sivecp featurc. A bandwidth of I Hz gives this instrument the best resolution of any spectrum analyzer. and also simplifies noisc analysis.

## Digital storage

Trace is derived from a digital memory although it looks like tradjtional analog display. Trace can be stored indefinitely and by dividing the memory into two parts, two traces can be stored and compared. Spectral information can be studied and interpreted.


## Agapive sweep

A tremendous savings in sweep time can be achicved by using adap-
(ive sw'eep. In the left trace over 80 dB of dynamic range is used to look ar low level signals and noise. Two hundred seconds wese required to make the siveep. In the right trace, baseline is raised to give 50 dB of dynamic range. Noise and other responses are not analyzed so siveep now takes only 14 seconds.


## 1 Hz bandwidth

Using 1 Hz bandwidth, line related responses are clearly exposed. With 10 Hz bandwidih these rexponses are hidden. If you are using a spocirum analyzer to txpose spurious responses nol visible in sime domain, it is imporiant to have a narrow Sile bandwidth for maximum resolution



## Telecommunications application

Besides analysis of voice spocirum. HP's 3580A gives a clear picture of frequency spectrum for digital eransmission. This picture shows a 1200 baud full duptex modem using double sideband suppressed carrier FSK modulation. The "answer" band covers 850 Hz to 1450 Hz , while the "Iransmit" band covers 1950 Hz to 2550 Hz . The higher frequency band al high levels from 3150 Hz io 3750 Hz comes from 3rd order products of the answer band.
Internal cal signal
Á 10 kHz pulse derived from a crystal can be used to compensale for internal errors. A 10 kHz cal pot is provided 3010 kHz fundamen. tal can be adjusted to fall on the cop line of the display. With this feature, operation and calibration can be verified for most of the instrument.


## Specifications

Frequency characteristics
Range: 5 Hz to 50 kHz .
 $55^{\circ} \mathrm{C}$.
Display accuracy: frequency crror between any iwo poinis is less thar $\pm 2 \%$ of their indicaled separation.
Typical stablity: $\pm 10 \mathrm{~Hz} /$ hr ufter I hour: $\pm 5 \mathrm{~Hz} /{ }^{a} \mathrm{C}$.
Frequency dial resolution: 20 Hz on frequency dial.

Bandwidihs: (accuracy $\pm 15$ )	$\begin{gathered} 1 \mathrm{~Hz} \\ \left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right) \end{gathered}$	3 Hz	10 Hz	30 Hz	100 Hz	300 Hz
Shape factor:		10				8

Out of range blank: [F controls are sel so portions of displayed sig. nal lie below 0 Hz or above s0 kHz ; the baseline is displayed.
Amplitude specifications
overall instrument range:

$$
\begin{aligned}
& \text { Linear } 20 \mathrm{~V}-100 \mathrm{nV} \text { rull scatc } \\
& \begin{array}{l}
\text { Log } \quad+30 \mathrm{dBn} \text { or } \mathrm{dB} \mathrm{~V} \text { : } \\
-150 \mathrm{dBm} \text { or } \mathrm{dB} \mathrm{~V}
\end{array}
\end{aligned}
$$

Amplifude accuracy:	Log	Linear
Frequency response:		
$20 \mathrm{~Hz}-20 \mathrm{kHz}$	$\pm .3 \mathrm{~dB}$	$\pm 3 \%$
$5 \mathrm{~Hz}-50 \mathrm{kHz}$	$\pm .5 \mathrm{~dB}$	$\pm 5 \%$
Sivitching between bandwidhs (25 ${ }^{\circ} \mathrm{C}$ ):		
$3 \mathrm{~Hz}-300 \mathrm{~Hz}$	$\pm .58 \mathrm{~B}$	$\pm 5 \%$
$1 \mathrm{~Hz}-300 \mathrm{~Hz}$	$\pm 1 \mathrm{~dB}$	$\pm 10 \%$
Amplifude display:	$\pm .2 \mathrm{~dB}$	$\pm 2 \%$
Inpul attenuator:	$\pm .3 \mathrm{~dB}$	$\pm 3 \%$
Amplitude reference level: (IF atienuator)		
Most sensitive range:	$\pm 1 \mathrm{~dB}$	$\pm 10 \%$
All oiber ranges:	$\pm 1 \mathrm{~dB}$	$\pm 3 \%$

## Dynamic range: 80 dB .

IF feedihra: input level $>10 \mathrm{~V} .-60 \mathrm{~dB}:<10 \mathrm{~V},-70 \mathrm{~dB}$.
Spurlous responses: $>80 \mathrm{~dB}$ below input reference level.
Smoothing: 3 positions, roltoff is a function of bandwidth.
Overload indleator: this LED indicator warns of possible inpul amplifier overloading. Without this indication it would be possible to iniroduce spurious responses without knowing it.

## Sweep characteristics

Scan width: 50 Hz to 30 kHz .
Log sweep: $20 \mathrm{~Hz} 1043 \mathrm{kHz} \pm 20 \%$.
Sweop times: . 1 sec 102000 sec .
Rep: in the repetitive mode, sweep will conuinuously swoep specified band.
Reset HP's 3580 is sel to the stan frequency of the sweep.
Manual: in combinatien with the concentric knob, manual sweep fully duplicates the span of the electronic sweep.
Adaptlve sweep: when in adaptive sweep below the Ihreshold level. scan speed is 20 to 25 times faster. Threshold is adjustable to cover 0 $60 \%$ of sereen. Signals greater than about 6 dB sbove threshold are detected and swept slowly.
Sweep arror light: this LED indicales a sweep that is too fast to capture full response. When the light is on, response will be $>5 \%$ lower than it should.
Zero scan: to look at the time varying signal at the center or start frequency within the bandwidth selected, the zero sean is used.
Output characteristics
Tracking generator outpul: 〈also known as BFO or tracking oscillator oulpui).
Range: 0102 V rms.
Frequency response: $\pm 3 \% .5 \mathrm{~Hz} 1050 \mathrm{kHz}$.

## Impedance: 600\%.

Total harmonle and spurious contenl: 40 dB below I voll signal level.
X-Y recordar analog outpuls
Veritcal: 0 ro $+5 \vee \pm 2.5 \%$.
Horizontal: 0 to $+5 \vee \pm 2.5 \%$.
Impedance: ) k $\Omega$.
Pen lift: contact closure to ground ducing swece.
DImenslons: 412.8 mm wide $\times 203.2 \mathrm{~mm}$ high $\times 285.8 \mathrm{~mm}$ deep ( $1614^{\prime \prime} \times 8^{\prime \prime} \times 111_{4}{ }^{\prime \prime}$ ).
Weight: net, 12.25 kg ( 27 lb ): 3580 A Opt. 00 ): net, 15.88 kg ( 35 lb ).
Temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Power: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$, or $240 \mathrm{~V}+5 \%-10 \% .48 \mathrm{~Hz} 1066 \mathrm{~Hz}$ 35 VA max.
Optlon 001 battery: 5 hours from full charge. 14 hours to fully recharge. The internal baltery is protected from deep discharge by ar automatic lurn off. Useful life of batteries is over 100 cycles.

Model Number and name	Price
3580A Option 001: internal rechargeable battery	add $\$ 380$
3580A Option 002: floaling input	add $\$ 105$
3580A Spcelrum Analyzer	$\$ 4665$

SD SIGNAL ANALYZERS

## Spectrum Analyzer, 0.01 to 350 MHz Model 8557A/182T

- Easy to operate
- Signal level displayed directly in dBm
- $\pm 2.25 \mathrm{~dB}$ amplifude accuracy



## New 8557A Spectrum analyzer

Oscilloscope plug-in spectrum analyzer
The Model 8557 A is a 0.01 to 350 MHz spectrum analyzer which plugs into any 180 series oscilloscope display. It is Pully culibrated. easy to use, and provides an cconomical means for making frequency domain measurements in the RF range. Although low in cost, the 8557A features high performance and accuracy.

## Simple, 3-knob operation

Mosi mensurements are a three slep process. Center the inverted marker under the signal to be measured; its frequency is displayed on the digital readous. Zoom-in on the signal by decreasing the frequency span; bandividib, swecp time. and video fillering are sel automatically. Raise the signal to the top of the CRT: read its amplitude (in dBm ) off the relerence level control.

## Absolute amplifude calibration

Signal levels can be read direcily from the CRT in dBm ( dBm V for Option 002) without the use of extermal standards or calculations. The signal level represented by the 10 p CRT graticule line is almays indicated by the reference level control, and vertical scale factors of 10 dB/div, I dB/div, or lincar can be selected.

## Continuously variable video fitier

Video filiering is a function of resolution bandwidth. A constant degree of filtering is maintained when the bandwidth control is changed. 35 when zooming in on a signal. Noire measurements can be easily made in the "MAX" position ( 1.5 Hz bandwidih).

- Resolution bandwidths 1 kHz to 3 MHz
- Optional 758 input with dBm or dBmV callibration


## Optional 75 ohm input

Two options are available which allow measuremens in 75 ohm sysiems: Option 001 has 75 ohms impedance and relains the dBm power calibration: Option 002 is also 75 ohms, but the amplitude is calibrated in dBmV for measurements on systems such as CATV.

## Suggested displays

The 85586 will function with any 180 -series display. However. the following are suggested: For a low conc, large screen displey, the Model 1R2T' is ideal; the Model 181T offers variable persistence and storages and the Model 180 TR offers a rack mount configuration. In addition, it is advanlageous to order the 180T, 180TR, 181 T . 181 TR or 182T displays which provide a long persistence P39 phosphor (except the 181T and 181TR variable persistence displays) and four nonbuffered, rearpanel outputs compatible with most X-Y recorders. 100 volt operation is avaluble as Option 003.

## 8557A Specifications

## Frequency specifications

Frequency range: 10 kHz to 350 MHz .
Frequency display span (on a 10 -division CRT horizontal axis): 12 ealibrated spans from $20 \mathrm{Mhz} /$ div to $5 \mathrm{kHz} /$ div in a 1.2 .5 sequence. In " $F$ " or full span the analyzer displays the full 10 kHz 10350 MHz . In "0" the analyzer is a fixed-tuned recciver.
Accuracy: frequency error between nay two points on the display is less than $\pm 10 \%$ of the indicated frequency separation.
Digltal frequency readout: indicates center frequency or start froquency of the frequency display span. In full span, the readout indicates the frequency al the marker.

Accuracy: (after zeroing on the LO fedthrough): $\pm 3 \mathrm{MH} z+10 \%$ of FREQUENCY SPAN PER DIVISION sealing.

## Stabllity

Resldual FM: less than I kHz peak-lo-peak for time $\leq 0.1 \mathrm{sec}$ (video filker full clockwise, but not in detent).
Nolse sldebands: more than 75 dB below CW signal, 50 kHz or more away from signal with a 1 kHz sesolution bandwidth and full video filtering.
Resolullon
Bandwidth ranges: 3 dB resolution bandwidihs of I kHz 103 $\mathrm{MHz}_{\mathrm{in}}$ a 1. 3. 10 sequence. Resolution bandwidth may be coupled to frequency display span at a ratio of two display spans per resolution bindwidth.
Resolution bandwidth accuracy: individual resolution bandwidth 3 dB points calibrated to $\pm 20 \% .10^{\circ}-40^{\circ} \mathrm{C}$.
Resolutlon bandwidth selectlvily: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ resolution bandwidih ratio <ls:1
Video filter: post-delection low pass filter used to average displayed noise. Bandwidth variable from approximately $3 X$ Resolution Bandwidih to approximately $0,01 \mathrm{X}$ Resolution Bandwidth. In the MAX position provides a noise averaging rilter wilh a bandwidth of approximately 1.5 Hz .

## Amplitude specifications

## Absolute amplitude callbration range

Log callbration range: from -117 dBm to +20 dBm in 10 dB steps. Reference level vernier, 0 to -12 dB continuously.
Log display ranges: $10 \mathrm{~dB} /$ div on a 70 dB display and $1 \mathrm{~dB} / \mathrm{div}$ on $\operatorname{an} 8 \mathrm{~dB}$ cisplay.
Linear display: from 2.2 microvolts ( -100 dBm ) full-scale to 2.24 voles $(+20 \mathrm{~d}(\mathrm{Bm})$ fullscale in 10 dB steps. Full-scale signals in linear ranslate to approximately full-scale signals in log.

## Dynamic range

Average nolse level: <-107 dBm with a 10 kHz resolution bandwidth (0 dB input attemuation), $\mathrm{I}-350 \mathrm{MHz}$.
Spurious reaponses: for input signal level $\leq$ Optimum Inpui Level selling. all image and out or band mixing responses, harmonic and inter-modulation distortion products are more than 70 dB below input signal level, 1 MHz to $350 \mathrm{MHz}: 60 \mathrm{~dB}$ below. 20 kHz . 10) $\mathrm{MH}_{2}$.

Spurlous responses due to 3rd order Intermodulation distorHon: for two input signals 10 dB ahove Oplimum Inpat Level setting 3rd Order Intermodulation distertenn products are $>70 \mathrm{~dB}$ below the inpul signals, I-350 MHz; 60 dB below. 10 bHz 10 I MHz (signal separation $\geq 50 \mathrm{kHz}$ ).
Reaidual responses (no slgnal present at input): $<-100 \mathrm{dBm}$ with 0 dB inpulatenuation, $0.1-350 \mathrm{M} \mathrm{Hz}$.

## Amplitude accuracy

Frequency response (fatness): $\pm 0.75 \mathrm{~dB}$
Switching between bandwidthe: (at $10^{\circ}-40^{\circ} \mathrm{C}, 90 \%$ relative humidity)
3 MHz to $300 \mathrm{kHz}: \pm 0.5 \mathrm{~dB}$
$3 \mathrm{MHz} 101 \mathrm{kHz}: \pm 1.0 \mathrm{~dB}$
Reference level accuracy (at fixed center irequency, fixed resolution bandwidih): $\pm 1.5 \mathrm{~dB}$ (includes input attenuator and IF gain accuracy. May be improved using IF or RF substitution techniques).
Amplifude $\log$ dlsplay: $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$ bur no more hati $\pm 1.5 \mathrm{~dB}$ over full 70 dB display range.

## Callbrator

Amplitude: $-30 \mathrm{dBm} \pm 1 \mathrm{~dB}$.
Frequency: $250 \mathrm{MHz} \pm 50 \mathrm{kHz}$, crystal conirolled.

## input specifications

Input connector: Type BNC female.
Input Impedance: $50 \Omega$ nominat. Typical reflection coefficient $<0.27$ (I.74 SWR) for all Oplinum Input Level settings except $-40 \mathrm{dBm}(0$ dB Input Allenuation).
Input altenuator: 50 dB range. Accuracy $\pm 0.5 \mathrm{~dB}$ per 10 dB step. but nol mose than $\pm 1.0 \mathrm{~dB}$ over full 50 dB range.

## Maximum Input levels

AC or peak: peak or average power +20 dBm ( 3.16 V ac peak or 0.1 W) incideni on analyer. (MAX input markings on fromt panel indicate moximum inpul allowsble for $<1 \mathrm{~dB}$ gain compression or attenuator overload.)
DC: $\pm 30 \mathrm{Vdc}$.

## Oulput characteristics

Cal output: $-30 \mathrm{dRin}, 230 \mathrm{MHz}$.
Probe power; $+15 \mathrm{~V},-12.6 \mathrm{~V}: 150 \mathrm{~mA}$ max. Powers I 120A, 1121 A . 1123 A . or 1124 A high inipedince probes.

Note: oscelloscope display reir pancl oulpur: refer to 180 T -series dixplays and 180 -xerics Ophon 807 displays unly. Sec betow for information on modifying slandard displays.
Vertical oulpul: (aliX A an oscilloscope display rear panel.) 0 to 0.8 V for 8 -division dellection un CRT displisy: SOn output impedince
Pen lifthlanking output: (AUX B un oscilluscope disphey rear panel.) 0 to 15 V ( 0 V , per down). Approxinzately 10 k 2 imped ance when blanked. Compatible with HP 7004B. 7034B. 7005 B . and 7035 B X-Y RECORDERS
21.4 MHz IF output: a 21.4 MHz output linearly related to the RF inpul to the analyzer. Bandwidth controlled by analyzer Resolution Bandwidth setting. Amplitude controlled by imput attenuatos. IF gain vernier, and first six IF step gain positions ( -10 through -60 dBm Rer Level with 0 dB input attenuation). Output is approximately - 10 dBm for full-scale signals on the CRT. (AUX C on oscilloscope display rear pancl, 505 output impedance.)
Horizontal output: (AUX D on oscilloscope display rear panel.) $-5.0 \mathrm{to}+5.0 \mathrm{~V}$ for 10 div CRT deflection, 5 k 0 ouput impedanoc.

## Sweep characteristics

## Sweep time

Auto: sweep time is automatically controlled by Frequency Span, Resolution Bandwidth, and Video Filter.
Manual: sweep determined by front panel conirol; continuously variable across CRT in either direction.
Callbraled sweep limes: 16 internal sweep times from 0.1 ms/diy to $10 \mathrm{sec} / \mathrm{div}$ in a 1.2 .5 sequence. For sweep times of $2 \mathrm{~ms} /$ div 10.10 sec/div, the analyzer is operable in its normal swept-frequency mode. Faster sweeps are useful for analyaing modulation waveforms when the analyzer is being operated as a fixed-tuned receiver with 0 Display Span. Sweep times may be reduced to an effective 10 $\mu \mathrm{sec}$ /div by using the 180 -series X 10 horizontal magnifier.
Accuracy: $\pm 10 \%$.
Sweep trigger
Internal: swecp internally triggered by envelope of RF input signal (signal amplitude of 1.0 division peak-lo-peak required on CRT display).
Line: sweep trigetred by power line frequency.
Free run: sweep trigered repetitively by internally generated ramp.
Single: sweep triggered by from panci sweep trigger switch (spring relurn position).
Display characteristics
Oscliloscope display sections
180 Sertes compalibility: The 8557A is compatible with all 180A/ 180AR. 180C. 180D. 180F. 181A. 181AR, 182A, 184A, and 184B mainframes. 1 is operable with the 183A, 183 B mainframes, but the display is limited to 6 divisions by the 6 -division CRT. The following 180 -series oscifloscope displays are recommended for use with the 8558B Spectrum Amblyer because they provide 4 manbuffered rear panel suxiliary oulpuls (for unattenuated ventical. horizontal, and penlift outputs) and P39 medium-persistence CRT phosphor (except with 18IT, I8ITR whicls provide variable persis(ence):
180TR P39 phosphor
181 T P31 phosphor with variable persistence
181TR P31 phosphor with variable persistence
$182 \mathrm{P} \quad$ P39 phosphor
100 volts operation available as ontion 003.
Sce HP Scrvice Notes 180A/AR/C/D-1.181A/AR-7, and 182A-1 for informativn nueded to modily sthndard display to provide aux. iliary oulputs.

Model number and name	Price
8557A Spectrum Analyzer	\$3450
182T Display	\$1400
180TR Display	\$1450
181T Display	\$2500
Option 001 : 79 ohm inpul (B.XC) , dBm calibrstion	add $\$ 100$
Option 002: 75 uhm input ( BNC ), $\mathrm{dBmV}^{\text {calibration }}$	add $\$ 100$

- Simple, 3 knob operation
- Digital frequency readout
- Display of signal levels directry in dBm


855BB/182T

## 855BB Specirum analyzer

Economy plus performance
The Model 8558 B is a 0.1 to 1500 MHz spectrum analyzer which plugs into any model 180 -series oscilloscope display. This low cost, easy-to-use analyzer provides high accuracy in both amplitude and frequency measurements.

## Simple, 3-knob operation

Mosi measurements are e simple three step process. Tunc to the signal to be measured; ifs frequency is displayed on the LED readout. Zoom-in on the signal by decreasing the frequency span; bandwidth. sweep time, and vidco filtering are sel automatically. Raise the signal to the top of the CRT: read its amplitude (in dBm ) off the reference level conirol.

## Absoluite amplitude calibration

Signal levels can be read directly from the CRT in dBm ( $\mathrm{d} \mathrm{\theta m}_{\mathrm{m}} \mathrm{V}$ for Option 002) without the use of exiernal slandards or calculations. The signal level represented by the $\operatorname{lop}$ CRT gralicule line is always indicated by the reference level control, and scale factors of $10 \mathrm{~dB} / \mathrm{div}^{2}, 1$ $\mathrm{dB} / \mathrm{div}$, and linear can be selected.

## Optional 75 ohm input

Two oplions afe available which allow measurements in 75 ohm systems: Option 001 has 75 ohms impedance and retains the dBm power calibration: Option 002 is also 75 ohms, but the amplizude is calibrated in dBmV for measurements on systems such as CATV.


Suggested displays
The 8558 B will function with any 180 -series display. However, the rollowing are suggested: For a low cost, large screcn displas'. the Model 182 T is ideal: the Model 181 T offers variable persistence and slorage: and the Model I80TR offers a rack mount configuration. In addition, it is advantagcous to order the 180T, 180TR, 181T, 181 TR or 182 T displays which provide a long persistence P39 phosphor (exeept the 181 T and I8ITR variable persistence displays) and four nonbuffered, rear panel oulputs compatible with mosi $X-Y$ recorders. 100 voll operation available as option 003.

## 8444A Option 058 Tracking generator ( $0.5-1300 \mathrm{MHz}$ )

Make swept frequency response measurements to $\pm 1.5 \mathrm{~dB}$ from 0.5 101300 MHz with greater than 90 dB of dynamic range. The output is absolutely calibrated al 0 dBm and continuously variable to -10 dBm . The frequency of unknown signals as well as the frequency of any point on the frequency response curve can be measured by a counter using the external counter output on the tracking gencrator.

## 8558B Specifications

## Frequency specifications

Frequency range: 100 kHz 10 5500 MHz .
Frequency display span (on a 10 -division CRT horizontal axis): 14 calibrated spans from $100 \mathrm{MHz} /$ div to $5 \mathrm{kHz} /$ div in a 1.2 .5 sequence. In " 0 " the analyzer is a fixed-tuned recciver.
Accuracy: frequency error between any two points on the display is less than $\pm 5 \%$ of the mdicaled frequency separation.
Digital irequency readout indicates center frequency or start fiequency of the frequency display scan. Two ranges: 0 to greater than 195 MHz with 100 kHz resolution; 195 MHz to 1500 MHz with I MHz resolution. ZERO conirol allows frequency readout to be adjustad for accurate calibration anywhere in the frequency range: CAL control removes frequency hysteresis.
Accuracy (after zeroing on the LO feedthrough and operation of the CAL bulton, $20^{\circ}-40^{\circ} \mathrm{C}$ :

- $-195 \mathrm{MHz}^{2} \pm 1 \mathrm{MHz}+20 \%$ of FREQUENCY SPAN PER DIVISION selling ( $\leq 1 \mathrm{MHz}$ per division).
$195-1500 \mathrm{MHz}: \pm 5 \mathrm{MHz}+20 \%$ of FREQUENCY SPAN PER DIVISION selling.
Stability
Realdual FM: Iess than I kHz peak-to-peak for lime $\leq 0.1 \mathrm{sec}$.
Nolse aldebands: more than 65 dB below CW signal. 50 kHz or more away from signal with a $\mid \mathrm{kHz}$ resolution bandwidih and full video filter


## Resolution

Bandwidth ranges: 3 dB resolution bandwidths of I kHz to 3 MHz in a $1,3.10$ sequence. Resolution bandwidth may be coupled to froquency display span al á ratio of two display spans per resolution bandwidth.
Resolution bandwidth accuracy: individual resolution bandwidth 3 dB points calibrated $10 \pm 20 \%$.
Resolution bandwldit selecilivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ resolution bandwidth ratio <15:I.

VIdeo iliter: post-detection filter used to average displayed noisc. Bandwidih variable from approximately IX Resolution bandwidth In approximately $0.01 X$ Resolution handwidth. in the MAX position provides a noise averaging filler with a bandwidth of approximately 1.5 Hz .

## Amplitude specifications

Absolute amplilude callbratlon range
Log callbration range: from $-115 \mathrm{dBm} t 0+30 \mathrm{dBm}$ in 10 dB steps. Reference level vernicr, 0 to - 12 dB continuously.
Log display ranges: $10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display. and $\mathrm{I} \mathrm{dB} / \mathrm{div}$ on an 8 dB display.
Linear display: from 2.2 microvolts ( -100 dBm ) full scale to 7.1 volts ( +30 dBm ) full-scale in 10 dB steps. Full-scale signals in lin. car tramslate to approximately full.scale syenals in log.
Dynamic range
Average nolse level: <-107 dBm with a 10 kHz resolution bandwidth $\{0 \mathrm{~dB}$ input attenuatoon\}.
Spurious responses: for inpul signal level $\leq$ Optimum Inpur Level scaling. all image and nut-nf-band mixing responstes. harmonic and intermodulation distortion products are more than 70 dB below input signal livel. 5 MHz to 1500 MHz : 60 dB below, 100 kHz os MHz .
Spurlous responses due to 3rd order intermodulation distorItion: for tho inpul sigials 10 dB above Optimum Inpui Level selting 3rd Order Intermodulation distortion products are $>70 \mathrm{~dB}$ below the input signals, $5-1500 \mathrm{MHz}$. 60 dB below, 100 kHz 10 S MHz (signal separation $\geq 50 \mathrm{kHz}$ ).
Residual responses (no signal present al inpul): $<-100 \mathrm{dBm}$ with 0 dB impur altenuation.

## Amplitude accurscy

Frequency response (flatness): $\pm 1.0 \mathrm{~dB}$.
Swltehing between bandwidths (al $20^{\circ}-30^{\circ} \mathrm{C}$ ):
$3 \mathrm{MHz} 10300 \mathrm{kHz}: \pm 0 . \mathrm{S}$ ठB.
$3 \mathrm{MHz} 101 \mathrm{kHz}: \pm 1.0 \mathrm{~dB}$.
Reference level eccuracy (at lixed center frequency. fixed resolution bandwidit): $\pm 1.5 \mathrm{~dB}$ (includes inpur attenuator and IF gain accuracy. May be improved usilg IF or RF゙ substitulion lechniques).
Amplliude log dlaplay: $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$ but not more than $\pm 1.5 \mathrm{~dB}$ over full 70 dB display range.

## Callbrator

Amplliude: $-70 \mathrm{dBm} \pm 1.0 \mathrm{~dB}$.
Frequenoy: $280 \mathrm{MHz} \pm 50 \mathrm{kHz}$, crystal controlled.
Inpul specifications
Input connector: type N female.
Input Impedance: 50s nominal.
Typical reflection cuefficient $<0.20(1.5 \mathrm{SWR})$ for all Optimum Input Level seltings except -40 dBm ( 0 dB inpul allenuation)
Input altenuator: 70 dB range.
Accuracy $\pm 0.5$ dB per 10 dB slep bul nol more than $\pm 1.0 \mathrm{~dB}$ over full 70 dB range.
Maximum Inpul levels
AC or peak: peak or average power +10 dBm ( 1.0 V ac peitk) incident or mixer ( 0 dB inpul attenuation) +30 dBm ( 10 V ar peak or 1
W), iticident on inpul altenuitos. (MAX iopul markings on front
panel indicate maximum naput allowable for <1 $\delta \mathrm{B}$ gain compression or attenuator overioadi).
DC: $\pm 30 \mathrm{Vdc}$.

## Oulput characteristics

LO output: +10 dBm nominal, 50 ohms: $2.05-3.55 \mathrm{GHz}$
Cal oulput: -30 dBm .280 MHz with 2nd through 5 h harmonics greater than -60 dBm .
Probe powar: $+15 \mathrm{~V},-12.6 \mathrm{~V}: 150 \mathrm{~mA}$ max.
Powers 1120A. 1121 A . 1123 A , or 1124 A high impedance probes.
Note: the following oscilloscope display rear panel oulputs refer to
180T. 180TR. 18IT, 181TR displays and older 180 -series displays with Option 807 only.
Vertleal oulput (AUX A on osciltoscope display' rear panel.) 0 to 0.8 $\checkmark$ for 8 -division dellection on CRT display: 50 h outpul impedance.

Pen lifthblankling output: (AUX B on oscilloscope display rear panel.) 0 to is $\vee(0 \mathrm{~V}$. pen down). Approximately $10 \mathrm{k} \Omega$ impedance when blanked. Compalible with HP 7004B, 7034B, 7005 B , and 7035 B X-Y RECORDERS.
21.4 MHz IF output: a 21.4 MHz output linearly related to the RF input to the analyzer. Bandwidth controlled by analyzer Resolution Bandwidth setting. Amplitude controlled by input atenator. IF gain vernier, and first six IF step gain positions ( -10 throgh -60 dBm Ref Level with 0 dB input attenuation). Ouput is approximarely -10 dBm for full-scate signals on the CRT. (AUX C on oscilloscope display rear panel, son output impedance.)
Horizontal outpurt: (AUX D en oselloscope display rear panel.) -5.0 to +5.0 V for 10 div CR'T deflectien, 5 k? oulput impedanec.

## Sweep characteristics

Sweep time
Auto: swecp time is automatically controlled by Frequency Span, Resolution Bandwidth, and Videe Filer.
Manual; sweep deternined by front panel conerol, continuously variable across CRT in either direction.
Callbrated sweep lime: 16 internal sweep times from $0.1 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$ in a $1,2,5$ sequence. For sweep himes of $2 \mathrm{~ms} / \mathrm{div}$ to 10 sec/div, the analyzer is operable in its normal swept frequency mode. Faster sweeps are useful for analyzing modulation waveforms when the analyzer is being operated as a fixed-tuned receiver with 0 Display Span. Sweep times may be reduced to an effeclive 10 $\mu \mathrm{scc} /$ div by using the 180 -series $\times 10$ horizontal magnifier.
Aceuracy: $\pm 10 \%$.

## Sweep trigger

Internal: sweep internally triggered by envelope of RF input signal (signal amplatude of 1.0 division peak-lo-peak required on CRT display).
LIne: sweep triggered by powes line frequency.
Free run: sweep trigecred repecitively by internally gencrated ramp.
Single: sweep triggered by front panel sweep trigger switch (spring return position).
Display characteristics
Oscilloscope diaplay sections
180 Serles compatlility: the 8558 B is compatible with all 180A. $180 \mathrm{AR}, 180 \mathrm{C}, 180 \mathrm{D}, 180 \mathrm{~F}, 181 \mathrm{~A}, 181 \mathrm{AR}, 182 \mathrm{~A}, 184 \mathrm{~A}$, and 184 B mainframes. It is operable with the 183 A. 1838 mainframes, but the display is limited to 6 divisions by the 6 -division CRT. The following 180 -series oscilloscope displays are recommended for use with the 8558 B Specirum Analyzer because they provide 4 nonbuftered rear panel auxiliary ollpuls (for unatlenuated vertical. horizonial, and penlift outpuss) and P39 medium-persistence CRT phosphor (except with 181T. I8ITR which provide variable persis. lence):

180TR	P39 phosphor
181T	P31 phosphor with variable   persistence
181TR	P31 phosphor with variablc   persislence
182T	P39 phosphor

100 voll operation of 180 series mainframes available as Option 003. See HP Service Noles 180A/AR/C/D-1. 181A/AR-7, and 182A-1 for information needed to modify standard displays 10 provide auxiliary outputs.

Wodel number and name	Price
8338B Specirum Analyzer	$\$ 4400$
182T Display	$\$ 1400$
180TR Display	$\$ 1450$
181T Display	$\$ 2300$
8444 A Opl. 058 Tracking Generator	$\$ 3675$
Option 001. 75 ohin input (BNC). dBm calibration	add $\$ 100$
Option 002: 75 ohm inpur (BNC). dBmV cálibration	add $\$ 100$

## Plug-in spectrum analyzer system, 20 Hz to 40 GHz

## Model 141T system

- 20 Hz to 40 GHz with just a tuning section change.
- Advantages of fully calibrated solid state system.
- Add measurement capability to your system as needed.


141T, 8552B


8443A


8444A


Hewlelt-Packard's high performance plug-in spectrum analyzer family makes frequency domain measurements from 20 Hz to 40 GHz . Because of the system's modularity, the user need purchase only analyzer components necessary to mext immediate production or laboratory measurement requirements. Then, as broader frequency capibility is required, addilional uning sections or companion insiruments can be added.

The models 8553B, 8554B, 8555A, and 8556A are tuning sections which plug inton I4IT display mainframe along with an 8552 BIF section to form a member of the Hewlett-Packard high performanoc spectrum analyzer family. Each tuning soction covers a frequency range convenient for equipment design or spectrum surveillance: 8556A, 20 Hz is $300 \mathrm{kHz}: 8553 \mathrm{~B}, 1 \mathrm{kHz}$ io $110 \mathrm{MHz} ; 8554 \mathrm{~B}, 500 \mathrm{kHz}$ io 1250 MHz ; and 8555 SA .10 MHz 1040 GHz . The IF section plug-in which is used with each tuning section, serves to condition the measurement signa) Гor propur display on the CRT. Two IF sections are availuble, the 8552 B high performance model and the 8552A model for economy. The spectrum analyzer specifications included in this catalog assume the use of the 8552 B .

The 8443A and 8444A are tracking generators complimenting the basie spectrum analyzer function with an RF source locked to the tuning frequency. The 8445 B is an aulomalic proselecior which enhances the dynamic range or the 10 MHz to 40 GH . 8555 A tuning sectron analyzer.

- Tracking generator expands measurement capability.
- Increase dynamic range with tracking preselector.


Tho 141T based specisum analyzer fealures ahsolute calibration of frequency and amplitude, high resolution and sensitivity. wide dynamic range and simple 10 interpret display output.

Tho following pages cover speetrum analyzer performance with each of the tuning sections and comparison tracking generator/preselector.

## Absolute amplitude callbration

For case and specd of measurement, full frequency band amplitude calibration allows direct interpretation of signal power or voliage from the CRT display. A choice of logarithmic or linear sealing ealrbrates the CRT in dBm or $\mu \mathrm{V}$ respectively. The top horizontal geraticulc on the CRT is established as a specifie power or voltage level by front panel settings. Any signal registering on the CRT can be quantified by comparing its amplieudo with this reference level.

When a combination of freqoency scan, bandwidth or video filer seltings are chosen such that the display becomes uncalibrated, a warning light indicates the condition.

## High resolution frequency callbration

The frequency measurement capability of the spectrum analuzer is responsive to user need, making spectrum measurements simply and apeurately with ihree frequency sean modes.
First is the FULL sead mode, which displays the entire tuning section frequency band on the 10 cm horizontal CRT graticule. This mode is effeelive in viewing broadband effects of circuil adjustments and refinements as they are madc. In FULL scan and marker on the CRT eorresponds in frequency to the position of the pointer on the tuning section frequency scale, so signals can be readily idemified.
The second mode. PER DIVISION scan, centers the display aboul the frequency indicated by the tuning section pointer. In this mode. narrow, calibrated scan per division and automatic frequency STA. BILIZATION make high resolution measurements for analysis of signal purity. sidebands and low deviation FM.

In the third mode, ZERO sean, the analyzer becomes a receiver tuned to the frequency indieated on the scale. Amplitude modulation in an input signal at the tuned frequency is displayed on the CRT in the time domain. The scan time control provides a calibrated time basc.

## High resolution

The ability to resolve close-in signal sidebands, wuch as line related modulation is importane in frequency domain analysis. The HewletrPackard 14 IT plug-in spectrum analyzers cach have natrow bandwidths for such resolution. Up 10110 MHz , the analyzers offer 10 Hz bandwidths and to $18 \mathrm{GHz}, 100 \mathrm{~Hz}$ bandwidits. The frequency stabifization feature already mentioned ensures high resolution by maintaining a jituer rree dísplay.

## Wide dynamic range, gensitive

Confidence in signal identification is given by the analyzer's ability to measure wide amplitude differentials without distortion products and to measure very low level signals. The plug-in spectrom analyzess
have typically 70 dB or distortion free dynamic range; that is, the capability of messuring $0.03 \%$ signal distortion from the CRT display. With the 8445 A presclector the 8555 A has a dynamic range of 100 dB . The CRT displays full dynamic range on a finear, easy to read seale.
Signals al as low a level is -142 dBm ( 20 nanovolts, 50 ohms) can be detected by the speetrum analyeer with 10 Hz bandwidth. At high frequencies and with 100 Hz bandwidth -125 dBm signals cin be measured.
A parallax free, storable display
The 14 IT spectrum analyzer mainframe and display features a variable persistence CRT which enables response morage for any measurement. Whit very narrow bandwidth measurements, exiremely slow sweeps are neceshary 10 maintsin ampitude calibration (allowing band pass fillers time 10 respond). A recording CRT is necessary to save this response for viewing, Of course, any response can be slored for a display ready to be pholograpled. Another display mainframe, the 140T, is avaitable with the standard persistence.

Interpretation of response tevels on the CRT are free from parallax sinee the graticule is etched on the inside of the display sereen adjacent to the phosphor.

## IF section adds convenience features

The high resolution 8552 B or the economic 8552 A if section feaeures video filtering, recorder outputs, manual scan and an internal calibration standard to make the spectrum analyzer easier to use. Vidio filtering is a low pass filter which averages out noise amplitude response for casier small signal readings. It also makes wide band noise and EMI measurements easier.

Recorder outpuls, including nen Jifl, allow hard copy duplication of the CRT display. Manual scan allows setting up of accessories, sueh as X-Y recorders, adjusting signals on screen during slow scans and measuring frequency with a counter.
The internal calíbration standard is a very stable $-30 \mathrm{dBm}, 30 \mathrm{MHz}$ signal for quick front panel calibration.

## Traciking generators for each frequency band

Either available internally, or as a companion instruntent, are leveled signal souroes designed to traek the swept tuning Irequency of the spectrum analyzer. Amplifiers, filters or any sircuil which requires an input signal can be characterized to 1300 MHz , with typically wider dynamic range and more precise frequency accuracy than with the specirum analyzer alone.

The 8556 A low Trequency tuning section has an internal iracking generator, standerd with the inslrument. The 8553 B and $8554 \mathrm{~B} /$ 8555A use separate generators namely 8443 A and 8444 A respectively.

## General specifications

## 141T spectrum analyzer system

Inpul impedance: $50 \Omega$ nominal. Reflection cocfincien। $<0.30$ ( 1.85
SWR), input attenuator $\geq 10 \mathrm{~dB}$.
Maximum input leval; peak or average power +13 dBm (1.4 V ac peak). $\pm 50 \mathrm{~V}$ de.
Altenuator: 0 to 50 dB in 10 dB steps
Scen time: 16 internal scan rales from $0.1 \mathrm{~ms} /$ div $1010 \mathrm{sec} /$ div in al. 2, 5 sequence, and manual scan ( 8552 B only).

## gean time accuracy

$0.1 \mathrm{ma} / \mathrm{dlv}$ 10 $20 \mathrm{~ms} / \mathrm{dlv}: \pm 10 \%$
50 ma div to $10 \mathrm{~m} / \mathrm{dlv}: \pm 20 \%$
Scan Mode
Int analyzer repetitively scamned by intemally generated ramp; synchronization selected by scan uigger.
Single: single scan with from panel seset.

Ext: sean delermined by 0 to +8 volt external sigral.
Manual: scan determined by front panel control.
Sean triggen: for Inlernal scan mode, seled between: Aulo: scall-free rins.
Line: sean synchronized with power line frequency.
Ext: scan synchronized with $>2$ voll ( 20 voll max.) signal.
Video: scan iniemally synchronized to envelope of $R F$ input.
Auxillary oulputs
Vertical output: 0 to -0.8 V for full deflection.
Scan outpute $10+5 \mathrm{~V}$ for 10 div CRT deflection.
Pen litt oulput: o to $14 \vee(0 \mathrm{~V}$, pen down).

## Display characteristics

## 1417, 140T

Plug-Ins: accepts Models 8552A/B. 8553B, 8554B, 8555A and 8556A and Model 1400-scries Oscilloscope plug-ins.

## Cathode-ray tube type

Model 141T: post-accelerator storage tubc. 9000 -volt accelerating potential; aluminized P3) phesphor.
Model 140T: post-accelerator, 7300 volt potential medium-short persistence (P39) phosphor.
Cathode-ray tube gratlcule
Model 141T: $8 \times 10$ division (approximately $7.1 \times 8.9 \mathrm{~cm}$ ) parat-lax-free internal graticule.
Perslelence, model 141T only
Normal: natural persistence of P3I phösphor (0.I second).
Variable:
Normal wriling rase mode; conlinuously variable from less than 0.2 second to more than one minute.

Maximum writing rate mode: from 0.2 second 1015 seconds.
Erese: manual; crasure lakes approximately 350 ms.
Storage times model 141T only: nornal writing rate: more than 2 hours at reduced brightness (typically 4 hours).
Fast writing speed, model 1417 only: more than 15 minutes.
Functions used with oeollloscope plugelns only. intensity modulation, callbrator; beam finder.
EMli conducted and radiated imerference is wishin requirements of MIL-I-16910C and MIL-I-6181D and meihods CE03, and RE02 of MIL-STD-461 (except 35 to 40 kHz ) when 85548 and 8552A or 8552 B are combined in a 140 T or 141 T Display Section.
Temperature range: operating. $0^{\circ}$ 10 $+55^{\circ} \mathrm{C}$ : storage. $-40^{\circ}$ 10 $75^{\circ} \mathrm{C}$.
Power requirements: $100.120,220$. or $240 \mathrm{~V} \div 3 \%,-10 \%, 501060$ Hz , nomally less than 225 wats (includes plug-ins used).

## Welght

Model 8552A or 8552 B IF eaction: net. 4.1 kg (9 lb). Shipping, 6.4 kg (la lb).
Model 140 T dleplay sectlon: nel, $16.8 \mathrm{~kg}(37 \mathrm{lb})$. Shipping, 20 kg ( 45 lb ).
Model t41T display seclion: net, 18 kg (40 lb). Shipping, 23 kg ( 51 lb ).
Tuning sectlon: see following pages.
Dimencions: model 140 T or 141 T with plug-ins: 425 mm deep. 221 mm high, 416 mm deep ( $\left.161 / \mathrm{s}^{\circ} \times 8 y_{4^{\circ}} \times 161 / \mathrm{m}^{\prime \prime}\right)$.
Speclal order. chassis slides and adapter kit.

Model number and name	Price
140T Normal Persistence Display'	$\$ 1400$
141T Variable Persistence Display	$\$ 2200$
8552A Economy IF Section	$\$ 2855$
8552日 High Resolution IF Section	$\$ 3555$

- Accurate signal level measurements ( $\pm 0.95 \mathrm{~dB}$ )
- Accurate irequency measurements ( $\pm 3 \mathrm{~Hz}$ )


8556A

## General purpose measurement flexibility

The 85S6A Specirum Analyzer covers the frequency range from 20 Hz to 300 kHz . It was desiened to accommodate the varicty of characteristec impedances and amplisude uniss used in making audio measurements. Balanced or unbilanced inpustare available, and upen circuil voltages ( dBv or linear) or dBm in several characteristic impedances may be measured. The analyzer is capable of high resolution: froquencies can be measured very accurately. A built-in tracking generalor further increases the instrument's ulifity.

## Frequency range

The $\$ 556 \mathrm{~A}$ has two frequeney scales, 0.300 kHz for full coverage and 0.30 xHz for better resolution at low frequencies. The analyzer may be swept symmetrically about a tunsble center frequency. swept from 0 Hz to a cunable end poinh or operated as a fixed tuned receiver. 20 xHz crystal markers (accurate to $0.01 \%$ ) can be generated on the CRT io make very accurate relative frequency measuroments.
Absolute amplltude calibration
The 8556 is calibrated for 3 Bm in 600 n . dB en in $500, \mathrm{dBV}$, and volts. The very accurate seference levcl control ( $\pm 0.2 \mathrm{~dB}$ ) and vermier $( \pm 0.25$ dB) allow the IF substitution technique to be used to improve amplitude measurement accuracy.

## Low distortion

Careful design has decreased analyzer distortion to the point where a full 70 dB dynamic range is achicved. This allows small signals, such as harmonic or intermodulation distortion, to be measured in the presence of large ones.

## Regolution - sensitivity

Resolution bandwidths between 10 kHz and 10 Hz are available on the 8556 A . Using the nurrow bundwidth. 50 or $k 0 \mathrm{~Hz}$ line related sidebands can be measured. The analyzer's exiremely low noise figure together with its narrow handwidths makes the 8556A very sensitive. Signals as low as $-152 \mathrm{dBy}(25 \mathrm{nv})$ can be measured in a 10 Hz bandwidth. The 8556A may be used 10 measure EMI, such as interference conducted along an $A C$ power line

## Lsolated input

The isolated input climinates the possibility of spurious signal pickup which eould be caused by line related ground currents nowing in the ground connections between the analyzer and signal source. The inpul impedance (1 M!?) is high enough so lhal a scope probe may be used with a minimum of loading. An optional balanced input is available which is transformer coupled for isolation and high common mode rejection. The input impedance is 15 kn . and the analyzer is calibrated for either dBm-I35R or dBm-15 as well as dBm-500? and $\mathrm{dBm}-900 \mathrm{n}$. Balance (symmetry) is 80 dB al 50 Hz . and 50 dB at 300 kHz .

## Tracking generator

A racking generator is buill into the 8556A. If an extemal counter is connected to the tracking generator, frequencies ean be meatsured to an accuracy of $\pm 3 \mathrm{~Hz}$. Swepl inserlion lowi or relum loss measurements can be made on a deviec such as an amplifier or filler. A 140 dB mesasuretrent tange is possible using the narrowest resolution band-

- High sensitivity ( -152 dBv )
- Buit-in tracking generator

width. The Irackine generator also provides a convenient signal for compensating an oncilloscope probe used with the 8556A.


## Other applicatlons

The combination of a tracking generator and specirum analyzer in this frequency range is valuable in applications such as receiver testing and fault location.

## Speciflcations

## Frequency apectifications

Frequeney range: 10 Hz to $300 \mathrm{kHz}-8552 \mathrm{~B}$ IF Section. Tuning dial sanges of $0-30 \mathrm{kHz}$ and $0-300 \mathrm{kHz}$.
Scan width: (on a 10 -division CRT horizontal axis).
Per divislon: 10 calibrated scan widths fsom $20 \mathrm{~Hz} / \mathrm{div}$ to 20 kHz /div in a $1,2,5$ sequence.
$0-10$ t: 10 calibrated preset scans. from 200 Hz 10200 kHz in a I , 25 sequence. Analyzer scans from zero frequency to ten limes the scan width per division setting.
Zero: analyzer is a fixed luned receiver.

## Frequency accuracy

Center trequency eccuracy: $0-30 \mathrm{kHz}$ Range: $\pm 500 \mathrm{~Hz}: 0-300$ kHz Range: $\pm 3 \mathrm{kHz}$.
Marker accuracy: RF markers every 20 kHz accuratc to within $\pm 0.01 \%$. Markers controlled by front panel on/off switch.
Scen width accuracy: with 8552B IF Section: Freguency error betwecn any two points on the display is less than $\pm 3$ se of the indicated frequency separation.
Stabllity
Resldual FM 8552B: sidebands $>60 \mathrm{~dB}$ down 50 Hz or more from CW signal. scan time $\geq 1 \mathrm{sec} / \mathrm{djv}$. 10 Hz bandwidıh.
Nolse sldebends: more than 90 dB below CW signal. 3 kHz away from signal, with a 100 Hz IF bandwidth.
Frequency drift: leas than $200 \mathrm{~Hz} / 10$ min (8552B).

## Resolulion

Bandwldth ranges: JF bandwidths of $10 \mathrm{~Hz}(8552 \mathrm{~B})$ to 10 kHz arc provided in a $1,3.10$ sequence.
Bendwldth accuracy: individual IF bandwidit 3 dB points calibrated $10 \pm 200_{0}$ ( 10 kHz bandwidih $\pm 5 \%$ ).
Bandwidh seleclivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ IF bandwidth ralios, with 8ssiB IF section: <ll:i for IF bandwidiths from 10 Hz to 3 kHz : $<20: 1$ for 10 kHz bandwidth. For 10 Hz bandwidth, 60 dB paints are separated by less than 100 Hz .

## Amplitude speciflcations

Absolute ampllude callbration
Log callbration modes:

dbV	$0 \mathrm{dBV}=1 \mathrm{Vmm}$
$\mathrm{dBm}-600 \Omega$	$0 \mathrm{dBm}=1 \mathrm{~mW}-6000$
$d \mathrm{Bm}-50 \Omega$	$0 \mathrm{dBm}=1 \mathrm{~mW}-500$

$\mathrm{dBm}-50 \Omega$
$0 \mathrm{dBm}=1 \mathrm{~mW}-6000$
Input impedance is I Mת. dBm ranges arc referenced with input properly terminated axternally.

Log callbration range: from - $150 \mathrm{dBm} / \mathrm{dBV}$ 10 $+10 \mathrm{dBm} / \mathrm{dBV}$. Log alsplay fange: $10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display. or $2 \mathrm{~dB} / \mathrm{div}$ on a 16 dB display (with 8552 B only).
LInear sengituvity: from $0.1 \mu \mathrm{~V} /$ div to $1 \mathrm{~V} /$ div in a $1,2,10 \mathrm{se}$ quence. Linear sensitivity vernicr XI to X 0.25 continuously.

## Dynamle range

INPUT LEVEL control: -10 to $-60 \mathrm{dBm} / \mathrm{dBV}$ in 10 dB steps. Accuracy $\pm 0.2 \mathrm{~dB}$. Marking indicates maximum input levels for 70 dB spurious-free dynamic range.
A verage noise level (specified with a 6000 or less souroe impedance and INPUT LEVEL at $-60 \mathrm{dBm} / \mathrm{dBV}$ ):

Mode	1 kHzIF Bandwidth	10 Hz IF Bandwidth
$d \mathrm{Bm}-50 \Omega$	$<-122 \mathrm{dBm}(180 \mathrm{nV})$	$<-142 \mathrm{dBm}(18 \mathrm{nV})$
$\mathrm{dBm}-600 \Omega)$	$<-130 \mathrm{dBm}(250 \mathrm{nV})$	$<-150 \mathrm{dBm}(25 \mathrm{nV})$
dBV	$<-132 \mathrm{dBV}(250 \mathrm{nV})$	$<-152 \mathrm{dBV}(25 \mathrm{nV})$
Linear	$<400 n \mathrm{~V}$	$<40 \mathrm{nV}$

Video flter: averages displayed noise, bandwidtu of $10 \mathrm{kHz}, 100$ Hz , and ( 8552 B only) 10 Hz . Bandwidth accuracy $\pm 20 \%$.
Spurlous reeponses: input signial lavel $\leq$ INPUT LEVEL setlíg: out of band mixing responses, harmonic and intermodulation distorlion products are all more than 70 dB below the input signal level $5 \mathrm{kHz} 10300 \mathrm{kHz} ; 60 \mathrm{~dB} .20 \mathrm{~Hz}$ to 5 kHz . Third order intermodulation products ate more than 70 dB below the input signal level. 5 kHz to 300 kHz with signal separation $>300 \mathrm{~Hz}$.
Resldual responses: (no signal present al input.) With the INPUT LEVEL at $-60 \mathrm{dBm} / \mathrm{ABV}$ and the inpur terminated with 60052 or less, all line related residual responses from 010500 Hz are below $-120 \mathrm{dBm} / \mathrm{dBV}$. All other residual responses are below $-130 \mathrm{dBm} / \mathrm{dBV}$.

Amplitude accuracy:	Log	Linear
Frequency response	$\pm 0.2 \mathrm{~dB}$	$\pm 2.3 \%$
Amplitude display	$\pm 0.25 \mathrm{~dB} / \mathrm{dB}$	$\pm 2.8 \%$ of full
	but not more	8 div display
	than $\pm 1.5 \mathrm{~dB}$	
	over 70 dB	
	display range	

Log reference level conirol: provides 90 dB IF gain control in 10 dB steps to cover $\log$ and linear ranges. Accurate to $\pm 0.2 \mathrm{~dB}$ ( $\pm 2.3$ )
Log relerence level vernler; provides conlinuous 12 dB range. Accurale $10 \pm 0.1 \mathrm{~dB}( \pm 1.2 \%)$ in $0,-6,-12 \mathrm{~dB}$ positions; olherwise $\pm 0.25 \mathrm{~dB}( \pm 2.8 \%)$.
Amplltude measurement accuracy: $\pm 0.95 \mathrm{~dB}$ with propet technique.

## General

Scan tlme: 16 internal sean rales froun $0.1 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{djv}$ in a 1 , 2, 5 sequence.

## Scen mode

Int: analyzer repclisively scanned internally.
Ext: scan determined by 0 to +8 voli external signal.
Single: single scan actuated by front pancl bution.
Manual: scan determined by fromi panel concuol.
input level: provides 50 dB conerol of inpul preamplification and at-
tenuation to prevent input overload. INPUT LEVEL markings of $-60 \mathrm{dBm} / \mathrm{dBV}$ to $-10 \mathrm{dBm} / \mathrm{dBV}$ indicate maximum input level for a minimum of 70 dB spurious-free dynamic range. Accuracy $\pm 0.2 \mathrm{~dB}$ ( $2.3 \%$ ).
Input Impedance: I M shunted by $\approx 32 \mathrm{pF}$.
Maximum Input level: 10 V rims, $\pm 200 \mathrm{~V}$ dg. Graund terminals of BNC inpul connectors are isolated from the analyzer chassis ground to miminize ground loop pickup al low frequencies.

Maximum vollage, laolated ground to chassis ground: $\pm 100 \mathrm{~V}$ dc.

Isolated ground to chassis ground Impedance: $100 \mathrm{k} \Omega$ shunted by approximatcly $0.3 \mu \mathrm{~F}$.
Galn compression: For input signal level 20 dB above INPUT LEVEL setuing, gain compression is less than J dB.

## Tracking generator specifications

Frequency range: tracks the analyzer tuning, 20 Hz to 300 kHz .
Amplilude range: continuously variable from 100 mV ms to greater then 3 V rms into an open circuat.
Amplltude aocuracy: with TRACKING GEN LEVEL in CAL po. sition and 20 kHz markers off, outpul level at 100 kHz is $100 \mathrm{mV} \pm 0.3$ dB into an open circuit.

Frequency response: $\pm 0.25 \mathrm{~dB} 50 \mathrm{~Hz}$ to 300 kHz .
Output Impedance: 6000
Residual FM: <I H2 peak-lo-pcak.
Power requirements: $100,120,200$. or $240 \mathrm{~V}+5 \%,-10 \%, 50$ to 60 Hz , normally less than 225 wans.
Welght: Model 8556 A LF section: ned, $3.7 \mathrm{~kg}(8 \mathrm{lb}$ ). Shipping. 5.3 kg ( 12 lb ).
Dimensiong: 226 mm wide, 102 mm high, 344 mm decp $\left(82 / 6^{*} \times 4^{n} \times\right.$ $131 / 2^{4}$ ).
Specifications with 8558A options 001, 002-balanced input Ampillude
Log callbratlon modes-balanced (bridged) input:
$\mathrm{dBm}-135 \Omega($ Opion 001$) \quad 0 \mathrm{dBm}=1 \mathrm{~mW}-135 \Omega$
$\mathrm{dBm}-150 \Omega($ Option 002) $\quad 0 \mathrm{dBm}=1 \mathrm{~mW}-150 \Omega$
$d B m-600 \Omega \quad 0 d B m=1 \mathrm{~mW}-600 \Omega$
$d B m-900 \Omega \quad 0 d B m=1 \mathrm{~mW}-900 \Omega$
Inpur impednote is typically $15 \mathrm{k} \Omega$. dBm ranges are feferenced with inpul properly terminated exiernally.
Inpu:
Maximum input levels: normal Mode, $\pm 20 \mathrm{~V}$ mms or $\pm 150 \mathrm{~V}$ dc for normal mode (symmetrical) signals between input signal connectors; Common Mode, 200 V rnis al 60 Hz or $\pm 300 \mathrm{~V}$ de for common mode (asymmerical) volzages between input signal conncelors and GUARD or instrument chassis; Guard, $\pm 100 \mathrm{~V}$ de from GUARD co insirument chassis. (GUARD to chassis impedance is approximately 100 kS shunted by $0.3 \mu \mathrm{~F}$.)
Balance (Symmelry): $0-30 \mathrm{kHz}$ Range, greater than $80 \mathrm{~dB}, 50$ Hz to $\mathrm{IkHz}: 1-300 \mathrm{kHz}$ range, greater than 60 dB . J kHz 1020 kHz .

Model number and name	Price
8556A RF section	$\$ 2250$
Option 001 Balanced input	add $\$ 220$
Option 002 Balanced input	add $\$ 220$

Wide trequency range

- 10 Hz resolution bandwidth
- High sensitivity $(-140 \mathrm{dBm})$


8553B


8443A

## General purpose

The 8553B Specirum Analyzer nakes absolute amplitude and frequency measurements over the 1 kHz to 110 MHz range. This frequency span includes audio, video, navigation aids, telemetry, multiplex communication systems basebunde, commercial AM, FM, TV, and land mobile communication. The analyzer features high resolution and stability, low distorlion, bigh sensitivity. and a wide dynamic range. A racking generator is available which improves the frequency measurement aecuracy of the analyzer and can be used to make swept measurements.

## Wide frequency range

The broad frequency range of 1 kHz 10110 MHz extends from audio through the PM broadcast band. Scan widths from 200 Hz 10 100 MHz allow a user to view all or selected parts of the frequency specirum while the zero sean mode (urns the analyzer into a fixed Luned receiver and displays amplitude varitions in the lime domain. The analyzer has iwo dial seales. $0-100 \mathrm{MHz}$ for full coverage and 0 11 MHz for better resolution at low frequencies.

## Resolution - stablifity

The 8553 B has resolution bandwidths that range from 300 kHz to 10 Hz . Wide bandwidths are necessary for making measurencents on a wideband spectrum such as FM. The extremely high resolution 10 Hz bandwidth allows measurement of 50 Hz sidebands 60 dB down. Such high resolution is made possible by autonatic stabilization through phase lock, which reduces residual FM to less than 1 Hz peak to peak. Good stability is required to measure oscillator residual FM and drift.

## Absolute amplitude calibration

The 8553 B Spectrum Analyzer is absolutely calibrated in borh dBm and volts from $-142 \mathrm{dBm}(.02 \mu \mathrm{~V}) 10+10 \mathrm{dBm}(.7 \mathrm{~V})$. This absolute calibration is derived from a buils-in calibrator ( -30 dBm at 30 MHz ) and extremely flat analyzer frequency response ( $\pm 0.5 \mathrm{~dB}$ ). A display uncal. light warns if the display becomes uncalibrated. The probe power oulpul supplies power to a high impedance probe which can be used to make bridging measurements on ciressits ierminated at both ends.

## High sensitivity

A low analyzer noise figure and narrow bandwidths give the 8553 B very high sensitivity. Signal levels as low as -140 dBm can be necasured in a 10 Hz bandwidth. and a preamplifier is available to further increase sensitivity by 16 dB . Video filtering in $10 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz bandwidths will average the displayed noise. High analyzer sensirivity is roquired if distortion in an amplifier or oscillator is to be mea-

- Accurate amplitude measurements ( $\pm 1.25 \mathrm{~dB}$ )
- 10 Hz frequency accuracy with tracking generator - 130 dB swept measurement range

sured as a function of oulpul level. In EMI studies, field sirenglt can be measured with a calibrated antenna.


## 70 dB dynamic range

The 8553 B has a 70 dB dynamic range when the signal level is properly conditioned at the input mixer. A wide dynanic range is necessary to measure small signals in the presence of large ones, such as harmonic or intermodulation distortion or to monitor signals of widely varying amplitudes, such as in EMC. RFI, and surveillance work.

## 8443A tracking generator

A tracking generator, 8443 A , is available which covers the 100 kHz to 110 MHz frequency range of the 8533 B . 3 h has a buil-in comter. and precision RF attenuators which are useful making substitution measurements.

## Frequency accuracy

In conjunction with an 8443 A tracking generator, the 8553 B Spectrum Analyzer, can measure frequencies to an accuracy of $\pm 10 \mathrm{~Hz}$. When the 8443 A is operated in the "track analyzer" mude, the counter will read the frequency at a tunable marker which is generated on the analyzer CRT. The "restore signal" mode is a more convenient way to measure signal frequencies in wide scans because the counter reads the signal frequency automatically without fine luning. The 8443A tracking gencraior may also be used externally as a 120 MHz direct reading counter.
Swept measurements
The 8443 A tracking generator can be used with the 8533 to make swept insertion loss and return loss measurements over the 100 kHz to 110 MHz frequency Tange. Because the signal source tracks the analyzer's tuning, up to 130 dB dynamic measurement range is possible (at 10 Hz bandwidth). Execllent systom flatness ( $\pm 1.0 \mathrm{~dB}$ ) insures the accurate delermination of swepl response characteristics.

## Specifications

## Frequency specifications

Frequency range: $1 \mathrm{kHz}-110 \mathrm{MHz}(0-11 \mathrm{MHz}$ and $0-110 \mathrm{MHz}$ tuning ranges)
Scan width (on 10-divislon CRT horizontal axis)
Per divlsion: 18 callbrated scan widihs from $20 \mathrm{~Hz} /$ div 1010 MHz /div in a $1,2,5$ sequence.
Proset: $0-100 \mathrm{MHz}$, itutomatically selects 300 kHz bandwidth IF Filer.
Zera: analyzer is fixed tunced receiver with selectable bandwidth.

Frequency accuracy
Center frequency accuracy：the dial indieates the display center freguency within $\pm 1 \mathrm{MHz}$ on the $0=110 \mathrm{MHz}$ tuning range；$\pm 200$ k．Hz on the $0-11 \mathrm{MHz}$ tuning range with FINE TUNE centered． and temperature range of $20^{\circ}$ to $30^{\circ} \mathrm{C}$ ．
Scan width accuracy：scan widths $10 \mathrm{MHz}_{2}$ div 102 MHz idis and $20 \mathrm{kHz} / \mathrm{div}$ to $20 \mathrm{~Hz} / \mathrm{div}$ ：Frequency error belween Iwo points on the display is less than $\pm 3$ 㗊 of the indieated frequency separation between the（wo points（8552B）．Scan widths I MHz／div to so $\mathrm{kHz} / \mathrm{div}$ ：Frequeney crror between（wo points on the display is less than $\pm 10^{\text {ne }}$ of the inclicated irequency separation（8552B only）．
Resolution
Bandwidth as52日 If eacilon：IF bandwidths of 10 Hz to 300 kHz are provided in a 1.3 sequende．
Bandwldth accuracy：individual if bandwidits 3 dB points cali－ brated $\pm 20$ 家（ 10 kHz bandwidth $\pm 5 \%$ ）．
Bandwidth pelectivily： $60 \mathrm{~dB} / 3$ dB If bandwidth ratios 85528 IF secion： 10 Hz to 3 kHz bandwidths，＜II：I； 10 kHz to 300 kHz bandwidths，＜20：1：60dB points on 10 Hz bandwidth separaled by $<100 \mathrm{H}$ ？ ．
Stabllity
Pealdual FM stabllized： 85528 左 Section：Sidebands $>60 \mathrm{~dB}$ down 50 Hz or more from CW signal，scen time $\geq 1 \mathrm{sec} / \mathrm{div}, 10 \mathrm{~Hz}$ bandwidth（eypianlly less than 1 Hz peak－to－penk）．
Reeldual FM unstabilized：＜1 kHz peak－10－peak．
Nolse sidebands：more than 70 dB below CW signal， 50 kHz or more alvay from signal，with I kHz IF bandwidih．
Long term drite（after 1－hour warm－up），slabilized： $50 \mathrm{~Hz} / \mathrm{min}$ ， $500 \mathrm{~Hz}_{2} / 10 \mathrm{~min}$ ；unstabilized： $5 \mathrm{kHz} / \mathrm{min}, 20 \mathrm{kHz} / 10 \mathrm{~min}$ ．

## Amplitude speclicication

Absolute amplitude calibration range
Log：from $-13010+10 \mathrm{dBm}, 10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display or 2 $\mathrm{dB} / \mathrm{div}$ on a 16 dB display（ 8552 B only）．
Unear：from $0.1 \mu \mathrm{~V} /$ div $10100 \mathrm{mV} /$ div in a 1,2 sequente on an 8 － division display．
Dynamic range
Average nolse level：$<-110 \mathrm{dBm}$ with 10 kHz IF bandwidih．
Video filter：averages displayed noise； $10 \mathrm{kHz}, 100 \mathrm{~Hz}$ ，and 10 Hz bandwidths．（ 10 Hz on 8552 H IF Section only．）
Spurlous responges：are helow a -40 BBm signal at the inpur mixer as follows：All inage and out－ol－band mixing responses，har－ monic and iniermodulation disturtion less than 70 dB dawn． 2 MHz 10130 MHz ，less than 60 dB dewn． 1 kHz to 2 MHz ．Third order in－ termodutation products less than 70 dB dowa， 1 kHz to 110 MHz （Signal separation $>300 \mathrm{~Hz}$ for 8552 B IF Section）．
Residual responaes（no signal present at input）：with input si－ tenuition at $0 \mathrm{~dB}:<-110 \mathrm{dBm}(200 \mathrm{kHz}$ to $110 \mathrm{MH\mid z}):<-95 \mathrm{dBm}$ （ 20 kHz to 200 kHz ）．

## Amplltude accuracy：

Frequency response
（Flatness：alsenualor setings $>10 \mathrm{~dB}$ ）：
1 kHz 10110 MHz
Amplitude Display

## Log

$\pm 0.5 \mathrm{~dB}$ $\pm 0.25 \mathrm{~dB} / \mathrm{dB}$ but nol more than $\pm 1.5$ dB over the full $70 \mathrm{~d} ⿴ 囗 十 \mathrm{display} \mathrm{range}$
Callbrator emplitude：$-30 \mathrm{dBm}, \pm 0.3 \mathrm{~dB}$ ．

Callbrator frequency： $30 \mathrm{MHz}, \pm 3 \mathrm{kHz}(8552 \mathrm{~B})$
Log relerence level conirol：provides 70 dB range（ 60 dB below 200 kHz ），in 10 dB steps．Accurate $10 \pm 0.2 \mathrm{~dB}( \pm 2.3 \%$ ，Lincar Sen－ sitivity）．
Log relerence leval vernler，provides continuous 12 dB range． Accurate to $\pm 0.1 \mathrm{~dB}( \pm 1.2 \mathrm{~N})$ in $0,-6$. and -12 dB positions： otherwise $\pm 0.25 \mathrm{~dB}( \pm 2.8 \%)$ ．
Amplitude measurement aceuracy：$\pm 1.25 \mathrm{~dB}$ with proper lech－ nique．

## General

Input impedance： $50 \Omega$ nominal．BNC comncctor．Reflection cocifi－ cient $<0.13$（ 1.3 SWR ），input attenuator $\geq 10 \mathrm{~dB}$ ．A special 750 $8553 \mathrm{~B} / 8552 \mathrm{~B}$ is available．
Naximum input fevel：peak or average power +13 dBm （ 1.4 V ac peak），$\pm 50 \mathrm{~V}$ de． 1 dA compression point，-10 dBm ．
Scan ilme： 16 internal scan yates from $0.1 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$ in a $I$ ． 2， 5 sequence．or munun）scan（ 85328 only）．

## Scan mode

Int：analyzer repetitively scanned internally．
Single：single scan with rescl actuated by Front pancl pushbution．
Ext：sean determinced by 0 to +8 －voli external signal
Manual：scen determined by front panel control．
Attenuator： 0 to 50 dB ，in 10 dB increments，coupled to Log Refer－ ence Level indicator；automatically muintains absolute calibration． Attenuator accuracs $\pm 0.2 \mathrm{~dB}$ ．
Power requiremants： $100,120,220$ ，or $240 \mathrm{~V}+5 \%,-10 \% .50$ to 60 Hy，nomally less than 225 watus．
Woight：Mouel 8533B RF Sccion：Net． 12 ib （ 5.5 kg ）．Shipping． 17 lo（ 7.8 kg ）．
Dimenslone： 226 mm wide， 102 mm high． 344 mm deep $\left(87 /{ }^{\prime \prime} \times 4^{*} \times\right.$ （31／2＂）．
Tracking generator（8443A）
Frequancy ranga： 100 kHz to 110 MHz ．
Amplitude range：$<-120 \mathrm{dBm}$ to +10 dBm in 10 and 1 dB sieps with a cominuous 1.2 dB vemier．

## Amplitude accuracy

Frequency response（flainess）：$\pm 0.5 \mathrm{~dB}$ ．
Absoluta： 0 dBm it $30 \mathrm{MHz}: \pm 0.2 \mathrm{~dB}$ ．
Output impedence： 502.3 NC connetor，as coupled，reflection co． efficient $\leq 0.09$（ 1.2 SW ）with output $<0 \mathrm{dBm}$ ．
Counler
Display： 7 digits with 1 digit over－range．Reads to $\pm 10 \mathrm{~Hz}$ inere－ ments．
Pesolution（gate ilme）：I kHz（I ms）． $100 \mathrm{~Hz}(10 \mathrm{~ms}) .10 \mathrm{~Hz}$（ 100 ms）．
Accuracy：$\pm 1$ count $\pm$ time base aceuracy；
Time base aging rate：$<3 \times 10^{-9} /$ day $(0.3 \mathrm{~Hz} /$ day $)$ aficr warm． up．
External counter inputs： 10 kHz to $120 \mathrm{MHz}, 50 \mathrm{n},-10 \mathrm{dBm}$ min． Power： $100.120,220$ ．or $240 \mathrm{~V}+5 \%,-10 \%$ ． 48 to 440 Hz .8443 A ，is wats．
Net woight：8443A， $24 \mathrm{lb}, 5 \mathrm{oz}(11,04 \mathrm{~kg})$ ．Shipping weighl $31 \mathrm{lb}, 14$ 02 （ 14.47 kg ）．
Dimensions： 425 mm wide． 88.2 mm high． 332 mm deep（ $16 \mathrm{~m}^{\mathrm{m}} x$ $\left.3142^{\circ} \times 1313^{\prime \prime}\right)$ ．

Model number and name	Price
$8553 B$ RF section	$\$ 3000$
8443 A Tracking generator	$\$ 4250$

# 141T Spectrum analyzer system, 100 kHz to 1250 MHz Models 8554 B 8 8444A 

- High resolution to 100 Hz
- Flat frequency response $\pm 1 \mathrm{~dB}$
- High sensitivity to $-122 \mathrm{dBm}(180 \mathrm{nV})$


8554B


8444 A

- Variable persistence display
- Companion Tracking Generator
- External counter capability

addifion, these filters have narrow shape factore making it possible to measure closely spaced signals differing greally in amplitude.


## Sensitivity

The high sensilivily ( -122 dBm in 100 Hz bandwidih) and wide spurious-free measurement range ( $>65 \mathrm{~dB}$ ) of the 8554 B means accurale measurements can be made on low level signals and signals varying widely in amplicude. For example. modulation as low as $0.2 \%$ can be measured. Low level harmonic and intermodulation distortion. spectrum surveillance and EMI are just a few of the measurements possible. A video filter is provided in the IF section to average dis. played noise and simplify the measurenent of low Ievel signals.

## Awlomatic funing stablization

The 8554 B Spectrum Analyzer is automatically stabilized in narrow scans. This gives the stability ( $<100 \mathrm{~Hz}$ peak-10-peak residual FM) needed for high resolution onalysis. Stabilization is accomplished by phase locking the LO's (local uscillators) to a crystal reference in scan widths 10 MHz and below. No signal recentering or thecking for stabilization is required because the signal remains on sereen when phase loeked.

## 8444A Tracking generator

The 8444A Tracking Generator is a signal source, which, when connected to the 8554 B Specirum Analyzer, has an output whose fre. quency is the same as the swept frequency of the analyzer. The tracking generator is used as a signal source to measure the frequency response of a device. It can also be used for presiston frequency medsurements. An external counter output is provided on the 8444A and the frequency of unknown signalsas well as the frequency of any point on a frequency response curve can be measured. The use of the 5383A Counter is suggested for frequency measurements to 500 MHz and the s341A. opt. 003 Counter for mcasurements to 1250 MHz .

The tracking generator-spectrum analyzer system can be used to supply tesi signals for other devices as a sweeper. The sweep widths and sweep rates are controlled from the spectrum analyzer and the outpul level front the tracking generator.

## 8554B Specifications

## Frequency specifleations

## Frequency range: 100 kHz , 101250 MHz .

Scan width (on 10 -division CRT horizontal axis)
Per division: 15 calibrated scan widths from $100 \mathrm{MHz} /$ div to 2 kHz /div in a $1,2,3$ sequence.
Preset: $0-1250 \mathrm{MHz}$ automatically selects 300 kHz bandwidth IF filter.
Zero: analyzer is fixed-tuned receiver.

## Frequency accuracy

Center frequency accuracy: the dial indicates the display center frequency with 10 MHz .
Scan width accurscy: frequency error between two points on the display is less than $10 \%$ of the indicated separation.
Resolution
Bandwidih: IF bandwidihs of 0.110300 kHz provided in a $1,3 \mathrm{sc}$ quence.
Bendwidith eccuracy: individua! IF bandwidths 3 dB points calibraced $10 \pm 20 \%$ ( 10 kHz bandwidth $\pm 5 \%$ ).
Bandwidth selectivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ IF bandwidth ratio $<20: 1$ for If bundwidits from 10 kHz to $200 \mathrm{kHz} .60 \mathrm{~dB} / 3 \mathrm{~dB}$ bandwidith ratio <II:I for IF bandwidths 100 Hz to 3 kHz ( 8552 B only).
Stability (restdual FM)
Stabllized: $<100 \mathrm{~Hz}$ peak-to-peak
Unslabilized: $<10 \mathrm{xHz}$ peak-io-peak
Nolse aidebands: more than 70 dB below CW signal, 50 kHz or more awray from signal. with 1 kHz IF hundwidth.

## Amplitude specifications

Absolute amplitude eallbration yange
Log: from -122 to +10 dBm . $10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display; or 2 $\mathrm{dB} / \mathrm{div}$ on a 16 dB display ( 8552 B only).
Linese: from $0.1 \mu \mathrm{~V} / \mathrm{div}$ to $100 \mathrm{mV} / \mathrm{div}$ in a 1,2 sequence on an 8 divisıon display.
Dynamic range
Average nolse level: <-102 dBm with 10 kHz IF bandwidth.
Spurious responses: all image and oul-of-band mixing responses, harmonic and intermodulation distorion products are more than 65 dB below a -40 dBm signal at the input mixer.
Realdual responses (no algnal present at input); with inpulatIenuation at $0 \mathrm{~dB}:<-100 \mathrm{dBm}$.
Amplitude accuracy:
Frequency response
(flatness)
100 kHz 101250 MHz
Swleching belween
bandwidihs (al $20^{\circ} \mathrm{C}$ )
Amplitude display

Calibrator output
Amplitude: $-30 \mathrm{dBm} . \pm 0.3 \mathrm{~dB}$.
Frequency: 30 MHz . $\pm 3 \mathrm{kHz}$ ( 8552 B only).
RF input specifications
Inpul impedance: $50 \Omega$ nominal. Reflection coefficient $<0.30$ (1.85
SWR). inpul atternator $\geq 10 \mathrm{~dB}$.
Meximum input level: peak or avernge power $+13 \mathrm{dBm}(1.4 \mathrm{~V}$ ae peak). $\pm 50 \mathrm{~V}$ dc.

## General

Scan time: 16 internal scan ratis from $0.1 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$ in a 1 . 2, 5 sequence, and manual scan ( 8552 only).

## Scan time accuracy

$0.1 \mathrm{~ms} / \mathrm{dlv}$ to $20 \mathrm{~ms} / \mathrm{div}: \pm 10 \%$
$50 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{~s} / \mathrm{dlv}: \pm 20 \%$

## Weight

Model 8554 RF sectlon: net, 4.7 kg ( 10 lb .4 oz ). Shipping 7.8 kg ( 17 B ).

## 8444A

Specifications for swepl frequency response measurements Dynamle range: $>90 \mathrm{~dB}$ from spectrum analyzer 1 dB gain compression point to average noise level (approximately -10 dBm to -100 dBra ). Spurious responses nol displayed.
Gain compreselon: for -10 dBm signal level at the input mixer, gain compression <ldB.
Absolute ampilitude callbration range
Tracking generator (drive level to test device): 0 to -10 dBn continuously variable. 0 dBm abvolutely calibrated $10 \pm 0.5 \mathrm{~dB}$ at 30 MHz.
Frequency range: 500 kHz to 1250 MHz .
Frequency resalution: 1 kH ..
Stability
Residual FM (peak-to-peak):
Tunlng:

Sectlon	Stabillzed	Unstabllized
85548	200 Hz	10 kHz

Amplltude accuracy
System Irequency response: $\pm 1.50 \mathrm{~dB}$.
Tracking generator callbration: 0 dBm al 30 MHz lo $\pm 0.5 \mathrm{~dB}$.

## Specificalions for precision trequency measurements

Frequency accuracy: for unknown signals $\pm 10 \mathrm{kHz}$. (Tracking drif (ypically $5 \mathrm{kHz} / 10$ min after 2 -bour warm-up). For points on frequency response curve, coumter accuracy $\pm$ Residual FM ( 200 Hz ).
Counter mode of operation
Manual ecan: scan dectermined either by fromt pancl control of
85528 IF Section or by external scan signal provided by the 8444 A .
Zero scan: analyzer is fixed-tuned reoeiver. Counter feads ecmier frequency to accuracy of tracking drift.
Counter oulput level: typically 0.1 V rms .
Specifications for sweep/CW generator
Frequency: conirolicd by specirum analyzer. Range 500 kHz to 1250
MHz with 8554 B . Scan widths ate as cnumurated on this page.
Frequency accuracy: $\pm 10 \mathrm{MHz}$ using spectrum analyzer tuning dial. Can be substantially improved using external counter outoul.
Fiatness: $\pm 0.5 \mathrm{~dB}$.
Spectral purity
Resldual FM (peak-to-peak): 200 Hz .
Harmonie distortion: 25 dB below output level (Typical).
Nonharmonic (spurlous) eignals: >35 dB below oulpul level.
Long term stability: drift typically Icss than $30 \mathrm{kH} /$ /hour when stabilized after 2 -hour warm-up.
Sweep width: 20 kHz to 1000 MHz .
Sweep rale日: selected by Scan Time per Division on specirum analyzer.

## General

Temperature range: opcration. 0 to $55^{\circ} \mathrm{C}$, storage $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.
EMI: conducted and radiated energy is within the requirements of
MIL-I-6I8ID.
Power: 115 V and $230 \mathrm{~V}, 48$ to $440 \mathrm{~Hz}, 12$ watts max.
Wolght: nct, 7.1 kg ( $15 \mathrm{lb}, 10 \mathrm{oz}$ ). Shipping, 9.5 kg (21 lb).
Model number and name Price
8554B RF Section \$3875
8444A Tracking Generator \$3375

- Absolute amplitude calibration
- High sensitivity to $-125 \mathrm{dBm}(2.5 \mathrm{nV})$
- Resolve signals to 100 Hz


8555A


8445 B

## 8555A Spectrum analyzer

The 8555A spectrum analyzer covers 10 MHz to 18 GHz with fundamental and harmonit mixing. External waveguide mixers can provide 12.4 GHz to 40 GH z coverage. This broad frequency range coupled with its high sensitivity and resolution bandwidith allow a variely of power measurements. frequency measurements. modulaion and noise analysis on almost every yype of design module: the frequency response or amplifiers, mixers, and modulators, respanse and alignolent of filters isolators, couplers and limiters. With wide scan widths and calibrated amplitede the 8555A is ideal for spectrum surveillance and RF1/EMC field strength analysis wilh a calibrated amenna.

## Absolute amplitude calibration

The 8555 A offers absolute amplitude calibration from +10 dBm to -125 dBm over the 10 MHz to 18 GHz frequency range. This capability makes possible nol only absolute signal power measurements, but also the measurement of the power differential between two signals separated by as much as 18 GHz . The parallax free CRT graticule can read as a log scale ( $\mathbf{d B m}$ ) or a linear scale (volts) with a frequency response accuracy of $\pm 1.5 \mathrm{~dB}$ to 6 GHz and $\pm 2.0 \mathrm{~dB}$ to 18 GHz The top line of the display is established as the reference level by front panel controis. A light warns of an uncalibrated condition.

## High sensitivity

The high sensitivily from -125 dBm (fundamental mixing) to -100 dBm ( 4 (h) harmonic) in a 100 Hz bandwidih makes it possible to mea. sure large values of altenuation. out of band filter and amplifier response, weak teansmitted signats in surveillanee work or microvolt sig. nals in EMC applications. A post delection fither with $10 \mathrm{kHz}, 100 \mathrm{~Hz}$ and 10 Hz ( 8552 B only) position averages any noise and yields an extremely clean observed trace.

- Scan up to 8 GHz full screen
- 100 dB distortion free dynamic range with preselector
- Companion tracking generator to 1.3 GHz



## High resolution

Due to low residual FM (<100 Hz peak-to-peak) the 8555A offers oustanding 100 Hz resolotion which allows the users to resolve closely spaced signals and low level sidebanós resulting from a 1 kHz modulating signal. Tine resolution capability makes it possible to analye spurious low frequency modulation of microwave signals. The high stability of the analyzer reswlts in more aceurate measurements of sesidual FM, long-term drift, phase noise and spectral purity. Furthemore, the Gaussian shape of the IF filters allow festext sweep for a given resolution bandwidth.

## Automatic tuning stabilization

When scanning over a relatively narrow frequency fange, the frequency stability of the analyzer's internal local oscillators beconie important for bigh resolution and frequency measurements, For this reason the 8555 A is equipped with a tuning stabilizer circunt which automatically phase locks the analyzer to a crystal oscillator. Display jirter and signal recentering are virtually eliminated.

## Added Input Mixer protection

To pievent an inadvertent 0 dB selting of the input attenuator. a pusinbulton iockoui is provided on the attenuator knob.

## 8445B Tracking preselector, 10 MHz to 18 GHz

The 8445B tracking preselector is a YIG cuned to fither coupled to the 8555 A spectrum analyzer in order to be tuned exaetly to the analyaer's reception frequency. The preselector climinates harmonic mixing image and multiple responses from 1.8 to 18 GHz . The resule is a wide measurement range and an end to signal identúncution. Clean. full band sweeps possible in scans of 2,4 . 6 or 8 GHz depending upon the band selexied.

Below I. 8 GHz the image and multiple responses are eliminated by a low pass fiter in the preselector.

A live diga LED display wilb I MHz resolution allows accurate measurement of either the display frequency al the display masker in lull scan mode or the center frequency in per division scan.

## 8444A Tracking generator, 10 MHz to 1300 MHz

The 8444A tracking generator provides a level, calibrated RF signal which is exactly the tuned frequency of the spectrum analyzer. This enables swepl frequency lests such as frequency response and return loss measurements up to 1300 MHz . With an exiernal counter the frequencics of unknown signals on points along a frequency response curve can be made.

## 8555A Specifications

Frequency specifications
Frequancy range: $0.01-40 \mathrm{GHz}$.
Tuning range
With internal mixer: $0.01-18.0 \mathrm{GHz}$.
With external mixer: $12.4-40 \mathrm{GHz}$.
Harmonle mixing mode
Signal identhication: not normally required with preselector. Signal idenuifier provided for positive idenuification of all responses.
Rejection of images and multiple responses with preselcetor is $>70$ dB.
Sean width
Full acan: the width of the scan depends on mixing mode. Scan width $=n \times 2000 \mathrm{MHz}$ where $n$ is the mixing mode; e.g. for $n=2$, scan widh is 4 GHz . Maximum scan width full screen is 8 GHz with coaxial mixer. Preselector necessary to make wide scans usable.
Per divislon: 16 calibruted scan widths from $2 \mathrm{kHz} / \mathrm{div}$ to 200 MHz /div in a $2,5,10$ sequence.
Zaro scan: Analyzer becomes fixed tuned receiver.
Frequency accuracy
Dial accuracy: $n \times( \pm 15 \mathrm{MHz})$ where $n$ is the mixing mode.
Scan aceuracy: frequency error belween iwo points on the display is less than $\pm 10 \%$ of the indicated separation.
Stability: residual FM slabilized $<100 \mathrm{~Hz}$ (peak-10-peak) (fundamental mixing).
Nolse ghdebands: for fundamental mixing. More than 70 dB below CW signal 50 kHz or more away from signal, with 1 kHz IF bandwidth and 100 Hz video Filter.
Frequency drift
Long term drift: (at fixed center frequency after 2-hour warm-up.)
(Typical.)
Stabllized: $\pm 3.0 \mathrm{kHz} / 10 \mathrm{~min}$.
Unatabilized: $\pm 25 \mathrm{kHz} / 10 \mathrm{~min}$.
Stabillzetion range: first LO cin be autonatically stabilized to internal erystal reference for scan widths of $100 \mathrm{kHz} /$ div or less.

## Fesolullon

Bandwidih range: seleclable 3 dB bandwidahs from 100 Hz to 300 kHz in a 1 . 3.10 sequence.
Bandwldth ohape: gaussian.
Bandwldth selectivity: ( 8552 B ) 11:1 to $20: 1(60 \mathrm{~dB} / 3 \mathrm{~dB}$ ).
8andwldth accuracy: individual IF bandwidih 3 dB points cali-
brated $10 \pm 20 \%$. ( 10 kHz bandividih $\pm 5 \%$.)

## Amplitude specifications

## Measurement range

Log relerence level: from -130 dBm to +10 dBm .
Lineap censifivily: from $0.1 \mu \mathrm{~V} / \mathrm{div} 10100 \mathrm{mV} / \mathrm{div}$.
Sansitivity and trequency reaponae with Internal cosxlal mixer Average noise level: spocified for $1 \mathbf{k H z}$ bandwidth.

Frequency response: with 10 dB inpul altenuator selling.

Frequency   Range   (GHz)	Mixlig   Mode   (n)	Averaze Nolse   Level   (dBm max.)	Frequency   Response   (dB max.)
$0.01-2.05$	$1-$	-115	$\pm 1.0$
$1.50-3.55$	$1-$	-117	$\pm 1.0$
$2.02-6.15$	$2-$	-108	$\pm 1.3$
$2.60-4.65$	$1+$	-117	$\pm 1.0$
$4.11-6.15$	$1+$	-115	$\pm 1.0$
$4.13-10.25$	$3-$	-103	$\pm 1.5$
$8.17-10.25$	$2+$	-105	$\pm 1.5$
$6.19-14.35$	$4-$	-95	$\pm 2.0$
$8.23-14.35$	$3+$	-100	$\pm 2.0$
$10.29-18.00$	$4+$	-90	$\pm 2.0$

 VSWI

Sensilivity and frequency reaponse wilh 11517A external waveguide mber and appropriate wavegulde tapert

Average nolse level: 10 kHz bandwidth (dBm typical).

$10.31-22.55$	$6-$	-90
$14.41-25.65$	$6+$	-85
$18.55-38.95$	$10-$	-85
$22.65-43.05$	$10+$	-75

Residual responses: referred to inpul on fundamental mixing: $<-90 \mathrm{dBm}$.
Display range
Log: $70 \mathrm{~dB}, 10 \mathrm{~dB} / \mathrm{div}$ and (with 8552B) $2 \mathrm{~dB} /$ div log expand on a 16 dB dieplay.
Llnear: from $0.1 \mu \vee$ to $100 \mathrm{mV} /$ div in a 1.2 sequence on an 8 -division display.
Spurious responses due to second harmonic distontion with preselector:

Frequency   Range	Powar Incident   on Inpatt Mixer	2nd Harmoolc   Distortori
$0.01-1.85 \mathrm{GHz}$	-40 dBm	-63 dB
$1.85-18.0 \mathrm{GHz}$	0 dBm	-100 dB

Spurloue remponees due to third order Intermodulation distorllon with preaslector:

Froquency Range	$\begin{gathered} \text { Signal } \\ \text { Separation } \end{gathered}$	Power Incideni on Ingul Mirer	Third Order Inlermodulaflon Oistortion
$0.01-18.0$ GHz	$\begin{aligned} & >1 \mathrm{MHz} \\ & <20 \mathrm{MHz} \end{aligned}$	$-30 \mathrm{dBm}$	- 7088
$0.01-1.85 \mathrm{GHz}$	$>70 \mathrm{MHz}_{2}$	-30 d8m	- 7048
$1.85-18.0 \mathrm{GHz}$	$>70 \mathrm{mHz}$	0 dBm	-100 18

Video flter: post detection filter used to average displayed noise. With 8552 A nomingl bandwidths: 10 kHz and 100 Hz . With 8552 B nominal bandwidths: 10 kHz 100 Hz , and 10 Hz .
Gain compresglon: for internal mixer gain compression <l de for -10 dBm peak or average signal level to input mixer. 11517A external mixer ( $12.4-40 \mathrm{GHz}$ ) gain compression $<1 \mathrm{~dB}$ for -15 dBm peak or average signal level to inpul mixer.

## Amplitude accuracy

IF galn variation with different bandwidth sotlings: (at $20^{\circ} \mathrm{C}$.)

Log: $\pm 0.5 \mathrm{~dB}$.
Linear: $\pm 5.8 \%$.
Amplitude dlsplay
Log: $\pm 0.25 \mathrm{~dB} / \mathrm{dB}$, but nol morc than $\pm 1.5 \mathrm{~dB}$ over the full 70 dB display range.
Linear: $\pm 28 \%$ of full 8 -division dellection.
Log reference level: accurate to $\pm 0.2 \mathrm{~dB}( \pm 2.3 \%$ linear sensiliv. ity).
Log reference level vernler: accuratc to $\pm 0.1 \mathrm{~dB}(1.2 \%)$ in $0,-6$. and -12 dB positions: otherwise $\pm 0.25 \mathrm{~dB}( \pm 2.8 \%)$.
Inpul attenuator range: $0-50 \mathrm{~dB}$ in 10 dB sleps, manual salcty lockout for 0 dB position.

Frequency response: typically $\pm 0.6 \mathrm{~dB}$ from 10 MHz to 18 GHz . Callbrator oufput implílude $-30 \mathrm{dBm}, \pm 0.3 \mathrm{~dB}$. Frequency' 30 $\mathrm{MHz} \pm 3 \mathrm{kHz}$ (8552B).
Absolute callbration accuracy: ovesall accuracy is a function of measuremenl technique. With the appropriate lechnique, absolute accuracy of $\pm 1.6 \mathrm{BB}$ (fundamental mixing) and $\pm 2.6 \mathrm{~dB}$ (4ih harmonic mixing) is achievable.

## Input characteristics

Inpul Impedence: 50 ohuns nomina) ( $0.01-18 \mathrm{GHz}$ ).
Reflectlon coefficlent: <0.130(1.30 SWR) for input RF altenualor seltings $\geq 10 \mathrm{~dB}$.
Maximum input level: peak or average power +13 dBm (I. 0 V ac rms ) incident on mixer ( +30 dBm with Option 002 ), +33 dBm incident on inpul attenuator.
RF Inpul connector: ype $\mathbb{N}$ female.
LO emlasion: -10 dBm withoul preselector, -80 dBm with preselector over recommended operauing ranges ( 10 dB input attenuator setiing).

Specifications with option 002; internal limifer installed: All specifications afe the same as for the standard unit except the following:

## Maximum Input level

Continuoue: : $\mathrm{W}(+30 \mathrm{dBm})$.
Pulse: 75 watts peak, pulse width $\leq 1 \mu$ sec, 0.001 duty cycle.
Reflectlan coefficlent: $<0.33$ (2.0 SWR).
Frequency response (flatness): $< \pm 0.5$ dB degradation in response. $0.1-12.4 \mathrm{GHz}$.

## General

Scan time: 16 internal scen rates from $0.1 \mathrm{~ms} /$ div $1010 \mathrm{sec} /$ div in a I . 2.5 sequence.

Power requlrements: $100,120.220 .240 \mathrm{~V}+5 \%-10 \%, 50-60 \mathrm{~Hz}$. normally less than 225 watts (varies with plug-in units used).
Dimenslons: 226 mm wide, 102 mm high, 344 mm doep $\left(87 \mathrm{~s}^{\prime \prime} \times 4.0^{\prime \prime}\right.$ X $13.5^{\prime \prime}$ ).
Welght: net. 16.8 kg ( $14 \mathrm{lb}, 15 \mathrm{oz}$ ). Shspping, $8.7 \mathrm{~kg}(19 \mathrm{lb})$.

## 8445B Tracking preselector

## Frequency specifications

Frequency range: DC - 1.8 GHz low-pass filter. 1.8 - 18 GHz tracking filier.
Tracking illter 3 dB bandwidth: typically $20-45 \mathrm{MHz}$.
Tracking filter akirt rollook: characicristics of a three-pole filicr. (Nominal: $18 \mathrm{~dB} /$ octave.)
Insertion loss:

	Srequency	Inserlion Loss (Excepl Opl. 004)	Insertion Loss (0pt. 004)
Low.Pass   Filier	DC -1.8 GHz   (a) 2.05 GHz	$\begin{aligned} & <2.5 \mathrm{~dB} \\ & >50 \mathrm{~dB} \end{aligned}$	-
Yrackling filter	$\begin{gathered} 1.8-12 \mathrm{GHz} \\ 12-18 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & <8 d 8 \\ & <10 d B \end{aligned}$	$\begin{aligned} & <7 \mathrm{~dB} \\ & <8 \mathrm{~dB} \end{aligned}$

-liow-pass fille deteled with Opion ous.


Out-of-band rejectlon: for YIG filter I GHz from center of passband $>70 d \mathrm{~B}$.
Digital frequency eeadout (Oplion 003):

## Function

Full scan mode: displilys frequency at invened markor.
Per division ecan: displays winter fruquency.
Manual or remote operation of preselector: displays tuned frequency of Filter.
Resolutlon: 1 MHz .
Accuracy: $0.01-1.0 \mathrm{GHz}: \pm \mathrm{MHz}$.
$1.0-4.0 \mathrm{GHz}: \pm 8 \mathrm{MHz}$.
$4.0-18 \mathrm{GHz}: \pm 0.2 \%$
Input specifications
Input connector: precision Type $N$ Pemalc.
Input VSWA: sypically < 2.0 ( $1.8-18 \mathrm{GHz}$ ).
Limitling level: (maximum input level for $<$ ) $\ddagger B$ signal compression) $>+5 \mathrm{dBm}$.
Damage lovel: $>+20 \mathrm{dBm}$.

## General

Remote funcilon: YIG inler frequency can be sel by externally supplied voltage.
Power requirements: $100,120.220$ or $240 \mathrm{~V}+5 \%-10 \%, 4810440$ Hz , less ihar 110 walts.
Dimenslona: 425 mm wide. 88.2 mm high. 467 mm decp ( $16 y_{4} \times$ $\left.315 / 22^{\prime \prime} \times 181 / 3^{\prime \prime}\right)$.
Weight net. 8.8 kg ( 19 lb 8 oz ). Shipping, $11.9 \mathrm{~kg}(26 \mathrm{lb})$.

## 8444A Tracking generator

Frequency range: 10 MHz io 1300 MHz .
Frequency reeolution: I kHz.
Resldual FM (paak-to-peak): 200 Hz (stabilized).
Ampilitude renge
Speolrum analyzer dlaplay: from - 130 dBm to +10 dBm .10
$\mathrm{dB} /$ div on a 70 dB display or $2 \mathrm{~dB} /$ div on a 16 dB display ( 8552 B
only).
Tracking generator (drlve level to teat device): 0 to- 10 dBm
continuously variable.

## Amplifude acouracy:

Syelem Irequency response: $\pm 1.50 \mathrm{~dB}$.
Tracking generator calbration: 0 dBm al 30 MHz to $\pm 0.5 \mathrm{~dB}$. Dynamic range: $>90 \mathrm{~dB}$.
Counter oulput: iypically 0.1 V rms.
General
Power: 115 V and $230 \mathrm{~V}, 48$ to $440 \mathrm{~Hz}, 12$ walls max.
Dimenslons: 425 mm wide. 85.2 mm high, 467 mm deep ( $161 / \mathrm{s}^{\prime \prime} \times$ $3^{1} y / z^{\prime \prime} \times 18^{3 / s_{3}^{*}}$ ).
Weíght: nel, $7.1 \mathrm{~kg}(15 \mathrm{lb} .10 \mathrm{oz}$ ). Shipping. 9.5 kg (21 lb).

Model number and name	Price
8555A, luning section	\$7250
Option 001 APC-7 connectors	S40
Option 002 Internal limiter	\$210
Option 005 Video tape	5105
84498 tracking preselector, dc - 18 GHz	\$2625
Option 001 A PC-7 connectors	\$155
Oprion 002 Add manual controls	\$80
Option 003 Add digital frequency readoul	\$670
Option 004 Delcte low-pass תlier	less \$425
Option 005 Delele interconneer rigid coax	less \$50
8444 A tracking generator ( $10 \mathrm{MHz}-1300 \mathrm{MHz}$ )	\$3375




8447 Series amplifiers ( $0.1-1300 \mathrm{MHz}$ )
The 844 T Series amplifiers feature low noise and wide bandwidth. This makes them ideal for improviog spectrum analyzer sensilivity and noise figure while providing inpul lsolation. Accurate measure ments over a wide frequency range are assured due to the broad fro quency coverage. flat frequeacy response and low distortion of ihese amplifiers. (Sec page 21).
11684A $75 \Omega$ Matching transformer ( $3-500 \mathrm{MHz}$ )
Allows measurement in 75 -ohm systems while retaining amplitude calibration. VSWR is less than 1.2 , and insertion loss is less than 0.75 dB. Nole: Also sec Oplions 001 and 002 for $75 \Omega$ versions of 8557 A and 8558B.
1121A Active probe ( $0.1-500 \mathrm{MHz}$ )
Provides high impedance ( $>100 \mathrm{k} \Omega$ shunted by $<3 \mathrm{pF}$ ) input to spectrum analyzer for measurements on sensitive circuils, Probe power is supplied b) most HP Spectrum Analyzers and flat response with unity gain assures accurate. coovenient measurements. (See pagc 423).

## 11517A External mixer

To extend the frequency range of the analyzer to 40 GHz . Taper sections for $12.4-18 \mathrm{GHz}(11518 \mathrm{~A}), 18-26.5 \mathrm{GHz}(11519 \mathrm{~A})$ or $26.5-40$ GHz (11520A) bands are required.

## 11693A Limiter ( 0.1 - 12.4 GHz )

The Model 11693A Limiter provides input protection for a variely of instruments in general applicatioos (usable from 0.01 to 18 GHz ). For example, the input circuits of spectrum analyzers. samplers, or amplifiers may be protected for inputs up to 75 walls peak or 1 wat average power. Also. sigral generstors can be protected from application of reverse power.

## 8721A Directional bridge

For making retum loss measurements from 100 kHz 10110 MHz . (See page 423 under 'II652A: Directional bridge").
8406A Frequency comb generator
Produces írequency markers al 1,10 , and 100 MHz increments accurate to $\pm 0,01 \%$. External oscillator can be used 10 generate precision interpolation sidebands. Comb is usable to 5 GHz .

## 197A Oscilloscope camera

For a permanent record of your measurements the 10367A Adapter is required to use the camera with 182 -series displays. (See page 1563.

## 8430 Series passive filters

Acl as 万̄xed presejectors for 8555A 10 eliminate unwanted responses. (See page 397).
Model number and name Price
11694A $75 \Omega$ Matching Transformer $\$ 75$
11517A Exicmal Mixer (Mixer only) $\$ 235$
IISI8A/IISISA/IIS20A Waveguide Taper Sections $\$ 150$
11693A Limiler
8406A Frequency Comb Generator

- Multichannel Operation
- Keyboard Controlled
- 80 dB Dynamic Range



## Description

The S45IB Fourier Analyzer provides digital frequency domain analysis of complex lime signals in the low frequency range of DC 10100 kHz . The system is complelely integrated and consists of a mini-computer for digital processing, a keyboard for operator contral of the sysiem, a dual-channel analog-lo-digital converter, a display control unit and CRT, a seleprinter, and an operating soltware packnge, It is a fully calibrated, multi-purpose digital system for deta acquisition, data storage, and data inalysis. The primary analysis functions it performs are: forward ar inverse Fourier transform, outo or cross power spocirum, transfer and coherence funclion, and lime or frequency domain averaging.
The ability to measure these functions quickly and accurately and with large dynamic range makes the Fourier Analyzer a powerful toal for: stimulus-response measurentents, system identification, vibration control, modal analysis. signature analysis. underwater sound. acouslies, communications, and more.
In mosi measurement situstions, boih broudband and narrowband analyses are necessary. With the measurement of baseband, bend selectable, and proporlional bandwidio (\% octave) analyses available. Hewlelt-Packard's Fouritr Analyzer is fully cquipped to handle each situation. Used logether, these techniques can provide a complete and detailed picture of a signal's spectrum.

## Asnd selectable fourier analysts

54518 Band Selectable Fourrer Analysis (BSFA) allows the digital analyzer user to perform digital speetrum analysis over a frequency band whose center frequency and bandwidth are independensly selectable by the operator. This frees the user from the DC to Fmax restrictions of conventional baseband digital analysis. With BSFA the frequency resolution of a measurensent can be increased by a factot of 400 : 1 without a corresponding increase in the amount of eompuler data space required becuusc only a porion of the spectrum rathes than the complete baseband is analyzed and stored. By using unique digital filtering, rather than analog filters or simple raised cosine digital fillers, frequencies outside the band of interest are attenuated by more than 90 dB . Because of this the full dymamic range of the analyzer ( 80 $d B$ ) can be applied to the band of interest without interference from outside frequencics.

Fealures include: all-digital operation, on-line or off-line analysis, keyboard operation. dual-channel analesis for cross measurements. and center frequency range of $D C$ io 19 kHz .

## - Dedicated Applications Packages <br> - BSFA (Zoom) Measurements <br> - Fully Calibrated Results

## 1/3 Octave analysis (optional)

With standard Fourier analysis, the frequency resolution of a measurement ( $\Delta \Gamma$ ) is constant. With S4SIB Option 740. the relative fre. quency resolution ( $\Delta f / \Gamma$ ) is constant (the reselution is proportional to The cenier frequency). Option 740 allows selection of six different ranges within the overall frequency limits of 80 mHz to 20 kHz . It simultaneously calculates five different frequency ratios within the selected range: $1 / 1$ : octave, $1 / 6$ octave, $1 / 3$ octave, $1 / 2$ oclave, and full oclave. Any rallo may be selected and displayed at any lime, even while the measurement is being made. A, B, C and D weightings, power spectral density weighting, or no weighting along with microphone correction faclors can be included in the analysis. Option 740 finds applieation in the mechanical vibration, acousticx, and environmental noise pollution areas where noise level requirements are specifed in octave formats.

## Fourier systems for mechanical applications

Digital vibration test control (option 350)
A full-capability subsystem for vibration tesi control applications is also available from Hewlell-Packard. Here the 5451B system acis as a closed-loop controller of vibration lests by analyzing feedback dota and forming corrected outputs to achicve user-specified vibration lest specifications on a loaded vibration exciter.

Hewletı-Packard's Vibration Control Subsystem has capabilities for random, sine and transient/shock lest control. By using high-speed disc dala storage, the system siores up 101 so different tests, allowing rapid set up and system changeover. Each lest may be recalled by name in seconds. On-line dise storage of test data during operation allows the operator to eaxily review the entire test.

A full range of prolective fealures including automatic alarms and aboris help guard against possible overtest or underiest and loss of control signals.

## Modal analysis (option 400)

Modal analysis, or modal survey zesting is a technique for determining the dyinamic characteristics of an clastic body by measuring the resonant (natural) frequency, damping factor, and the spatial mode shape associated with each mode of vibration. The Hewletl-Packard Modal Amalysis Subsustem is designed around the Hewlett-Packard S451日 Fourier Analyrer which gives it the capability for acquisition and analysis of madal data. This data can be used for developing or verifying a mathematical model of the structure, as well as providing valuable information for identifying and correcting naise. vibration, or railure problems which may exist in a dynamic operating environ. ment.

The system operates on experimental measurement transfer function data to determine modal properties. In addition, an animated isometric display of the part under test is generated to aid the enginecr in understanding its dynamic characteristics more ehsily. The system offers significant lime savings over eraditional swept-sine analog techniques because it operates on transfer function data. The testing stimulus can accommodatc random, pseudo-random, transient, or periodic excitation. Resules are complete and no other off-line computers are needed.
Slgnalure analysis (option 450)
Noise, vibration, and failure problems in rotating machinery are quickly analyzed using Hewlett-Packard's powerful Signature Analysis Subsystem. It combines key rotaling machinery meahurements into a dedicaied, user-griented system that's used for preventive majntenance, production quality control, design analysis, and noise and vibration studies.

Six measurements are pushbutton selectable from the operator's conirol pinel: R PM and TIME Spectral Maps. Power Specirum A nalysix. Composite Power Spectrum. Order Ratio, and Order Tracking By having Speciral Maps available al your lingertips, you can quickly gain insight into the overall dynamie characteristics of the devie: climinating the time-consuming trial-and-crror procedures dictazed by alher sysiems.
54518 日ase Syatem
$\$ 30,000$

## 3721A Correlator

The Model 3721A Correlator is a digital statistical signal analyzer covering the range de 10250 kHz . It computes autocorrelation, crosscorrelation, and amplitude probability functions. In addilion, a signal recovery facility uses sigmal averaging to improve the signal-to-noise ratio of a repetitive signal buricad in noise. The resulamt functions are displayed on $\bar{a}$ build-in CRT.

The versatile analysis and averaging capabilities combined with portability, sutomatic calibration. built-in CRT and reat-time operation make the 3721 an ideal analyzei for both laboratory and field use.

## Major Specifications

Input algnal bandwldih: de 10250 kHz .
Input range: 40 mV rms to 4 V rms.
Functions: Autocorrelation, Crosscorrelation, Probability (Density and Integral). Signal Recovery.
Number of points: 100 points computed and displayed for each funcfion.
Sampiling Interval: 1 s lo $1 \mu s(1 \mathrm{~Hz}$ to 1 MHz simpling rates). External clock facility allows any interval $\geq 1 \mu s$ to be selected. In Correlation and Signal Recovery the the beween displayed points is equal to the sampling iniervad.
Averaglng: Iwo modes are provided:
Summetion: computation automalically stopped aficr a fixod number of samples has been taken. Number of samples selectabie from $12810128 \times 10 \leq 4$.
Exponential: continuouk aversging with lime constant selectable from 36 ms to over $10^{\prime}$ seconds.
Callbration: werical catibration is automatically displayed on an ifluminated panel (except Probability).
Outputs: all computed functions are displayed on the builh-in CRT. Analog nutpuls are provided for use with an X-Y rocorder and external oscitloscope. Digital outputs allow the transfer of computed data to any HP digital computer or HP paper tape punch (2753A, 2895A or 8100 A ). Extra plug-in assemblies are required, lype depending on the peripheral used.
Model 3721A
$\$ 10,125$

## 3720A Spectrum display

The 3720A Spectrum Display is a unique add-on unit for the Correlator, to complement and extend its capability by Fourier transforming any time display on the 1721A and presenting its equivalent frequency function on a built in display.
The 3720A performs the Real and for Complex Iransformition of autocorrelation and crosscorrelation functions to produce the Power and Cross Speciral Density functions respectively, and converts sigmal recovesed data into frequency information.
Together the 3721A Correlator and 3720A Speermm Display, each with its own CRT display, form an analysis system giving both lime and froquency information simultancously.


Models 3721A, 3720A

## Major Specifications

Input data: digital data is transferred from the Correlator and held in ejiher of two slores, labeled I and 2.
Computed transforms: either the Real or Complex transform can be computed of the contents of the store 1, the contents of store 2. or the contents of stores 1 and 2 together.
Frequency range: 0.005 Hz 102.50 kHz using internal 3721 A clock. Extendable down to de with external clock.
Displayed Irequency range: twa decades of frequency are displayed, the highest frequency being ${ }^{1}, \Delta 1 \mathrm{~Hz}(\Delta 1$ is the 3721A Timescale serting).
Dynamle range: ratio of full scale signal io noise level, for lixed inlegrator gain, is betler than 50 dB .
Gain: continuously variable over a 2 -decade. 40 dB , range in seven discrele sleps. with intermediate vernier.
Window: two choices are available.
OFF: natural window, nominal bandwidth $1 / 200$.
ON: riangular window, nominal handwidth $1 / 100 \Delta 1$
interpolation: two modes available
MANUAL: compures and displays 100 frequency poinis. Frequeneies of all 100 points can be simulianeously and equally varied over a frequency interval, y, isu $\Delta 1$.
AUTO: automates the manual interpolation, colculating 10 equispaced points across each frequency interval.
Transform presentatton: all combinations of the following axes are guailable for display.
Vertlcal axis: phase, Log Mod, Modulus, Imaginary, Real
Horlzontal axis: frequency, Log Frequency, Real. Phase.
CRT diaplay: built-in variable persistence CRT with storage facility. X-Y recorder separate horicontal and vertical analog oulpuls corresponding to the CRT display.
Model 3720A

## SIGNAL ANALYZERS

## Calibrated noise for system stimulation



## 3722A

The Model 3722A Noise Generator uses digital lechniques to synthesize binary and Gaussian noise patterns. These 'pseudo-random' patterns, which are of known content and duration, are repeated over and over without interruption. Sinoc one pulfern is identical with the next each pattern has the same effect on the system under test: For this reason, pseudo-random noise signals cause no satistical variance in tese results. The Model 3722A also generstes Iruly random binary and Gaussian noise.
The basis of the Model 3722A is a binary waveform gencrator. The binary outpul has a $(\sin \mathrm{x} / \mathrm{x})^{2}$ shapod spectrum and the Gaussian output, which is derived from the binary signal by precision low-pass fillering, has an almost recisngular spectrum. Both binary and Gaussian oulpuls are controllable in bandwidth, but the oulpul power remains constant regardiess of selected bandwideh. The freguency of the first rull in the binary spsecrum is selectable from 0.003 Hz to 1 MHz . and the bandwidth (at -3 dB point) of the Gaussian noise is selectable from 0.00015 Hz to 50 kHz .

## Option H01

Model 3722A Option HO1 is a standard Model 3722A Noise Gencrator modified to provide a second binary oulput which can be de. layed by a selectable number of clock periods with respect to the main binary output. The delayed binary output is available only when the instrument is in the pseudo-random mode. The delay introduced between the tivo binary outpuls is selected by three decade switches on the front pancl. These swithes are set aecording to a conversion table supplied with the instrument.

## Specifications

Binsery oulput (fixed amplitude)
Ampillude: $\pm 10 \mathrm{~V}$.
Output impedance: < $10 n$
Load impedance: ikl minimum.
Rise Ilme: < 100 ns.
Power densily: approximately equal 10 (clock period $\times 200$ ) $\mathrm{V}^{2} / \mathrm{Hz}$ al low frequency end of specirum.
Power specleum: $(\sin x / x)^{2}$ form: finst null occurs al clock frequency, and -3 dB point occurs at $0.45 \times$ clock frequency.

## Gaussian output (fixed ampiltude)

Amplltude: 3.16 V rms.
Output impedance: < $1 \Omega$.
Load Impedance: 600 m minimum.
Zero drift: $<5 \mathrm{mV}$ change in zero level in any $10^{\circ} \mathrm{C}$ range from $0^{\circ}$ to $+55^{\circ} \mathrm{C}$.
Power deneity: approximately equal 10 (clock period $\times 200$ ) $\mathrm{V}=/ \mathrm{Hz}$ al low frequency end or spectrum.
Power spectrum: rectangular, Jow-pass: nominal upper frequency fo ( -3 dB point) cqual to \%ioth of clock frequency. Speetrum is flat within $\pm 0.3 \mathrm{~dB}$ up to $1 / 2 \hat{I}_{0}$, and more than 25 dB down at 2 So .
Creal factor: up to 3.75. dependent on sequence lengit.

Variable oulput (binary or gaussian)
Amplitude (open circull)
Blnary: 4 ranges: $\pm 1 \mathrm{~V}, \pm 3 \mathrm{~V} . \pm 3.16 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$, with ten steps in each range. from X0.I to XI .0
Gausslan: 3 ranges: $1 V$ ms. 3 V rms. and 3.16 V ms, with ien sleps in each range. from X0.I to XI.0.
Output Impedance: $6000 \pm 1 \%$.

## Main controls

Sequence length switch: first 17 positions select different pseudorandom sequence lenglhs: final position selects random mode of opcration (INFINITE sequence lengih), $N=2^{n}-1$. where $\pi$ is thic range 4 through 20.
Clock period switch: selects 18 frequencies from internal clock.

## Internal clock

Crysial trequency: 3 MHz nominal.
Frequency stability: $< \pm 25$ pprn over ambient temperalure range $0^{\circ}$ $10+55^{\circ} \mathrm{C}$.
Oulput: +12.5 V rectangular wave, period as selecied by CLOCK PERIOD switch.
External clock
Input frequency: usable BINARY output (pscudo-random only) with external clock Frequencies up to 1 MHz .
Input level: negative-going signal from +5 V $20+3 \mathrm{~V}$ initiates clock pulse.
Maximum Input: $\pm 20 \mathrm{~V}$.

## Remote control

Control inpuls: remote concrol inputs for RUN, HOLD. RESET, and GATE RESET funcrions are connected to 36-way reciplacle on rear panel.
Sequence lengit indlcation: 18 pins plus one common pin on the 36 -way receptacle are used for remote signaling of selected sequence length (contact closure between common pin and any one of the 18 pins).
Dalayed binary oulput (option H01)
Typieal performanoc ligures for the delayed oulpul are:
Amplifude: switches between +1.5 V and +12 V .
Maxlmum sink current ot 1.5 V level: 10 mA .
Impedance: $50 \Omega(+1.5 \mathrm{~V})$ and $6000(+12 \mathrm{~V})$.
Hise Tlme: < 50 ns .
Fall Time: <20 ns.*

- Measured with $\div$ probe shunted by 10 pF .

General
Dimenslose: 425 nrm wide $\times 132.6 \mathrm{~mm}$ high $\times 416 \mathrm{~mm}$ deep ( $163 / \mathrm{s}^{*}$ $\left.\times 5 \% / 2^{\prime \prime} \times 163 / 3^{\prime \prime}\right)$
Weight nel, $10.5 \mathrm{~kg}(23 \mathrm{lb})$. Shipping. 13.5 kg ( 30 lb ).

Model number and name	Price
3722A Noise Gencrator	$\$ 3615$
Oplion H01 Delaycd Outpur	$\$ 340$



## Cable assemblies

## 10501A Cable assembly

111.76 cm ( 44 in .) of 50 -ohm coaxial cable lerminated on one end only with UG-88C/U BNC (m) conneclor.

10502A Cable assembly
22.86 cm ( 9 in.) of $5(0$-ohm coaxial cable terminated on boilh ends with UG-88C/U BNC ( m ) connertors.

## 10503A Cable assembly

121.96 cm (48 in.) of 50 -ohm coaxial cable acrminated on both ends with UG-88C/U BNC (m) connectors.

10519A Cable assembly
182.88 cm ( 72 in.) of 50 -ohm couxial cable terminated on both enos with UG-S8C/U BNC (m) connectors.

11000A Cable assembly
111.76 cm ( 44 in .) inf 50 - ohm coaxial cable lerminaled on both ends with a dual banana plug. for $\% / 4$ binding posts.

11001A Cable asembly
111.76 cm ( 44 in .) of 50 -ohm coaxial cable Ierminated on one end with a dual banana plug and un the olher end with a UG-88C/U BNC (m) connector.

11002A Test leads
152.4 cm ( 60 in .) lest leads alligator clips to dual banana plug.

11003A Test leads
152.4 cm ( 60 in ) test leads, probe and alligator clip to dual banana plug.

11035A Cable assembly
30.48 cm (12 in.) of 50 -obmicoaxial cable icrminaled on one end witha dual banana plug and on the other end with a UG-88C/U BNC (m) connecior

## 11086A. Cable assembly

60.96 cm ( 24 in .) of $50-\mathrm{hhm}$ coaxial cable terminated on both ends with UG-88C/U BNC ( m ) conncciors.

11143A Cable assembly
111.76 cm (44 in.) Iest leads. dual BNC to alligator clips.

11500A Cable assembly
182.88 cm ( 72 in.) of 50 -ohm coaxial table serminated on boih ends with UG-2ID/U Tspe $N(m)$ connectors.

11501A Cable assembly
182.88 cm ( 72 in .) of 50 ohm coaxial cable terminated with UG2ID/U Type $N(m)$ and UG-23D Type $N$ ( $)$ conneclors.

08441-6012 Cable assembly
Identical with 11500 A except 61 cm ( 24 im. ) long.

Model number and name	Price
10501a Cable Asscmbly	\$10
10502A Cable Assembly	\$15
10503A Cable Assembly	\$15
10519^ Cabie Assembly	\$15
11000 A Cablc Assicmbly	\$17
11001 a Cable Assembly	\$17
11002A Test Leids	\$11
11003 A Test Leads	\$11
11035 A Ciblc Assembly	\$17
11086a Cable Assembly	517
11143^ Cable Assembly	538
11500 A Cable Assembly	530
IIS01A Cable Assembly	540
08441-6012 Cable Assembly	\$24

## CABINETS AND MEASUREMENT ACCESSORIES

Accessories
Coaxial to coaxial adapters



1250-1211


1250-0077


1250-0781

1250-0082


1250-0559

1250-0778


1250-0559


$1250-1210$


1250-0846


10113A

59
1250-1158


1250-1159


1250-0216


1250-1263


1250-1264


1251-2816

$1250-0849$


1250-1207


1250-0080


11524A


11525 A


11533A


11534A

$1251-2277$

Adapters GR type 874

Parl No.	Descripllon	Prica
0950-0090	GR Type 874 ta 50 ohm Terminstion	\$75
$1250-1239$	GR Type 874 10 GR Type 874. $90^{\circ}$ elbow	\$57.50
$1250-0240$	GR Type 874 to Type $N$ (1)	\$34
1250-0847	GR Type 874 to Type $\mathbf{N}$ (m)	\$21.50
1250.0849	GR Type 874 to BNC (m)	\$24.50
1250.0850	GR Type 874 to BNC (f)	\$19
1250.1206	GR Type 874 to Type C (m)	\$33
1250-1207	GR Type 874 to Type HN (f)	\$34
1250-1208	GR Type 874 to Type C (f)	\$32
1250-1209	GR Type 874 io TNC (!)	\$37
1250-1210	GR Type 874 to TNC (m)	\$47
1250-1211	GR Type 874 to Type HN (m)	\$50
Adaplers type $\mathbf{N}$		
Part No.	Description	
1250-0077	Type $N(f)$ to BNC (m)	\$7.90
1250-0082	Type $\mathrm{N}(\mathrm{m})$ to BNC (m)	\$13.30
1250-0176	Type $N(m)$ to Type $N$ ( f ) right anglc	\$8
1250-0559	Type $N$ tee, (m) ( $¢$ ) ( $(1)$	\$18
1250-0777	Type $\mathbf{N}$ (f) to Type $\mathbf{N}(\mathrm{f})$	514.80
$1250-0778$	Type $\mathrm{N}(\mathrm{m}) 10$ Type $\mathrm{N}(\mathrm{m})$	\$25.00
1250-0780	Type $\mathrm{N}(\mathrm{m})$ 10 BNC (f)	\$4.90
1250.0846	Type N iec (f) (f) (r)	\$6.75

## Adapters SMA

## Part No. Descriplion

1250-1158 SMA (f) to SMA (f) \$9.30
1250.1159 SMA (m) to SMA (m) $\quad \$ 9.10$

Adapters APC-7
Part No. Description

11524A	APC-7 10 Type N (1)	\$75
115254	$\wedge{ }^{2} \mathrm{C}-710$ Type $\mathrm{N}(\mathrm{m})$	\$75
11533A	$\wedge P C .710$ SMA (m)	\$120
11534 A	APC. 710 SMA (Г)	\$120

SMA (T)$\$ 120$

## Adapter banana plug <br> Part Na Descripition

125)-2816 Dual Banana plug (for cables) $\$ 2.20$

## Adapters BNC

Parl No.	Description	
1250-0076	Right angle BNC (UG-306/D)	\$4.90
1250-0080	BNC (f) 10 BNC (i) (UG-914/U)	\$4.90
1250-0216	BNC (m) to BNC (m)	\$4.90
1250-0781	BNC Tec (m) (f) (f)	\$6.20
1250-1263	BNC (in) lo single banana posi	\$9.30
1250.1264	BNC (ות) (10 dual banana post	\$16
1251-2277	B,NC (1) lo dual banana plug	\$7.30
10110A	BN(: (in) to dual banana post	\$15
IOIIIA	BiCC (I) to shielded banana plug	\$17
10113A	Dual $8 N C$ ( 1 ) lo tripic banana plug	\$17




100078, 10008B Divider probe
The 10007 B and 10008 B are straight-thru BNC probes with the following changeable tips: hook tip. pin tip. spanner tip. and $6^{\prime \prime}$ ground lead with alligator tip ineluded.
Peak

Vollage $\quad$| Shumt |
| :---: |
| Capacitance |$\quad$ Length.

## 11021A Divider probe

1000:I divider probe increases range of HP 425A DC Microvolt. Antmeter to 1000 voles.

## 11028A Current divider

100:1 divider for extended range measurements for 456A AC Current Probe.

11036A AC probe
Peak responding for use with 410 C .
11040A Capacitive voltage divider
For 410 series voltmeters. Increases range so iransmituer voltages can be measured quickly and easily. Accuracy $\pm 1 \%$. Division ratio 100:1. Inpul capacity approximately 2 pF . Maximum voltage 2000 V al 50 MHz decreasing to 100 V al 400 MHz Frequency range 10 kHz 10400 MHz .

## 11044A DC voltage divider

For 410 B volimeter. Gives maximum safely and eonveniences for measuring high valtages as in television receivers, elc. Accuracy $\pm 5 \%$. Division rakio 100:I. Input impedance $12 \mathrm{G} \Omega$. Maximum voltage 30 kV. Maximum curreni drain $2.5 \mu \mathrm{~A}$.
11045A DC voliego divider
For 410 C volimeter. Same as 11044 A excepl inpul impedance, 10 G $\Omega$.
11047A Output voltage divider
Input $600 n$. Oúpipit $600 \Omega \pm 1 \% .6 \Omega \pm 1 \%$. Voltage rating $1 / 2$ watt.

Model number and name	Price
10007B Divider Probe,	\$27
10008B Divider Probe	\$27
1102IA Divider Probe	\$94
11028 a Current Divider	\$80
11036A AC Probe	\$105
11040A Capacitive Vollage Divider	\$88
11044A DC Volage Divider	\$72
11045 A DC Voltage Divider	\$74
11047 A Output Voltage Divider	\$29



## 456A Description

Conventional voltmeters or oscilloscopes can measure current quickly and dependahly - without dircel conncelion to the circuil under tal or any appreciable loading to test circuit. HP: 456A AC Cusrent Probe clamps around the current-carrying wirc, and provides a vollage output sead on a volimetcr or scope. Model dion's I mA io I mV conversion permits direct reading up to I A rms.

## 456A Specifications

Sensltivlly: $1 \mathrm{mV} / \mathrm{mA} \pm 1 \%$ al 1 kHz .
Frequency response; $\pm 2 \% .100 \mathrm{~Hz}$ 10 $3 \mathrm{MHzi} \pm 5 \%, 60 \mathrm{~Hz}$ 10 4 $\mathrm{MHz}:-3 \mathrm{~dB}$ al $<25 \mathrm{~Hz}$ and $>20 \mathrm{MHz}$.
Pulse response: rise lime is $<20 \mathrm{~ns}$, sag $<16 \mathrm{~F} / \mathrm{ms}$.
Maximum Input I A rms, 1.5 A perk: 100 mA above 5 MHz
Effect of de current: no appreciable effect on sensitivity and distortion from de current up to 0.5 A .
Input impedance: (impedance added in series wish measured wire by probe) $<50 \mathrm{~m} \Omega$ in serics with $0.05 \mu \mathrm{H}$ (this is approximatly the inductance of $1 \frac{1}{j}$ in. of hookup wire).
Probe aperture: 4 mon ( $1 / 3:^{*}$ ) diamelcr.
Probe shunl capacliy: approx. 4 pF added from wire to ground Distortion al 1 kHz : for 0.5 A input at least 50 dB down: for 10 mA inpul at least 70 dB down.
Equivalent Input nolse: $<50 \mu \mathrm{~A}$ min ( $100 \mu \mathrm{~A}$ when ac powered).
Output Impedance: $230 \Omega$ at 1 kHz approximatcly +1 V dc compo neni; should work into load of not less than 100.000 s shunted by approximatcly 25 pF .
Power ballery life (two), approximately 400 hours: ac power supply: Option 001, IIS or $230 \mathrm{~V} \pm 10$ 㫥, 50 io $1000 \mathrm{H} \neq$ approx. I W.

## 11473A-11476A Description

New balancing iransformers provide a balanced outpul from a sin-sle-ended input, or a single-ended output from a balanced inpul. Im. pedances available are 75 olyms umbalanced to $124 \Omega$, $135 \Omega$, $150 \Omega$. and $600 \Omega$ balanced. Frequency response is $\pm 0.5 \mathrm{~dB}$.
(Each module contains iwo iransformers with the following specificaticins)

Model No.		11473A	114738	11474A	11475A	11476
Impedance*	Unbal	$75 \Omega$	$75 \Omega$	$75 \Omega$	751	$75 \%$
Maline connectors	Bal	$600 \Omega$	$600 \Omega$	$135 \Omega$	1508	1248
	Unbal	BNC	BNC	8NC	8NC	BNC
	Bal	$\begin{aligned} & \text { WECO } \\ & 310 \end{aligned}$	Siemens 9 gEL   SIP.6AC	$\begin{aligned} & \text { WECO } \\ & 24 i \end{aligned}$	Siemens 9 REL   SIP. GAC	$\begin{aligned} & \text { WECO } \\ & \text { 408A } \end{aligned}$
Frequency range:		$20 \mathrm{Kz}-50 \mathrm{kHz}$	$20 \mathrm{~Hz}-50 \mathrm{XHz}$	$2 \mathrm{HHz}_{2}-2 \mathrm{MHz}$	$2 \mathrm{MHz}_{2}-2 \mathrm{MH}_{2}$	$5 \mathrm{kHz}-5 \mathrm{MHz}$
Frequency rasponse:		$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{d8}$	$\pm 0508$	$\pm 0.5 \mathrm{~dB}$
Insertion loss:		$\begin{aligned} & <075 \mathrm{~dB} \\ & \text { al I kHz } \end{aligned}$	$\begin{aligned} & <0.75 \mathrm{~d} 8 \\ & \text { ai } \mathrm{I} \mathrm{kHz} \end{aligned}$	$\begin{aligned} & <0.95 \mathrm{~dB} \\ & \text { at } 50 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & <0.25 \mathrm{~dB} \\ & \text { al } 50 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & <0.25 \mathrm{~dB} \\ & \mathrm{zl} 50 \mathrm{XHz} \end{aligned}$
Longludinal balance:		$>40$ d8	$>40 \mathrm{~dB}$	$>40 \mathrm{~dB}$	$>40$ d8	$>350 \mathrm{~B}$
Max mpul power.		$+13 \mathrm{dBm}$	+13 d8m	$+27 \mathrm{d8m}$	+27 d8m	$+27 \mathrm{dBm}$

- 50 亿il untalanced to balances masformer avainable an special tastis. Above specifications apply

Model number and name	Price	11473 B Balancing Transformer	\$285
Oplion 001 AC Power Supply	$\$ 23$	11474 A Balancing Transformer	$\$ 285$
4S6A AC Cursent Probe	$\$ 415$	11475 A Balancing Transformer	$\$ 285$
II473A Balancing Transfomer	$\$ 285$	11476 A Balancing Transformer	$\$ 285$

1051A, 1052A Combining cases
Modus 1051A and 1052A combining cases conveniently rack or bench mount combinatsons of small modular Hexlen-Packard instruntents. In addition, these cases can be stacked on each other or on any full module instrument. Both cases accept $1 / 3$ or $1 / 2$ instrument modules. 130 mm or 198 mm wide ( $51 / 8$ or $72 / \mathrm{s}:$ inches). The basic difference is that the 1052A is 130 mm ( $5 / /^{\prime \prime}$ ) deeper, and will accept modules up 10416 mm deep ( $163 \mathrm{~m}^{\circ}$ ). The extra length provides more space in the rear for wiring. The 1051A accepts instruments up to 286 mm doep (II $1 / 4$ ). Each case is furnished with wo dividers.

## 1051A, 1052A Speciflcations

Dlmensions
1051A: $178 \times 483 \times 337 \mathrm{~mm}\left(7 \times 19 \times 134 \mathrm{a}^{2}\right)$.
1052A: $178 \times 483 \times 467 \mathrm{~mm}\left(7 \times 19 \times 183^{3} \times{ }^{4}\right)$. Wolght
1051A: net. 4.5 kg ( 10 ib ). Shipping, 6.7 kg ( 15 lb ).
1052A: nel. 5.4 kg (12 lb). Shipping, 8.1 kg ( 18 lb ).

## Optlons

908: Rack Flange Kit adú $\$ 10$

## Rack adapter frames 5060-8782, 5060-8764

These frames can be used to hold combinations of $1 / 3$ and $1 /$ widih module $H P$ instruments. Each frame is furnished with mounting hardware and divider panels. Three difierent models are available for different insirument heights, Adapter frames are for permanemt or semipermanent sack mounting. Where quick removal and reinstallation of instruments is desirable, the I051A and 1052A combining cases should be used.
5060-6782: sccepls instrument heights of 38.77 , or 155 mm (1/2. $31 / 22$. or $6 \% / 3^{2 \prime}$ ).
5080-8764: accepts only instrument heights of 38 or 77 mm ( $11 / 2$ or $31 / 12^{2}$ ),

Flller panels, 5060-8757 to 5060-8761
Filler panels can be used to close off any lefiover space after insiruments are mounted in combining cases or adapler frames. Panels are made in a variety of widths and heights. Avalable widihs are $1 / 6.1 / 3$. and $1 / 2$ modules: heights are $1 / 4.1 / 2$ and the full $155 \mathrm{~mm}\left(6 \% /:^{*}\right)$.

Speclications, filler panets

Part No.	Module Case Wdth $\times$ Heighl	Dimensions	
		mm	In
5060.8757	$1 / 3 \times 1 / 4$	$130 \times 38$	$51 / 4 \times 1 / 2$
5060.8758	$1 / 3 \times 1 / 2$	$130 \times 77$	$51 / 4 \times 31 / 38$
5060-8759	$1 / 3 \times 1 \mathrm{ll}$	$130 \times 155$	$51 / 8 \times 63 / 32$
5060.8760	$1 / 2 \times$ luld	$198 \times 155$	$725 / 32 \times 63 / 32$
5060.8761	$1 / 6 \times$ tull	$63 \times 155$	$231 / 84 \times 63 / 32$

## Accegsory drawer 5060-8756

The accessory drawer can be ured in place of a filler panel to finish off unused space in the combining cases. The drawer is $1 / 5$ width and $1 / 2$ heighe.
Dimensions: $130 \times 77 \times 279 \mathrm{~mm}(51 / 2 \times 3 / 1 / 3 \times 119)$.


5060-0789


5060-8768


# CABINETS \& MEASUREMENT ACCESSORIES <br> Modular enclosure system for individual HP products <br> System-II 

## - Truly modular, fits standard heights and widths <br> - Broad range of accessories for bench or rack use <br> - Strong frame. yet easy service access to interior



Look Inside newer HP Instruments housed in System-ll cabinels, and you will find an exIremely strong trame allowing maximum use of Inierior space, Yel, there's excellent service access from top, bottom and sides. (Optional ball handle is shown on this particular Instrument.)

In 1961. Hewlett-Packard introduced a new universal enclosure system for instruments. That system (which is called "SystemP" within HP) made it practical to stack instruments neally for bench use, while at the same time providing a convenient means for mounting the insisuments directly in a rack. It was also ceshetically more appeating than the simple boxes of various sizes that had been the norm - and it provided more convenient access to internal parts and more erficient use of space than the conventional chassis-slipped-into-a-box approach commonly in use at that time.

## Need for a naw enclosure system

Continuing changes in the nature of electronic instrumentation have created new needs in enelosure systems. Foremost among these is the need for even better accessibility to intemal parts. as circuits become more densely packed. Ideafly, this not only means access from iop and bollom. us provided by the 1961 system, but also from the sides, iront and back as well.

Today's miniaturized circuits also lead 10 two other lypes of problems. First, the enclosures lend to be smaller than in the post meaning that coslly combining cises or space-consuming rack adapier lrames are often sequired for grouping smaller products together on the bench or in the rack. Second.
there's the need to optimize utilization of smaller front panel areas - and it becomes increasingly difficult to arrenge displays, nomenclature and the growing number of controls for convenient user operation.

Radiated electrical interíerence can also be a significant problem, as aransition times of digital signals shorien to the nanosecond region. This means that insiruments tond to radiate a greater amount of high-frequency energy. thereby creating potential problems for users operating sensitive deviees in close proximity,
New standard enclosure: System-II
With the above in mind, Hewlell-Packard has developed a new enclosure system for HP products, using an "inside-out" design approach. That is, design priorilies first concentrated on all servieing. manufacturing. clectrical, mechanical, and thermal needs before turning to the esthetic considerations. The resulting enclosure has greater strength but is lighter in weight than the earlier design. Atso, in provides better accessibility for servicing, has mure versatility in bench/rack configurations, and it inberonily provides significant ationuation of unwinted RF energy.

This new titclosure is called "System-II", and it is now the standard package in which new HP cabinelvenclosed products are being introduced.


Three front handle and/or rack flange kits are available as standard options on fullwidh instruments - or, the kits may be purchased separately.

Compatibility with current System-I products has been carefully considered. Cabinet and panel colors for both systems are the same, and the new System-ll instruments will conveniently stack on the oider Systicm- 1 enclosures (and vice-versa).

The basie Sysiem-If frame consists of six die-cast aluminum paris: a front panel frame. a rear panel frame, and four connecting side struts. It is rigid by ilsel/ and does not depend upon internal decking, front or rear pancls or covers for strength. The resulting open design mikes maximum use of available spice, and allows easy necess inside.
The sturdy front panel frame is the heart of the design. It has integral pads for the side struts, mousting holes for fastening the front panel, recesses for front handles and rack flanges or for links that lock adjacent enclosures logether, sloos for plug-in laches, and narrow channels for bolding rop, side, and boilam covers.

## Heights



## Widths



## Depths



The narrow U-shaped channely serve as wave traps that reduce the radiation of (or
 further precaution, small ridges aligned in the direction of cover insertion provide highpressure points for extablishing good clocitical contact. Only RF energy at wavelengths much shorter than those of concern can move between these contact points. Trim delat on the side covers provide the same kind of RF seal along the sides. as does a similar arrangement under the lip of the covers at the rear The covers, however, arc cach relained by a single caprive sercw, enabling quick removal for servicing.
The sizes of holes such as those needed for mounting cabinct feet have been roduced to practical minimums.

## Maximized panel area

Unlike the earler design, the System-II frome panel frame uses all che available area in full mulliples of verrical EIA/IEC increments. Also, the fromi pancl trame overhangs lower side members. completely filling the allolted rack space while still sllowing room for the optional use of System-II rack support shelves.
The front panel mounts to the framework with screws accessible from the outside, and because it docs not serve as a structural mem. ber. there is an increase in the amount of us. able panel space. This reduces the crowding of conirols so instruments become easier to operate.
All serews used in cabinel assembly are of the self-locking type with an inserted plastic patch on the thrcads, preventing the serews from working loose when subject to vibration.

## Easier carrylng

From-panel handles (now optional) have been designed with an oulward tilt. The angled handle is comfortable for the hand, while presenting a minimal visual obsaruction of controls located along the edges of the front pancl. (Optional rack-mounting flanges may be installed with or without the front handles in place.)
Full-width producls have a handle on each side. Each side hande is in the form of a long

Summary of System-II dimension descriptors

Dimension Descripior	Equivalent to:	mm	Inches
Height			
31/2H	20	88.1	3.469
54/2 H	30	132.6	5.219
7 K	40	177.0	6.969
83 H	50	2315	8.719
10\% H	6 U	2055	10.469
12\% H	73	310.4	12219
Width			
4, M ${ }_{\text {H }}$		105.7	4160
$4 . \mathrm{MW}$		212.3	8.360
\%/ MH2		318.9	12.550
$1 \mathrm{MW}^{3}$		4255	16.750
Depth ${ }^{\text {² }}$			
HD		2692	10.500
140		345.8	13600
170		421.6	16.600
200		497.8	19.600
230		574.0	22.600

- See ANSI C83.9.1972 or IEC 293.1975
* HiP prodicts are nol sumiable in 5.11 cabnets 5. STW, but this is usetul dimerien ta indicate fillet panel widths.
Bdiding S.II rack Hanges extends the ! Wh dimension for mounting in standard 482.6 mm ( 19.000 inch) rach.
-Depth dimension includes basic caninet ariy doés not include protrusions such as controls, frent nacylim the
strap. which provides more freedom in finding a balance point. The strap handle reces: in each side panel also provides a place for mounting rack slides.
An op(ional front bail handle is available for smaller products, and some products are equipped with a strap handle on top.


## Madulor small enclosures

The smaller enclosures in System-11 are dimensioned to be exact submultiples of the standard rack width design. Rack mounting frames are therefore not required: a simple extender to reach full rack width is all that is needed.
It is easy to group instruments topether horizontally or vertically by using simple lock links. The links can be installed by using threaded holes already provided in the framework, allowing quick assembly and separaijon of instruments.


Cabinets of equal depiths can be stacked and locked together securely, usling ventcal lock Inks from Kli 5061-0094.


Sub-module cabinets ( $1 / 4 \mathrm{MW} \& \mathrm{~V}, \mathrm{MW}$ ) of equal depins lock side-by-side, using horizontal lock llnks from Kit 5061-0094.

General accessories and parts for System-II cabinets

(lem ${ }^{1}$	flis these System.II Cabinets	Descrigilon	Part Number	Price
Fronl handle kit   (Will de shipped wilh :nslrument, il ordered as Opling 907 al same fime Otherwise available separately der Parl Numbers listed at (ighl.)	All cabinels - but principle use is on ) MW (full Module) cabinels. of on sub-Module cabinets locked logether lo torm width of ) MW.	Includes two trent handes; fit on each side 3 K H ol front panel irames, for cabiatts this high: $54 / \mathrm{H}$   8KH   10施 H   1240 H	$\begin{aligned} & 5061-0088 \\ & 5061-0089 \\ & 5061.0090 \\ & 5061.0091 \\ & 5061.0092 \\ & 5061.0093 \end{aligned}$	$\$ 15.00$   $\$ 15.00$
Bail handle kit	33 MW (Hall Module)		$\begin{aligned} & 5061-2001 \\ & 5061-2002 \\ & 5061.2003 \end{aligned}$	$\begin{aligned} & \$ 7.50 \\ & \$ 7.50 \\ & \$ 7.50 \end{aligned}$
Cabinet lock-logether kit	All cabinels, provided thisy are of equal depth.	Kit of lock link hardwace and screws for foining instument cabinets in soveral different contiguralions. Enough heriontal links ( 12 tronl, 6 rear) to form thee side'-by-side joints (up to \& instrumenls). and enough vertical links (4 tront, 4 rear) to lorm two over-under joints (ap to 3 inslrumenls). ${ }^{2}$	5061.0094	\$15.00
Cabinet feet	1 MW (Full Module) and th MW (Hall Module)	Siandard fool (I): lits botlom of I MW and 1/ MW cabinets (requires 2 ront, 2 rear).	5040.7201	\$1.00
		Tilt stand (1): lits onlo slandard lool and is used in pairs (\|ront or rear).	1460.1345	\$1.00
		Non-skid loot (1): used (in pairs) in lleu ol standard rear of troni loot. io minimize bench-top creeping of insliument. (Some lighter-weight products are supplied wilh Ihis type lool on rear.)	5040-7222	\$2.50
	K/ MW (Quarter Module)	Standard fool (1): fils bollom of \% MW cobinel (requires ! in fronl, I in rear).	5040-7205	51.50
		Tilt stand (1): fits onto k, MW slandard toal (only I used, for front or rear).	1460.1369	81.50
		Non-skld fool (1): used singly in lies of 1/4 MW slandard rear or front Iosl. (Is included an some lighler-weight products.)	5040.7226	\$3.50
Feel, rasr panel slandorf	All cabinets - except does not nermally fith cabinels which are $\mathrm{K} / \mathrm{MW}$ and 3 h h .	Kit of four special leel which prowide 25.4 mm ( 1 ma .) slandotl protection to rear panel. Used when instrument is operaled in verlical position, or when il is Iransported/slored on its rear panel.	5061 -2009	\$5.00

[^27]"Ledury cabinets togetber horizontally in a configuration wide than 1 wiw (full Module) is nal ircommended.

## CABINETS \& MEASUREMENT ACCESSORIES

Modular enclosure system for individual HP products
System-II


Cabinets $1 / 4 \mathrm{MW}$ utlize one broad foot each at front and rear (either accept till stand). Note how rack mounting adapter and rack liange lit onto fromi frame, atter irim sirlp is removed.


Sub-module cablnets ( $1 / \downarrow$ MW \& $1 / 2$ MW) may be extended to lull rack width, by usIng rack mounting adapters as shown above.

Cablnels $1 / 3 \mathrm{MW}$ and 1 MW utlize two feet anch at boin Pront and rear (all accept (ill stand). Note how front handle and/or rack flange fil onfo front frame.


Standard slldes ilt rull module cabinets (1 MW) for Installation in HP rack enclosures. Also shown are oplional adapler brackeis for using sildes in non-HP rack enclosures.

## Rack mounting accessories for System－II cabinets

S－II   Cabinet Width	Hem＇	Description		Part Number	Price
1 M $\%$   （Full Modiule）	Rack lange hil   （Will be shipped with instrumema，il ordered as Option 908 at same lime．Otherwase available separaleíy pet Part Nuinbers listed at right．）	Ineludes two ta；k Ilanges；fit on each side of tront panel trames，for cabinets this high：	$\begin{array}{r} 3 \% H \\ 5 \% H \\ 7 H \\ 8 K H \\ 10 \% H \\ 12 \% H \end{array}$	50610076   5061．0077   $5061-0078$   5061．0079   5061.0080   $5061-0081$	$\$ 10$ $\$ 10$ $\$ 10$ $\$ 15$ $\$ 15$ $\$ 15$
	Rack flange \＆front handle combination kit   （Will be shipped with instrament，il ordered as Option 909 at same lime．Otherwise avaliable separately per Pait Numbers listed at right．）	includes two rack llange：hont hande combinations；fit on each side of tronl panel Grame，for cabinets this high：		5061 （008\％   5061.0083   50610084   5051－0085   5061.0086   5061.0087	$\begin{aligned} & \$ 20 \\ & \$ 20 \\ & \$ 20 \\ & \$ 25 \\ & \$ 25 \\ & \$ 25 \end{aligned}$
	Standard slide kit for HP rack enclosures	Includes two slandand slides lar instâling instrument weighing mis more than 38.6 kg （ 85 lb ．）into HP rach enclosures．Fit side hardle recess on S－II cabinets this deep：	$\begin{aligned} & 14 D \& 17 D \\ & 200 \& 230 \end{aligned}$	$\begin{aligned} & 1494-0018 \\ & 1494-0017 \end{aligned}$	$\begin{aligned} & \$ 40 \\ & \$ 40 \end{aligned}$
	Silde adapler brachel kill	Includes brackets tor adapling the standard sludes above for use in ran－HP rack system enclosures．		1494．0023	\＄10
	Heavy dity slide kil for HP rack enclosures	Inclutes two heavy－duty slides for inslaling instrument weighing no mare than 796 kg （ 175 lt. ）Into HP rack enclosures．fil S－II cabinets this đeep：	2008230	1494.0016	\＄100
4／MW   （Qusiter Module）   and   1／2 MW   （Hall Module）	Rack mounting adapler kit ${ }^{2}$	Includes one rack flange and one extension adapter si MW．For mesuling ene S．II cabinet 角 MW，having a height 35 H ．		5061.0053	\＄15
		Includes one rack liange and one extension adapler $1 / 2 \mathrm{MW}$ for mounting one S．ll cabinel $4 / 2 \mathrm{MW}$ or two cabinets $1 / 4 \mathrm{MW}$ ． having these heighls：	$\begin{array}{r} 34 \mathrm{H} \\ 54 \mathrm{H} \\ 7 \mathrm{H} \\ 10 \% \mathrm{H} \end{array}$	5061.0054   5061.0057   5061.0060   5061.0066	$\begin{aligned} & \$ 15 \\ & \$ 15 \\ & \$ 20 \\ & \$ 20 \end{aligned}$
		Includes one rach liange and one extension adapter $1 / 4 \mathrm{MW}$ ．For miounting one S．II gabinet $1 / 2$ MW logethel with one cabinet $1 / 4$ MW，or for meunting theee cabirets $1 / 6 \mathrm{MW}$ logether；having a height of 3 K H ．		5061 －00353	\＄15
	Rack Ilange ktt ${ }^{\text {a }}$	May be used whenever $\$$ ． 11 entinets 3 MW and／or tha MW are combined to a lull width of I MW（ Full Module）．		See I MW sbove	
	Rack llango \＆lionl handle comaination kit ${ }^{3}$	May be used whenever $\$$－II cabinets 有，haw and／or $5, \mathrm{MW}$ are combined to a fuil widin of I MW（Full Module）．		See 1 MW above	
	Supporl shell	For mounting one or more S－II cabinels which are $1 / \mathrm{MW}$ or $1 / 4 \mathrm{MW}$ ．Cabinet depths need not be equal，bul heights musl malch support shelf height：	3 KH   5 $1 / \mathrm{H}$   7 H	5061.0096   $5061 \cdot 0097$   5061－0098	$\$ 65$ $\$ 70$ $\$ 75$
	Frant filier panels lof sugporl shelf	for $31 / 2 \mathrm{H}$ suppori sholl partally lilled wilh Sil instrumenls．and having the following front panei space to filt．	1／4 MW to fill 1／2 MW to fill 3．MW to fill	$\begin{aligned} & 5061-2021 \\ & 5061-2022 \\ & 50612023 \end{aligned}$	512 515 518
		For 5㛖 H support shell，and having 期 MW Iront panel space to tiat－		5061－2025	\＄18
		For 7 H support shell，and having $\$$ Mw tronl panel space to fill．		5061.2027	\＄18
	Silde khl for support shelf	Includes two slides lor side－maunting any ol above three support shelvas in HP rack enclosures．		1494－0015	540

[^28]
hardware．
${ }^{2}$ Cabinet lock－together kit（5061－150e4）is also required whenever two．tiree or four sub－

adapters or：Rack lianges．Also，sub－module cabinets must be of equal depth．


## Transmission testing: frequency division multiplex (FDM)

The most commonly used method for iransmitting large numbers of voice channels for long dislances is to stack individual voice channels in the frequency spectrum. When a fault exists in the mulliplex, it will cause the fidclity of the information signal 10 degrade in one or more voice channels. Since these systems can now earry over 10,000 channels on a single transmission facility, it is very important that transmission parameters be precisely mainatinco.
Traditional FDM tramsmission measurements have been concerned with maintenance of the multiplex Roulines such as carrier leak. out-or-band noisc, gain and loss, group. and cross-modulation checks, alignment of line pilots, etc.. are established procedures thot have been performed for years.
These measurements have been performed using manual selective level meters in conjunction with FDM charts and line frequency tables. Inevilably, this has been a time-consuming process allowing only a skelelon set of rovitines to be performed in the allocated tume.
The transmassion of data through the network logether with the rapid growth of telephony has highlighted the need for more comprehensive characterization, coupled with speed and accuracy. While traditional selective level meters suill have a major role to play, these emerging requirements can only be mes by a new generation of selective tevel meters which remove the redium, either on a semiautomatic or automatic basis.

MANUAL MEASUREMEATS*	$\begin{aligned} & 3745 \mathrm{~A} \\ & 3320 \mathrm{C} \\ & 3330 \mathrm{~B} \\ & \mathrm{P}_{\mathrm{g} .} 500 \end{aligned}$	$\begin{aligned} & 3745 \mathrm{~B} \\ & 3320 \mathrm{C} \\ & 3330 \mathrm{~B} \\ & \mathrm{Pg} .500 \end{aligned}$	$\begin{array}{r} 312 \mathrm{~B} \\ 313 \mathrm{~A} \\ \text { P8. } 400 \end{array}$	$\begin{gathered} 3120 \\ 3320 \mathrm{C} \\ P_{\mathrm{B}} .498 \end{gathered}$
Chanael Power. Unweighted 3.1 kHz	-	-	-	-
Channel Powet, Weighted, Psophometric (CCITT)	-			$\bullet$
Channel Power, Weighled, C-Message (Norlh America)		$\bullet$		-
Chanol Test Tones	-	*	-	-
Group Power, 48 kHz Bandwioth	-	-		
Broauthand Powel	-	-		
Pilal Leveis	-	-		-
Carrier Leak	-	-		-
Phase Jitler (direct')	-	-		
Tracking (Gide/frequency Response)	-	-	-	-
Ollsel Tracking	-	-		
Out of Band Noise	-	-	-	-
- AUTOMATIC MEASUREMENTS ${ }^{\circ}$				
Frequency Scan (Spectrum Analys:5)	-	$\bullet$		
FDM Plan Scan (CCITT)	-			
FDM Plan Scan (Norlit America)		-		
Group Power Scan	$\bullet$	-		
Hot Tone (High Talker) Scan	-	-		
FULL REMOIE CONTROL * (with exceplion ol Phase Jitter)	-	-		

 available. Conlact you MP Sales Othice in your aי'י.

Advances 111 calculator and microproccssor technology have allowed the development of automalic and scmiautomatic selec:live level measuring sets. This enables the lechnician to perform a large variety of measuremenis which are rapid, precise and reliable. A paricularly useful aspect of the automatic SLMS is the speed with which it can localize sysiem 「aules and hence reduce sysiem down-íme. For instance, it is possible to measure several hundred pilor levels to a high degrec of accuracy in a lew minutes.

Instrumentation of this lype. particularly when coupled together via HP-IB (see page Sll of this Catalog), will be used in a surveillance mode to detect deterioration in system performance long before the system fails.

## Microwave radio lesting

In most countrics, the main communication system consists of a netsoork of FM microwave rudio links. These links can typically carry up to 1800 telephony channels. using a 70 MHz IF earrier and an RF band in the range 1.7 to 13.25 GHz . However. some countries are now installing 140 MHz IF microwave links which can carry 2700 F.D.M. telophony channels.

The common objeclive for all types of in. fomation signals carried by thesc links. whether it be specth. television or data is to convey the information with maximum fidelity. Failure 10 keep distortion of these links within acceplable limits not only results in an onusable signal, but also incurs a severe financial penaly due to lost revenue. Fortunutely, the major caustes of distortion can be identified and in many cascs, with the availability of suitable test equipment. can be mitiimzed to acceprable levels.

The main coneributors to distortion in FM links are ibe baseband and casticr suctions, of which modulators, demodulators, If amplifiers and filers are examples. In addition. lechnological development has led to more signal processing at $R F$, nccossitafing distortion measurements in the RF bands.

Link parameters such as carrite umplitude and group delay variations need to be meitsured in order to characterize and/or diagnose faults. As the number of channels carriced by a link inereases, measuremenes of dif. ferentail gain and phase become imporiant since ihey correlate closely to intermodula. tion distonion. Differential gain and differential phase measuremunts have the advanlage of characlerizing the link more completely, and yicld valuable diagnostic informalion. Furthermore, these lwo measure ments are mathematically related to the baseband measurement of noise power ratio. This allows mictowave link manufacturers io define link parametcr with much more certainly. If allows microwave link operators to be more cost effective in their optimization of performance. HP Application Notc AN 175. 1. "DifferenLial Gain and Phase al Work", covers this subjoct in considerable detail.

The Microwave Link Analyzcrs. al 70 MHz and 140 MHz were developed specifically for the purpose of muasuring various forms of distortion on lerrestrial and satellite microwave rudio links. The measurement ca-
pabilitics of HP's link analyzers was estab. lished in close couperation with the telecommunications indusiry.

The need for distorlion measurements at RF has increased considerably. This is due, Jor example, to the greater use of RF filters and equalizers and to changes in maintenunce philosophy. The ability to characterize and for idenlify faulls within receiver or transmitter bays greatly adds 10 measurement cost effecliveness.
Hewlett-Packard achicves RF distorion measuremenis by coupling Upand Down converiers to the IF Aicrowave Link Analyzers. These converters cover the RF of the majority of radio links. i.e., ( 700 MHz to 12 GHz ). They contributc very little to the residual discorlions of the measurement system. Test signals are generated and can be reccived that are compatible with most radio systens in common usage, both civil and military.

## Transmission testing: time division multiplex (TDM)

All signals, when passed ihrough a dispersive ransmission medium, experienoe distartion which degrades their fidefity. The principal advantage of transmitting information in digital form is that the majority of this dislorlion can be eliminatled by reconstructing the signal at frequent intervals along the transmission link. However, this process of regencration can give risc to digital errors when the signal-io-noise ratio is such that incorrect docisions occur in the regenerator. Timing jituer can also cause errors in regenemtors or other parts of the digital Iramsmission system. The principal measure uf qualHy of any digital link is therefore Bil Error Rate (BER) - where the number of received bits in ertor is divided by the toial number of Iransmitted bils. BE: R is normally measured by stimulating the system under lest with a
pseudo-random binary sequence (PRBS) and then comparing the sysicm outpul, bil by bil. with an independent reference sequence. All ertors, whether bursh systematic or random, con in this way be delected.

The measurement needs of development work and those of maintenance are typically quite different. Tast instrumenis have been developed that address the specific problems of each area. Flexibility, with binary 10 binary capability for $R$ \& $D$. Line code interfaces for operational maintenance. Developing techniquas for digital communication, exampled by buried wave guide and oplical links. are nocessary considerations for tist equipmeni development. Hewlett-Packard's development program is closely died with those of the communicalions industry.
tDM TESTING

MEASUREMENT	$\begin{gathered} 3760 \mathrm{~A} / 3761 \AA \\ \mathrm{Pe} .504 \end{gathered}$	$\begin{gathered} 3780 \mathrm{~A} \\ \mathrm{Pq} .502 \end{gathered}$
Bil Errai Rale (8ER)	-	$\bullet$
Block Error Rale (BKCR)		
Delay Dala (40) Modulalor Tesling)	-	-
Clock Recovery		-
Time litier		
Signal lo Noise Ralio		

## mICROWAVE RADIO IESTING

HEASURLMEATS	$\begin{gathered} (70 \mathrm{MHz} \text { IF) } \\ 3710 / 3744 \\ \operatorname{Pg} .508-510 \end{gathered}$	$\begin{gathered} (140 \mathrm{MHz} \mathrm{IF}) \\ 3790 \\ \text { Pg. } 506 \end{gathered}$	$\begin{gathered} (700 \mathrm{MHz} \text { to } \\ 12 \mathrm{GHz}) \mathrm{RF} \\ 3730 / 8620 \\ \mathrm{PE}_{\mathrm{E}} 508 \end{gathered}$
Group Delay Distortion	*	-	-
	-	-	-
Differential Phase	-	-	-
DIfferentual Gain	-	-	$\bullet$
If Flalness	$\bullet$	*	
Modulalor/Demodulator Sensitivily	-	-	
White Noise Loading			
Baseband Response	-		
18 Power	-	$\bullet$	
Basedand Power	-	*	
Return Loss	-	-	

## TELECOMMUNICATIONS TEST' EQUIPMENT

## General information

## Volce/data channel testing

The slandard voice channel is a fundamental building block of all relecommunizations systems. This channel has an approximale bandwidth from 300 Hz 103000 Hz . Many kinds of transmission facilitios are used to move the information signal (e.g., spoceh, data, telemerry. ele.) from point 10 point and each kind of facility introduces voice channel impairments.

Voice communcalions is affected primarily by loss, noise and echo. However, when the voice channel is used for transmission of digital data or analog racsimilie, a number of additional impairments can affect the information signal, paricularly at rates above 1200 bits per second (bps). Fidelity of the information signal is related to the type and magnilude of iransmission impairments. Measurements of these impairments is thereforc important both when installing and when maintaining high quality telecommunicalion transmission facilitios.

## Loss

The loss of a circuit is typically measured by transmiting a test tone at a specified level and reading the received power on a level meter. This determines the point to point loss (or gain) as this tone is transmitted over the voice channel.

## Attenuation distortion

The altenuation distortion measurement determinus the amplitude versus frequency characieristics of a voice channel. To make this measurement, a reference frequency is transmitted at a specified level. At the receiving end, the roccived power is recorded 10 ob tain a reference level. The vansmitied frequency is then varied over the full range of the voice channel and the received power nosed in each case. The received levels are then compared to the reference level to obtain the frequency altemuation characteris. lics of the voice channel in dBm .

## Noise measurement

The lochnique generslly used for measuring background noise is to "quiet" ferminale the transmit end, then measure background noise power by using either a C -message weighing lilter (North American) or a psophomerric weighting liler (CCITT) and a quasi RMS detecting level meter

Nojsewith-tone is a new technique that is used for signal to noise measurement. Rather than using a quiet termination a test tone is transmitted. This tone is then rajected by a notch filles in the receiving instrument and the remaining energy is measused as previously described. Since this test tone activates
devioes such as compandors, echo suppressors and quantizers, the rexultant noise mes. surentent is more representative of noise that is present when an information signal is being transmitied.

Noisclo-ground measurements are made to allow the measurement of the logintudinal noisc (common mode) present on a voice chsanel with reference 10 ground. The relalive line balance of an cnd loop can also be calculated by subtracting the measured noisc-$10-\mathrm{ground}$ value from the measured message circuit noise value.

## Envelope Delay Dlstortion

Envelope delay distorion is relatad to the differences of Iransmission time for the various voiee band frequencies over a given line. Such differenos in delay will produce incersymbol interferencc in many data signals. CCITT has standardized on a test technique. which alternately transmits a reference frequency and a measurement frequency. This technique permits measurements to be made on a straightaway basis. withoul the need for a relurn channel.

North Amcrica (Bell System) has standardized on an envelope delay measuring technique which requires a scparate referenox channel for the return signal. This is commonly referred to as the return reference lechnique.

## Impulse noise

An impulse noise measurement is a count of noist hits on a line, whose amplitudes excoed a given threshold during a specilied lime interval. These hits are usually far more disturbing to data transmiswion than to conversation sinee they might be interpreted as a bit where there should not have been one.

Retum loss
Return loss measuremenis (Echo Return Loss and Singing Return Loss) are most important for two wire systems providing two way transmission. These systems are subject to line echoes. If the return loss is low, there will be a large lalker and/or listener echo creating "a rain-barrel" effucl in voice communicalion and causing deterioration of some data signals. Zero or negalive retum loss at any point of the frequency scale may cause the eireuit to oscillate or "sing". Retum lass measurements are made by eransmitting band limited noise of known power and measuring the energy reflected back to the transmituer or to the receiver for a four-wire measurement.

## Phase lither

Some transmission facilitias intraduce incidental phase modulation (phase jitter) to the information signal. In making phase jitter measurements a holding lone is transmit-
ted over the facility under test. The phase jitter measured at the receiver is the summalion of any incidental phase modulation (side bands symmetrically located on the carrier) and random or quantizing noise encountered on the transmission facility.

## SIngle trequency Inferference

These are spurious steady toncs present on the channel in addition to the eransmitted signal. A listening test provides the best quick way to determine if these unwanted tones are present after the transmitted signal if any, is notched out at the receiving end. To idencify the interfering tone. a selective level meter is typically used.

## Nom-lrear distortion

This is a measure of the second and third order non-lincarities of a circuit. Non-linearities such as compression and clipping cususe harmonic and intermodulation distorthon in a ransmilted signal. This lype of impairment is cvaluated by measuring a number of second and third order modulation products which result from the non-linearity acting on a mullitone transmilted signal.

## Phase hits, galn hits and drop-ouls

Thest are rapid changes in the gain or phase of a received signal or total loss of signal. These Iransient phenomena are measured by examining a received holding tonc for abrupl changes in its level or phase for any extended period.

## Peak to average ratio P/AB

The P/AR measurement (peak to average ratio) of a particular tost signal is designed 10 be sensitive to envelope ofelay distorion and gain slope: and largely insensilive to all of the normal continuous invererence impairments on a channel. It is completely immune to the transient phenomena. P/AR may be used as a benchmark cype of neasurement which if ree corded at circuit order lime for a channal, can establish on subsequent measurements whether the facilities making up the connecion have been changed or have deteriorated.

## Oigital signal analysis lechniques

Measurement techniques based on the theory of digital signal a malysis are applicable to measure all of the impairments which may occur on a voroc grade channel. Digital signal analysis tochniquex utilize time sampling of an analog signal at a rate sufficient to extract all of the information conlained in the signal. These voltage samples are then converied to digital words of a form suitabie for use by a digital processor. The desired resuli is obtained by performing the appropriate mathemstical operations on the digital data. The tecbnique is reversibic enabling the digital processor to gencrate suitable analog test signals.

Digital signal analysis systems in effoct replace all of the conventional analog measuring instruments normally associated with characteriaing a voice grade channel. In addstion it provides a number of important eapabililies nol often found in conventional instrumentation. Among these are the ability to work in either the bume or frequeney domain as uppropriate. The ability to work with random transient and real world signals in addition to steady state signals and the abbility to compute the joint and statistical properties of signals. Equipment which is implemented around digital signad analysis frequently lends itself 10 automstion and accomplishes its task orders of inagnitude fester than conventional equipmen.

## Volce tand data communicetlons

To use a voice channel for digital data communications modulators, demodulators (modens) are used to convern the unipolar digital information signal to a modulator carrier signal suitable for transmission within the voice band. All previously mentioned irars. mission impairments can affect the signal. To measure end to end effects of the data Minnsmission lonk, digital iests are employed. Thene
are Bil Error Rate (BER) Block Error Rate (BKER) and Dats Error Skew. In audition it is very useful to count the tolal carrier losses (loss of information signal), count the tolal number of clock slips, and measure the iolal peak distortion. Through transmission of a known data pattern, these measurements can be made simultancously.

## Outside plant test equipment

Tbe most effective method of transmiking voice band information signals from a distribution point to the communication terminal at the subscriber's location is by means of a cable pair.

## Cable lault locatlon

Telephone cables can contain many hundreds os conductor pairs, and most pairs are usually in service. It is therefore extremely important that damage to these cables (faults) he quickly located and repaired. In addition. wilh so much cable being buried underground, there is an increasing need to subsequently trace its path and determine ils depih. The HP tone-type Faull Locators have varied capabilities for Ibsese applications.

Occasionally, water will enter a cable through a break in the outer jacket and cause conductor-io-conductor faules. These are conveniently sectionalized and localized with the HF conductor Fault Locators. A nother type of cable fault is the open conductor caused by cable damage or a poor splice and these can best be located with the Open Fault Locator.

## Pressurized cable leak detection

A cable is often pressurized with dry nitrogen or compressed air 10 prevent water from entering. less of cable pressure indicates a leak which, if not repaired, can eventually allow water 10 enter the cable sheath and cause conductor faulis, The HP Ulirasonic Transkator Detectors and itheir accessories are designed to locate such pressurized eable leaks in acrial and duced underground cable.

A cable is often pressurized with dry mitrogen or compressed air to prevent water from entering. Lass of cable pressure indicates a leak which. if not repaired, can eventually allow water to enier the cable sheath and cause conductor faulis. The HP Ulirasonic Translator Detectors and their accessories are designed 10 locult such pressurized cobble leaixs in aurial and ducted underground cablo

VOICE/DRTA CHANNEL TESTING

	NORTH AMERICAN							CCITI			
measurement	$\begin{aligned} & 35508 \\ & \mathrm{Pg} .484 \end{aligned}$	236N 35558 Pg. 488	$\begin{aligned} & 3551 \mathrm{~A} \\ & \text { Pg. } 486 \end{aligned}$	$\begin{aligned} & 4940 \mathrm{~A} \\ & \text { Pg. } 485 \end{aligned}$	$\begin{aligned} & 1645 A / \\ & 10235 A \\ & \text { Pg. } 484 \end{aligned}$	$\begin{gathered} 3581 \mathrm{C} \\ \mathrm{Pg} .490 \end{gathered}$	5453 / 5468A PE. 496	$\begin{gathered} 236 \mathrm{~A} \\ 0 \mathrm{pl} . \mathrm{H10} \\ 3556 \mathrm{~A} \\ \mathrm{Pg} .488 \end{gathered}$	$\begin{array}{r} 3552 A \\ P_{g} 487 \end{array}$	$\begin{gathered} 37701 \\ \text { Pg. } 492 \end{gathered}$	1645A/   10235A   Pg. 484
Loss	-	-	-	-		-	-	-	-	-	
Atsenuation Distortion	*	-	-	-		-	*	-	$\square$	-	
Message Circuit Noise		$\bullet$	-	-			-	-	-		
Naise-With-Tone			-	-			-		-		
Envelope Delay Disiorlion				-			-			-	
Impulse Noise				-							
Return Loss											
Frequency Shift			-	$\bullet$		-	-				
Phase litter				-			-				
Single Frequency Interference		-	-	-		$\bullet$	-		-	-	
Non-Linear Dislortion				-			$\bullet$				
Noise-10-Ground		-	-	-				*	-		
Phase Hits, Gain Hits, Dropouls				-							
Peak to Average Ralio (P/AR)				-							
Bil Error Rale (BER)					-						-
Block Error Rate (BKER)					-						-
Data Error Shew					-						-
Time Jitter					-						*
Total Peak Distortion					$\bullet$						$\bullet$
Carrier loss					*						-
Clock Slips					$\bullet$						-
Interlace Testing					-						*

## Portable test set <br> Model 3550日

- Voice and carrier measurements



## Description

Hewlett-Packardis Model 3550日 Poriable Tesi Sct is designed specifically 10 measure transmission line and system characterisics such as continuity and attenuation distortion. It is particularty usciul for lineup and maintenance of multi-channel commanication systems. Model 3550 B contains a wide range oscillator, a volimeter. and a patch pancl to match both oscillator and voltmeter to 135,600 , and 900 ohm lines. These instruments are mounicd in a combining case that is equipped with a splash-proof cover. In addtion, the oscillator. volimeler. and patch panel may be used separately whether they are in or removed from the combining case.

Both the oscillator and volimeter arce transistorized and operate from their internal rechargeable bancrics or from the ac line. Batteries provide 40 hours of operation belween charges and are recharged automatically during operation from the ac line.

## Specifications

Oecillator HP 204C opt. H25
(Refer to Page 313 )
Voltmeter, HP 403 B option 001
(Refer to Page 29 )
Patch panel, HP 353A
(Specifications apply with oscillator and volimeter).
Inpul: (receiver).
Frequency range: 50 Hz io 560 kHz .
Frequency response: $\pm 0.5 \mathrm{~dB}$. 50 Hz to 560 kHz .
Impedance: $135 \Omega$. $600 \Omega$, and 900 s and bridsing ( $10 \mathrm{k} \Omega$ center lappod).
Balance: belter then 70 dB at 60 Hz for 600 n and 900 n ; better than 60 dB at $1 \mathrm{kH} \%$ for $600 \Omega$ and $900 \Omega$; better than 40 dB over entire frequency range for $135 \Omega, 600 \Omega$, und $900 \Omega$.
Insertion loss: Iess than 0.75 dB al I kH,
Maximum level: +22 dBm ( 10 V ims at 600 ohms ).
Outpul: (send).
Frequency range: 50 Hz 10560 kHz .
Frequency response: $\pm 0.5 \mathrm{~dB} .50 \mathrm{~Hz}$ to 560 kHz .
Impedance: 135 , 600n, and $900 \Omega$ eenter tapped.
Balance: beller than 70 dB 3160 Hz for $600 \Omega$ and 900 : better than 60 dB al 1 kHz for 600 n and $900 \Omega$; beter than 40 dB over entire frequency range for 1359, 600 \%, and $900 \Omega$.
Insertion loos: less than 0.75 dB all 1 xHz
DLstortion: less than $1 \% .50 \mathrm{~Hz}$ to 560 kHz .
Maximum level: +22 dBm ( 10 V rms into 600 ohms).
Attenualion: 110 dB in 10 and $I \mathrm{~dB}$ sicps.
Accuracy, 10 dB soction: error is less than $\pm 0.25 \mathrm{~dB}$ at any slep. Accuracy, 100 dB sectlon: error is less than $\pm 0.5 \mathrm{~dB}$ at any sicp. Connectors: two 3 -terminal binding posts for extemal circuit connoction and two BNC female connectors for oscillator and voltmeter connection.

Patch panel, option HO2-353A
(Same as Model 353A cxcepl as indicated below).
Attenuator: $23 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ ( 1 -step slide switch).
Hold clrcult (send terminals)
${ }^{4}$ Frequency response: 300 Hz to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ refcr. ence.
DC reslatance: 240 ohns nominal
Maximum DC current: 100 mA .
Maximum DC valtage: 150 volts.
Connectors: special telephone jacks 10 accepe Western Elcelric
No. 309 and 310 plugs. Slecve jack is connected to slecve of jacks 309 and 310. Tw'o 3-terminal binding posts for external circuil connoction.
Two lerminal (Yel Sci) connector for Hand Sel, wo BNC female connectors for oscillator and voltmeter connection.
Patch panel, optlon H03-353A
(Same as Mudel 353A exeept as indicated below).
Hold circuit (rec terminale)
${ }^{*}$ Frequency response: 300 Hz to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$, I kHz reference.
DC reslafance: 240 ohms nominal.
Maximum DC current: 100 mA .
Maximum DC vollage: 150 volis.
Attenualion: $23 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ (I-step slıde switch).

## Hold clrcult (send terminals)

${ }^{-}$Frequency response: $300 \mathrm{~Hz} 103 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: 240 ohms nominal.
Maximum DC turrent: 100 mA .
Maximum DC voltage; 150 volus.
Connectors: special lelephone jacks 10 accepl Western Elociric No. 309,310 and 241 at send and rec terminals. Sleeve jack is connected to slecve of jacks 309 and 310.
Two serminal ( $\mathrm{T}=\mathrm{Sel}$ S connector available for Hand Set. Two BNC female connoctors for oscillator and volimeter connection.

## General

Dimensions: 213 mm wide $\times 489 \mathrm{~mm}$ high $\times 316 \mathrm{~mm}$ deep $\left(83 / x^{*} \times\right.$ $191 /{ }^{*} \times 131 /{ }^{*}$ ) with cover instalied.
Welght: net. 13.5 kg ( $30 / \mathrm{lb}$ ). Shipping. 18 kg ( 40 lb ).

[^29] resonne in "núntholdige" cundion

# TELECOMMUNICATIONS TEST EQUIPMENT <br> Transmission Impairment Measuring Set (TIMS) 

- Compatible with North American Standard
- Complete analog testing of the voice/data channel in communication systems



## Description

The Hewlet-Packard 4940A Transmission Impaiment Measuring Set (TIMS) is a special purpose lest sel for data communications problems caused by transmission line impairments. Up to now. duere have been two alternatives in qualifying voice channels for data rransmission: a bit error rate lester which tested digital variables, hut did not isolate problems in the data line from malfunctions in the modem. or a collection of analog test sets for testing the voice channel quality. Wnforiunately, there are so many varialtes of the voice channel to be tested (the Bell System's Teltrical References list nearly 20) that five or more test sets were required. The difficulty in transporting, setting up and lesting with all of these test sets was enormous.
The Hewlelt-Packard TIMS offers a new solution to the analog tersmeproblems. It is portable (under 40 (b), easy 10 operate, and conis substantially less than the assipred test sels necessary to perfiorm the same measurcmenis.

## Applications

There are in variely of applications where the Hewlell-Packard 4940A Transmission Impairment Mcasuring Set (TIMS) can be used. Operaling telephone companies and other common carriers can ulilize TIMS for installing and maintaining voice grade lines for data service. Firms that are heavily dependent on large iniracompany dala systems can utilize TIMS for quickly isolating and resioring failures in their retworks. In applications where a high reliability data network is essential. TIMS can be used to routine the line quality of these systems in order to identify problems before the syitem actually fails. Medem and communications terminal manufactarers can uilize TIMS in their field service organization to help isolate the causes of reportedly defective modems. These same manufacturers can further utilize TIMS in their R\&D labs to help correlate performance of their new designs to transmissiot parameters of a voice channel. These applications represent varied examples of the type of situations for which TIMS is well suiled.

## Measurements

The Hewlell-Packird 4940A Transmussion Impairmenc Micasuring Scı (TIMS) tests all tulephonc voice channel parameters required by
tariff and iransmission objectivar. Most mcasurement modes are compatible with test sets already in the ficld.

## Attenuation dislortion

Wilh TIMS, allonu:tion dislortum runk san be set up and logged in a fraction of the time previously needed because the frequency can be slepped up or down from 204 Hz to $3904 \mathrm{H}<$ in 100 Hz increments and attenuatian distorion is atomatically calculated and displayed direclly in dB .

## Envelope delay

The same automatic frequency siep controls can be usod 10 make envelope delay runs. Level, Irequency, and delay are shown simultaneousty. The delay is shown clearly in microseconds. No calculation is required.

## Nolse

Background message circuit noise can be lested in two ways the traditonal message circuil noise measurement with a quici lermination a the end of the circuit, of a noise-with-tone measurement with spical signal power on the circuit. In addition, noise-lo-ground measurement can show common mode noise problens.

## Impulse noise and transient phenomens

By counting phase hits, gain hits, drop outs, and 3 levels of impulse noise at the same time, more accurate analysis can be made of error causes and channel quality.

## Phase jitter

TIMS measures the instantancous peak 10 peak phast deviations of a special holding tone to calculate phase jiter.

## Nonlinear distortion (optional teature)

TIMS utilizes a special intermodulation distontion technique which was developed to give consistent readings on typical telephone networks. Consequenily, TIMS is unly compatible with sets utilizing this improved icchniquc. The lochniquc is licensed under Hekimian Laboratories, Inc., U.S. Patent No. 3.862.380.

## P/AR - peak/average rallo (optional teature)

$P / A R$ is a single number rating - indicative or the degradation a data signal mighl undergo over the channel. $P / A R$ is dexigned to improved specifications and as such is generally not compatible with other P/AR sels.

## Input circultry and set-up controls

TIMS connects to most circuits withoul requiring additional lest sets or interface hardware. TIMS is able to test on 2 or 4 wirc. wel or dry circuils. TIMS also ellows dialing, holding, and ralking on the line under lest.

## Specifications

For detailed specifications ask your local HP sales omice for a 4940A TIMS data brochure.

## General

Power: 105 volis to 129 volts AC. 60 Hz .
Dimensions: $18.50^{\prime \prime}$ wide, $18.25^{\prime \prime}$ high, $12.75^{\prime \prime}$ deep ( $47.0 \times 46.4 \times$ 32.4 cm ).

Welght: net, 39 lb ( 18 kg ). Shipping, $54 \mathrm{lb}(25 \mathrm{~kg}$ ).

## Options

Price
001: adds P/AR measurement add $\$ 350$
002: adds nonlinear distortion measurement add $\$ 750$
003: adds $\mathrm{P} / \mathrm{AR}$ and nonlinear distortion measurements
add $\$ 1100$
010: Ficld carrying casc add 5180
023: $23^{\circ}$ rack mounting model
$\mathrm{N} / \mathrm{C}$
$\mathrm{N} / \mathrm{C}$
019; 19" rack mounting model
N/C

4940A Transmisslon Impairment Measuring Set
$\$ 8400$

## TELECOMMUNICATIONS TEST EQUIPMENT

Transmission test sets

## Modets 3551A \& 3552A

- Volce grade tesling



## Description

Hewlelt-Packard's 35sIA (Nurth American Meatwrement Standard) and 3552A (CCITT) Transmission Test Scts are rugged, portable and ideally sulted for measurements on voice, program and data circuits up $1050 \mathrm{~Kb} / \mathrm{s}$.
These four-function lest sets are capable of measuring tone level. noise level. and freyuency, while simultaneously scinding conc. Both level and frequency are fully autoranging.
A sampling rate of 10 per sccond in tone level and frequency allows a "direel feil" between an adjustment and the ensuing reading. Digi1al LED readout displays either level or frequency of inpul or output regardless of terminal function selected.

Appropriate resolution, time constant and sample rate afc automatically provided to simplify operation for the user.

Theet test sets can measure both two-wire and four-wire balanced circuits. impedances of 135,600, and 900 ohms can be selected on the 3551A: impedances of 150. 600 , and 900 ohros are avaitable on the 3552A. In addition. the receiver may be cither terminated or bridged.
The lest set may be powered by cither ac line or intemal rechargeable batleries and :re sutited for both inside and ourside plant mainienance.
A full wave average detector is used for tone level measurements. Automatic ranging eliminates the need to sel attenuators and thus re duces the possibility of errors due to faulty calculations. Difect digital
readout gives a 0.1 dB resolution over the entire 85 dB dynamic range.
For frequency measurements. a lour-digit autoranging frequency counter is provided. The readout is calibrated in kHz and features I Hz resolution from 40 Hz to 10 kHz and 10 Hz resolution from 10 kHz to 60 kHz . The decimal poinc is automasically positioned to avoid the possibility of errors due to overllow of the four digits.
Noise measurements are made with an RMS detcctor and displayed in dBrn un the 3551 A and dBm on the 3552 A , with 1.0 dB resolution. Display rate is slowed to 2 per secund to provide analog feel of slowly changing noise levels. Both west sets have the capobility of measuring noise-wilh-sone, message circuil noise, and noise-foground. Four swith selectable weighting nillworks are pruvided: Cmessage. Program, 3 kHz , and 15 kH / Flat in the 3551 A : and Telephone (CCITT Psophomerric), Programme (J16). $3 \mathrm{kH} \%$ and 15 kHz Flat in the 3552 A . In the noise-with-tone position, a notech is inserted before the selfected weighting network.
Send oscillator covers a frequency range of 40 Hz 1060 kHz in threc bands; $40 \mathrm{~Hz} 10600 \mathrm{~Hz}, 200 \mathrm{~Hz} 106 \mathrm{kHz}$ and 2 kHz to 60 kHz . The output level is continuously variable from +10 dBm to -60 dBm .
In addition, a lixed possition is provided to be used as the bolding tone when making a noise-with-tone measurement.
A convenient sel of clip posts for connecting a lineman"s handsel is provided. This allows a line connection to be dialed up and then held in an offhook (busy) condition while making either receive or send measurements on a two-wire wet linc.

## 3551A and 3552A Specifications

## Receiver

Level measurements
Frequency range: 40 Hz 1060 kHz .
Dynamic range: $+15 \mathrm{dBm} 10-70 \mathrm{dBm}$.
Aesolulion: 0.1 dB .
Sample rate: $10 /$ second.
Detector rype: average responding.
Accuracy: at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$, temperature coulficient: $\pm 0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ beyend this range.
Frequency measurementa
Frequency range: 40 Hz to 60 kHz .
Dynamic range: +15 dBm to -70 dBm .
Resolution: $1 \mathrm{~Hz}(40 \mathrm{~Hz} 1010 \mathrm{kHz}) .10 \mathrm{~Hz}(10 \mathrm{kHz} 1060 \mathrm{kHz})$.
Sample rate: $10 /$ second.
Accuracy: $\pm 1$ counl.
Tranamitter 3551A \& 3552A
Frequency range: 40 Hz 1060 kHz .
Range9: 40 Hz 10600 Hz .200 Hz 106 kHz . 2 kHz to 60 kHz .800 Hz fixed. (Other frequencies available 3552A). 1004 Hz fixed. 3551 A .
Recolution: $1 \mathrm{~Hz}(40 \mathrm{~Hz}$ to 10 kHz ). 10 Hz ( 10 kHz to 60 kHz ).
Sample rate: $10 /$ second.
Harmonic distortion: $>-50 \mathrm{~dB}$ (THD 100 Hz 104 kHz ). >-5s dB (all harmonics 100 Hz to 4 kHz ). $>-60 \mathrm{~dB}$ (THD 800 Hz or 1004 Hz fixed).
Accuracy: $\pm 1$ counl.
Level range: +10 dBm to $-60 \mathrm{dBm}(40 \mathrm{~Hz} 1060 \mathrm{kHz}$ ). +6 dBm to -60 dBm ( +100 Hz lixed).
Resolution: 0.1 dB .
Sample rate: $10 /$ second.
Accuracy: at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$. temperalure cocflicient: $\pm 0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ beyond this range.


## 3551A Noise measurements

## Dynamic range

Message circuit nolse: 0 dBrn to +85 dBrn .
Noiso-wlith-tone: 10 dBrn to $+85 \mathrm{dBrn}$. (6009. 900 .)
Nolse-to-ground: $+40 \mathrm{dBrn} \mathrm{to}+125 \mathrm{dBrn}$.
Resolutlon: 1 dB .
Sample rale: $2 /$ second.
Detector type: Quasi RMS.

## Accuracy

Mersage circult nolse: $\pm 1 \mathrm{~dB}$ ( +20 dBrn to +85 dBrn ), $\pm 2 \mathrm{~dB}$ ( 0 dBrn to +20 dBm ).
Nolse-with-tone: $\pm 1 \mathrm{~dB}(+20 \mathrm{dBr}$ to $+85 \mathrm{dBrn}) . \pm 2 \mathrm{~dB}(+10 \mathrm{dBrn}$ $10+20 \mathrm{dBrn})$.

Noise-lo-ground: $\pm 1 \mathrm{~dB}(+60 \mathrm{dBrn}$ to $+125 \mathrm{dBrn})$. $\pm 2 \mathrm{~dB}(+40$ $\langle\mathrm{Brn} 10+60 \mathrm{dBrn}$ ).
Welghting fillers: C-message. 3 kHz fat, 15 kHz fial, program.


## 3552A Noise measurements

Dynamic range
Message clrcult nolse: $-90 \mathrm{dBm} 10-5 \mathrm{dBm}$.
Nolse-wllth-lone: $-80 \mathrm{dBn} 10-5 \mathrm{dBm}(60002,900 \mathrm{n})$.
Nolse-fo-ground: $-50 \mathrm{dBm} 10+35 \mathrm{dBrm}$
Resolution: 1 dB .
Sample rate: $2 /$ second.
Detector type: RMS responding.

## Accuracy

Message clrcult noise: $\pm 1 \mathrm{~dB}(-70 \mathrm{dBm}$ to $-5 \mathrm{dBm}) . \pm 2 \mathrm{~dB}(-90$ dBm to - 70 dBm ).
Nolse-with-Ione: $\pm 1 \mathrm{~dB}(-70 \mathrm{dBm}(0-5 \mathrm{dBm}) . \pm 2 \mathrm{~dB}(-80 \mathrm{dBm}$ (0 -70 dBm ).
Nolse-10-ground: $\pm 1 \mathrm{~dB}(-30 \mathrm{dBm} 10+3 \mathrm{dBm}) . \pm 2 \mathrm{~dB}(-50 \mathrm{dBm}$ $10-30 \mathrm{dBm}$ ).
Walghting filters: Telephone (CCITT Psophonetric), 3 kHz fat. 15 xHz . flat. Programmic (ССГТТ-j16).

## General

Manltor: buils-in speaker, mositors reccived or transmilled signal.
Balanced Impedances: $135 \Omega .600 \mathrm{n}$, 900 n (3551 A).
Balanced impedances: 150 ?, 600 . 9000 (3532A).
Bridging lass: $<0,2 \mathrm{~dB}$.
Return lose: > 30 dB .
Longlludlnal balance: $>60 \mathrm{~dB}$ at 6 kHz . $>126 \mathrm{~dB}$ al 50 Hz .
Hald clrcult: 24 milliamps constant current. $<0.2 \mathrm{~dB}$ helding loss, resistive fuse protection.
Inpui/output protection: blocks 300 Vdc .
MaxImum longiludinal voltage: 200 V rms.
Baltery supply: 46 hours continuous operation on internal rechargeable batteries at $25^{\circ} \mathrm{C}$. Batlery drain is automatically surned ofi when discharged below proper operaling icvel. Complete recharge in 12 hours.
Power requirements: $100 \mathrm{~V} .120 \mathrm{~V} .220 \mathrm{~V} .240 \mathrm{~V} \pm 10$ \%: 48 Hz to 440 Hz 14 VA .
Tomperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. operaling: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. storage.
Relative humidity: 0 to $95 \%$ ( $<40^{\circ} \mathrm{C}$ ).
Dimenslons: 343 mm vide $\times 133 \mathrm{~mm}$ high $\times 254 \mathrm{~mm}$ decp $\left(141 / \mathrm{N}^{*} \times\right.$ $\left.61 /{ }^{\circ} \times 10^{\prime \prime}\right)$ with cover.
Waight
Net: 6.6 kg ( 13 lb ).
Shipping: $7.3 \mathrm{~kg}(16 \mathrm{lb})$.

Model number and name	Price
3551 Tramsmission (csi set	$\$ 1750$
$35 S 2$ A Tramsmission (cal sel (CCITT)	$\$ 2000$

## Price

$\$ 1750$
$\$ 2000$

## Transmission \& noise measuring set Models 3555日 \& 3556A

- Voice grade testing



## Description

HP's 35s5B Transmission and Noise Mcasuring Sal is designed especially for telephone plant maintenance. It measures atenuation. distortion, cross-talk coupling, and noise. Weighting networks comply with Bell System Technical Reference Publication number 41009 , and include C -message. 3 kHz , and 15 kHz fal and program.
-I P's 3556A performs the same tasks as the 3555B. It also has builtin weighting networks that comply with 1960 CCITT requirements, which include telephone (psophometric) 3 kHz flat, and 15 kHz , lat. Programme (P53) weighting fillers.
Operaling insiructions printed in the protective cover are available in different languages al no extra charge.
Complementary equipment for the 355SB is HP 236A Telephone Test Oscillator (236A OpI. HIO for the 3556A). When used together. they make a complete transmission teal set for accurate, convenient volce and carrier measurements.


Specifications

	35558 (Morth American Standards)	3556 A (CCl $\%$ Slandards)
VOICE RREQUENCY LEVEL MLASUREMENTS: 20 Hz io 20 kHz		
ab/voll Range	-91 d8m $10+3188 \mathrm{~mm}$	-78 dBm $10+32 \mathrm{dBm} / 0.1 \mathrm{mV}$ to $30 \mathrm{VF.S}$.
Level accuracy**	$\pm 0.5$ d8: $\pm 0.2 \mathrm{~dB}, 40 \mathrm{~Hz}$ to 15 kHz , level $>60 \mathrm{dBm}$	100 Hz to $5 \mathrm{hHz}: \pm 0.2 \mathrm{~dB}: 20 \mathrm{~Hz} 1020 \mathrm{hHF} . \pm 0.5 \mathrm{~dB}$
Input	Terminated or britged $600 \Omega$ or $900 \Omega$ balanced. Eridging loss: $<0.3 \mathrm{~dB}$ al 14 Hz Balance: $>80$ d8 at $60 \mathrm{~Hz},>70$ de at 6 4 Hz . $>60$ oB to 20 kHz . Return loss: 30 dB min ( 50 Hz lo 20 $\mathrm{kHz}^{2}$ )	Terminated: soon symmeltical. Non-lerminaled: $10 \mathrm{k} \Omega$ symmetrical. Non lerminated etro: $<0.4$ dB at 800 KL , Symmelry: $>80 \mathrm{~dB}$ al $50 \mathrm{~Hz},>10 \mathrm{~dB}$ al $6 \mathrm{kHz}>50 \mathrm{~dB}$ to 20 kHz Relurn loss: $30 \mathrm{~dB} \min (50 \mathrm{~Hz}$ to 20 kHz )
Holding circuil	700 n dc resistance, 60 mA max. Loop line surent al 300 Hz . Will	geircuil in, above specs apply from 300 Hz 104 kHz
NOISE MLASUREMENTS:		
dB/voll range	-14 Arn to +12 db n	$-7888 \mathrm{~mm} 10+32 \mathrm{dEm} / 0.1 \mathrm{mV}$ to 30 VF.S.
Weighling fillers	$3 \& 15 \mathrm{khz}$ lial. C message, and program (Bell system techmeal reference pub. \#4i009)	3815 kHz llat, Telephnne ast Progitinme (P53, CCIT)
Inpui	Same as for voice trequency measurenments	
CARRIER FREQUENCY LEVEL MEASUREMENTS:		
dB /voll range	$-61 \mathrm{dBm} 10+11 \mathrm{dBm}$	-48 dBm to $+128 \mathrm{Bm} / 3 \mathrm{mV} 103 \mathrm{VFS}$
Level accuracy	$10600 \mathrm{kHz} . \pm 05 \mathrm{di}$; 10 xHz to $300 \mathrm{kHz} \pm 0.2 \mathrm{~dB}, 75 \Omega$ unbalanced (asymerefrical). $100 \mathrm{~Hz} 10600 \mathrm{kHz}, \pm 0.2 \mathrm{~dB} ; 30 \mathrm{~Hz} 101 \mathrm{MH}_{\mathrm{i}_{1}}$ $\pm 0.5 \mathrm{~dB} ; 1 \mathrm{I}$ Hh $103 \mathrm{MHz}, \pm 0.5 \mathrm{~dB} \pm 10$ \% ol meler reading	
Impul	Terminated or bridged $135 \Omega \dagger$ or 600 O balancelt (symmetrical) and $75 \Omega$ uibalanced (asymimetrical)	
Relurn loss		
Bal/symmeliry	$>70 \mathrm{~dB} \mathrm{lo} 10 \mathrm{kHz}$, $>60 \mathrm{~dB}$ 10 $100 \mathrm{kHz},>40 \mathrm{~dB} 10600 \mathrm{kHz}$	
general:		
Mater	Linear dB scale	Linear 88 mm 5 cals
Extemal baltery	24 V or 48 V oftica batlery, $<15 \mathrm{~mA}$	
Inlernal ballery	Single NEOA 202, $45 \vee$ " $B$ " batiery Oplion H03 uses eechargeable balleries and simila to 3556 A	4 rechargeable ballenes ( 25 V total) or power line from $90 \vee 10$ $250 \mathrm{Vac}, 48 \mathrm{~Hz}$ 10 $440 \mathrm{~Hz},<10 \mathrm{Va}$. Oplion 001 uses same baltery ds 35558
AC	115 or 230 V ( 5 pecity for 35558) (swich for 3556 A ) 48 Hz 10440 Hz , <10 VA	
Dimensions	197 mm wide $\times 299 \mathrm{~mm}$ high $\times 207 \mathrm{~mm}$ deep ( $\left.7 \%^{\prime \prime} \times 114^{\prime \prime} \times 81 \%^{\prime \prime}\right)$	
Weigh	Nat, 6.8 hg ( 15 lb ). Shipping, 75 kg ( 17 lb ).	
back	Wit accept Western Electic 241. 309, 310, 358, 289 and 347 plugs: 10118 hand-sel or 52 lypo headsel	Will accept Siemens 9 REL KLI-6A 4 mm diamelet banana plugs or 3 -prong Siemens 9 REL SIP. GAC conneclar
\$1500 lor 3556A.		

Model number and name
Price
HP 236A Telephonc Test Oscillator (complementary
equipment for 35558 )

HP 236A, OpI. HIO Telephone Test Oscillator (complementary equipment for 3556 a)


## General

Hewlel1－Packard＇s Models 236A and 236A Option H10／H20 Telo phone Test Oscillators are paricularly useful for lineup and mainie nance of telephane voice and carrier systems when used with their companion instruments 3555日 and 3556A Transmission Noise Me－ ters．CCITT requiremeds are met with the HP 236A Option HIO and HP 3556A when used together，
Model number and name
HP 236A Option H10．CCITT（ac line and dry batery）
add $\$ 120$
HP 236A Option H20，CCITT（ac line and rechargeable batteres）
add $\$ 250$
HP 216A Telephone Oscillator（Norh American）

Specifications

	236A（8ell）	236A Oplion H10（CCITT）
Frequency range	50 Hz 10 580 kHz	
frequency dial acturacy	$\pm 3 \%$ ol setling	
Frequency response		
$600 \Omega$ oulpul	$\pm 0.388$ from 50 Hz to 20 kHz	
$900 \Omega$ oulpu！	$\pm 0.3$ dB lrom 50 Hz to 20 kHz	
135』 oulpul	$\pm 0.36 \mathrm{~B}$ Irom 5 kHz to 560 kHz	
150 and 7582 oulpuls		$\pm 0.3 \mathrm{~dB}$ from 5 kHz 10560 kHz
Oulput level／accuracy		
Noise	At least 65 dB below tolal oulgul or－ 90 dBm－whichever noise is grealer． 3 k Hz bandwith	
Distortion	At least 40 dB below fundamental outpul	
Outpul circuil	8alanced（symmetrical）and lloating．Can be operated up $10 \pm 500 \mathrm{Vdc}$ above（earth）ground．	
Output impedance	$\begin{aligned} & 600 \text { and } 900 \cap \pm 5 \% \\ & 135 \Omega \pm 10 \text { 品 } \end{aligned}$	600 and 1500 symmetrical $75 \Omega$ asymmetrical
Outpul batance （oulput symmetry）	600 and $900 \Omega$ pulguts： 70 dB at $100 \mathrm{~Hz}, 55 \mathrm{~dB}$ at 3 XHz 135 and $150 \Omega$ oulpuls： 50 dB at $5 \mathrm{kHz}_{2} 30 \mathrm{~dB}$ at 560 kHz	
Oulpul lacks	Acceots Western Electric 241，309，and 310 plugs．	Ascedts 3－prong Sieniens 9 REL，SIP 6 AC or 4 mm diarneler banana plugs．
	Binding posis accepl banana plugs，spade lugs，phone tips or bare wioes．	
Dial jaiks	Accepls Weslern Electric 309 and 310 plugs． Clíp posts accepl Western Electric 10118 lineman＇s hand sel clids．	Accepts 3－prong Siemens 9 REL．STP \＆AC or 4 mm dianelar plugs．Clip posis aecept line－ man＇s harid－sel clids as ailigator clips．
DC holding coil	600 and 9000 oulputs only， $700 \mathrm{n} \pm 10 \%$ de resistance， 60 mA maximum loop curent at 100 Hz	
Power requisements	Line 115 or 230 V （switch） $\pm 10 \% \mathrm{ac}, 48 \mathrm{~Hz}$ lo $440 \mathrm{~Hz},<2 \mathrm{VA}$ ．   Intemal battery：single NEDA 202 4s y＂ 8 ＂batlery．   236A Option H20：（same as 236A Option H10 except）tive 6.25 V recnargeable batienes：   $30 \mathrm{~V}-250 \mathrm{Vac}, 48 \mathrm{~Hz}-440 \mathrm{~Hz},<10 \mathrm{VA}$ during baltery charge．	
Weight	Nat． 6.1 kg （ 13.5 lb ），Shipping 7.7 kg （17 1b）	
Complementary equipment	HP 3555B Transmission and Noise Measuring Sel	HP 3556A Psodhomalar

## Model 358才C

- Voice Grade Testing



## Description

Hewleut-Packard's 3581 C Selcolive Volimeter is a dedicated telecommunications version of HP's 3581A Wave Analy\%er. Bulanced inpuls and a speaker monitor have been incorpurated as operator convenience features.

## Specifications

Frequency range: 15 Hz to 50 kHz .
Dlsplay: 5 digit LED readoul. Resolution: 1 Hz . Aocuracy: $\pm 3 \mathrm{~Hz}$ Typleal stability: $\pm 10 \mathrm{~Hz} / \mathrm{hr}$. after : hour. $\pm 3 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.
Automatle hequency control (AFC), holdoln range: $\pm 800 \mathrm{~Hz}$.
Pull-in range: $>5 \times$ bandwidh for 3 Hz to 10 H. Hz bandwidth: $>800$
Hy for 300 Hz bandwiduh for full-scale signal.
Lock frequency: center of passband $\pm 1 \mathrm{H}$ /.

## Amplifude

## instrumenl range

Linear: 30 V 10100 nV full scalc.
Log: +30 dBr or dBV to -150 dBm or dBV .

Amplitude aceuracy:	Log	Linear
IS Hz - 50 kHz frequency response	$\pm 0.4 \mathrm{~dB}$	$\pm 4 \%$
Switching between bandwidihs	$\pm 0.5 \mathrm{~dB}$	$\pm 5 \%$
Amplitude display	$\pm 2 \mathrm{~dB}$	$\pm 2 \%$
Inpul altenuator	$\pm 0.3 \mathrm{~dB}$	$\pm 3 \%$
Amplitude reference level		
(IF Allenuator)		
$\quad$ Most sensitive range	$\pm 1 \mathrm{~dB}$	$\pm 10 \%$
All other ranges	$\pm 1 \mathrm{~B}$	$\pm 3 \%$

- Nole- these specifications coice the full temperature trequency and ampitude ange, and represent worsi ass: Accuracy is signiicantly better iol measurements not at the atremes.

Dynamlc range: $>80 \mathrm{~dB}$. Noiso level:


Nolse sidebands: greales than 70 dB below CW signal. 10 bend. widihs away from signal.
IF feedihrough; inpul level $>10 \mathrm{~V}$ : -60 dB ; inpul level: $<10 \mathrm{~V}:-70$ dB.
Spurious responses: $>80 \mathrm{~dB}$ below inpul reference level.
Llne related spurlous: $>80 \mathrm{~dB}$ below input reficence level or -140 $\mathrm{dBV}(0.1 \mu \mathrm{~V})$ or -90 dBm on 358 IC in balanced icrminated mode. Zero beat response: $>30 \mathrm{~dB}$ bclow full scaleal $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. $>1 \mathrm{~S} \mathrm{~dB}$ for $0^{\circ} \mathrm{C} 10.55^{\circ} \mathrm{C}$.
Smoolhing: 3 position, rolloff is a function of BW .
Overload indicalor this LED warns of possible input amplifice overloading.

Uneal Indeator: the variable input attemator may be set to positions between steps. This is useful for scaling signals. When this feature is being used. the Uncal indieator clearly shows the instrument is not on a standard selting.
Meter scaleg: laut band with mirror baoking

$0 \mathrm{~dB} 10-90 \mathrm{~dB}$	Log
$0 \mathrm{~dB} 10-10 \mathrm{~dB}$	
0101	Linear
0 to 3.2	

Callbrator; the 10 kHz fundamental of the calibrator may the used along with the 10 kHz cal adjustment to set the meter to full scale. This colibrates the circuilry that follows the input attonuator to an aceuracy of $\pm 1.5 \%$ al full scalc. 10 kHz and same bandwidth.

## Sweop

Scan width: 50 Hz to 50 kHz . These seans can be adjusted 10 cover a group of frequencies within the overall instrument range.
Sweep times: 0.1 sec to 2000 sec.
REP: in the repetitive mode, sweep will continuously sweep the specified band,
Single scan: after triggering a single sweep. HP's 3581 C will remain al upper end of sweep. A sweep may alko be triggered externally through a BNC conneclor on the rear panel labeled "external trigger." Grounding inlibbits internal trizger.
Reset: HP's 3581 C is sel to the starl frequency of sweep.
Manual: in combination with concentric knob, manual sweep fully duplicates span of elecironic sweep.
OH: sweep circuits and assoctated controls are surned off.
Sweep error light: this LED indicates a sweep that is too fast to capture full response. When the light is on, response will be lower than it should.
Zero scan: to look at the time varying signal at center or stan lrequency within bandwidit selected.
External trigger: a shont to ground stops normal sucep. Opening the shor then enables a sweep.
Inpun

$\begin{aligned} & \text { Meter } \\ & \text { scale } \\ & \text { Buitons } \end{aligned}$	Terminaled	Bridfoing	Untalanced
Volts 9000 dBmilln	Inpul limpedance 900 n. Reads volts on volt scaies al meter, 1 V ams input gives । y sims an meter.	Ingul impedance 10 $\mathrm{k} \Omega$. Reads voits of voit scales of meter. IV ams inpuligives ) V pris on meter.	ingul impedance 1 MA. Reads volts on voll scales of meter. \$Y mas input gives I $V$ mis on meter.
dB 90001 dBm/ilN	Inpu! impedance 9001 . Reads abm 9000 on dB scaies ol meter. 0.349 V rms. mpul gives $0 \quad 18$ reading on meter.	Ingut impedance 10 42. 900 In iermina. thon necessary to be calibrated with a source that has 900 n output impedance. 0.5449 Vms input gives 0 tB reading on meter.	Inpul impedance 1 Mg. 9000 termina. tion necessary to be calibated with a source that tas 9000 n outpu! impedance. 0.949 Vms input gives 048 reading on mele.
Volts $60051 / \mathrm{dBm}$		Not a valid combinalion.	
$\begin{aligned} & 88 \\ & 600 \mathrm{n} / \mathrm{dBan} \end{aligned}$	1noul impadance. 600 a Reads dBim boun on dB scales of miste, 0.775 \% mms input gives 0 dB reading on meter.	Input impedance 10 xil. Termination necersary to be calibraled with a source that has boons outpu impegarice. 0.175 v moss inout gives 0 di readilg of meter.	Inpul impedance I MG. Termination necessary to be caliGrated with a source That has $600 \Omega$ outpul impedance 0.775 V ims input gives D dB reading on meter.

Impedance: I Mil, 30 pf .
Maximum Input level: 100 V rms. $\pm 100 \mathrm{~V}$ de.
Extarnal L.O.: an external oscillator may be used to set frequency of Filter.

Frequency range: 1 MHz to 1.5 M Hz to tunc internal filter from 0 Hz co 50 kHz .
Level: 100 mV 101 V .
To make floating measurements or break ground loops use the battery option.
Input connector: WECO 310 with balancing transisormer.
Input unbalanced: impedance $1 \mathrm{M} \Omega / 40 \mathrm{pF}$. Maximumin input Icvel 100 V rms or $\pm 100 \mathrm{~V}$ de.
Balance/bridged: impedance: $10 \mathrm{k} \Omega$.
Maximum Inpui lavel: +30 dBm or $\pm 100 \mathrm{~V}$ dc.
Frequenoy response: $40 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.5 \mathrm{dBm}$ for signals $<20$ dBm.
Dynamic range: 80 dB for signals $<0 \mathrm{dBm}$ and $>100 \mathrm{~Hz}$. CMR: $>70 \mathrm{~dB}$ at 60 Hz .
Balanced terminaled: same as bálance/bridged except CMR: $>64$ dB al 60 Hz .
Output
Tracking generator outpul (also known as BFO or tracking oscillator oulput).
Hestored oulput
Range: 0102 V ms.
Frequency responge: $\pm 3 \% 15 \mathrm{~Hz} 1050 \mathrm{kHz}$
Frequency accuracy: $\pm 1 \mathrm{~Hz}$ relative to center of filler.
Impedance: 6000.
Total harmontc and spurlous content: (for aracking generator output) $>40 \mathrm{~dB}$ below I $V$ smis sigral level.
LO Oulput 100 mV signal from 1 MHz to 1.5 MHz as input is tuned from 01050 kHz .
Outpul connector: WECO 310, for connuction to tracking generator oulput or restored output In addtion to monitoring restored outpul with headphones, an internal speaker also provides an audio indication of sisnal content.

## Restored and trackling generator

Output impedsnce: 600 n balanoed.
Frequency response: $\pm 0.5 \mathrm{~dB} 100 \mathrm{~Hz}$ to 20 kHz .
$X$-Y recorder analog oulputs
Vertical: $010+5 \vee \pm 2.5 \%$.
Horizontal: $010+5 \mathrm{~V} \pm 2.5 \%$.
Impodance: l k $\Omega$.
Pen llf: conlact closure 10 ground during sweep.

## General

Operating temperature range: $01055^{\circ} \mathrm{C}$.
Humidty: $95 \%$ relative maximum al $40^{\circ} \mathrm{C}$.
Power requirements: $100 \mathrm{~V} .120 \mathrm{~V}, 220 \mathrm{~V}$ or $240 \mathrm{~V}+5 \%-10 \%, 10$ VA typical. 48 Hz to 66 Hz .
Dimenslons: 412.8 mm high $\times 203.2 \mathrm{~mm}$ wide $\times 285.8 \mathrm{~mm}$ docp $\left(16 \%^{*} \times 8^{\prime \prime} \times 11 \frac{1}{4^{\prime \prime}}\right)$.
Weight: $11.5 \mathrm{~kg}(23 \mathrm{lb})$ : Oplion 001, 13.5 kg ( 30 lb ).
Accestery avallable: 7035B Option 20. X-Y recorder.
Opllon 001 battery, used to make lloating measurements or to break ground loops; 12 hours from full charge: 12 hours to fully charge. The internal banery is proteced from deep discharge by an automatic lurn-off.

Model number and name	Price
$7035 B$ Option 20 X-Y Recorder	sdd $\$ 295$
Option ODI Battery	add $\$ 380$
$3581 C$ Selective Volimeter	$\$ 3250$

- Measures Delay and Attenuation Distortion
- Frequency Range 200 Hz to 20 kHz
- Compatible with CCITT Recommendation 0.81
- Rugged, portable, and really easy to use



## Description

The HP 1770A makes point-by-point and swepl measurements of Delay Distortion. Altenuation Distortion and Received Level over the frequency range 200 Hz so 20 kHz . It is designed to meet the need for Delay and Atienuation Distortion measurements on Audio Channels used for data and other non-voice rafinc. Other applications include the measurement and calibration of filters. line equalisers and similar Iransmission equipment.
The instrument is easy 10 uss with no synchronisation, zeroing or ranging required. End-to-end channel measurements can be made using lwo instruments and no reference channel is required in either direction. Sender and receiver art combined in a single, rugged, ponable unit.

The measuring frequency can be adjusted manually with a tuning contral, incrementod in 100 Hz steps, or swept over any part of the band using the conlinuous or single sweep modes.

Using oulputs provided on the rear pencl. swepl responses can be plolled direcily using an X-Y recorder. A suilable recorder can be supplied as an opion.

A bult-in velephone 「acility allows voice communication in a two or four wire mode over the linc or lines under test. The test is interrupted while ihis facility is in use. An integral loudspeaker allows the opera. tor 10 monitor cilher the input or output lines.

## Measurement princlple

The operation of the 3770 A is compatible with CCITT Recommendation 0.81. With this method, the Sender generases a carrier signal which switches belween the Reference and Measuring Frequencies al a rate oi 4.16 Hz . The composite signal is amplitude modulated by a 41.6 Hz sincwave and transmitted through the channel to be ana.

Iyeed. The relative group delay of the channel at the iwo frequencies is measured by comparing the delay of the envelope recovered during the measuring period with that recovered during the reference period. The relaltue allenuation measurement is made by comparing the amplitude of the iwo envelopes.
Level messurement
The 3770A Receiver can measure the absolute level of either the Measuring or Rejerence Carrier within the range $-5010+10 \mathrm{dBr}$. As the Sender Output is calibrated in dBm . this measurement allows the absolute loss of the transmission path to be calculated.

In addition to normal operation, ubsolute level measurements can be made using a pure tone.


## Specifications

## Sender

Refarence carrier: 0.4 to 19.9 kHz in 100 Hz stups.
Measuring carrler: 0.20 10 20.00 kHz in 10 Hz stcps.
Modulation envelope frequency: $41,66 \mathrm{~Hz}$ (Mod. Index $0.4 \pm 0.05$ ).
Identification-burst trequency: $166 \mathrm{~Hz}^{*}$ (Mod. Index $0.2 \pm 0.05$ ).

Carrler changeover frequency: 4.166 Hz . Changeover mainiains cavclope and carricr phase continuity.
Devialion between changeover polnt and envelope minimum:
$<0.2 \mathrm{~ms}$.
Accuracy of above frequencies: $\pm 0.1 \%$.
-Loches lo envelope frequency

Messuring frequency sweep raters: $10,20,40,80,160 \mathrm{~Hz} / \mathrm{s}$. The Mcasuring Frequency is maincained constant during the measure. ment frequency icansmission.
Messuring Irequency sweep limits: seltable in range 0.2 to 19.9 kHz ( 100 Hz sieps). Nccuracy is for measurement líequency.
Carrier level: 0 to -49 dBm in I dB steps.
Carrer hermonle alstortlon: <1\% (40 dB) total.
Carrier apurious distortion: $<0.03 \%(70 \mathrm{~dB})$ per 100 Hz bandwidth.
Spurlous aldeband power w.f.t. wanted gideband power: < $1 \%$.

## Recaiver

Opersting fevel range: $<-50 \mathrm{dBm} \mathrm{to}>+10 \mathrm{dBm}$.
Frequency measurement range: 0.2 to 20 kHz in 10 Hz steps.
Accuracy: $0.1 \%$ (with sender olher than 3770A: $0.1 \% \pm 5 \mathrm{~Hz}$ ).
Pecorder
X-axle output 0 so $+5 V$ for 0 to 20 kHz or 0105 kHz
$Y$-axie: $\pm 5 \mathrm{~V}$ for $\pm \mathrm{FS}$ of ihe recorder range selected. One range in LEVEL. +1 to -5 V for +10 to -50 dBm .
Fecorder output accuracy. As display $\pm 1 \%$ ol range selected.
Output/input círcults
Impedance: 60012 balanced.
Return lose: $>40 \mathrm{~dB}$.
Degree of balance: $>50 \mathrm{~dB}$. (Rectiver $200 \mathrm{~Hz} 106 \mathrm{kHz}:>60 \mathrm{~dB}$ ).
Maximum operating longltudlnal vollage (having regard to balence): 10 V ae rms, 100 V de.
Maximum safe longltudinal voltage: 150 V ac $\mathrm{mms}, 50 \mathrm{~Hz}$ to 20 kHz or 100 V dc.

## Camblned sender and receiver

## Group dalay diatortion

Delay range: 0 to $\pm 10 \mathrm{~ms}$.
Accuracy: (mms) $\left(51040^{\circ} \mathrm{C}\right) .0 .2100 .4 \mathrm{kHz}<15 \mu \mathrm{~s} \pm 1 \%$ of reading. (Sender only $<5 \mu \mathrm{~s}$ ). 0.4 to $0.6 \mathrm{kH} \angle<8 \mu \mathrm{~s} \pm 15$ of reading. (Sender only $<2 \mu \mathrm{~s}$ ). $0.61020 \mathrm{kHz}<S \mu \mathrm{~s} \pm 1 \%$ of reading. (Sender only $<1 \mu \mathrm{~s})$. For 0 ( $050^{\circ} \mathrm{C}, \pm 1 \%$ becomes $\pm 2 \%$ of reading.
Addltional delay errors: increase in allowable error, due to ampliude difference between Measurement and Reference carricrs:
0 to 20 dB : $\mathrm{I} \mu \mathrm{s}$
20 to $30 \mathrm{~dB}: 3 \mu \mathrm{~s}$
30 to 40 dB : $10 \mu \mathrm{~s}$ (above 0.5 kHz )
Error due to gausaian white nalea al 26 dB per 4 kHz bandwidh below the level of measurement or reterence carrier. $<16 \mu \mathrm{sms}$ (with the average control set 1016 ).
Error due to discrete tone 150 Hz from messurement or reference frequency and 28 de betow the carrier level: <5 $\mu \mathrm{s}$ ims (with the average conirol sel to (6).
And at 200 Hz epaelng: $<2 \mu \mathrm{~s}$ mons (with the average control sel to 16).

Increase in allowable error, due to low receiver level:

	Additlonal erroz when elther carrler   is between -40 and -45 dBm.
$51040^{\circ} \mathrm{C}$	$3 \mu \mathrm{~s} \pm 1 \%$ ol reading
$01050^{\circ} \mathrm{C}$	$3 \mu \mathrm{~S} \pm 2 \%$ ol seading
$51040^{\circ} \mathrm{C}$	Addilonal erros when eilher carrier   is between - 45 and -50 d 8 m.
$01050^{\circ} \mathrm{C}$	$6 \mu \mathrm{~s} \pm 1 \%$ ol reading

[^30]Attenuation distortion

Recelve Level Ranze wilhin which boith Measurement and Referenca carrier levels are conialned	Recelves Maximum Error of Atenualion in the range 0 lo +40 dB		Sender Hax.   Enor
	$51040^{\circ} \mathrm{C}$	$01050^{\circ} \mathrm{C}$	
+5 to -508m	$0.15 \mathrm{~dB} \pm 1 \%$	$0.15 \mathrm{~dB} \pm 1{ }^{\circ}$	0.188
+ $510-20 d \mathrm{Bm}$	$0.15 \mathrm{~dB} \pm 18$	$0.15 \mathrm{~dB} \pm 1.5{ }^{\text {c }}$	0.188
$+1010-30 \mathrm{dBm}$	$02 \mathrm{~dB} \pm 1 \%$	$0.2 \mathrm{~dB} \pm 2^{\circ}$	0.18 dB
$+1010-40 \mathrm{dBm}$	$0.288 \pm 1.5 \%$	$03 \mathrm{~dB} \pm 2.5{ }^{\circ} \mathrm{O}$	0.1 dB
$+1010-50 \mathrm{dBm}$	$0.688 \pm 2.5 \%$	$0.718 \pm 39$	0.1 6B

Level measurement (wlthout changeover and unmodulated) Recelve range: +10 dBm io -50 dBm .
Accuracy:

	$510 \mathrm{~A} 0^{\circ} \mathrm{C}$		$01050^{\circ} \mathrm{C}$	
	Sender	Recelver	Sender	Roceiver
$+10 \mathrm{t0}-20 \mathrm{dBm}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 03 \mathrm{~dB}$
$-2010-30 \mathrm{dBm}$	$\pm 02 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
$-3010-40 \mathrm{dBm}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$
$-4010-50 \mathrm{dBm}$	$\pm 0.5 \mathrm{~dB}$	$\pm 1.2 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 1.6 \mathrm{~dB}$

Absolule level measurements can also be made with modulation and changeover.

## Options

Output level (option 001): send level range exiended to -49 $10+10$ dBm.
Loop holding (option 002) loop holding provided for sender output and recciver inpul.

Maximum DC loop holding current: 100 mA .
Voltage drop at meximum current. Approximatcly 12 V .
Dynamic output impedance: Approximstely 50 k ?.

## Tone blanking

Range: up to two bands in the range 0.2109 .9 kHz .
Pange Imits: any multiple of 100 Hz .

## Frequency Range Blanked (kHz) - Opllon Number

| $0.4100 .6-004 / 117$ | $2.0102 .4-004 / 104$ | $2.8103 .2-004 / 110$ |
| :--- | :--- | :--- | :--- |
| $0.5100 .7-004 / 101$ | $2.1102 .5-004 / 105$ | $3.0103 .4-004 / 111$ |
| $0.6100 .9-004 / 102$ | $2.2102 .6-004 / 106$ | $3.2103 .6-004 / 112$ |
| $0.8101 .2-004 / 115$ | $2.3102 .7-004 / 107$ | $3.4103 .8-004 / 113$ |
| $1.4101 .8-004 / 116$ | $2.4102 .8-004 / 108$ | $3.6104 .0-004 / 114$ |
| $1.9102 .2-004 / 103$ | $2.6103 .0-004 / 109$ |  |

Other tone blanking regions are available on request. The oplion number $004 / 100$ should be used instead of onc of the above numbers sid the required frequency range specified. Option $005 / 10 \mathrm{X} / 10 \mathrm{X}$ specifies iwo option ranges.
Operating Instructions - other languages: operaling instructions in English are supplied. In-Lid opersting instructions are ulso available in:
German - Oplion 031: French - Option 032
Italian - Option 033: Spanish - Option 034
Option 040: suitable portable X-Y Recorder in carrying case. Preprinted graph paper showing CCITT M102 limils also available Amplitude Distorion (9280-0403). Delay Distortion (9280-0402).
Optlon 081: rack-mount version of 3770A.
General
Dimenslons: 270 mm wide, 200 mm high, 560 mm deep ( $11.3^{\prime \prime} \times 7.8^{\prime \prime}$ $\times 22^{\prime \prime}$.
Welght $12 \mathrm{~kg} .(26.5 \mathrm{lb})$.
Operating temperalure range: 0 to $50^{\circ} \mathrm{C}$ unless alherwisc specified.
Slorage temperafure range: $-4010+75^{\circ} \mathrm{C}$.
Supply volieges: 90 to 126 V ac: $19510253 \mathrm{~V} \mathrm{as;} \mathrm{(48} 1066 \mathrm{~Hz}$ ). Power consumplion: $\$ 0 \mathrm{~W}$.
3770A Amplitude/DIstortion Analyzer



Direct reading. autoranged indications are displayed on an LED readout. Handshake signals conforming to CCITT convention are included for operation through any modem system.

## 1645A Description

Hewlett-Packard's Model I645A Duta Error Analyzer quickly isolates data communications link problems ihrough six simultanenus measurements. During lests, the 1645A can be left totally ursattended because it automatically maintains data cuen in the presence of dropouts and clock slips. And for added convenience, the 1645A can he equipped with a printer for hard-copy, permanent recordings of long rests.

Bit-error and block-error rate tests are autoranged and displayed direcily on an LED readout, there is no need to perform any cialculafion. A dditionally, the 1645 A mieasures jitter or total peak distortion (the sum effeet of jilter and bias), counts the fumber of times catrier loss or dropouts oceur, measures datiterror skew and counts the number of clock slips resulting from phase hits on the link or modem syne problems.

With all these measurements made during the same test interval. you'll know precisely what is causing yous problems in modems, dsta channels, complete communications systems.

## 10235A Interface cover

The 10235A Interface Cover is designed for troubleshooling problems on the RS-232C interface bus. The most common problems such as wrong volages and excessive turnaround times. which most com. monly occur during installation, are easily pinpointed with the measurement capability of the interface cover.

Measurements include time interval. voltage measurements, audio monitoring, data set control signal monitoring, and the ability to send control signals to the data sets. This measurement capability can be easily patched through the $25 \times 25$ pin matrix to every pin of the RS232 C interface for complete testing.

The programmable matrix has the 25 pins of the RS-232C interlate (modem and business machine) connected to the columns along with most of the RS-232C condoctors from the 1645 A to the modem. Sercral imporiant signals, send dota, reccive data, transmit clock and receive clock. are separated and applied to the matrix sows for manual manipulation by the technicien.

The most imporiant row outputs are TPI and TP2 which are conneeted to the lime interval circults for neasuring the interval between signals oceuring on two different leads in the matrix. The interval limer measures the lime while a visual indication of which lead changed state first is supplied by LED's connected to TPI and TP2. This permits accurate liming measurements of important signals such as lurnaround time between Request to Send and Clear 10 Send responses. Test poinis 1 and 2 may also be monitored with the built-in loudspeaker. For maximum fexibility the voltmeter can be connected through jumper Jeads to TP1, TP2, or TP3 of the malrix to any of the 25 input leads. The external inputs atio allow external voltape mea. surements such as telephone linc signal levels.

Conirol information can also be exchanged beiween the 10235 A and the data set by using any of the cight data sce control swiches. In addition control signals from the data set can be monitored through the matfix on the eight control signal indicalors.

## Interlaces

For versatility in design and troubleshooling. boih CCITT V24 (RS-232C) levels and TTL levels are available in the 1645A. TTL lev. els are through front panel BNC connectors. Interfacing with stardard RS-232C systems is through a rear panel 25 pin connector. The system interface, including connector, is contained on one circuit card which is easily replaced for other interfaces. The Model 10388 A interface card and cable is for modems conforming to CCITT V35 (W.E. Type 306) high speed modems. The Model 10387A interface is for ype 303 wideband modems. Interfacing with modems conforming to MIL. 188 C standards isi available on special order. A breakout box. Model 10389 A for R5-232C systems, is available as a convenient method of opening interconnecting lines. Test points on each side of the switches permit monitoring of signal levels, or with juinper leads offer a convenient method of matching different system installations.

## 1645S Data transmission test set

For communications companies that need to lest both low and high speed systems the 1645 S offers a complete data transmission Iest set. The test set includes a 1645 A Data Error Analyzer with RS-232C inIcriace: 10235A Interface Cover: CCIT V 35 and Type 303 interfaces with matching cables; Model 10389A RS-232C breakout box witb cable: and iwo accessory pouches. In addition. the 1645 A in this system incorporates a wider phase lock loop capture range which allows reveiver lock-on to PR BS signalls of other units that do new have crystal contralled transmitters for end-to-end testing. This eomplete test system offers eight basic data communicalion measurements plus audio which is capable of detecting malfunctions ranging from crossed wires to intersymbol interference in a wide range of data communications systems.


10235A

## 1645A Specifications

## Blt rate

Internal: selectable 75, 150, 200, 300, 600, 1200, 1800, 2400, 3600. 7200. 9600.

External: 5 MHz max
Data oufpuis/inputs
Froni panel
Input: dala input requires TTL levels; max input 5.5 V .
Oulputs: receiver sync, transmitter sync and event at TTL levels; dala oulpul is $>2 \mathrm{~V}$ inco 50 ohms; jiller/lotal peak is $1 \mathrm{~V} \mathrm{p}-\mathrm{p}$ for each $10 \%$ of p-p distorion from waveform causing distortion.

## Rear panel

Inputs: backward channel data, external transmitter and receiver clocks require TTL levels; max input 5.5 V .
Outpute: bits losi at TTL Iveres; internal Iransmitter elock is $>2 \mathrm{~V}$ into 50 ohms.
Multipin connectors: 25 pin RS-232C (CCITT V24) remale connector, interfaces with siandard communications systems. 36 pín (female) printer outpue al TTL levels in BCD 8421 code.

## General

Power: 115 or $230 \mathrm{~V} \mathrm{ac}, 48$ to $440 \mathrm{~Hz}, 150 \mathrm{VA}$ max.
Operating environment: temperature. 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+130^{\circ} \mathrm{F}\right)$; humidity. to $95 \%$ relalive humidity al $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$; allitude, 104.6 km ( 15000 n ); vibration, vibraled in three planes for is min. each with 0.254 mm ( 0.010 in .) excursion, 10 to 55 Hz .
Dimenelons: 133 mm high ( $51 / 4 \mathrm{in}$ ), 425 mm widc ( $161 / 4 \mathrm{in}$ ). 286 mm deep ( $111 / 4$ in.).
Weighl: net. 10 kg ( 22 lb ). Shipping. 12.7 kg ( 28 lb ).
Accessorles eupplled; one 2.3 m ( 7.5 nt ) 3-wire power cord, one 3.1 m ( 10 ft ) interconnecting cable in RS-232C configuration, 25 pin male connectors on each end, one Operating and Service Manual.

## 1645A Indicators and controls

## Indlcators

Out of lock; bit error; carrier loss; clock slip; block error: data set ready (DSR); clear 10 send (CTS); loss of data; test on.

## Selector gwllches

Clock; patlem; dala/dala; exponent range; single/cycle (printer); DTR/RTS/backward channel; starl/stop: off/loop; olT/xmil errors: off/ Fitler: event, bit crror, carrier loss, clock slip, block error, skew, jltter/iotal penk.

## 10235A Specifications

Time Interval
Ranga: 999 ms full scale.
Resolutlon: 1 ms .

Accuracy: $\pm 2 \%$ of measured interval $\pm 1$ count.
Slart-Stop: TPI and TP2 input LED indicates event start at TP1 or TP2.
Trigger slope: posilive edge.
Yrigger amplituda: $\pm 3 \mathrm{~V}$.
input resistance: approx. $4 \mathrm{k} \Omega$.
DC dightal volimeter
Aangee: $19.99 \mathrm{~V}, 199.9 \mathrm{~V}$ full scale.
Accuracy: $\pm 1 \%$ o「 reading, $\pm 1$ count.
Digltal unibs: $31 / 2$ digils,
input reslstance: I M
Overioed proteclion: so 1000 V .
General
Interface connectors: three 25 pin female connectors for connecting the 10235A to the 1645A, modem, and business machine. Interface conlorms to RS-232C standard.
Power requlremonts: +15 V to +25 V and $-15 \mathrm{~V} 10-25 \mathrm{~V}$ supplied by the 1645A.
Dimensions: 399 mm ( 15.7 in .) wide, 132 mm ( 5.2 in .) high, and 48 mm ( 1.9 in.) decp.
Weight: nel, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. 3.2 kg (7 lb).
Accessorles supplled: onc RS-232C interconnecting cable، one accessory pouch. one power cable.
indicator and control functlons
Indleators: eight light emilcing diodes (LED) provide logic Hl or LO indications for corresponding patch pins in the peogramming matrix, $+3 V$ lights LED.
Audlo: buill-in loudspeaker and volume conirol.
Control swithes: eighe switches supply control signals through the program matrix to business machine/modem conneciors. On is +5 V . OFF is -S V .

## Interfaces

Price
Model 10388A for CCITT V35 (with cable) \$290
Model 10387 A for Type 303 modems (with cable)
$\$ 390$
Model I0389A Breakour Box (RS-232C) (with cable)
$\$ 165$
MIL-I88C available on special order. Conlact HP Field Engineer.

## Accessories

Printer interconnecting cable: Model 10233A cable connects the 1645A to HP Model S055A or 5150A printers: 36 pin male connector on one end and 50 pin male connector on the olher.
Model number and name
I64SA Data Error Analyzer \$2300
10235A Interiace Cover
$\$ 1000$
16455 Data Communications Test Set" $\$ 4100$


# TELECOMMUNICATIONS TEST EQUIPMENT 

Transmission parameter analyzer Models 5453A \& 5468A

- Characterize a data channel in 2: minutes
- Hard copy or magnetic storage of results



## Introduction

The HP 5453A Transmission Parameter Analyzer, together with the HP 5468A Transponder, provides operators and users of private 4wire communication networks with the capability to rapidly evaluate critical network parameters and, hence, establish the operational status of a communication channel. Complex lests are performed easily and repeatably by nontechnical personnel. Results may be instantly compared to cither a pasi history of the chatnael or to any desired specification which the channel must mect.

The rapid availability of all the pertinent data, all the time, speeds the alignment of newly installed channels, and the fault location and Iroubleshooling of inoperalive channcls. In addition. routine measurements on critical services are lechnically aod coonomically feasible allowing preventive maintenance procedures 10 reduce the írequency of outages.

Test results can be preserved as hard-copy or stored in the S453A dise memory for later recall and analysis. Data to be saved is automatically labeled with a serial number and dace as well as with additional arbitrary identilying fields. Examples of additional fields are circuit identification number, customer mame, or geographic location. The dala lile may then be searched by any desired calegory. For example, the identification and locations of all circuits belonging to a specific customer can be obtained in seconds

## Operatlon

Figure I illustrates a simple selup with the 5453A located in a ceniral test center and a 5468A Transponder at a user location. In praclice, the 5468A is placed at any desired rest board or data sel location along the channel. Once connected, and with the appropriate transmit and receive levels set into the fronl panel thumb-wheel switches, operation is fully automatic and no further action is required.


Figure 1. Typical point-to-point measuremenl. The 5468A is conirolled by the 5453A over the channel to be tested.

## - Hardware independent measurements

## - Economical, lightweight remote unit

Command tones. gencrated by the 5453 A , are used to control the Iransponder. For measurements on the receive linu, the 5468A can be commanded to generate appropriate lest signats or to provide a quict termination. Characteristios of the Iransmit liste are oblained by causing the transpondur to apply appropriate conditioning to signals received from the 5433A before looping them back. In this manner, truc measurements of transmit line noise and distortion are oblained. Measurements perfomed include 1 kHz loss, altenuation and envelope delay distortion. Frequency shin. phase-jitter, intermodulation distortion, llat and C-weighted noise, and single-tone interference. The results. Гor bolh directions of cransmission, arc available in approximately (wo minutes.

Tesis conduceod over differens channel segmenis may be combined by the 5453A to obtain the point-to-point characteristies. Wilh sufficieni 5468A Transponders available, troubled sections are quickly isolated and corrective action intiated with a minimum of coordination. During installation of a new service. end-lo-end measurements are made as often as necessary and alignment procedures followed until the channel meets specifications.

The low cost, light weight, and ease of use of the 5468A Transponder mean that the purchaser of data communication service can afford to install the units in his data centers and that his non-technical personnel can use them. Problems are quickly determined to lie with cither the channel or the terminal equipment.

## Aemole access

Remote access to a centrally located S453A is available on an optional basis for offices where the workload dees nol justify installa. tion of a dedicated system. The measurement ports of the 5453 A are exiended to distant locations using high quality dedicated iest lines. Up 1016 such locations can be accommodated by a single S453A. During the calibration procedure, the loss and phase characteristies of each dedicated lest linc are mearured and stored by the 5453 A . These characleristics are then removed from any subsequent measurement automatically.

Remole offices are equipped wilh CRT Terminals and modems 10 enable them to communicatic with and control the 5453A over a DDD connection. Conlending users are placed in a queue and served in turn without the necessity of re-dialing. Operation is avtomatic and it is not necessary to man the central location. Once a distant user has identified himself, the dedicated text line to his location is automatically connected to the 5453 A and the requested measurement made.

Measurement results appiar on the remote CRT temminal. Hard copy output is also available if the distant locations are suitably equipped. All the capabilities deseribed above for storing and manipulating data are avilable to the remoti operator.

## Addikional applications

The S453A Transmission Parameter Analyzer is sne casentially hardware independene measurement system. Based on the principles of digital signal analysis. it does not requirc hardware oscillators, volimeters, power meters, counters, spectrum analyzers, or other such specialized equipment 10 accomplish a given measurement task. In addition. the 5453A has a number of capabilities not normally found in traditional inscrumentation. Some examples are the ability to convers berween the time and frequency domain as appropriate, the ability to work with randorn signals and signats buried in noise. the ability to compute statistical properties of a signal and to measure the joint properties of iwo signals and, linally, the ability to work with transient signals.

These characteristics suit the 5453A to a wide range of research, manufacturing and even educational applications in the telecommunication industry. Many types of communication equipment such as modems. facsimile Iransceivers, equalizers and telephone sets can be rapidly and compleiely charucterized. The 5453A can even add various Iransmission impairments to actual communication signals, allowing performance to be studied under conerolled conditions.

For complete lechnical, price, and leasing information or for application assistance with cither the 5453A Transmission Parameter Analyzer or the 5468A Transponder, contact your local Hewlell-Packard office.

# TELECOMMUNICATIONS TEST EQUIPMENT <br> Selective voltmeter, 20 Hz to 620 kHz <br> Models 3590A \& 3591A 

- Voice grade testing



## Description

Hewlett-Packard's 3591 A is a general purpose 20 Hz to 620 kHz frequency selcelive voltmeter having balanced inpul with selectable im. pedances. With balanced inpul circuitry, HP's 159|A is particulariy uselul for communications applications in the lab, field. or production line. Other than input dilferences. the 3591A is estentially identical to the 3590 A , having all the virlues of atomatic ranging. wide dynamic range, and log and línear $X$ and $Y$ recorder outpula

## Specifications

Frequency range: 20 Hz 10620 kHz .
Amplifude ranges: $3 \mu \mathrm{~V}$ to 30 V full scale in 15 zanges.
Amplltude accuracy with input leminated
Meter switch in normal position; overall accuracy: $\pm 0.43 \mathrm{~dB}$ to $\pm 0.67 \mathrm{~dB}$ of reading depending on 「requency, including:
Frequency response flatness, tolal deviatlon: $600 \Omega$ : 20 Hx 10 100 $\mathrm{Hz} \pm 0.53 \mathrm{~dB}$ ( $\pm 5 \%$ ) $100 \mathrm{H}<10620 \mathrm{kHz} \pm 0.26 \mathrm{~dB}( \pm 3 \mathrm{~m})$.
All other terminallons; 5 kHz to $620 \mathrm{kHz} \pm 0.26 \mathrm{~dB}$ ( $\pm 3 \%$ ).
Meter tracklng: $\pm 0.1 \mathrm{~dB}$ or $\pm 1 \%$ of reading, 0 dB to -10 dB .
Meter awitch in linear dB posilion: overall aocuracy: $\pm 1 \mathrm{~dB}$.
Internal callbrator: frequency, $100 \mathrm{kHz} \pm 10 \mathrm{~Hz}$; amplitude, full scale on 0 dB range in CAL mode: accuracy. $\pm 0.1 \mathrm{~dB}$.
Dynamlc range: (IM and harmonic distortion producls). $>85 \mathrm{~dB}$ below zero dB reference level when absolute measurements are being made ( $>70 \mathrm{~dB} 20 \mathrm{~Hz}$ to 50 Hz ) $>80 \mathrm{~dB}$ below zero dB reference level when relative adjusiment is used ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ).

## Residual responses

$>80$ dB below zero reference ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ).
Return loss: 100 Hz to $620 \mathrm{kHz}, 600 \cap>30 \mathrm{~dB} .5 \mathrm{kHz} 10620 \mathrm{kHz}$. 150』. 1351 . $75 \mathrm{n} .>35 \mathrm{~dB}$
Nolse level:

Bandwidths	Inpul nolse level   (500n inpul inpedance)
10 Hz and 100 Hz	$<-125 \mathrm{dBm}$ or $0.84 \mu \mathrm{~V}$
I kHz and 3.1 hHz	$<-115 \mathrm{dBm}$ or $1.38 \mu \mathrm{~V}$

Selectivity:

Rejeclion	10 Hz	Banduridilss		
		100 Hz	1 kHz	3.1 kHz
3 dB	10 Hz	100 HI	1 kHz	3.1 kHz
60 dB	35 Hz	$320 \mathrm{H}_{2}$	3.1 KHz	9.6 kHz

Inputs: balaneed or single-ended, not floating. ierminating, or bridging.
Aulomatic frequency control
Caplure threshold: 75 dB below 0 dB reference.
Dynamic holdaln range: $>3$ bandwidihs. Tracking rate propor. uonal co banciwidih.

Input functions
dBm: levels wilibrated an dBm for impedances selected.
Abs Vorr: level culibrated in vals.
Rel: input level can be set arbitrarily to 0 dB Ref. ( 10 dB sel level range).
Cal: internal level colibrator.

## Input Impedances*

Reslslances: $75 \Omega$, $135 \Omega, 150 \Omega, 600 \Omega$ ieminaled; $50 \mathrm{k} \Omega$ (single ended bridging) and $100 \mathrm{k} \Omega$ (balanced bridgirg).
Capacliance (each lerminal to ground): 10 mV .30 nv ranges < 55 pF : 100 mV to 30 V ranges $<40 \mathrm{pF}$,
Common mode rejection: 20 Hz to $630 \mathrm{kHz}>40 \mathrm{~dB}$.
Automatic ranging; 8 ranges. 0 dB to -70 dB . Ranging rate proportional to bandwidth.
Output: amplitude: sdjustable 0 vo I V rms open circuit
BFO frequency response flalness: $\pm 0.2 \mathrm{JB}$ or $\pm 2 \%$.
Restgtance: 600 m .
L.O. output: frequency, 1.28 MHz to $1.90 \mathrm{MHz}(1.28 \mathrm{MHz}+$ tuned
f́requency): amplitude. $0.65 \mathrm{~V} \mathrm{~ms} \pm 20 \%$ open circuit: resistance. $250 \Omega$.
Recorder outpuls:

$\begin{gathered} x-3 x i s \\ (3593 \mathrm{~K} / 3594 \mathrm{~A} \text { only }) \end{gathered}$	Plug-in frequency ranges	
	62 kHz	620 kHz
X-dxis inear oulput	$010-12.4 \mathrm{~V}$	$010-124 \mathrm{~V}$
(1 kn source resistance)		( $20 \mathrm{mV} / \mathrm{kHz} \pm 5 \mathrm{\%}$ )
$X$-axis log output	$5 V /$ decade $\pm 5 \%$	SV/decade $\pm 5$ \%
(1 k $\Omega$ source resistance)	( $50 \mathrm{~Hz}-62 \mathrm{kHz}$ )	$(500 \mathrm{~Hz}-620 \mathrm{kHz})$

## Y-Axls

LInear Y axls output; +10 V dc $\pm 2 \%$ for full scale meter indica. Lion, $I k \Omega$ source resistance.
Log Yaxia outpul: $+1 \mathrm{~V} 10+10 \mathrm{~V}$ dc. proporional 10 linear $d B$ meter indication ( $-90100 \mathrm{~dB} .0 .1 \mathrm{~V} / \mathrm{dB}) \mathrm{lk}$ source resistance.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$. $50 \mathrm{~Hz} 10400 \mathrm{~Hz}<70 \mathrm{VA}$.
Dimenstons: 425 mm wide $\times 221 \mathrm{~mm}$ high $\times 467 \mathrm{~mm}$ deep ( $16 \mathrm{H}^{\prime \prime} \times$ $81 /{ }^{*} \times 181 / x^{*}$ )
Welght: ncl, 17.2 kg ( 38 lb ). Shipping, 24.9 kg ( 55 lb ).
Accessories furnished; rack mounting kil for 19 " rack. Options

Price
908: Rack Flange Kit
add \$15
Model number and name
3590A Wave Analyzer and 3594A sweeping local oscillator plug-in
3591A Selective Voltmeter and 3594A sweeping local ascillazar plug-in

- Otlier lemniratiarar avaibhic on saciat ardes


## TELECOMMUNICATIONS TEST EQUIPMENT

Selective level meter/generator
NEW

## Models 312D \& 3320C

- Multiplex carrier lesting



## Description

## General

Hewlett-Packard Model 312D Selcelive Level Meter and companion Model 3320C Level Gencrator provide an accurate, casy-10-use Iransmission measuring set in the 1 kHz to 18 MHz frequency range ideally suited for maintenance and operations requirements. It provides proper inpus and output connectors and impedances 10 interface diruelly into most FDM carricr mulsiplex equipment.

HP's 312D has a noise equivalent bandwidth that provides a direct reading of C -message or psophomerric noise. The instrument has sufficient fidelity to act as an invisible channel bank to down-convert any 4 kHz voice channel and make typical measurements such as phase jik. ter and impulse noise. It also fealures 10 Hz frequency resolution, 0.02 d8 level resolution on the meter expand scalc, and an input overload lamp to assure valid measurements.

HP's 3320 C companion gencrator is a lirequency synthesizer that provides signals with an amplitude resolution of $0,01 \mathrm{~dB}$ orer a fre. quency range of 10 kHz io 17 MHz with 20 Hz resolution.

## Specifications, 312D

## Frequency

Range; I $\mathrm{xHz} 1018 \mathrm{MHz}, 18$ bands: 200 kHz overlap: cosirse and fine tuning.
Accuracy: $\pm 10 \mathrm{~Hz}$ plus rime base slability

## Slablility

Aging rate: $\pm 10 \mathrm{ppm} /$ monih
Temperature ( $25^{\circ} \pm 10^{\circ} \mathrm{C}$ ): 20 ppm
Line voltage ( $\pm 10 \%$ ): 0.1 ppm
Resolution: 10 Hz read on a scuen digit LED display

## Ampiltude level

Ranger: $-120 \mathrm{dBm} t 0+23 \mathrm{dBm}$, annunciator displays each 10 dB selected inpul level regardless of switch combinations.
Attenuator accuracy: $\pm 0.1 \mathrm{~dB}$ ( 0 ihrough -50 dB range); $\pm 0.2$ dB ( -60 dB range).
Flalneas ( 75 n matched load; 0 dBm max. level): $\pm 0.5 \mathrm{~dB} .1$ $\mathrm{kHz} 1010 \mathrm{kHz} ; \pm 0.2 \mathrm{~dB}, 10 \mathrm{kHz} 1010 \mathrm{MHz} \pm 0.5 \mathrm{~dB}, 10 \mathrm{MHz}$ to 18 MHz .

Stabillty: $0.1 \mathrm{~dB}, 90$ davs
Overload: Lamp indieates incorrect range selection Selectlvity:

Banduwidh	3 dE Rejaction	60 dB Rejection
" 50 Hz	$50 \mathrm{~Hz} \pm 10 \%$	$106 \pm 10 \%$
${ }^{4} 150 \mathrm{~Hz}$	$150 \mathrm{~Hz} \pm 10 \%$	$320 \pm 10 \%$
${ }^{*}=1740 / 2300 \mathrm{~Hz}$	$2300 \mathrm{~Hz} \pm 10 \%$	$4800 \pm 10 \%$
-63100 Hz	$3100 \mathrm{~Hz} \pm 10 \%$	$6200 \pm 10 \%$

Select one bandwidit: only: 50 Hz standard, 150 Hz Option 001.
 from center al rejection aotco

- Passband natness <0.2dB
- The exact miduand of the sclected filter is identified by a 3 Hz rejection noteh.
Meter (backlighted seale shows whether normal or expand mode is selecred).


## Range

Normal: -20 dB 10 +3 dB
Expand: $-1 \mathrm{~dB} 10 \div 1 \mathrm{~dB}$
The expand meter will expand any two dB porian of the meter from -7 dB to +3 dB in 1 dB steps.
Tracking: $\pm 0.05 \mathrm{~dB}$ expand: $\pm 0.1 \mathrm{~dB}$ normal ( $10-10 \mathrm{~dB}$ indication).
Input Impedance: $75 \Omega$ unbalanced, accepts WECO 358A plug; $124 \Omega$ balanced accepts WECO 408^ plugi I $35 \Omega$ balanced, accepts WECO 241 A plug.
Recelver
Modes
AM: average responding diode demodulated sudio.
Beat: beat frequency, carrier reinserted at $f_{0}$,
LSB: product demodulated audio. carner reinserted at $S_{a}+1.8$
kHz .
USE: product demodulated audio. cartier reanserted al $f_{o}-1.8$ kHz .
Disiortion
1 kHz to 1 MHz : $>55 \mathrm{~dB}$ below zero reference
1 MHz to 18 MHz : $>65 \mathrm{~dB}$ below zero reference
Residual response: 72 dB bclow zero reference with no inpul
Noise level: <117 dB in 2300 Hz bandwidsh
Internal callbralor output: 1 MHz square wave: $-40 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$ into $75 \Omega$ termmatam, accepss WECO 358A plug
Common mode rejectlon: $>40 \mathrm{~dB}, 1 \mathrm{kHz} 105 \mathrm{MHz}:>30 \mathrm{~dB}, 5$ MHz to 18 MHz
Output level (Iront panel):
+14 dBm into $600 \Omega$ with full seale meter deflection.
Accepts WECO 464A plug for operator head set.
Accepis WECO 310A plug for $600 \Omega$ oulpul.
Speatker marmally in the oulpul circuil unless a plag is inserled, then spether is discomnected.
Auxillary outputs (rear panel)
1 MHz : $>0.5$ voll $\mathrm{p} \cdot \mathrm{p}$ sine wave into $1 \mathrm{k} \Omega$. BNC female
$30 \mathrm{MHz}: 40 \mathrm{mV}$ to 70 mV rms into $50 \Omega$. BNC Femalc
Local osellistor: 30 MHz to 48 MHz 60 mV to 90 mV rms into Soft, BNC female
Auxliary inpul (rear panel)
External reference frequency: $1 \mathrm{MHz} .0 \mathrm{dBm} \pm 10 \mathrm{dBm}$ into $50 \Omega$.

## General

Dimenslons: 483 mm wide $\times 226 \mathrm{~mm}$ high $\times 467 \mathrm{~mm}$ deep ( $19^{\circ} \times$ $\left.1041 / 31^{4} \times 181 / 8^{\prime \prime}\right)$
Welght: nel. 20.7 kg ( 46 lb ). Shipping $26.6 \mathrm{~kg}(59 \mathrm{lb})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. $481066 \mathrm{~Hz},<100 \mathrm{VA}$

## Specifications, 3320C

Frequency
Range: 10 kHz to 17 MHz in one range ( $75 \Omega$ )
Resolution
Vemler out: 10 kHz
Vernler In: 20 Hz
The frequency counter in the 312D ean be used to count the outpul frequency of the 3320 C to within 10 Hz .

## Accuracy

Vernier ourt: $\pm 10 \mathrm{ppm}$ of sctuing
Vernier in: 10 kHz to $12.5 \mathrm{MHz} ; \pm 600 \mathrm{~Hz}$

$$
\text { 12.5 MHz to } 17 \mathrm{MHz}_{:} \pm 750 \mathrm{~Hz}
$$

Slabillty. $\pm 10 \mathrm{ppm} /$ year
TC: $20^{\circ} 1030^{\circ} \mathrm{C}: \pm 5 \mathrm{ppm}$
Line varlations of 10\%: 0.1 ppm
High stability crysial reference oven available (Option D01).
Phase nolse: $>40 \mathrm{~dB}$ in 30 kHz band, excluding $\pm$ ) Hz centered
Harmonics and spurlous: $>50 \mathrm{~dB}$ down
Internal frequency standard: 20 MHz
Amplitude level
Range: $+11.99 \mathrm{dBm} 10-79.99 \mathrm{dBm}$
Resolutlon: 0.01 dB
Accuracy: +11.99 dBm to $-60 \mathrm{dBm}: \pm 0.25 \mathrm{~dB}$. -60 dBm to $-79.99 \mathrm{dBm}: \pm 0.4 \mathrm{~dB}$.
Output impedance (tront panel swillch selectable)
$75 \Omega$ unbalanced: accepi, WECO 358A Plugs
$124 \pi$ balanced: accepts WECO 408A Plugs
135@ balanced: accepIs WECO 24IA Plugs
Auxllary outpuls (rear panel)
-Tracking oulput: 20 MHz to 37 MHz offscl signal. Tracks majn oulput with 20 MHz offset. $>100 \mathrm{mV}$ sms into 50 O . Female BNC.

- Low level output: same frequency as main ourpul bul remasns between 50 mV rms and 158 mV rms into 50 Femalc BNC.
- 1 MHz oulpul: Reference oulpul, $0 \mathrm{dBm} \pm 10 \mathrm{dBm}$ into $50 \Omega$. Fcmale BNC.
Can be used as external frequency source for the 312B or 312D.
Acxillary input (rear panel)
External Irequency relerence Inpul: may be phase lock ded with an external signal which is within 200 mV rms and 2 V rms and which is eny subharmonic of 20 MHz from I MHz through 10 MHz (e.g., I $\mathrm{MHz}_{\mathrm{H}} 2 \mathrm{MHz}_{\mathrm{M}} 2.5 \mathrm{MHz}^{5} \mathrm{MHz}$. 10 MHz ). Female BNC.
High atablity crystal oven (Oplion 001)
5 MHz reference in temperature stabilized oven.
Stablity: $\pm 1$ part in $10 \% /$ day or 1 part in $10 \%$ month
Accuracy: $\pm 1$ part in $10^{\circ}$ of seltting/nionth
For field instaliation order Accessory Kit II237A


## General

Operoling tomperalure: $25^{\circ} \mathrm{C} \pm 5^{\circ}$
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ 10 $66 \mathrm{~Hz}, 110 \mathrm{VA}$
Weight: net, 15.4 kg ( 34 lb ). Shipping. 22.2 kg ( 49 lb ).

312D Selective Level Meter	$\$ 5400$
Option 001:   Oplion 908: Rack Flange Kit	$\mathrm{N} / \mathrm{C}$
3320C Level Generalor	add $\$ 15$
	$\$ 3860$
Option 001: Crystal Oven	
Option 908: Rack Flange Kil	add $\$ 345$   add $\$ 10$

## Selective level measuring set

- Frequency range, 1 kHz to 25 MHz
- Selective filters for Pilot, Channel and Group measurements
- Automatic tuning according to selected FDM Plans

- Results recorded directly on separate printer
- Automatic routines for unattended surveillance
- HP-IB compatible



## 3745A/3745B Specifications

(Unless otherwise stated. all specilications are for $0^{\circ}$ to $55^{\circ} \mathrm{C}$ after 30 minulc warm-up).
Input circuits

## Unbalanced

Connector: 3745A - BNC: 37458 - WECO lype 4778 (accepls
WECO plug 358A).
Impedance: 750 .
Return loss: $>30 \mathrm{~dB}$ ( 50 kHz io 25 MHz ).
Balanced (ISOO) - 3745A only
Connector: BNC pair at 25 mm (1") spacing.
Return lose: $>30 \mathrm{~dB}(50 \mathrm{kHz}$ to 2 MHz ).
Common mode rejectlon: $>40 \mathrm{~dB}$ ( 50 kHz to 2 MHz ).
Balanced (124 12 ) - 3745B only
Connector. Pair of WECO (ype 4778 al $15.9 \mathrm{~mm}\left(3 / k^{\prime \prime}\right)$ spacing (socepls WECO plug 372A).
Return lose: $>30 \mathrm{~dB}(50 \mathrm{kHz}$ to 10 MHz$)$.
Common mode relection: $>40 \mathrm{~dB}(50 \mathrm{kHz}$ to 2 MHz ). $:>35 \mathrm{~dB}(2 \mathrm{MHz} 1010 \mathrm{MHz}$ ).
Balsnced (135亿) - 3745B only
Connector: Pair of WECO type 223A at $15.9 \mathrm{~mm}(5 / 8)$ spacing (accepts WECO plug 24(A).
Return loss: $>30 \mathrm{~dB}(50 \times \mathrm{Hz}$ to I MHz ).
Common mode rejection: >40 dB ( 50 kHz to I MHz ).
Frequency range
Unbelanced 75 n input: 1 kHz to 25 MHz .
Balanced 1500 Input ( 3745 A ): 10 kHz to 2 MHz .
Balanced $124 \Omega$ input ( 37458 ): 10 kHz to 10 MHz .
Balanced 135! Input (37458): 10 kHz to 1 MHz
Minlmum frequency step size: 10 Hz .
Frequency accuracy
Internal reference osclliator
Inltlal setting accuracy: within $\pm 1 \times 10^{-3}$ parts $\pm 1 \mathrm{~Hz}$.
Aging rate: less than $\pm 1.5 \times 10^{-1}$ parts $\pm 1 \mathrm{~Hz} /$ year.
External reference osclilator
Frequency error: Satability of external reference oscillator $\pm 1 \mathrm{~Hz}$.

## Measurement ranges

Unbalanced $75 \Omega$ Input

Filler	Range (dBm)	Nolise floor (dBm) - wilh open cel ingut	
		$50 \mathrm{kHz}-300 \mathrm{kHz}$	$300 \mathrm{kHz}-25 \mathrm{MHz}$
22 Hz - Pilol	$+1510-125$	$\leq-110$	$\leq-125$
3.1 hHz - Chasnal	+15 to -115	$\leq-100$	$\leq-115$
48 kHz - Group	$+1510-75$	-	$\leq-100$
I/P Pwi - Broadtand	$+1510-35$	-	-

 level is 0 dBm for all filter selections.

## Measurement accuracy

Overall measurement accuracy: absolute accuracy al $0 \mathrm{dBm}+$ (After autocalibration - hainess $310 \mathrm{dBm}+$ error at levels set nole I) other than 0 dBm .
Absolute accuracy at 0 dBm : ( $\mathrm{al} / \mathrm{MHz} \pm \mathrm{I} \mathrm{H}_{\mathrm{L}}$ )

	750 Unbałanced inpui	150, 124, and 135n Balanced inpuls
Seleclive measurements ( $10^{\circ}$ to $35^{\circ} \mathrm{C}$ )	$\pm 0.0588$	$\pm 0.1 \mathrm{~dB}$
Splective measurements (0' $1055^{\circ} \mathrm{C}$ )	$\pm 0.18 \mathrm{~B}$	$\pm 0.15 \mathrm{~dB}$
Broadhard measurements   ( $0^{\circ} 1055 \mathrm{C}$ )	$\pm 0.2 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$

Flalness reterred to 1 MHz and 0 dBm : (inpul signals within $\pm \mathrm{I} \mathrm{Hz}$ or (uning frequency)
750 Unbslanced input
Selective measuremonts
( $10^{\circ}$ to $35^{\circ} \mathrm{C}$ ) 50 kHz to $20 \mathrm{MHz} \pm 0.1$ ) dB .
$10 \mathrm{kHz} 1025 \mathrm{MHzi} \pm 0.25 \mathrm{~dB}$.
( $0^{\circ}$ 10 $55^{\circ} \mathrm{C}$ ) 50 kHz to $20 \mathrm{MHz}: \pm 0.25 \mathrm{~dB}$.
10 kHz to $25 \mathrm{MHz}: \pm 0.35 \mathrm{~dB}$.
1 kHz to $25 \mathrm{MHz}: \pm 1.0 \mathrm{~dB}$.
Broadband measuremenla
$\left(0^{\circ} 1055^{\circ} \mathrm{C}\right.$ ) 10 kHz to $25 \mathrm{MHz}: \pm 1.0 \mathrm{~dB}$.
150ी Balanced Input (3745A)
Selective measurements
( $10^{\circ}$ to $35^{\circ} \mathrm{C}$ ) 10 kHz to $2 \mathrm{MHz} \pm 0.2 \mathrm{~dB}$.
$\left(0^{\circ} 1055^{\circ} \mathrm{C}\right.$ ) 10 kHz to $2 \mathrm{MHz}: \pm 0.3 \mathrm{~dB}$.
Broadband measurementa
( $0^{\circ}$ to $55^{\circ} \mathrm{C}$ ) 10 kHz to $2 \mathrm{MHz}: \pm 1,0 \mathrm{~dB}$.
124^1 Balanced Input (37458)
Selectlve measurements
$\left(10^{\circ} 1035^{\circ} \mathrm{C}\right) 10 \mathrm{kHz}$ to $10 \mathrm{MHz}: \pm 0.2 \mathrm{~dB}$
$\left(0^{\circ} 1055^{\circ} \mathrm{C}\right) 10 \mathrm{kHz}$ to $10 \mathrm{MHz}: \pm 0.3 \mathrm{~dB}$.
Broadband messurements
$\left(0^{\circ} 1055^{\circ} \mathrm{C}\right) 10 \mathrm{kHz}$ to $10 \mathrm{MHz}: \pm 1.0 \mathrm{~dB}$.
1350 Balanced Input (37458)
Selective measuraments
$\left(10^{\circ} 1035^{\circ} \mathrm{C}\right) 10 \mathrm{kHz}$ lo $1 \mathrm{MHz} \pm 0.2 \mathrm{~dB}$.
( $0^{\circ}$ to $55^{\circ} \mathrm{C}$ ) 10 kHz to $1 \mathrm{MHz:} \pm 0.3 \mathrm{~dB}$.
Broadband messurements
( $0^{\circ} 1055^{\circ} \mathrm{C}$ ) 10 kHz to $1 \mathrm{MHz}: \pm 1.0 \mathrm{~dB}$.
Additional error for measurements in the rango +5 to -80 dBm
(with respect to accuracy and flatners al 0 dBm )
For each 10 dB step: $\pm 0.03 \mathrm{~dB}$.
For each 1 dB step; $\pm 0.01 \mathrm{~dB}$.
Maximum cumulative error for up to ten 1 dB staps: $\pm 0.03 \mathrm{~dB}$.
Note 1: the following errors are eliminated by autocalibration.
Temperalure coefficient: $0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
Stability: $0.1 \mathrm{~dB} / 2 \mathrm{~A}$ hours.
Measurement display
Long averaging
Resolution: 0.01 dB .
Accurscy: equal to mezsurement accoracy.
Normal averaging
Aesolution: 0.1 dB .
Accuracy: measurement accuracy + rounding error + averaging
error.
Max rounding error: $\pm 0.05 \mathrm{~dB}$.
Max averaging error: $\pm 0.03 \mathrm{~dB}$.
Fillers
Pilot filter - 22 Hz
Ripple over 22 Hz bandwidth: $\leq 0.1 \mathrm{~dB} \mathrm{pk}$-pk.
3 dB Bandwldth: $38 \mathrm{~Hz} \pm 10 \%$.
60 dB Bandwidth: $210 \mathrm{~Hz} \pm 10 \%$.
Adjacent pllot rejection ( $\pm 60 \mathrm{~Hz}$ ): $\geq 40 \mathrm{~dB}$.
Equivalent noise bandwldth: 44 Hz (nominal).
Channal niter - 3.1 kHz
Ripple over 2.8 kHz bandwidth: $\leq 0.5 \mathrm{~dB} \mathrm{pk}-\mathrm{pk}$.

3 dB bandwldth: $3.1 \mathrm{kHz} \pm 10 \%$.
Virlual carrler rejection at $\pm 1.85 \mathrm{kHz}: \geq 55 \mathrm{~dB}$.
Adjacent channe rejaction ( $\pm 4 \mathrm{kHz}$ ): $\geq 67 \mathrm{~dB}$.
Equivalent noise bandwldth: 3.1 kHz (nominal).
Group filler - 48 kHz
Rlpple over 34 kHz bandwidth: $\leq 1 \mathrm{~dB} \mathrm{pk}$-pk.
3 dB 日andwidth: $48 \mathrm{kHz} \pm 15 \%$.
40 dB Bandwidth: $140 \mathrm{kHz} \pm 15 \%$.
Adjacent group rejection ( $\pm 48 \mathrm{kHz}$ ): $\geq 25 \mathrm{~dB}$.
Equivalent nolee bandwlalik: $52 \times \mathrm{Hz}$ (nominal).
intermodulation and spurious producta
Intermodulation rejectlon: $>70 \mathrm{~dB}$,
Spurious produels: either -80 dB with respeet to input signal or -115 dBm , whichever is the greater.
Image and l.F. rejection: $\sum 70 \mathrm{~dB}$.

## General

Power
Vollage ranges: $100,120,220,240 \mathrm{~V}$.
Tolerance: $\pm 10 \%$.
Power consumptlon: 200 VA .
Frequency: 48 Hz :0 66 Hz .
Options
001 (3745A) (froni panel only):
Unbalanced input connector: Siemens series 2.5/6 mm (750).
Balanced input connector: pair of Siemens series
2.5/6 mm ( $75 \Omega$ ) al 25 mm ( 1 ") center spacing.

002 (3745A) (fronl panel only):
Unbalanced input connector: Siemens serics $1.6 / 5.6 \mathrm{~mm}$ (758).
Balanced Input comnector: pair of Siemens serics $1.6 / 5.6 \mathrm{~mm}$ (75!?) at 25 mm (1") center spacing.
004 (37458) (front panel only):
Unbalanced Inpul connector: WECO 1ypc 560A
(accepts WECO plug 439A or 440A).
Balanced Inpul connector (124n): WECO lype 562A (accepis WECO plug 443A).
Ealanced Input connector (135ח): Pair of WECO
type 223 A at $15.9 \mathrm{~mm}\left(3 / \%^{v}\right)$ spacing (accepts WECO plug 2dIA).
$021 / 022$ - Channel meanuroments (Phase jifter
plua Welghted nolse measuremente):
Phace filter
Ranges: $3^{\circ}$ and $30^{\circ} \mathrm{FSD}$.
Residual phase filter $0.5^{\circ}$.
Ассuracy: $\pm 15 \%$.
Bandwidith: 20 to 300 Hz
The measurement is performed on an input signal at a frequency corresponding to a tone in the range I kHz $\pm 50 \mathrm{~Hz}$ at the demodulated audio oulpul. The result is displayed on a front pancl meter.
021 (Weighting Illter - 3745A)
Weighling curve: CCITT recommendation P53 over frequency range 300 Hz to 3400 Hz .
022 (Welghiting jllter - 3745B)
Weephiling curve: C-message weighling over frequency range 300 Hz to 3400 Hz .
04D-X-Y Recorder/X-Y Display Drlver: allows SLMS to drive an X-Y Recorder or an X.Y CRT Display.
add $\$ 1130$
008: Rack Flange Kit
909: Rack Flange \& Front Handle Combination Kit
add 515

## Accessories

15580A Aclive Probe: 0 dB inserrion loss.
IS581A Passive Probe: 10 dB inscrion loss.
15582A Return Loss Bridge.
1332A (Option H01) X.Y Display.
SISOA (Option HOI) Thermal Prinler.

## Model number and name

Model 374SA Selective Level Measuring Set
\$23 630
Model 3745B Sclective Level Measuring Set $\quad \$ 23630$
$1 \mathrm{~kb} / \mathrm{s}-50 \mathrm{Mb} / \mathrm{s}$ PCM/TDM error measuring set for field use

- Binary and code error measurements
- Internal crystal clocks and clock recovery at standard bit rates
- Clock frequency offset generation and measurement capability
- Ternary coded and binary interiaces
- PRBS and WORD pattern generation and detection
- Printer and recorder outputs



## Descríption

The 3780A Pattern Generator-Error Detecter is a comprehensive error measuring set in one portable package. The instrument measures Binary Errors and Code Errors in digital transmission equipment operating at bit rates between $1 \mathrm{~kb} / \mathrm{s}$ and $50 \mathrm{Mb} / \mathrm{s}$. Frequency offset generation and measurement are also provided at the standard bit rates used in PCM/TDM transnission.

Binary errors are detected by stimulating the system with a test pattern and comparing the output bit-by-bit with a separate imernally generated, error-free pattern. The errors can be counted over a chosen gating period and displayed directly as bit error rate (BER) or cotal crior count (COUNT).
Code criors on interface or line coded information are detocled dur. ing decoding into binary data and counted in the same way as for binary errors.
Error measurements can be made with PRBS or WORD patterns and the receiver has automatic pattern recognition and synchronisation. Zero add facilites allow investigation of regenerator clock recovery performance. This capability can be extended by the optional uddition of programmable word and alternating word generation.

The clock frequency in the pattern generator can be offset and measured in the receiver. The offiset is displayed as a fraction of the nomi-
nal crystal centre frequency. In addition, the offset of external clocks applied to the generator can be measured provided that the frequency is within 25 kHz of one of the installed crystal frequencies.
BER or COUNT results can be displayed directly by LED's on the front panct or monitored via a BCD printer and strip chart recorder. This makes the 3780A ideally suited for unattended long-term measurements.
The 3780A has been designed principally for use in field trial, commissioning, and maintenance of digital transmission terminal and link equipmenit. It is particularly suited for testing digital multiplex, radio. and line systems but will also. find application in development off more advanced systems such as optical fibre transmission and time division switching.

## Specifications

## Measuraments

Binary errors: closed loop bit-by-bit detection on any pattern produed by generator, excluding added zeros or alternating words. Code errors: violations of coding rule detected on any pattern with AMI, HDB3, or HDB2 coding (optionally AMI. B6ZS, or B3ZS).
Frequency offset: measurement of fractional offist of generator clock ouput from installed crystal rates.

Paltern generatar
Internal clock: threc crystal clocks al 2048, 8448. and 1536 kHz overall stability $\pm 17$ ppm (for oober frequencies see options).
Clock offeet: range continuously variable up 10 al luast $\pm 50 \mathrm{ppm}$ about installed crystal frequencoes; offset can be displayed in receiver. Exiernal clock: 1 kHz to 50 MHz : $75 \Omega$ : avio or ground threstold triggering.
Clock outpul: CLOCK or CLOCR: amplitude $3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ pk-pk; 751.

## Patterns:

PRES: maximal lengit $2^{3}-1,2^{15}-1,2^{10}-1$ : randomly selectable 9. 15. or 20 bil sequences.

Word: 0000. 1000, 1010, 1100. 1111 fixed words.
Zero add: I-999 zeros may be added once per sequence to any pattera.
Error add: $10^{-2}$ binary error rate may be added to any pattern.
Data formet: binary NRZ or RZ: ternary RZ AMI or coded; codes - HDB3 or HDB2 (optionally B6ZS or B3Z5).

Dala output: amplitude - binary $3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ pk-pk. ternary 4.74 V $\pm 0.47 \mathrm{~V}$ pk-pk: $75 \Omega$.
Delay data output: binary format only: $\sigma$ bits advanced on main data ootput; amplitude $3 \vee \pm 0.3 \vee p k$-pk; $7 \leq \Omega$.
Clock/data phasing: NRZ data - rising edge of clock nominally in middle of data; RZ data - clock and data nominally corncide.
Trigger output: square wave with one transition per sequenc: outpul held at zero during zero add: amplitude / V pk-pk min: $50 \Omega$.

## Error detector

Data input: $1 \mathrm{~kb} / \mathrm{s}$ 10 $50 \mathrm{Mb} / \mathrm{s}$; 75n: choice of nominal iriggering threshold - $200 \mathrm{mV}, 600 \mathrm{mV}$, or ground.
Data Iormat: binary NRZ or RZ; termary RZ AMI or coded: codes - HDB3 or HDB? (optionally B6ZS or B3ZS).

Clock recovery: at the three internal rates of gencrator: operales on any data imput provided there are 2 or more transitions every 20 bils.
Exlernal clock: 1 kHz to 50 MHz CLOCK or CLOCK: $75 \Omega$; auts or ground threahold iriggering.
Clock/data phasing: recovered clock - auto phasing; extermal clock - rising edge of clock should bc nominally in middle of data pulse.

## Patlerna:

PR BS and Word: sccogniees all patterns produced by generator excluding added zeros and allernating words: receiver also recognizes PRBS.
Indicalors: LED indicalion of pattern lock for PRBS, PRBS, WORD. and ALL ONES/ZEROS (indicator inhibited during sync loss and code error or frequency offset measurements).
Synchronization: auto with manual override: sync loss if greater than approx. 20000 errors in 500000 clock periods; manual sync override va pushburion, forcing a syoc loss; resync time typically < $\mathbf{5 0 0}$ bils.

## Dlsplay

BER: totalizes errors over selected gating period and automatically scales the answer, gating over $10^{\circ}, 10^{4}$ ar $10^{10}$ clock periods. repetitive; $A . B \times 10^{-2}$ LED format.
COUNT: lotalizes errors over selecied gating period; manual gating via slarl/stop pushbutions; external gating via printer oulpul; A.B $\times 10^{\text {n/ }}$ LED format with auto round-up.

FREQ OFFSET: counts deviation frequency over $10^{\circ}$ clock periods of internal standard crystal rate: Butomatic gating: AB $\times 10^{-n}$ LED format with aulo round-up.
Flags (LED's):
GATING: indicates measurement in progress.
SYNC LOSS: indicales local pattern reference has losi sync. OVERFLOW: indicates internal error or frequency count $\geq 10^{\circ}$. $<100$ ERRORS: indicates less than 100 errors counted during last error measurement.
Printer output: 842) BCD. 10 column format; TTL print command pulse.

Aecorder output: current source with 500 ms min response; imped. ancegreater than $50 \mathrm{k} \Omega$ : I mA varration over 16 levels into 10 kS max: for BER. If levels are used; for COUNT, \& levels are used: 2 rear panel pushburtons for 5 sd and zeru culibration.
Error output: one pulse per error (inhibiled during sync loss); amplitude $1 \vee$ pk-pk min: $50 \Omega$.
Trlgger output: onc pulse ptr sequence (PRBS only); amplitude IV pk-pk min; 50n.
Clock output: detector clock available as a monitor: amplixude I V pk-pk min: 50n.

## General

Power supply: $115 \mathrm{~V}+10-22 \%$ or $230 \mathrm{~V}+10-18 \mathrm{~s}$, ac, 48 to 66 Hz. max consumplion approx. 110 VA.
Probe power: exiernal fiused supplics of +5 V, 200 ma , and -5 V. 200 ma, for ho lopic probes.
Connectors: all signal connectors are BNC (except Opions 002. OO3): printer oulpul sia 50 - mil Amphenol connector: recorder oulpul via 2 binding posts.
Dimenslons: 195 mm high, 335 mm wide, 475 mm decp ( $7 \%$ in. $X$ $13 \%$ in. $\times 18 \%$ in.).
Weight: net, $12.5 \mathrm{kE}(27.5 \mathrm{lb})$. Shipping, 15 kg ( 33 lb ).
Environment: operating temperature range $010+55^{\circ} \mathrm{C}$ : storage emperalure range -40 to $+75^{\circ} \mathrm{C}$.

## Options

## Word/conneotor opllons

001: all words replaced by 16 -bit fronl panel programmable word. This can also provide lwo s-bit words alermated by an external signal applied wia the rear pancl. Changeaver is synchronous with end of words Zero add then operates on individual 8-bit words. and trigger output is 8 -bits wide.
002: Sicmens 1.6 mm conncetors.
001: combinalion of 001 and 002.
Frequency offsel optlon
099: irequency offscl capability - measurement only. generation facility deleted.
Frequency/codec opilons
100: internal clock frequencies of 2048, 8448, and 34368 kHz .
101: internal clock frequencies of 1544.6312. and 44736 kHz B6ZS/B32S codec.
102: insernal clock frequencies of 1544, 6312, and 3152
kHz: B6ZS/B3ZS codec.

Optlons	Price
Oplion 001	$\mathrm{N} / \mathrm{C}$
11608A Transistor Fixture (must sperily Opt. 00), 002, or C03)	
Option 001	\$600
Option 002	\$700
Option 003	\$700
Option 100	less \$30
8717日 Transistor Bias Supply	\$2250
Option 00)	add \$670
8780 Transmission Test Sel	\$2750
8741 Reflection Tesi Sel	\$1950
8742 Reflecion Test Scl	\$2750

## Accessory

HP 35508A: $75 \Omega$ unbalanced to 110 s: balanced passive converter: frequency range 1 lo 10 MHz .
Model 3780A Pattern Generator-Error Detector


The 3760A/3761A Error Rate measurement system has been designed for general use in the evaluarion of digital systems operating in the frequency range I $\mathrm{xb} / \mathrm{s}-150 \mathrm{Mb} / \mathrm{s}$. It has particular applications in the design and development of PCM/TDM systems.

The measurement sysicm comprises the 3760A Data Generalor, wbich provides a variable lengith PRBS to the item or system under lest, and the 3761A Error Delcetor which has been specifically designed for operation with the pseudo random sequences produced by the Dala Generator. Error Detection is accomplished by comparing the outpur from the item under test, bil-by-bit, with an independent, closed loop, reference sequence in the 3761A Error Detector. This lechnique ensures detection of every error, random or systematic, and avouds the problems associated with open loop reference sequence generation. Errors may be countod and directly displayed in the 3761 A cither as Bit Error Rate (BER) or Total Error Count (COUNT).

The 3760A Dala Generator is a versatile PRBS and WORD generator and can supply many of the test sequences required for the development and evaluation of digital transmission equipment. Its fealures are deseribed fully in the Data Generator Model 3760A Data Sheet and only those which complement the 376IA Error Detector are described here.

The Data Generator can be manually or automatically iriggered from an external clock in the frequency range) $\mathrm{kHz}-150 \mathrm{MHz}$. The clock input will accepl conlinuous or burst informaion. Alterniatively, the generator may be driven from an internal clock source which can be variable or crystal consrolled in the frequency range 1.5 -

150 MHz . A clock oulput is always provided in nocmal or complimented form, which is variable in amplitude and de offset.

The PR BS is variable in lengit from $2^{3}-1$ Io $2^{\prime u}-1$ bils, with an additional long sequence of $2^{\prime \prime}$ - 1 bits. A sync pulse oceurs once per PRBS and may be varied in position relalive to the sequence. For back-lo-back lesting of the Data Generator and Error Detector, lwo errors cars be inserted once per 4000 sequences. The data oulpul is available in normal or complemented form and may be varicd in am. plitude and de offsel. Either RZ or NRZ Cormats may be selected and the data output can be delayed by up to 100 ns with respect to the clock.

The 376IA Error Delector requires both clock and dats inpuls. The inputs accepr continuous or burst signals in the frequency range 1 kHz to 150 MHz For the clock input manual and sulomatic triggering on belh tve and -ve slopes of ihe input waveform are provided. Indicalion of clock presence with correct Iriggesing in given by a front panel lamp. The data inpul conditions for frequency range, wavenhape, im. pedance and sensitivity are similar to those for the clock. Triggering on dala is automatic for continuous inpuls with compensation ror de olfisels. For burst inpuls a switch inside the 3761 A can be used to scl a ground threshold trigger level. The inpul can be inverted with a DATA/ $\overline{\text { DATA }}$ switch to allow for an inversion in the ifem or system undes test. A front panel variable phase control is used to cnsure that coincidence between clock and data edges is avoided. A lamp indicates when a correct phase relasionship between the clock and data has been attained.

Synchronization of the 3761A Error Delector to the incoming data can be accomplished automalically, manually or excernally. In the aulomalic mode. correct synchronism is ensured by continually monjtoring the average error rate over a period long enough to remove the effect of error bursts. In the manual synchronization mode, the Error Deiector starches for synchronism on command from a front panel switch. and in the exiernal mode, by command from an extermal TTL signal. A "gating" flag indicales the instrument is in synchronism and making a measurement. Whenever the instrument is out of synchronisms a "syse loss" thag is displayed.

The 8ER measurement is compuled from miore than 100 etrors and the resules displayed direcily in the form $A . B \times 10^{\circ \pi}$ giving a range $0.1 \times 10^{-0} 109.9 \times 10^{-1}$. The COUNT measurement tolabises errors over a gating periad, which may be conerolled internally or externally, and the result is displayed as a four digit number with leading zeros blanked. The internal gating period can be selected within the range $10^{3}$ to $10^{\prime \prime}$ clock periods and can be single shot or repetitive in operation When a count of 9999 is exceeded an "overflow" nag is lit. When using manual, external or internal single shol gating the display continues to register the leasi significant digits of the count. A TTL compatible external gate input is provided, and manual gating is conIrolled with a front pancl start/stop switch.

In both BER and COUNT modes, the display is continually up. dated al a rate which may be set by the operalor.

A $B C D$ printer output of the current display is available from a rear pancl sockel. This output is in $\$ 421$ formal and includes the sync loss and overlow llag indications, An ourpul of one Iransition per error is also availabie at the rear pancl for further analysis.

## Specifications

## Measurements

Bit error rate (BER)
Range: $0.1 \times 10^{-8} 109.9 \times 10^{-1}$. automatically scaled,
Gating: sutomatic.
Accuracy: compulation based on al least 100 errors.
Total error count (COUNT)
Range: 0 to 9999.
Gallng: internal, singie shot or repelitive, manual or external.
Intepnal: $10^{5}$ to $10^{\prime \prime}$ clock periods.
Menual: front pancl switch.
Exiernal: TYL logic levels.
Patterns:
PABS: Maximal lengih $2^{n}-1$ where $n=3$ to 10 and 15 .
Data generator
Clock inpul
Rate: I kHz lo 150 MHy .
Impedance: $50 \Omega \pm 5$ 要 de coupled ( $75 \Omega$ optional).
Trigger manusl with level range $-3 V$ to +3 V . +ve or -ve slope. Auto with inpui mark: space ratio range $10: 1$ to $1: 10$.
Senelivity: betler than $500 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$.
Amplitude: 5 V pk-pk maximum. Limits $\pm 5 \mathrm{~V}$.
Pulee width: 3 ns minimum at $50 \%$ pulse amplitude.
Indleator: lamp showing clock prisent and iriggering correctly.
Clock outpul
Outputs: CLOCK or $\overline{C L O C K}$ seleclable.
Impedance: sourcc impedance $501!\pm 5 \%$ ( $75 \Omega$ optional).
Amplltude: continuously variable in 5 ranges from 0.1 to 3.2 V
symmetrical aboul offsel level.
DC offset: zero, <2\% of pulsc amplitude.
Variable, continuous 0 to $\pm 3 \mathrm{~V}$.
Transition límes: < 1.4 ns into $50 \Omega$. < 1.6 ns into $75 \Omega$.
Overshoot: < $10 \%$ of pulse amplitude.
Data output
Outputs: DATA or $\overline{\mathrm{DATA}}$ selectable.
Format: NRZ or RZ (up $10130 \mathrm{Mb} / \mathrm{s}$ ).

Delay: Data (and Sync) delayed with rapucl to Clock continuously
in 10 ranges from 010100 ns.
Other specifications as for clock oulput.
Sync output
Fate: once per PRBS.
Postilon: front panel seleciable.
Amplltude: +1 V inlo 500 .

## Error delector

Clock input: specifications as for Dain Generator Clock Input except that both $+v e$ and $-v e$ slope triggering is available in automatic mode.
Data Input
Inputs: DATA or $\overline{\mathrm{DATA}}$ selectable.
Rate: $1 \mathrm{~kb} / \mathrm{s} 10150 \mathrm{Mb} / \mathrm{s}$.
Impedance: $50 \Omega \pm 3 \%^{\circ}$ de coupled ( 7 In opional).
Trigger level: automatic.
Sensiliully: beller than 300 mV pk-pk.
Amplltude: 5 V pk-pk maximum. Limits $\pm 5 \mathrm{~V}$.
DC offset: $\pm 3 \mathrm{~V}$ maximum.
Pulse width: 3 ns minimum al $50 \%$ pulse amplitude.
Phasing
Control: clack phase variable relative to dala.
indlcation: lamp off when clock and data edges coincide.
Range: 0 to $180^{\circ}$ for 1.5 to $50 \mathrm{Mb} / \mathrm{s}$.
0 to 12 ns for $1 \mathrm{~kb} / \mathrm{s}$ to $1.5 \mathrm{Mb} / \mathrm{s}$ and 50 to $150 \mathrm{Mb} / \mathrm{s}$.
Synchronizalion
Modes: auto, manual. external.
Auto: automatically searches for synchronism if more than 20.000 errors in 100,000 bits.
Maneal: resynchronization commanded from front panel.
Exiernal: resynchronization commanded by TTL inpul.
Dlaplay
BER: iwa digils plus exponers A.B $\times 10^{-n}$
COUNT: four digils.
Flags: sync loss, overllow and gating.
Printar output
Formst: 8421 BCD.
BER \& COLNT: updated display for the duration of the primt command pulse.
Flags: sync loss, 0 prinica in column 1. Overflow in repelitive count, oulput inhibiled.
Command: TTL pulse at display change.
Error output
Format: one transition per error.
Ampllituder +1 V inio $50 \Omega$.

## Options

3760A Data generator: options available include continuously vari-
able and erystal conirolled clocks, and delayed data outpur. I-ull de-
tails are given in the 3760A Dala Generator Data Sheet.
3761A Error detector
Optlon 001: 75K CLOCK and DATA input impesances.
Option 002: Printer interface cable.

## General

3760A Data generator
Power: 10010125 V or $20010250 \mathrm{~V}, 4010400 \mathrm{~Hz}, 90 \mathrm{~W}$.
Dimenslons: 425 mm wide, 140 mm bigh, 467 mm deep ( $163 / \mathrm{m}^{\prime \prime} \times$ $51 / 2^{-} \times 18 \%_{4}^{\prime \prime}$
Weight: 13.6 kg . ( 30 lb ).
3781A Error detector
Power: 100 to 125 V or 200 to $250 \mathrm{~V}, 40$ to 400 Hz 70 W .
Dimenslons: 425 mm wide. 95 mm high, 467 mm deep ( $16^{1 / 4} \times$ $314^{\circ} \times 183 / 4^{\circ}$ ).
Welght: $10.4 \mathrm{~kg} .(23 \mathrm{lb})$.
Model number and name Price
3760A Data Generator $\$ 5740$
376IA Error Detector $\$ 4770$

## Microwave link analyzer; 140 MHz iF

NEW 3790A/3792A

- 140 MHz IF centre frequency
- 4-digit LED marker system
- Internal demodulation to 5.6 MHz
- 12.39 MHz lest tone for 2700 channel systems
- Sensitivity of $0.025 \mathrm{~dB} / \mathrm{cm}$ for amplitude measurements
- Sensitivity of $0.25 \mathrm{~ns} / \mathrm{cm}$ for group delay measurements



## Description

With the sdvent of higher channcl capacities - 2700 channel microwave links. operating with an IF eenire frequency of 140 MHz the use of high frequency' lest tone techniques and the need for improved back-10-back performance, are becoming increasingly more iniportant (sec 'MEASUREMENT CONSIDERATIONS').
The 3790A/3792A Mierowave Link Analyzer (MLA) is a combined Bascband (BB) and Intermediate Frequency (IF) a nalyace. designed for operation on the new 140 MHz IF microwave syslems. The MLA (3790A IF/BB Transmitter +3791 A plug-in, and 3792A IF/BB Recxiver +3793 A plug-in) allows the various forms of disiortion occurring in a link to be identified, measured and localized to BB and IF devices.

The 3790A /3792A MLA is a versatile measuring instrument. performing swepl measurcments including: group delay, linearity, differenial gain and differential phase - on mierowave radio equipmenı operating with an IF in the band 115 to 165 MHz . The now 140 MHz MLA has applications in the Jevelopment, production and maintenance of broadband microwave radio systems.

## Benafits

- Complete microwave link amalysis package.
- Receiver can be remole from Transmuler, for between station measurements. Slave facility for local display of remote measurements.
- Inbuill CRT - with dual trace display.
- Comprehensive BB coverage, $83.333 \mathrm{kHz} .10 \quad 12.39 \mathrm{MHz}$.
- Eighi selected bascband lest toncs up $10 ~ 12.39 \mathrm{MHz}$. plus, an EXTernal test tone up to is MHz .
- Internal demodulation up to 5.6 MHz .
- Comprehensive IF coverage. 115 io 165 MHz .
- IF frequency slability of $\pm 200 \mathrm{kHz} / 5$ hour period.
- IF frequency markers or 2 or $5 \mathrm{MHz}^{\text {"comb" and sliding marker. }}$


## Specifications

IF trequency range; 11510165 MHz , centered on 140 MHz IF flatness (residual): within 0.1 dB from 115 to 165 MHz .
BB linearity and ditferenilial gain (residual):
$0.1 \%$ ( $\mathrm{BD}-\mathrm{BB}$ )
$0.4 \%$ (IF-IF) from 115 to 165 MHz .
Ditierential phase (resldual)
$0.1^{\circ}$ (88.8B)
$0.5^{\circ}$ (SF-IF) from 115 to 165 MHz .
If pawer range: +19 dBm to -10 dBm .
BB power range: -10 sBm to -49 dBm .
Modulator sensitivity: -49 dBm 100 dBm .
Demodulator sensifivity: -10 dBm to -49 dBm .
Impedances: 75 ohm.

## Power

Ranges: $110,120,220.240 \mathrm{~V}$.
Accuracy: $+5-10 \%$
Combumptlon: approx. 150 VA for 3790 A.
approx. 190 VA for 3792A.
Frequency: 48 to 66 Hz .

## Dimensions

3790A: 425 mm wide, 172 mm high, 457 mm deep ( $16.75 \mathrm{in} . \times 6.75$ in. $\times 18$ in.)
3792A: 425 mm wide. 216 mm high. 457 mm deep ( $16.75 \mathrm{in} . \times 8.5$ in. $\times 18 \mathrm{in}$.)

## SELECTION CHART

Instruments lo suit customer requirements may be conpiled from the following grougs. Specily onity ONE option trom each group.	INSTRUMENTS			
	37904	37914	3792h	3193A
CONNECTORS	OPIIONS			
BNC   Siemens lage ( 2.5 mm )   Siemens smal ( 1.6 mm )	$\begin{aligned} & \text { SID } \\ & 002 \\ & 003 \end{aligned}$	$\begin{aligned} & \text { STD } \\ & 002 \\ & 003 \end{aligned}$	$\begin{aligned} & 570 \\ & 002 \\ & 003 \end{aligned}$	-
BE FREQUEHCIES	OPTIONS			
83.333, 250, 500 KHz and $2.40,4.43,5.60,8.20,12.39 \mathrm{MHz}$ 83.333, 250, 500 KHz and 2.40, 3.58, 5.60, 8.20. 12.39 $\mathrm{MHz}^{2}$	-	$\begin{aligned} & \text { SID } \\ & 013 \end{aligned}$		$\begin{aligned} & \text { SID } \\ & 013 \end{aligned}$
VARIABLE PHASE SHEEP	OPIIONS			
$0^{\circ} \pm 100^{\circ}$ and $180^{\circ} \pm 100^{\circ}$ from 45 to 100 Hz	008	-	-	-

## Measurement conslderations

The use of high frequency tesc lone lechniques 10 give a butles assesiment of the performance of microvave links, is described in Hew. kel1-Packard Applicalion Note AN 175.). "Differential Phase and Gain at Worx." These rechniques are invaluable for 2700 Channel capacity systems. as they emphasize the need for lower distortion paramelers (eg: IF amplíude stsponse. group delay, AM/PM), Consequently, there is a requirement for a link andyzer with extremely low residual dislorions. The 3790A/3792A MLA meets ihis requirement. The oscillograms in Figures I and 2, show the back-1o-back performance of the HP 140 MHz MLA.

Figure 1: [F Amplitude Response and Group Delay

oweep width:	$\pm 25 \mathrm{MHz}$	
leat lone:	500 KHz	
callbralion:	$0.025 \mathrm{~dB} / \mathrm{cm}$	$0.25 \mathrm{~ns} / \mathrm{cm}$
frequency markers:	5 MHz spacing	

Flgure 2: Differential Gain and Differential Phase

swoep wldth:	$\pm 20 \mathrm{MHz}$	( $\pm 25 \mathrm{MHz}$ less sweep   reduction)
leat tone:	2.4 MHz	
eallbration:	$0.25 \% / \mathrm{cm}$	$0.5^{\circ} / \mathrm{cm}$
frequency markers;	5 MHz spacing	



Flgure 2


## Specifications

MLA
IF frequency range: 45 to 95 MHz centered on 70 MHz .
IF flatnesa (resldual): $\pm 0.05 \mathrm{~dB}$ from 45 to $95 \mathrm{M} . \mathrm{Hz}$.
BB Ilnearity and diferentlal gain (residual): $0.1 \%$ (BB-BB). $0.4 \%$ (IF-IF) from 45 to 95 MHz .
Gipoup delay (resldual): 0.1 ns ( $\mathrm{BB}-\mathrm{BB}$ ). I ns ([F-IF) from 45 to 95 MHz.
Difterential phase (residual): $0.1^{\circ}$ (BB-BB), $0.8^{\circ}$ (IF.JF) from 45 to 95 MHz .
IF power ranga: +21 dBm to -10 dBm .
BB power range: -10 dBm to -49 dBm .
Modulator sensilluity: -49 dBm 100 dEm .
Demodulator senstifilty: -10 dBm to -49 dBm .
impedances: $75 n$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}(+5-10 \%)$, 48 to 66 Hz . approx. 150 VA for transmither, approx. 190 VA for receiver.

## Dimenslons

3710A: 425 mm wide, 172 mm bigh, 457 mm deep ( $16 \%_{2}^{*} \times 6 / 1^{*} \times$ 18").
3702B: 425 mm wide. 216 mm high. 457 mm deep $\left(163 / 1^{*} \times 81 / 2^{*} \times\right.$ 18").

## Down converter

## RF Inpu:

RF fequency range: 1.7 io 11.7 GHz
Minimum inpul level: $-20 \mathrm{dBm}(-44 \mathrm{dBm}$ with Opl. 010). 4 dB higher level for correct operation of MLA.
Impedance: $50 \Omega$.

## IF output

Meter accurecy. $\pm 0.5 \mathrm{MHz}$ st 70 MHz ( $\pm 2 \mathrm{MHz}$. s ).
Return lose: 28 dB min.
Impadance: 750.
Power. 115 or $230 \mathrm{~V}( \pm 10 \%)$. 481066 Hz
 $\times 18 y_{x^{*}}$ ).

Option selection chart

Insifuments to suil cuslomer requifements may be compiled from line following groups. Specify oniy ONE option Irom each group.	INSTRUMEHTS							
	3710^	37168	3715A	37028	3705A	37038	8620	37304
Connections	OPTIONS							
BNC	STO	SID	510	STD	-	-	SID	STD
Siemens large	002	002	002	002	-	-	-	002
Siemens small	003	003	003	003	-	-	-	003
Commercial equivalent of WECO 4778 whih 75/124 ohm bal.	004	004	004	004	-	-	-	004
Type N ( 10 raf )	-	-	-	-	-	-	ST0	510
be frequencies	options ${ }^{\text {a }}$ Not assigned							
83, 333. 250.500 kHz	-	-	sio	-	-	ST0	-	-
83, 333. 250.500 kHz and $2.4 .443,56.8 .2 \mathrm{MHz}$	-	SID	-	-	SIO	-	-	-
92.593, 277.778, 555.556 kHz with phase loch contiol	-	-	009	-	-	009	-	-
92.593. $271.178 .555 .556 \times \mathrm{Hz}, 2.4,3.58,5.6 .8 .2 \mathrm{MHz}$	-	010	-	-	010	-	-	-
92.593, $277.778,559.556 \mathrm{hHz}, 2.4,3.58,4.43,5.6 \mathrm{MHz}$	-	011	-	-	011	-	-	-
92.593, 271.778, 555.556 kHz 2.4 .4 .43 .5 .6 .8 .2 MHz	-	012	-	-	012	-	-	-
83.333, 250. 500 kHz and 2.4, $3.58,5.6,8.2 \mathrm{MHz}$	-	013	-	-	013	-	-	-
83.333, 250. $500 \mathrm{xh} / 2$ and 2.4, 3.5, 56, 8.2 MHz	-	014	-	-	014	-	-	-
83333. 250.500 kHz and $2.4,4.5$. 5.6, 8.2 2 MHz	-	016	-	-	016	-	-	-
83.333, $250,500 \mathrm{kkz}$ and 2.4, 3,58, 4.43, 8.2 MHz	-	018	-	-	018	-	-	-
83.333, $250,500 \mathrm{hHz}$ and 2.4. 3.58, 4.43. 5.6 MHz	-	019	-	-	019	-	-	-
SwEep frequeneies	OPTIONS							
30 Hz iniernal	STD	-	-	STD	-	-	-	-
50 Hz internat	006	-	-	STD	-	-	-	-
100 Hz inlernal	007	-	-	SID	-	-	-	-
18 Hz intermal with Dandwidlits of 90 and 180 Hz	015	-	$\sim$	Sto	015	015	-	-
Variable phase sweep	OPTIONS							
$0^{\circ} \pm 100^{\circ}$ and $180^{\circ} \pm 100^{\circ}$ irom 45 to 100 Hz	008	-	-	-	-	--	-	-
RF FREQUENCIES	down converter plug-ins							
	37368	3737A	3738 ${ }^{\text {a }}$	3739A	37304			
1.7104 .2 GHz	SIO	-	-	-	Extemal local oscillator - irequency depends on sweep oscillator used.			
3.3106 .5 CHz	-	Sto	-	-				
6.3108 .5 CHz	-	-	STD	-				
$10.71011 .7 \mathrm{GHz}^{\text {che }}$	-	-	-	STO				

System selection chart

MEASUREMENT	MU				UP CONVERTER		DOWH COHYERTER
	3710n	3716N/3715A	37028	$3705 \mathrm{~N} / 37038$	$85201 / 862^{\circ 0}$	3730A	3736R-9R,37301A
881088	-	-	*	-			
BB10 IF	-	-	-	-			
8810 R \%	-	-	-	-		-	-
If to B	-	-	-	-			
If to if	-	-	-	*			
If 10 RF	-	-	-	-		-	-
Rf 10 BB	-	-	-	-	-		
RF 10 IF	-	-	-	-	-		
RF 10 RF	-	-	-	-	-	-	$\bullet$



## 3744A Description

The 3744A BB Sweeper Accessory is designed for use with an HP Microwave Link Arulyzer (MLA), in telephony sysiems having a BB specerum anywherc in the range 100 kHz to $15 \mathrm{MHz}_{\mathrm{M}}$. The BB Sweeper Accissory expands the measurement capability of the HP MLA by supplying a convenient melhod of performing swept baseband measurements, allowing the MLA to display the BB amplitude response of a telephony system.

The standard 3744A is for use with an MLA hoving a center frequency of 70 MHz and the 3744 A OpIIon 140 is for use with an MLA having a center frequency of 140 MHz . The various lypes of connector that are available enable the 3744A to inicrface with existing link equipment and MLA connector options.

The BB Sweeper is a small, compact insurument comprising threx operationally independent sections - a transmitter, it receiver, and an allenuator. The transmitter is essentially a mixer, accepting a fixed 70 MHz or 140 MHz IF signal and a swept signal up to 15 MHz above the fixed IF signal. It thus produces a lower siduband in the bascband region, with a frequency range up to 15 MHz . The receiver is essentially a detuetor which accepls the swept baseband signal, then produces a calibratod output suitable for display on the MLA IF/BB Receiver. The attenuator has a range of 0 to 61 dB , in $\{\mathrm{dB}$ steps, and is designed for usc al bascband frequencics up to 15 MHz

## Specifications

## Back-to-back fintnest

$<0.2 \mathrm{~dB}$ from 100 kHz 1015 MHz (a matness of 0.$\} \mathrm{dB}$ from 100 kHz to is MHz may be achieved by compensaling for sysiem sesponse limitations, by internal adjustment of the 3744A)
$<0.12 \mathrm{~dB}$ from $100 \times \mathrm{Hz} 1010 \mathrm{M} \mathrm{Hz}$
$<0.1 \mathrm{~dB}$ from 100 kHz to 8.5 MHz (operaling from $18^{\circ} \mathrm{C} 1028^{\circ} \mathrm{C}$ with an oulput icuel of -30 dBm )

## B8 output

Frequency range: 100 kHz 1015 MHz
Output level: same as IF IN'PUT level $\pm 0.5 \mathrm{~dB}$ up to 0 dBm max Return losa: better tban 28 dB
Impedance: 75 ohm

IF input
Frequency range: 70.1 MHz io 85 MHz
Inpul level: 0 dBm max
Siweap rate: 18 to 100 Hz
Impedance: 75 ohm
70 MHzz input
Frequency: 70 MHz (crystal controlled from MLA)
Inpul level: $+10 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$
Impedance: 75 olim
8B Inpul
Frequency range: 100 kHz to 15 MHz
Inpul reference level: - 30 dBm
Dynamic range: +4 dB to -10 dB , on reference level Return logs: belier than 28 dB
Impedance: 75 ohm
Attenualor
Altenuation range: 0 to 61 dB in 1 dB steps
Acenrscy:
$\pm 0.1 \mathrm{~dB}$. for 1.2 \& 4 dB steps
$\pm 0.2 \mathrm{~dB}$, for 8,16 \& 30 dB sleps
Frequency range: 100 kHz 10 i5 M Hz

## General

## Dimenslans:

212.7 mm wide. 87.4 mm high, 282.0 mm deep $(8.375 \mathrm{in}, \times 3.44 \mathrm{in}$ $\times 11.125 \mathrm{in}$.)
Power requiremenls: $100 / 120 / 220 / 240 \mathrm{~V}$ dc. 48 10 66 Hz 12 VA max
Oplions Price

002: Siemens 2.5 mm conneclors $\mathrm{N} / \mathrm{C}$
003: Siemens 1.6 mm connectors N/C
004: WECO 477 (equivalem) connectors (BNC con-
neclors on rear pancl)
140: 140 MHz version
N/C
3744 A BB Swoeper $\$ 1890$

## 3750A Description

The 3750A Altentutor is a gencral purpose $75 \Omega$ impedance altenualor operaling in the frequency range de 10100 MHz . Allenuation of 0 1099 dB is provided in 1 dB steps by the operation of pushbulton switches. The 3750A is symmeirical so that cilher pori can be used as the input or outpul. The Atlenuator is filted with $75 \Omega \mathrm{BNC}$ connec. lors.

## Specifications

Attenuation: 0 to 99 dB in! dB stcps
Frequency range: 0 to 100 MCy
Impedance: 75 ohm
Accuracy:

$$
\begin{array}{ll}
\text { unit sieps } & \pm 0.1 \mathrm{~dB} \\
\text { decade sieps } & \pm 0.2 \mathrm{~dB} \\
\text { cumulative } & \pm 0.5 \mathrm{~dB} 1079 \mathrm{~dB} \\
& \pm 1.0 \mathrm{~dB} 1089 \mathrm{~dB} \\
& \pm 2.0 \mathrm{~dB} 1099 \mathrm{~dB}
\end{array}
$$

Maximum Input power: +24 dBm ( 250 mW )
Return loss: 28 dB al either port when properly terminated
SWR: 1.08
Insertion loss:
0.1 dB at 10 MHz
0.4 dB a 50 MHz
0.6 dB at 100 MHz

## Dimensions:

203 mm wide, 70 mm high. 102 mm deep $(8.00 \mathrm{in} . \times 2.75 \mathrm{~m} . \times 4.00$ in.)
3750A general purpose 75 ohm attenualor

- HP's implementation of IEEE Standard 488-1975
- Broad selection of individual HP-IB instruments and controllers - available now
- Several preassembled HP-IB systems also available



## Versatile interconnect system for instruments and controllers

Concurrent with the considerable practical experience HP has gained (with both HP18 and interface techniques in generai) over recem years has been the growing international interest in establishing a suitable standard for programmable measuring apparatus - a standard that will allow insirument systems to be configured from the products made by different manulactures. European organizutions, parlicularly in Germany, have been inslrumental in imiliating an interna. tional standardization effort.
In mid-1972. HP began 10 participate in various national and international standard. ization bodies. The U.S. Advisory Commitlee, composed of diverse interesis represented by boit users and manufyecturers, lirst established inilial goak - and then adopted the interface concept utilized by the HIP Incerface: Bus as an appropriate starting point. A draft document was subsequently writen and evaluated by members of the Committee. and then submitted as the U.S. proposal 10 an IEC (International Electrolechnical Commission) Working Group in the autumn of 1972. Since then, the interface definition has undergone a number of minor changes to accommodate various needs al the intemational tevel.
In Seplember 1974, the parent lechnical commillte. IEC TC66, approved the main interface draft document for a Iormal ballot among the member nations of the JEC. with final ballot results not expected until the end of 1976. The prescm defmition of ithe HP-IB is comporible with the current and approved IEC drafi document.
Mcanwhilc, the IEEE Standards Board has approved EEEE Slandiard 488.1975 "Digita) Interface for Programmable Instrumenta(ion", as published in April 1975.' The IEEE slandard is based on work initisted by the IEC. and follows the general coneepis of the deafl Standard document now under considcration by IEC member nations. The HP In. rerface Bus is Hewletr-Packard's miplementalion of IFEE Slandard \$88.1975 (also see adjaceni special notice regardíng connector conversion to metric itreads).

## Why the HP Interlace Bus neme?

Over the past several years, HP has developed and sold instruments that are interfaceable via the basic digita techniques now adopted as the IEEE Standard (and conlained in the final IEC dran document).
As the list of HP products available with the "new digital interface" has grown. our customers have increasingly sought a convenient way to identify those products having the interlace capability. In response. we in 1974 adopied the name "Hewlet-Packard Inerface Bus" (commonly shortened to "HP Interface Bus" or simply "HP-1B"). We will continue to use the idenlifying name and this symbol:


Both will be used with appropriate HP producls so that their interface capabilities may be readily identified.
 The Insilitute of Electrical and Electronics Engneers, 385 East $4 / 1 \mathrm{~h}$ Street, New Yoit. N.Y. 10017

As additional instrumentation interface standards become approved, HP will clearly indicate the relationship of the Hewlett-Packard Interlace Bus to hose standards - just as we have done with IEEE Standard 48k-1975.
It shuuld be pointed out that as a pracical matter. device-dependent operational characteristies have been excluded from the IEEE and proposed IEC Siandards delinitions. In this way, users retain maximum flexibility in selecting instruments from different manufacturers and in utilizing each instrument's particular eapabilities to best advantage.

The implications of this are put in perspective by the "Forward" message printed in IEEE Slandard 488-1975: "...a a system configuralor must have sufficient owareness of the opsions inchuded in each of the devices in a syasem in order to ensure that the correct communication lechniques are ased."

Relative to the great progress made in standardizing three of the four interface system elenments (mechanicul, efectrical. junchional). understanding the remaining device-dependent operational parameters referred to in the IEEE document is a relatively small but essential ingredient necessary to ensure complete operational systems.

It would be presumpluous for HevrlethPackard to speat for olher manufacturess: however, it is our objective to reduce as much as practical any device-related ambiguities associated with HP products operating per the IEEE Standard (and proposed IEC Standard). We expect to do this through product design considerations, and through various printed materials and training activitics. Affecled Hewlett-Packard products will be appropriately identified by use of the HP Interface Bus name and HP-IB symbol. as a convenience to our customers.

## How the HP Interface Eus operales

All active interface circuitry is contamed within the various HP-1B devices, and the interconnesting cable (containing 16 signal lines) is entirely passive. The cable's role is limited to that of interconnecting all devices together in paraliel. whereby any onc device: may transfer data to one or more other participaling devices.

Every participating device (instrument, coniroller. accessory modulc) must be able to perform al least one of the roles of TiLK. ER. LISTENER or CONTROLLER. A TALKER can transmit data to other derices via the bus, and a $L I S T E N E R$ can reccive data from other devices via the bus. Somede. vices can perform both soles (e.g. a programmable instrument can LISTEN to rective its control instructions and TALK to send its measurement).

A CONTROLLER manages the opcration of the bus system primarily by designating which deviees are to send and receive data. and it nay also command specific actions wilhin other devices.

A minimum HP-IB system configuration consists of one TALKER and one LISTEN. $E R$, but wilhoul a CONTROLLER. In this conliguration, data transfer is limiled to direct transfer belween one device manually set to "talk only" and one or more devices manually set to "listen only" (e.g. a measuring in-

intertace conneclions and bus slructure
strument talking 10 a printer, for semi-aulo. matic dara logging).
The full flexibility and power of the HP-IB become more apparent, however, when one device which can serve as CONTROLLER/TALKER/LISTENER (e.g. calculator or computer) is interconnected with other devictes which may be either TALKERS or LISTENERS, or both (e.p. frequency synitesizers, counters, power meters, relay actuators, displays, printers. elc.). depending on the application.

## HP-jB connections and siructure

The 16 signal lines within the passive smerconnteling HP-IB cable are grouped into three sels, according to their function.

Eight DATA lines carry coded messages in bi-parallel, byte-serial form to and from devices, with cach byat being Iranslerred from One TALKER to onc or more LISTENERS. Dala now is bidirectional in that the same lines arc used both to input program data and to ourpul measurement ditia from an individual device. Data is exchanged asynchronously, enabling compatibility among a wide variely of devices. All interface messages (to set up. maintain. and terminate an orderly now of device-dependent messagus) are 7-bil coded. Device-dependent messages may be from 1108 bits: however, the codes containing printable characters of the ASCII (American Standard Code for Information Interchange) code set are most commonly used, and messages containing numbers are typically presented in scienlific notation (FOR-TRAN-Iype) formal.


Hear view ol an assembled 5 -device HP-IB bench systern. Note both single and slacked cable connectlons.


Rear panel switches are set so insirument will elther be addressable by conirolier in a mulll-device system. or will simply "ralk only" is another device such as a printer or D/A converter.

Threc DATA BYTE TRANSFER CON. TROL (handshake) lines are used to effect the wansfer of each byte of coded daxa on the cigh DATA lines.

The five remaining GENERAL INTER. FACE MANAGEMENT lines ensure an orderly flow of information within the HP-IB system. One of these is called the "ATTEN. TION" linac.

The controller dictates the role of each of the other devices by selfing the ATTEN. TION line low (Iruc) and sending salk or listen isdresses on the DATA lines. (Addresses are manually set into each dovice at the time of system configuration, either by switches built into the device as shown above, or by jumpers on a PC board.) When the ATTEN. TION line is low, all devices must listen to the DATA lincs. When the $A T T E N T I O N$ line is high (false). only those devices that have been addressed will actively send or receive data, while all olhers ignore the DATA lines.

Scveral listeners can be accive simultancously, bus only onc lalker can be aclive ma
lime. Whenever a lalk address is put on the DATA lines (while ATIENTION is low') all other talkers are automalically unadoressed.
It is not possible in this limited space to go inno delail on each signal line's role. But you should nole that every HP-1B device need not be able to respond to all the lines. As a prac(ieal and cost-effective matter, each HP-IB device will usually be designed to respond only 10 those lines that are pertinent to jis typical function on the bus. (Appropriate details appear in each device's operating monual.)
Special notice to present users of HP-IB products
Hewlell-Packard fully supports IEEE Standard 488-1975, including the provision ibat ISO metric threads be used on the bus connector lock serew and corresponding stud mount. This means that luture HP-IB products will come to you already equipped with the proper metric thread connector hardwarc.

If you are among the many present users of HP-IB products purchased over the pest few years, please note that the connector locking threads on those products are non-meite and they are therefore not compatible with metric threaded conneciors now being pro. duced per the IEEE Standard.

Two different metal linishes are being used by HP to help you tell the difference between metric and non-metric connectors. Whereas the oldor non-metric parts have a shiny nickel Cinish, all mesric-hreaded lock screws and stud mounts have a black finish and the letler " $M$ " slamped on them.

A special program has been set up by Hew. leut-Packard to assisi customers in converting the conneetors on their older HP-IB produets to be compalible with the new standard meıric-threaded connector. Uniil I July 1976. we will providu HP-IB Merric Conversion

Kits al no charge to customers having HP products (instruments, cables, conirolker interfaces) with the non-metric connector; aller that date a modest charge will be made for the kit. Please contact your HP field enginetr or service representative for details.
HP.IB specification summary
Interconnected devices: Up to is maximum on one conliguous bus.
Interconnectlon path: Slar or linear bus. network; cotal (ransmission paith lengit 2 meters times number of devices or 20 meters, whichever is less (see HP 59403A for extending operating distance).
Message transter scheme: Byle-strial, bitparallel asynchronous dala trankfer using interlocked 3-wire handshake technique.
Data rate: One megabyte per second maximum over limiled distances; 250-500 kilobytes per second typical over full transmission path (depends on device).
Address capability: Primary addresses, 31 TALK and 3l LJSTEN: secondary (2-byte) addresses, 961 TALK and 961 LISTEN. Maximum of I TALKER and up 1014 LISTEN. ERS al a time.
Control shlf: In systems with more than one controller, only one can be active al a time. A eurrently active controller can pass control to another, but only designated system controller can assume conirol over others.
Intertace elveults: Driver and recejver cir. cuits are TTL-compatible.

## Warranty

Our standard individual producl wesranly applies to each stand-alone HP-IB device purchased separately - but the overall operational responsibility for customer-assembled HP-IB sysiems rests with the customer.

Our standard "on-site" system warranty and installation policy apply, however, 10 complete HP-lB systems develoned and preassembled by Hewlett-Packard.


HP-IB system solutions are yours using individual devices (see next pages) or preassembled standard systems (above).

## Instruments for "do-li-yourseli" HP-1E system solutions

Hewlett-Packard has an impressive range of HP-IB instrument capabilifies, as represented by the produets illustrated on this and the following pages - and you may be sure that many more HP-IB products will be additionally introduced.

Each is, by iself, an exceptional performer as an individual bench instrument for providing signals, making measurements, of recording results. These instruments have the added capabilities which allow their use in HP-18 instrumentation systems - enther in "do-n-yourself" systems conligured and assembled by users themselves, or in some of the standard systems which are designed, preassembled and supporied by HP.

Most principle functions on the instruments are programmable. For specific details. please consult the appropriate catalog page or the lechnical dala sheel which is available for each product.
In addition to these insiruments, atso see delaiks whith follow on HP-IB accessory devices and controllers.

Preassembled HP-IB system solutions ... integrated and supported by HP
Many applications can be salisfied with standard HP-1B systems. These systems are not only assembled and chiecked out at the factory - they are also fully integrated and documented, and HP assumes full responsibility for overall speabied system performance. Installation is included, HP's standard on-site warranty applies, and maintenance agrecments are also available.
Three familes of systens are currently beailable, with more to come. The following calculator-controlled automatic versions offer maximum nexibility in terms of della ma.
nipulation and analysis. and in svailable accessorics and peripherals:

## Data acqulsition

Model 30508 Automatic Dara Acquisillon Sy.xem (page 36): acV, dcV, ohms measurements of up to 40 (or more) points. Useful in the lab. in manufacturing operations, and for general monitoring applications. Especially suited for remore applications when equipped with HP 59403A HP-IB/Common Carrier Interface.

## Spectrum analyala

Model 3045A Aufoniatic Specinum Analy. $\operatorname{ser}$ (page 445): high-accuracy amplitude and frequency measuriments from 10 Hz to 13 MHz.

## Network analyels

Model 3042n Auromatic Nuwork Analyzer (page 411): complete amplitude and phase characterization from 50 Hz to 13 MHz .

Model S507A Alatomatic RF Neiwork AnalFeer (nage 420): measure complex imped. ance, fransfer functions and group delay on coaxial components and semiconductors. from 500 kHz to 1.3 GHz .

Manuat-control sysems for spectrum and network analysis are also available - and Hewict-Packard additionally has many com-puter-based lest, measurement and conirol systems for use in demanding applications. Please contact us for deliats.

## Specialized measurisg sets

Possessing the broad capabilities and preenginetred convenience associated with the preassembled sysiems are a new class of HPIB product besi deseribed as being "specialized measuring sets." One example of this is the Moddt 3745 Selective Level Mcasuring Set (page 500), a micraprocessor-controlled, syn-thesizer-based roceiver for communications work. It can be operated by remote control vis HP-IB.


HP 5312A Interlace Module for HP 5300B Measuring Systern (see catalog page 263)


HP 5363A/Oplion 011 Time Interval Probes (page 246)


HP 436A/Option 022 Diglial Power Meler (page 370)


HP 5150A/Opison 00) Alphanumerle Thermal Printer (page 236)

## HP-I日 application notes

Several application notes are available which deseribe how selected HP instruments can be interconnected with HP calculators via HP-IB for solving a wide varicty of measurement problems, ander calculator control.
There are more than 12 notes in the ANI 74 serfes which describe HP-IB "do-il-yoursell" systems using the Model S345A elcetronic counter with the Models 9820, 9821 and 9830 calculators.
ANISI-/ describes use of the Model 5340A counter with the Model $9820 / 21 / 30$ calcula. tors in three different system configurations.

AN/B/-2 describes a data acquisition system based on the Model 5300 B measuring system interconnected to Model 9820/2I calculators.

AN/G4-2 provides the basic information on using a Model $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ synuhesized signal generalor with Model 9820/21/30 calculators.


HP 33208/Option 007 Frequency Synthesizer (see page 307)


RP 3330A/B Automatic Synthesizer/Sweepers (page 303)


HP 8660A/C with Odtion 005 Synthesized Sigrial Generators (page 333)


HP 8820C/Opilon 001 Microwave Sweep Oscillalor (page 354)


HP 5340A/5341A with Opllon 011 Automatic Counters (page 266)


HP 5345A/Option 011 Plug-In Electronic Counter (page 242)


HP 3490AODVIon 030 Digital Multimeter (page 50)


HP 532\{A/Opilon 011 Universal Counter (page 252)


HP 8016A/Option 001 Word Generator (page 302)


HP 3495A 40-Channel Scanner (page 53)


HP 59500A interface for HP 8940 B Multiprogrammer (page 53B)

NOTE: For HP-IB programmable vollage and currenl, see HP 6128C thru6145A (option J99) dightally-controlied power suppllea (page 205).

## Versatile interconnect system for instruments and controllers



HP－IB analyzer for design and service work：displays line status，exercises instruments and systems

Standardizing connesiors，control lines，signal levels，and message eransice protocol make instrument interfacing less burdensome than in the past－however．sofiware crrors can occur if the system designer does not completely understand the bus system or the capabilities of instruments being used． Also，hardware problems can occur if the instruments are not functioning properly or if they ere not completely compatible with the bus standard．

Solutions to these problems are 「ound much more quickly with the help of the Model 59401A Bus System Analyzer．It dis－ plays the status of all lines．and since the designer can go through the program step by step，it makes sonware debug－ ging relatively cisy．

The analyzer cian also completely exercise anorher talker，lis－ tener，or controller．It has an internal read－write memory．With a suitable program loaded，the analyzer can exercise instru－ ments al miximum bus speed，or slep by step．
59401A Bus System Analyzer
$\$ 2500$

## HP－IB interconnection cables

Three differenı lengith HP．IB cablen are available．Boik ends of each cable have a double－sided malc；＇fimale connector，so that muliple ca－ bles may be conveniently slucked for pasallel connection．

Metric threads are now standard on HP cable connector lock serews （and matching stud mounts on inserumenls），and indicaled by a black finish and stamped letter＂M＂．Earller HP．IB producis had non－metrie itread．and are therefore incompalible with the nelv mptric connectars． See conversion progran：details on page 513.

Mociel number and cable length	Price
IO63IA HP－IB Cable，Im $(3.3 \mathrm{ft})$	$\$ 60$
10631 B HP－IB Cable， $2 \mathrm{~m}(6.6 \mathrm{fi})$	$\$ 65$
IO63IC HP－IB Cable， $4 \mathrm{~m}(13.2 \mathrm{fi})$	$\$ 70$

（0631C HP－IB Cablc， 4 m（ 13.2 ft ）

## HP－I日 accessory modules

Modules in the HP 59300 and 59400 －serics are ideal building blocks for use with insiruments to extend measurement capabilities．All of the modules listed here can be interconnected via the HP－IB to HP mea－ suring instruments，signal sources and recording devices capable of operating dirocily on the HP－IB（see rapidly expanding list on previ－ ous pages）．In addition，these modules Srequenily serve as useful ways to interconnoct with devices which are not themselves capable of di－ roct HP－lB operation．

Instrument requirements differ．Some only oulput or accepi deta on the HP－IB Others can be remotely programmed by ASCll characters sent along the HP－IB．These modules can work with insiruments on any of these levels with or withoul a conisoller．Each module having controls can be operated stand－alone from its front panel，or it can be placed in aulomatic operation under program conlrol．

Module provision for stand－alone，local operation also has impor． tant system benehtis．The operator can sel up and check out the sys－


10631A／B／C


59304A
lem under manual control，avoiding otherwise complex and time con－ suming error tracing．Each modulc has status indicator lights that make it easy to monitur operation．

These modules are housed in cabinets which are part of HP＇s new ＂Sysicm I1＂program（sec page 475）．This exIrcmely flexible enclosure system makes it easy to lock products logether horizonially or verti－ cally，for bench or rack use．

## 59301A ASCII－parallel converter

The 5930IA aceepts byle－serial ASCII chyracters on the HP Inter－ face Bus and converts them to paraliel output．A string of up to 16 characters terminated by linefeed is converted and placed upon the outpul lines；the linefeed character signals execulion or a print com－ mand（strobe）．With the 59101 A ，instruments with the HP－IB inter－ face can be operated with HP 5050B／5055A Printers and their acoes． sories：a switch selects outpul to be formatted as print format or hexa－ decinal format：requires two outpui cables，HP 562－16C（not lur． nished）．

The 59301 A cult additionally be used with HP 6128 C thru 6145A （Option J99）digitally－controlled power supples．for HP－1B program－ mable voltage and curtent．

## 59303A digilal－to－analog converter

Accepts an ASCII string and converts any three consecutive digits to analog voliage sccurale 100.150 in $30 \mu \mathrm{~s}$ ．Fully programmable via the HP－IB or uptraics stand－alone from the 「roni pantl．Orfers three outpui modes for conversion：nommal，offsel，or plus－minus（ 9.99 volis to -9.99 volts）to make it convenient for operaling sirip chart record－ ers．

A primary application for the HP 59303A is to present on a logging device the data points being laken during a measurement，such as with the HP S345A Counter，No controller is required for operation．Com－ patible logging devices include sicip chart recorders，X－Y plonters，and displays．

## 59304A numeric display

Presents a highly visible readout of up to 12 characters and decimal point．Operales as an HP－IB monitor displaying Bus trattic．or it can be addressed to display such things as frequency readout or interme－ diate calcukator resulis．

## 59306A relay actuator

This module has six Form－C relays that provide for conerol of ex－ ternal devices cither manually from front pancl pushbuttons or re． motely from the HP－JB．Relay contacts are specified to handle 0.5 amp．Use the 59306A with HP 8761N／B SPDT switches for HP－1B programmable microwave switching de－18 GHz：use it wish HP 8494 thry $8496 \mathrm{G} / \mathrm{H}$ atlenuators for HP－lB programmable attenuation de－ 18 GHz ．

## 59307A dual VHF switch

This module offers a pair of single throw 4 －pole switches（de 10500 MHz ， 50 ohm）optimized for fast riselime（ 1 ns ）pulse waveforms． Switches are independent and bidireclional，and can be operaled ci－ ther from front panel pushbuttons or remotely from the HP－lB．


50301A


59306A


59307A


59308A


59400~


59403A


59309A

59308A timing generator, 59309A digital clock
This ASCII programmable timing family offers time-of-day and precision limed intervals over a wide range from sub-seconds to days. The cloek and generator are independent of each other and can operate under program control or stand-alone. The S9309A ASCII Digital Clock displays month, day, hour, minute, and second; and upon command outputs time via the Interface Bus to logging devices. Time can be updaled by remote command. The clock secepes a small internal battery to provide glich-free power and more than a day's standby; alternatively, the clock operates up to a year on standby supplied by ordinary D.size batteries. The 59308A Timing Gencrator provides pacing and liming signals ouput for remote use via lbe Inlerface Bus or on rear panel BNC's. Timed intervals can be selected by thumbwheels or can be programmed to have precise lengths from microseconds to minutes to more than a day. Aocepts trigger inpuls from front pancl pushbution. from rear panel connectors. or remotely wia the Bus.

Rear panel BNC's outpuI TTL and FCL levels with switch selecfion of square wave or pulte and of positive-going or negative-going edec. Outpul pulses are 500 ns $\pm 100 \mathrm{~ns}$ wide, rise time 50 ns .

## 59400A HP-IB/RS232-TTY Interface

This module allows the use of a Hewlett-Packard CRT terminal or HP-modified teletypewriter as a simple HP-1B controller or $1 / O$ device. The 59400A has three modes of operation: listener, zalker, and simple controller. See product details on page 58.

## 59403 A HP-IB common carrior interface

The 59403A module makes it possible to extend the HP.IB maximum operating distance beyond 20 meters. Using two of these modules and a two-fwisted-pair shiclded line, HP-18 components can be separated by as much as 1000 melers. In addition, much greater distances are possible over telephone lines, by using recommended modems. See page 58 for produci details.

## General

Operatling environment: operating lemperature, 0 to $50^{\circ} \mathrm{C}$, relative humidity, $1095 \%$ at $40^{\circ} \mathrm{C}$.
Power: HP 59300 -serics: 115 or $230 \mathrm{~V}( \pm 10 \%$ ); $50-400 \mathrm{~Hz}: 15 \mathrm{VA}$ max. HP 59400A \& HP 59403A: 110, 120, 220, or $240 \mathrm{~V}(+5 \%$, -10 m ) $48-66 \mathrm{~Hz} ; 60 \mathrm{VA}$ max.
Acceseories supplied: in addition to power cord: 1 P 59300 -series modules are cach supplied with HP-1B cathe HP 10631A: HP 59400A is supplied with cable adapter HP $59400-61605$ (adapts 59400A TTY connoctor to HP -modified teletypewriter connector).

HP-18 accessory modules

Model	Description	Dimenslons - max. heigh ${ }^{1} \times$ width $\times$ deplh mm (inches)	Net Weight $\mathrm{kg}_{\mathrm{B}}$ ( l )	Shipplng Malght kg (lb)	Price
593011	ASCII-to-parallel Converies	$103.6 \times 212.9 \times 294.6(4 \times 8.38 \times 11.6)$	1.70 (378)	2.32 (5.16)	\$575
59303A	Diegial 10-analog Converter	$101.6 \times 105.9 \times 294.6(4 \times 4.17 \times 11.6)$	2.61 (5.80)	3.17 (7.04)	\$850
59304a	Numeric Oisplay	$101.6 \times 105.9 \times 294.8(4 \times 4.17 \times 11.6\rangle$	1.23 (2.73)	1.58 (3.5),	\$700
59306A	Relay Acluator	$10) .5 \times 212.9 \times 294.5(4 \times 8.38 \times 116)$	2.64 (5.87)	3.23 (7) 8 )	\$700
59307A	VHI Swith	$101.6 \times 212.9 \times 294.6(4 \times 8.38 \times 11.6)$	264 (5.87)	3.23 (718)	\$750
59308A	Timing Generator	$101.6 \times 212.9 \times 294.6(4 \times 8.38 \times 11.6)$	2.10 (4.67)	3.83 (85)	\$1025
593098	ASCll Dizilal Clack	$101.6 \times 105.9 \times 294.6(4 \times 4.17 \times 11.6)$	1.70 (3.78)	284 (6)31)	\$1025
59408a	HP.IB/RS232. MY Inlerface $^{\text {a }}$	$101.6 \times 212.9 \times 430.0(4 \times 8.38 \times 16.9)$	3.90 (8.50)	5.70 (12.5)	\$1560
59403A	HP-IB/Conmon Carrier Interlace	$101.6 \times 2129 \times 4300(4 \times 8.38 \times 16.9)$	450 (10.0)	$610(13.5)$	\$1300

[^31]

A scparate controller is not required for simple HP-JB configurations (e.g. data logging). However, the full flexibility of the HewlettPackard Interface Bus are more obvious when used with HP programmable calculators or computers. They are ideally suited for sysierns contsol and data manipulation/storage . . . and have many useful peripheral capabilities such as ploting and page printing.

## Calculator control

Three Hewlett-Packard programmable calculators have been used extensively as controllers for HP-1B instrumentation systems. These gre the Models 9820A, 9821A and 9830A. The HP 9820A is an algebraic language calculator with magnetic card programming and recording. The HP 9821A is also an algebraic language calculator. equipped with a magnelic tape cassetle for programming and dala re cording.
The HP 9830A is a BASIC language machine. It has powerful capabilities, typewriter-style keyboard, magnctic tape cassette programming and data recording; also a large memory option. See page 524 for product details on these calculators.

## 59405A HP-IB calculator interface

The 59405A connects the HP 9820A, 982 A and 9830A calculators to the HP Interface Bus. It provides both conerel and data capability for up to 14 additional HP.IB controlled deviecs, and uses only onc I/O slot on the calculator. Included with the interface are the I/O card. an appropriate ROM for 1/O control, a 4 m ( 13.2 í) HP-IB cable, and a User's Guide. The User's Guide deseribes how the calculator can be used to communicate with and control instruments and accessories.

MP-I8 User's Guides
Although the User's Guides are included with the above calculator inlerfaces and selected other HP-1B products, they may also be purchased separately. User's Guide 59300-90001 perains to the HP 9820A and HP 9821A: User's Guide 59300-90002 covers HP 9830A as Bus controller.

## Computer control

Two popular Hewlelt-Packard compuler series may be used to control HP-IB instrumentation systems. Thase are the HP 21MX and the HP 2100 series ( $p a g e 530$ ), and an HP -IB interlace I/O kit is available for both.

## 59310A HP-I日 computer interface kil

The 59310A is a duplex 1/O card for connecting up 1014 HP . iB devices such as measurernent and stimulus instruments. To facibitate programming, the 59310A includes a software package for operation under the Basic Contral System. This consists of a driver and a ulility library. The driver is supplied in both DMA and nom-DMA versions.
The software package also includes a diagnostic routine for quickly confirming correct operation, or locating fauls. Options provide for selecting DMA/non-DMA operation, looping on specific tests, ele., as communicated via the compuler's switch register or system key-board-dispiay unit.
In adodition to the interface card, sofiware and documentation, the kit also includes a 4 m ( 13.2 fi ) cable with standard HP. SB connector.

Model number and name

59405A/Option 021: HP-IB 9821A Calculator Interrace $\quad \$ 1300$
59405A/Option 030: HP-18 9830A Calculator Interface $\$ 1300$
S93IOA HP-IB Compuler loterface Bus $1 / 0 \mathrm{Kit} \$ 1545$


HP-65 Programmable pocket calculator


HP 9830A Compuling calculator system

## Wide range of capability

Hewlet1-Packard introduecd is first desk. lop programmable calculator in 1968 and the world's first pockel scientific calculator in 1972. Since then, Hewlett-Packard has introduced several desk-top and pockel calculators with lechnologically advanced fealures: each with different capabilities for different levels of problem sophistication. To properly selest a calculator. you must consider the problems you're facing today, as well as the problems you're lively to face toraorrow.

## Packet calculators

For cxample, if your main enncern is general math - addition, subleaction, multiplication, and division - with an occasinnal need for log or trig functions, the HP-21 may be just perfeet for you.
And. if you occasionally solve repelitive or iterative problems. there are twa HP pocke:
calculators practically "custom made" For you - the programmable HP. 25 or HP-SS.

But, maybe your problems are more business oriented. The MP-22 or the HP-8D ean solve virually all financial calculations involving the relatiunship between time and money. quickly and easily.

For the ultimate pockel-sied problcm solving power in any field, Hewlen-Packard offers you the famous "packel computer" the HP-6s.
Whichever HP pookel calculator you finally select, you can be dssured that it is the finest in its class . . . beesusc HP's standards of qualisy permit nothing less.

## Desk-lop calculators

Hewlett-Packard's desk-top programmable calculators are fast becoming business and industry's must popular computing device bueause they combine compuler-like power with convenience and exse of operation.

Selection of the correct desk-top calculator for yrou is a more subite operation. There are different programming languages to choose from - a step-oriemed languige, an algebratic language and a formal computer language - BASIC.

There are varging memory sizes, data handling catpabilities, read-only-memory options. interface cards, and compatible peripherals. The optons and alternatives ase many, allowing yuu the most flexibility possible in confeguing acomputing system that best fies your needs.
So how do you decide? Let an HP expert help. Our ealculator salbsmen are highly trained. well educated, and extremely knowiedgedble about the computationat ineld. They can hels you find the right equipinent co solve your problems. Call the Hewleth-Packard sales office nearest you for an honest appraisul.

## Scientific Pocket Calculator

## HP-21

- Full range of functions plus rectangular/polar conversions
- Display format selectivity: two angle modes
- Hewlett-Packard's efficient RPN logic system


HP-21 Sclentific Pockel Calculator

The HP-2I is a full-function scientific pockel calculator that offers features and functions not available on apparently similar models.
Most important of these is HP's remarkably efficient RPN logic sy*tem which geves you the problem-solving power of an "cquals" kicy and at least three levels of parentheser. Yel. this ingenious system is distinguished by its similarity to your nolural way of solving mathematical problems. It allows you to approach the solution of enary problem in the same nalural manner as you would with a slide-rule. through the process of equation simplifitation. Sinee there is no need to reformat equations to fit machine logic, uperation is celsy. And it is made ceven easief by the fact that you only work with one or two numbers at a time. When you press amy function key, it execules the funelíon inmediately and you see every intermediale answes. This allows you to check your progress every siep of the way through even the most complex equations. The four-register operational stack aetually handles the detail work for you automatically, saving up to four intermediate solitions for further operations.
Other features of the HP-2I include:
Rectangular/polar coordinate conversions
The HP-21 converis rectangular coordinales to polar coordinates (and vice versa) casilis, thus simplifying vector addition and subirac(ion.
Display format selectivity
Choose between scientific notation and fixed decimal display formats. With the fixed-docimal formal, you seloct how many decimal places you wish to sec (up to 9). In scientific notation. you can select up to 8 significant digits in the mantissa. Ahhough the HP-21 providts you with automatic round-olf to the selecied decimal place. 10 significant digits are retained internatly and used for all compulalions.
Full register arithmetic
In addition to it four-reguster operational stack, the HP-21 provides a separate addressitble memory for storing constants or other
daia. And you can perform all four arithnclic oputations ( + ,.$- X_{\text {, }}$ $\div$ ) dircelly upon this stored data using the $\mathrm{M}+. \mathrm{M}-, M \times$ and $\mathrm{M} \div$ functions. And, or cousse, not hoving to recall and store data to perForm an arithmetic operation makes your calculation just that much simpler.

## Degree/radian mode selection and conversion capability

The HP-21 lets you express angles in cither degrees or radians. and perform trig operations in enticr angelar mode. It also simplifies conversion from one angle made to the other.

1n short, the HP-21 gives you ali the fiunctions/feacures you need to solve real-world scientific or enginecring problems. And, its solid design and construction continue the HP reputation for quality products.

## HP-21 Specifications

## Pre-programmed functions

Trigonometric (all in degrees or radians): Sin x: Are Sin x: $\operatorname{Cos} \mathrm{x}$ : Arc Cos $x_{i} \operatorname{Tan} x_{i}$ Ape Tan $x$.
Logarlihmic: $\log x ; \operatorname{Ln} x: e^{x} ; 10^{x}$.
Other: $y^{x}: \sqrt{x}: 1 / \mathrm{x}: \pi$ : rectangular/polar coordinate conversion: full register arithmetic.

## General

Memory: one addressable register: 「our-register opcrational slack.
Dleplay: up to 10 significant digits in fixed-decimal notation: up ta 8 signiticann digits plus (wo-digil exponent in scientilic notation: full display formalling in cither mode with selective round-off: indicutors for improper operations, Jow ballery.
Dynamic range: $10^{-\infty}$ to $10^{08}$ (200 decades).
Power: AC: 115 or $230 \mathrm{~V}, \pm 10^{0}$, 50 to $60 \mathrm{~Hz}, 5$ watls. Battery: 2.5 $V$ de nickel-cadmium rechargeable battery pack.
Dimenslons: lengith: $13.0 \mathrm{~cm}\left(5.1^{4}\right)$. Width: 6.8 cm (2.7"). Height: 3.0 cm (1.2").
HP-21 Sclentific Pocket Calculator

# CALCULATORS \& PERIPHERALS <br> Scientific Programmable Pocket Calculators <br> HP-25 \& HP-55 

- Keystroke programmable for fast solution of repetitive, problems
- 8 addressable memories with full register arithmetic
- All commonly used scientific, engineering and math functions


HP-25 Sclentific Progremmable Pocket Calculator

## HP-25 Specifications

Pre-programmed functions
Trigonometrlc (all in decimal degrees, radians. or grads): Sin $x$; Arc $\operatorname{Sin} x: \operatorname{Cos} x: \operatorname{Arc} \operatorname{Cos} x: \operatorname{Tan} x: \operatorname{Arc} \operatorname{Tan} x$.
Logarlithmic: $\log x: \operatorname{Ln} x ; e^{\lambda}: 10^{\wedge}$.
Statlstical: mean and standard deviation; summations giving n. Ěx. $\Sigma x^{2}, \Sigma_{y} . \Sigma_{x y}$.
Other: $y^{x} ; \sqrt{x}: 1 / x ; \pi ; x^{2}$; 品; conversions between decimal hours, degrees. radians. or grads and hours (degrees)/minutis/seconds: rectangular/polar coordinate conversions, integer/fraction truncation; absolute value; full register arihmetic.

## Programming features

49-step program memory: conditional branching based on any of cight relational tests ( $x<y, x \geq y, x \neq y, x=y, x<0, x \geq 0, x \neq 0, x=0$ ). direct branching: ability to review or execule programs step-by-step: ability to add or modify program steps: PAUSE and NO-OPERATION program instructions.

## General

Momory: eight addeessable registers: four-register operational slack: "last x" register.
Display: up to 10 significant digits in fixed-decimal notation: up to 8 significnnt digits plus 2-digit exponent in seientific or enginocring notalion (in engineering notation all exponents are displayed as multiplus of $\pm 3$ ); Cull display formating in any mode with selective roundoff: mdicalors for improper operajions: low battery; line-number/key matrix program display.
Dynemic range: $10^{-89}$ to $10^{909}$ (200 decades).
Power: AC: 115 or $230 \mathrm{~V}, \pm 10 \mathrm{~m}, 501060 \mathrm{~Hz}, 5$ wats. Battery: 2.5 V de rickel-cadmium rechargeable battery pack.
Dimensions: leag(h: 13.0 cm ( $5.1^{*}$ ). Width 6.8 cm (2.7) . Height: 3.0 cm (1.2").

- All HP-25 functions plus 20 addressable memories, increased statistical power, built-in digital timer, 7 Metric/U.S. unit conversions, hours/minutes/seconds arithmetic


HP-5S Advanced Sclentilic Programmabie Pockel Calculator

## HP-55 Specifications

Pre-programmed functions
Trigonometric: same as HP-2S.
Logarlthmic: same as HP-25.
Starlsilcal: two-vinable mean and standard deviation; nt: linear regression; linear estimate; summations giving $n, \Sigma x, \Sigma x^{2}, \Sigma y, ~ Z y:, ~ E x y$.
Melfle Conversions: in/mm: $\overline{\mathrm{j}} / \mathrm{m}:$ US. gal/l: $\mathrm{Ibm} / \mathrm{kg}$. $\mathrm{tb} / \mathrm{N}$ : ${ }^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{C}$ : BTU/J.
Oiner: same as HP- 25 plus: hours (degrees) minutes/seconds arithmetic: degrees/radians conversion; full reginer arithmetic on first 10 addressable memories.

## Programming features

49-step program mensory: conditional branching based on either of two relational tests ( $x \leq y, x=y$ ); direci brenching: ability to review or execute programs step-by-slep: ability 10 add ur modify program steps.

## Digital timer

0 to 00 -hour range: $\pm 0.01 \%$ accuracy: displays hours/minules/seconds/hundredths; stores up to 10 partial limes ("splits").

## General

Memory: 20 addressable memorics: four-register opcrational slack: "last x" register.
Display: up to 10 significant digits plus 2-divit exponent and appropriate signs: ixxed-decimal or scientitic notation, both with selective round-of: indicators for improper operation, low batery: line-num-ber/xey-matrix program display; hours/minutes/secunds/hundredihs limer display.
Power: AC: 115 or $230 \mathrm{~V}, \pm 10 \%, 501060 \mathrm{~Hz}, 5$ wasts. Haltery: 500 mV derived from nickel-cadmium rechargeable batlery pack.
Dlmenslons: iength: $14.7 \mathrm{~cm}\left(5.8^{\prime \prime}\right)$. Widih: 8.1 cm (3.2"). Height: 1.8 $103.3 \mathrm{~cm}\left(0.7\right.$ to $\left.1.3^{\prime \prime}\right)$.
HP-55 Advanced Scientific: Programmable Pocket Calculator

- Use it with pre-recorded magnetic program cards from HP
- Or, write your own programs and store them on magnetic cards for future use, anytime


HP-65 Fully Programmable Pocket Calculator

Hewlet-Packard's most advanced pocket calculator is the HP-6S, a fully pragrammable instrument which features a built-in magnetic card reader/writer, a 100 -step program memory. 51 pre-programmed functions and operations and nine addressable data memory regis. ters. These capabilities allow the HP-6S to be used in three ways:
I. With prt-recorded program carde from Hewlett-Packard, the HP-65 can be used by anyone to solve complex problems in such fields as electrical, ehemical and mechanical engineering; statistics; mathematics; finance: medicine; navigation; aviation, and surveying. Simiply select the appropriate pre-secorded program card and pass it through the HP-65 buill-in card reader. Then, key in your known data and start the program running as described in the easy-10-follow instructions provided with each program. A current catalog of HP-65 Application Pacs, each of which contains up to 40 pre-recorded programs, can be obtained from your neareal HP pocket calculator dealer or via the attached reply card.
2. As a uear-progrommed calculator, the HP-6S lets you write programs of up to 100 steps and record them on blank magnetic cards (20 supplied) for future use anywhere, anytime. Depending on your needs, a program can be simple or complex. It can incorporate any of the pre-programmed functions and operations described below, plus: conditional branches based on logic comparisons, loops and one-level subroutines. Five user-definable keys let you execute different segments of your program directly from the keyboard. As important, the HP-65 gives you full editing capability for fast, convenient program modificatiō̃ or coriction.
3. Even as a keyboard operated calculator, the HP-65 gives you 51 pre-programmed functions and operations, nine addressable memory registers with fulf register arithmetic, and Hewleti-Packary's efficient RPN logic system with four-register operational stack.

## Speciflcations

Pre-programmed functions
Trigonomatric (all in decimal degrees, radians, or grads): $\operatorname{Sin} x$; Arc $\operatorname{Sin} x ; \operatorname{Cos} x ; \operatorname{Arc} \operatorname{Cos} x ; \operatorname{Tan} x ; \operatorname{Arc} \operatorname{Tan} x$.
Logarlthmic: $\log x: \operatorname{Ln} x ; e^{x} ; 10$.
Other: $y^{3} ; \sqrt{x} ; 1 / x ; \pi ; x^{2} ; n!$; conversions between decimal angle (degrees, radians, or grads) and degrees/minutes/seconds; rectangular/polar coordinate conversion; decimal/octal integer conversion: degrees (hours)/minutes/seconds arithmetic; integer/fraction truncation: absolute value; full register arithmetic.

## Programming features

100 -step program memory: built-in magnetic card reader/writer; five user definable keys; automatic counter; conditional branching based on any of four relational tests $\left(x=y, x \neq y, x \leq y_{n} x>y\right)$; direct branching; two flags: ability to review or execute program step-byslep; ability to add, delete or modify program steps; single-level sub. routining.

## General

Memory: nine addressable registers; four-register operational stack: "last $x$ " register.
Dieplay: up to 10 significant digits plus 2 -digit exponent and appropriate signs; full display formatting in either fixed-decimal or scientific notation; selective round-off ( 0 to 9 decimal places): indicators for improper operations. low battery; key-matríx program display.
Dynamic range: $10^{-99}$ to $10^{090}$ (200 decades).
Power: AC: 115 or $230 \mathrm{~V}, \pm 10 \%, 50$ to 60 Hz , 5 watts. Battery: 3.75 Vde nickel-cadmium rechargeable battery pack.
Dimensions: length: $14.7 \mathrm{~cm}\left(5.8^{\prime \prime}\right)$. Width: $8.1 \mathrm{~cm}\left(3.2^{*}\right)$. Height: 1.8 103.4 cm ( 0.7 to $1.4^{\prime \prime}$ ).

HP-55 Fully Programmable Pocket Calculator

- A new pocket calculator designed specifically for complete business managemeni


HP-22 Business Managemen! Pockel Calculator

The HP-22 business management pocket calculator puts an ideal combinution of linancial, mathemalical and statistical functions at your fingerlips. With it, you can handle everything from simple arthmetic to complex sime-value-of-money computations. You can even handle planning. forecasting and decision analysis. And, you can apa prosech businese problems in a variety of ways to arrive at intelligent decrsions and recommendatians based on facts.
The HP- 22 automatically calculates discounted cash flows; percentages; ratios; proportions: compound interest; remaining balance; annuities; depreciation; mean and slandard deviation; rate of return; annortization and more.

## HP-22 Specifications (new)

## Pre-programmed functions

Financlal: time-value-of-money calculations involving n (number of compounding periods). i (periodic inlerest rate), PMT (payment amount), PV (preseni value of moncy), FV (future valuc of money): simple interest; accumulated interest between payment periods of a loan; remaining balance of a loan.
Statistical: mean and standard deviation: linear regression: linear eslimatc: summations giving $n, \Sigma x, E y, \Sigma^{2}$, Exy.
Percant: $5, \Delta \%$, percent one number is of another: percent one number is of a lolat; markups: disconnts.
Other: In; $e^{x} ; y^{x}: \sqrt{x}$ : full register arithmetiz.

## General

Memory: 10 addressable registers; five financial registers; four-register operational stack.
Display: op to 10 significant digits with seleclive round-off to desired number of decimal places ( 0 to 9) in fixed-decimal notation; $\&$ significant digits plus two-digit exponeat and appropriate sigens in scientific notation; indicators for improper operations. low battery.
Dynamic range: $10^{-6} 1010^{901}(200$ decadec).
Power: AC. 115 or $230 \mathrm{~V}, \pm 10 \%, 501060 \mathrm{~Hz}, 5$ watts. Bzthery: 2.5 Vdc nickel-cadmium rechargcuble batury pack.
Dimensions: Iengh: $13.0 \mathrm{~cm}\left(5.1^{4}\right)$. With: $6.8 \mathrm{~cm}\left(2.7^{\prime \prime}\right)$. Height; 3.0 cm (1.2").

- The financial pocket calculator that solves nearly all time-value-of-money calculations


HP-80 Financial Pocket Calculator

The HP-80 financial pocket calculator offers even more financial problem-solving power than the HP-22. With 36 separate finoneiad functions, the HP-80 amematically computes bond yield and price; conversions from add-on interest to APR; sum-of-the-digits depreciasion scheduies and Rute of 78 's interest rebates and more - plus all the financial futnetions of the HP-22.

In addition, the MP-80 gives you a buill-in 200-year calendar so that you can quickly figore the exact number of days in a bond or loan (ransaction; mean and standard deviation; and trend-line analysis using lincar regression.

## HP-80 Specifications

Pre-programmed functions
Financlal: all functions of the HP-22, plus: bond yield and price (both yield-to-matarity and yield-to-call); conversion from add-on interest 10 APR; sum-of-the digits depreciation sehedules and Rule of 78 's inemest rebates.
Statistical: mean and sandard deviation, trend-line analysis using lincar regression: summations giving $n, \mathbf{E x}, \sum x^{2}$.
Percent: \%, $\Delta \%$, markup, discount.
Other: $y^{*} ; \sqrt{x}$

## General

Memory: one addressable memery; four-register eperational stack.
Display: up to 10 significant digits with selective round-off to desired number of decimal places ( 010 6) in fixed-decimal notation: 10 significant digits plus two-digit exponent and appropriate signs in scientific notations: indicators for improper operations: low battery.
Dynamic range: $10^{-49}$ to $10^{0 \%}$ (200 decades).
Power: $\mathrm{AC}: 115$ or $230 \mathrm{~V} . \pm 10 \%, 50$ to $60 \mathrm{~Hz}, 5$ watts. Battery: 3.75 Vue nituel-cadmium rechargeable battery pack.
Dimenslone: fength: $14.7 \mathrm{~cm}\left(5.8^{\prime \prime}\right)$. Width: $8.1 \mathrm{~cm}\left(3.2^{\prime \prime}\right)$. Height: 1.8 $103.3 \mathrm{~cm}\left(0.7\right.$ to $\left.1.3^{\prime \prime}\right)$.


## 9800 Series programmable calculators

Hewlell-Packard's line of programmable desk-top calculators provides coss-effective solutions for a wide variety or business and scientific requisements. You pick the compuling power and memory you need and then tailor the system to your application by choosing the appropriate peripherals.
Interfitese are alio available which allow 9800 Series caleulators to accept data from a large number of digital voltmeters, counters, and other instruments.

## 9810A

Whatever your diseipline, from physicist to financier, enginecr to biochemist, there is a Hewlet1-Packard 9810 Programmable Calculator that is right for you. The modular structure of the 9810 allows you to help design the calculator that best suits your needs! From keyboard to memory, peripherals 10 program packages, you cen configure ihe 9810 to salisfy any situation-ineluding a tight budget.

## Easy programming

The calculator is programmed either by use of the keyboard or by magnetic cards. The program mode allows entry of program instructions, via the keyboard. into program memory. Programming consists of pressing keys in the proper sequence.

You can slore programis or large amaunts of data on handy magnetic cards for instant entry into your 9810.

## 9820A

Thanks to the $9820^{\circ}$ s natural. algebraic language and its conversational, alphanumeris display and alphanumeric printer. you key in most intricate mathematical problems in the same form you'd write them on paper. This allows you to easily solve complex interactive problems: such as, modeling electronic circuis, including schematics, parts specifications, and cosi figures.
Peripheral and memory expandability
The 9820 is expandabie through plug-in ROM's, added inucrnal memory, and external peripherals, providing capabilities to mateh any type of application. The basic calculator has 173 registers. A 429- or 1453-register memory can be supplicd in lieu of this, either with the original shipment or installed later by Hewlett-Packard service personnel.

As an example of the 9820's power, the basic memory is sufficient to solve 17 simulancous fincar equations with 17 unknowns. With the 429- or 1453-register memory, the number of equations that can be solved are 34 and 71. respecisvely.
Built-in magnetic card reader
The magaetic card reader built into the basic 9820 allows you to make and reuse permanent recordings of programs and data. Recorded programs are easily protected against accidental re-recording by removing a perforated tab at the end of the card.

## 9821A

The HP 9821 Programmable Calculator brings rogether in one package the versallity of a desk-top calculator, the ease of the naturs) algebraic language. and the convenience of the tape cassette for program and dala storage. With the 9821, you can design a system to mees your own specific needs in the business, technical, industrial, or seien(ific fields. This system allows you to write, edtr, and use programs to solve your problems with unprecedented time savings and ease.
Peripheral and memory expandability
The basic calculator has 167 registers. Options for oblaining an initial configuration of 423,935 , or 1447 total registers are also available. Additional memory may be added later by HP service personnel in increments of 512 registers ( 10 a maximum of 1447 registers). As an example of the 9821 's power, the basic memory is sufficient to solve 16 simulancous linear equations with 16 unknowns ( 20 with the fully-cxpanded memory).

## Built-in tape cassette unit

Both programs and data can be recorded onto and loaded from convenient tape cussettes, either manually or under program control. Each cassette has a capacily equivalent to approximately 8000 regis. ters. Cassettes may be protected against accidental re-recording and/or sesured against unauthorized use and duplication.

Model number and name	Price
$9810, \mathrm{~A}$ Programmable Caiculator	$\$ 2075$
9820 A Programmable Calculator	$\$ 4175$
9821A Programmable Calculator	$\$ 5225$



HP-IB 9830A


## 9830A

The Hewlet-Packard 9830 is a general purpose, programmable catculator designed for a wide range of applications.
The language of the 9830 is BASIC. This easy-10-use language couples simplicity with power and appeals to the new calculator owner as well as the experienced programmer. The 9830 aulomatically interits a comprehensive range of proven sofiware packages, including finnnce. mathernatics, stalistics, and education.
A minimum 9830 provides 35208 -bil bytes ( 1760 words) of user read/write memory. This can be expanded to 15.808 bytes ( 7904 words). In addition, the user can select from a wide range of read-only-memory (ROM) plug-in blocks for increased computational capabilits or peripheral control, or both: The 9830 allows up 1016 K byles of add-on ROM for a total of cight plug-in blocks.
A broad range of peripherals is available with the 9830 ealedator to allav the user maxumum fexexibility in putting logether that specific system required to solve his problem.
The resull is a cosl-effective calculator that can mext your data han. ding problems coday and continse meeting them as your needs expand.

## Features

- Alpha Kcyboard
- 32-Character. LED, Alphanurneric Display
- Built-In Tape Casselte
- BASIC Language
- 12 Significan Digils
- Full Trigonometric Capabilay
- Boolean Algebra Capability
- Special Funclion Keys
- Easy Editing
- Expandable User Memory
- Add-On Read-Only-Memory
- Formatied Output
- Broad Range or Peripherais

Programming in द्वASIC
The 9830 is programmed in BASIC, a format, interactive language similar to FORTRAN. Depending on your needs, you may choose ta do all your own programming. If you've already been working with BASIC, you can, with minor modifications, use your existing program. Since BASIC is a standard computer language, you will lind there are many programs already writton and ovailable at nominal cosl.

## 9880B Mass memory subsystem

The HP 9800 B Mass Memery Subsystem provides the HP 9830 calculator with the large daca storage capability required for applications; such ak, payroll. account maintenance, inventory control, paeient records, credir verification, and large banks of data for struc. iural design, stalistical analysis, and many oiber scientific, industrial and commercial fields.

The memory media of this peripheral is a permanently installed memory platter and an interchangeable cartridge (HP 12869A). each having a capacily of 2.4 million byes; this is the equivatent of more than 600.000 total items of data of 12 digits each.
Onc of the main advantages of this system is data safely and security, Master data can be recorded on the removable cartridge. transferred into the calculator for manipulation, stored temporarily on the fixed memory platter for further use by the calculator's program and verification prior to modifying the master data on the removable cartridge. Also, with this system, duplication of data files is casily accomplished. Year-10-date payroll data, inventory updating. accoum receivables and payables opdating are just a few examples where this dual syisem offers great safecy of the data base and affords the opportunity to verify the results prior to modificution of master files, Should an error occur, it is casily corrected by repeating the operation since the initial data still resides on the removable memory cartridge.

In addition to providing a large amount of data storage, the 98808 Mass Memory Subsystem is fast. A $10 \times 10$ array ean be transferred to the carridge in about one second, and a typical 250 -line program of 2000 words can be ransierred in less than (wo seconds.

Madel number and name	Price
98301 Programmable calculator	$\$ 6800$
9880 B Mass micmory subsyslcm	$\$ 10,950$



## 9864A

## Calculator peripherals

Calculator peripherals are the input/output devices that lea you taslor your programmable calculator to your specific computing sequirement.
High speed tape reader subsystem (now)
The 9883A combines the HP 2748日 Photo Reader and the HP 11202 A Option AOI Interface Card. The 9883 opicalify reads tapes at 300 characters/secund.

## Tape punch subsystem (new)

The 9884A combines the HP 2895B Tape Punch and the HP 11202 A Option AO2 Interface Card. The 9884 punches tape at 75 characlers/second.

## Cand readers

The high-speed 9869^ Hopper Card Reader handes 80-column punched eards as well as mark-sense cards. For smalker applications. the low-cost. hand-fed 9870A Card Reader optically reads mark-sense cards.

## Tape cassette

The high-speed 9865A Tape Cassettc lets you casily store, update. and retrieve data and programs. A rast, bidirectional scarch feature lets you find any file on the tape withoul rewinding. The 986sA has a minimum capacity of 6,000 registers.

## Paper tape reader

Data from analylical instruments, machine tools, and computer ierminals goes directily into your calculator. The 9863A reads a wide variety of formats at 20 sharacters/second.

## //O Expander

The 9868A 1/O Expinder allows you to plug up to 13 peripherals or test instruments into your calcalator.

## Digitizer

The 9864A Dipilizer reads a curve or any irregular shape as a series of discrete points. Your HiP calculator then prints out the dimensions of the line and the area of the containced shape.

Model number and name	Price
9863A Paper Tape Reader	\$1710
9864A Digilizer	\$5140
9865a Tupe Casselle	\$1885
9868a 1/O Expander	\$1060
9869A Hopper Card Reader	\$3125
9870^ Card Reader (hand red)	\$580
9883A High Speed Tape Reader Subsystem	52125
9884A Tupe Punch Subsysicm	\$2900



11285A


9862A

CRT subsystem (New)
The 9882A CRT Subsystem consists of a HP 2640A CRT Terminal and it 9830A Calculator Interface Card.

## Line printer

The 9881A Line Printer Subsssent consisis of the 2607A Line Printer which is a relable, low-cosi, $5 \times 7$ den-matris printer. Its unique print mechanism makes it quiet enough for any busmess environment and provides up to 6 consistent. clean capies. If prints at 200 lines/minule regardless of the line length and thas full 132-column line width. The 9881 includes the HP II287A Line Primet Interiace Card.

## Thermal printer

For high quality, hard-copy output, the 9866A Thermal Printer is hard 10 bese. Its 250 linese/minute speed is equivalent to 3,600 words/minute. It produces pige-width, folly-formated, alphanumeric text, tables, or simple plots.

## X-Y Plother

The 98tㄹA X-Y Plotter with a peripheral control function block automatically seales your data, generates words asi well as numbers, and sets upp boik axes. complece with labels and lick marks - all in your designated units.

## Interfacing

HP offers many interface cards designed for these customers who desire to build custom, calculator-controlled instrumentation syslems. These cards are:

- 11202A 1/O Interface - an 8-bil parallel inpul/oulpul card with TTL compatible drivers and receivers.
- 11203 A BCD Inpul Curd - 9 digits of 8421 -coded BCD data, plus other functions (input from insirument to calculator only).
- 11205A Serial 5/0 interlace - bit serial input/outpuicard conforming 10 RS-232-C recommended specitication.
- 3940SA Hewlen-Packard therince Bus - a bve serial interface sysiem that offers plug-to-plug compatibility between instruments.
- 11285 A Data Cornmunications Interface - allows a 9830 A calculatar to communicate with other 9830A cateulators and eomputers via telephone lines and modems which meen ElA Specification RS-232-C.
- 112978 Binary Synchronous ROM - when used whith 11285A allows 9830 to act as a remote batch terminal emulating IBM 2780.
- 11298B Interactive ROM - when used with 11285A allows 9830 10 set as time-sharing terminal emulating ASClI Teleprinter.

Model number and name	Price
9862 X-Y Ploner	\$2995
9866A Thermal Printer	\$3145
9881 A Line Printer Subsystem	\$7615
9882A CRT Subsystem	\$4675
11202A 8-bii Paralled 1/O Interface Card	\$225
11203A BCD Input Interface Card	\$330
$11205 A$ Scrial mmerface Card	\$435
11285 A Dala Communications Interface and ROM	\$1575
112978 Binary Synchronous ROM	\$525
112988 Interactive ROM	\$525



## 9815 (New)

The 9815 is Hewlett-Packard's newest member in the 9800 Series desk-10p progammable calculators. It leatures a buil-in high speed data cartridec, a 16 -character alphanumcric thermal printer, an autostart switch, programming keys that double as special function keys, and two optional $1 / \mathrm{O}$ channels. These capabilities allow the 9815 to be used in four basic ways:

1. Quick keystroke calculations -28 buill-in scientific functions along with the poweriul Reverse Polish Notion Logic Sysem used by the IIP pockel calculators. a buffered keyboard, large display. and readable permanem printout, provide you with advanced problem solving at your lingerlips.
2. Dedicated problem solving - Hewlett-Packard offers severial sofiware packages which include a prerecorded cartridge, special function key overlay, and easy-to-Follow instructions for each progran. All you do is sel the switel to auto-stam, slip in the cartridge, put the overlay in place, and torn on the 981s. The first file will be aulomatieally loaded and the progran execuled. The tedious set-up work is done for you.
3. Programmable problem solving - The standard 9815 in . cludes 472 program steps and 10 data registers and can be expanded to 2008 steps. The memory can be allocated by you into any combinaion of program steps and data regisiers you wish. The programming language includes such sophisticured feetures as FOR-NEXT loaps: symbolic, absolute or calculated addresses; ablomatic address updating during editing: descriptive crror messages: and subroutincs nested $10^{7}$ deep. The 9815 has the programming power and memory nexibitity to handie many of your mass complex compulationsl problems. 4. Interlacing - The 9815 has five interface eards. The HP 98131 A is a 9871 A Page-Width Prmer Interlace Card. The HP98132A is an interface card for the 98:2A Plotter. The HP 98133A BCD I/O requires 8 -digil BCD inpul with high speed mode and 8 -bil parallel outpul. The HP 98134 A general 1 ; O is a hidirectional 8 -bit parallel interface which enables you to connect to the 9800 Series enleulator peripherals. The ISP 98135 H HP -IB I/O will accept up to I4 HP -/B intercomnected instruments. Once you have sel up your system. the 9815 can be used to contsol the data how 10 and from your instruments while guthering and processing that data.

## 9871A (New)

The HP 9871^ is a new page-width impact printer for use with the 9800 Seriex programmable calculators. It features a bidirectional sarrier and platen which holds paper up 1015 inches wide and can handee up 106 garl forms. The 9871 prints at 30 characters per second and will print up to 132 columns at 10 characters per inch. It includes a 160 chaeacter bulfer which automatically fills if characters are received faster than the print rate.
Plotting and form filling
The 987 IA has a 96 -character interchangeable printing disc which is externally progeramable along with such functions as space. backspace. carrice relurn. horizontal and verlical tabs, line feed and reverse line feed, top of form, and form lengit. These programmable funcrions along with the bidirectional motions of the platen provide you plotting capabilities for charts and graphs and simplifies form filling.

## Physical Dimension

Hëight: $7 \% / 4$ inches
Width: $221 / 4$ inches
Depth: $151 /$ inches
Weight: 37 pounds

## Options and accessories

The optional form feed mechanism helps give you clear mulliple copies and is recommended for continuous feed or Z -fold paper.
You can choose irom three print whecls:

- Standard Prin! Wheel
- ASCll Print Whicel
- European Prim Wheel

The accessorics supplied with the 9871 are:

- Package of 3 ritbon cartridges
- Package of 3 buyer spccifico prinı whels
- Operating manual for the proper ciletlator
- Scrvice Manual
- Interface cable for the proper calculator

Model number and name
Price
9815A Desk-top Programmable Calculator
$\$ 2900$
9871 A Page-Widin Impact Printer
$\$ 3740$

# COMPUTERS: COMPONENTS AND SYSTEMS 



Hewlett-Packard, a world-wide leader in the minicomputer field, produces computers. small and medium scale systems and a host of add-ons. This equipment us finding inereasing use in companies of all sizes for data management, information retricval and for automating measurcment. To complement ihis equipment. Hewlell-Packard provides she largest velecion of operating soflware in the industry.

The company's cntrance into the compulational field began with a minicomputer designed specifically to interface with HIP's tesi and measurement instruments so customers could casily combing data gathering with data processing. HP minicompulers have since entered other arcas of application inalooing scienou, indusiry, educalion and business.
As key elements in the company's timeshared and data management systems, for example, the minicomputers hande such tasks as order processing, inventory control, salus analysis, producion stheduling and financial reporting. In schools and culleges HP computing systems are used al all levels of educalion for problem solving. computer-assisted insiruction. complex model simulalions, computer science education and curriculum obvelopment. Syatems also are available 10 perform administrative and student record kecping lasks.

## Customer value through product research

When you purchase computational equipment from HP, you are assured of roceiving the same value you have laurned to expeet of Hewlett-Packard instruments. HP assures
this high value by consistenily invesling $10 \%$ of net income in new producl research and development.
Customer value through product innovation

In-depih research has provided innovetions such th the first time-shared computer system based on a minicomputer and the first user microprogrammable CPU from a major mannfucturer. A reeent innovation, the first minicomputer with all semiconductor memory from a major manufacluser is an advancement that provides simultaneous reductions in size, weight, power consumplion and coss while improving speed and reliability.

## Customer value through HP

 experienceHewlett-Packard has one of the largest insitalled customer bases in the world. Over $10,000 \mathrm{HP}$ compulers are presently in operalion on every continent and in mosi countries of the world. To support this large installed base. Hewhett. Packard has extensive sales and service organizations plus the experience to meet your individual needs.

The new family of computer ierminals from HP has established the indusiry standard for serviceability. These units are easily servieed by seplacement of plug-in boards and buill-in self-lesting circuitrs. This means the units can be buib, for less and maintained at lower cost for you.

## Customer value through HP support

Additional customer support is provided by hardware and soltware training courses al central focations throughout the world. Roth maintenance and user oricmied coursid are
provided. Video tape facilities are tused suc. cessfully to bring HP factory exptrthe to remole locations. Hewlett-Packard also supporis a number of user groups with up to date information, information exclianges, periodic publications and regional meelings.

## Customer value through human

 engineeringProduct excellence does not stop with well designed circuitry at Hewlett-Packard. HP applies the same diligence to the human inlerface with its equipment. The new ramity of compolet icrminals, for instance, features dos-shifung techniques to improve readabiliIy and a non-glare CRT sereen. This sume lerminal family provides a movable keyboard so operator convenience is maximized whatever the situation.
Customer value through quality control
For years, users involved in critical applications have specified Hewlett-Packard products because of HP's known high reliability and environmenial standards. This quality control excellence can be traced partially 10 HP's management practices. All HP quality contral Junctions report direcily to division managernent, not to manufacturing management. This means that any product inadequacies receive top priority attemion and products that do not meel lough standards are not shipped until they do.
Customer value - the HP way
In the following pages you will find descriptions of products designed for your maximum customer value ohtained through HP's producl research, innovation, experience, suppori, human engincering and quality conirol.

## COMPUTERS: COMPONENTS AND SYSTEMS

## Technology leading products

21MX Series


Chart :

HP"s 21 MX general purpose minicomputers combine a wide choice of user-microprogrammable processors, semiconductor memory sysIems, and custonized instruction sets for both OEM's and End Users. These features provide a more reliable, more efficient, smaller, and less expensive computing source thall with iraditional core memory.
Users can customize a computer mainframe to meet specífic applications by independently choosing from M Series processors, X So ries memory, and common firmware enhancements.
These 16 -bit minicompulers use 4 K random acecss memory (RAMS) as the main memory - the latest in semiconductor technology, which means greater reliability and reduced power requirements.
The optional Dynamic Mapping System gives users the capability to address memory configurations larger than the usual 32 K word limiation. 11 adds 38 instructions for controlling up to one million words or memory from four independent memory spaccs.
21 MX design includes a brown-oul proof power supply that prolects against over-and under-voltage conditions to 2 ns of line voltage, and storage to sustain loss of 2.5 cyeles. A batuery provides slandby prorection for complele power loss.
Modular design keeps $1 / 0$ conliguration independent of memory expansion. Maximum memory. 1/O, and firmware expansion within a given mainframe are possible withoul sacrificing any one for the other.
Standard features include a powerfal instruction set with lloating point and dala communications instructions, 178 user accessible micto-orders, power fail interruph, memory parity cheek, mulri-levelvectored priority interrupt structure, and up to four separate internal bootstrap loaders which are swith-selectable from the from panel.

Choose from a complete line of HP-manufaciured peripherals and data communications interface kits to enhance yout compuling operations. These include dises, magnetic tape units, card readers, line printers, plotters. paper tape deviees, and serminals. Refer to pages 531 10542 for more information on these computer system peripherals. Local HP Field Representatives can provide detailed computer product catalogs: OEM prices and discount schedules for quantity purchase are available.

## Processors

Three new processors are available for optimal price and performance. These include the $\mathrm{M} / 10$, $5 / 4$ inches high with four powered $1 / O$ channels and (wo memory modules of 8 K each; the $\mathrm{M} / 20$. $8^{1 / 4}$ inches with nine I/O channels and capacily for 32 K memory: and the $\mathrm{M} / 30$. $121 / 4$ inches with $141 / 0$ channels and 64 K memory capacily.
A memory extender supplies cight additional memory modulas io the CPU, and I/O extenders can inerease I/O capability by 32 channels on each or the mainframes.
Also available is the 2100 A computer, the first iruly user-microprogrammable 16 -bit minicomputer.
Standard leatures include exiended arithmetic insiructions, power fail interrupt, memory parity check, memory protect, mulii-level vectored interrupt structure. 14 powered $1 / 0$ channels and up to 32 K of conc memory, all in a 12 inch mainframe.
Supporied by a comprehensive software library, over 10,000 Hew-lett-Packard 2100 Series computers have been detivered to date.

M/10	84,150	4/20	15,300	M/30	\$6,200.
A Memory; 2 Nodutes	16 K	Maintrame Memory	32 K	Msinframe Memory	128K
		Menory Extender	96 K	Memory Extendet	256 K
1/0 Slandard Channes	4	1.0 Standard Channeta	9	1/0 Standard Cramnelx	14
1,0 Wh One Extander	20	biO W. One Extender	25	1/0 W. One Extender	30
1/0 Wi Iwo Extenclers	36	1)2 W, Two Extenders	61	1/0w Two Extenders.	45

## DISComputers

New 21MX Family highlights ioclude the powerful MX/55 and MX/6S DISCompuler packages. The HP MX/55 includes an M/20 processor and 7900A 5 Mbyre dise drive. The HP MX/65 offers the same 32 K word processor with the new, fully-interfaced 7905A is Mbyte dise. Both systems inciude a Dual Channel Port Controlier and a madule of semiconductor memory.

Each cañ be expanded by substituling the M/30 processor for the $\mathrm{M} / 20$. allowing a mainframe memory expansion to 128 K . and to 256 K with an extender.
These join the 2123A DISComputer, which includes an HP 2100A compuler. HP 12859A Direet Memory Access, snd the S Mbyte dise drive.
2123A DISComputer \$24,500
Chart 2
Mx/5s $\$ 18,250$ HESS $\$ 22.250$

1/0 Charinals Standaro
I/OW. One Extende:
1/0 Channets Stancaro
$\$ 22.250$

I/O W. Two Extenders
Maintrame Mernory
Memory Extender
Diss Memory
W. Three Additional
318,250
9
25
41
32 K
96 k
5 Megabytes
20 Megabytes

## HP 21X/2 memory system

Availatic in $4 \mathrm{~K}, 8 \mathrm{~K}$, and 16 K modules using ligh density 4 K MOS memory components. These modules provide 650 ns access spocds:

## Controller

$\$ 500$
4K Module
$\$ 900$
8K Module
S1500

## Microprogramming options

12977A Fagt FORTRAN processor
Firmware microcode for more than a dozen instruc tions, fows word double precision operations. two and three dimensional artay addressing, and other com-monly-ued routines previously writen in FORTRAN, is iwo to 30 limes faster than the normal execulion speed.
12978A Writable control store

Dynamically allerahle. 256 24-bil word storage for microprograms. Ennbles access to additional high speed registers and read/write capabilities from memory.


## Data communications interfaces

HP data communication interface cards permit HP 21MX Series and HP 2100 Series computer users to Iransmit data through a wide variety of privately－owned and common－carrier communication facil－ ities．All communtieation interfaces conform to EIA specification RS－ 232．provide programmable characier size．programmable parity checking，and a variety of programmable or jumper selectable data rate．All interfaces can be opersted under program or DMA control．

## 12966A Buffered asymchronous communications

 intertaceProvides swo－way communications with Bell 103 or 202 Data Sets or equivalent units at speeds up to 9600 baud．Unique features are a 128 －character irst－in／first－ out buffes，and a special recognition／interrupt feature with a 256 spocial tharsacter memory．Operates in sim－ ple，half－duplex，or cchoplex mode，and has hardware break delect capability．
12968A Abynchronous communications interface
Provides all the capability of the 12966A，except that it has a tivo－character buffer and no special character capability．
12987A Synchronous communlcatons intertace
Provides interface capability 10 Bell 201 or 205 Data Sets or equivalent．Operales in half duplex mode at speeds up 1020,000 baud．Parity checking is sofiware se－ loctable．and the synchronization character is hardware scloclable．
12587B Abynchronous data set Interface
Provides two－way communications with Bell 103 or 202 Data Sels or equivalen．Operates from 26103110 baud in simplex，half－duplex or cchoplex made．Pro－ grammable characier size is from I 108 bits plus an op－ tional parity bit．
12618A Symehronous dala sel Interface
Provides iwo－way communjcations with devices such as a Bell 201a／B Dala Set or equivalene．Operates up 10 9600 baud in half or lull duplex mode with rully inde－ pendent transmit and reccive channels．Programmable lunctions include parity checking，synchronization，spe－ cial characier recognition，and character size．

## 12595A Automatic daler Interiace

Automatic Dialing Unit or equivalent．Can be used with either HP asynchronous or synchronous data sel inter－ faces．

## 12920日 Asynchronous multiplexer

Provides interfacing for up to 16 commonications de－ vices at programmable rates from 57 to 2400 baud，with automatic speed delection at seven slamdard rates in－ cluding that of the IBM 2741．Operates in full duplex， half duplex or cchoplex modes with automatic answer－ ing and autonatic break detection．Programmable func－ tions include parity generation and checking，split speed operation，and character length selection from 51012 bits．

Provides iwo－way commusication between an HP computer and teleprinters，keyboard－display terminalk． and Bell 103 Data Sets or equivalent units．
12880A Display terminal interface
Provides local two－way communication with a key－ board／display terminal．Data rates from 110 to 9600 baud are automatically delermined by the ferminal ex－ ternal clock signal．
12889A Hardwired serial interface
Provides high－speed，asynchronous．long distance． point－co－point data transfer between two HP comput－ ers．Capable of transmiting up to 1000 feet at 2.5 mil lion baud or up to 2400 feet al 1.25 milion batd．

## General purpose interfaces

H．P general purpose interfaces are contained on indi－ vidual plug－in I／O cards．In addition to the appropriate data registers，each interface has independent flag and control logic，allowing iwo－way communication be－ iween an HP 21 MX Series or an HP 2100 Series com－ puter，and one or more exiernal devices．All interfaces operate under either program or direct memory access control．A wide choice of interfaces allows external con－ nection via Hoating contael closures，DTL／TTL，tran－ sistor，or differential logie．

## 125518 16－Bil Felay register

Provides 16 floating contact closures and optional read－back ciscuitry for data verification．
12554A 16－git Duplex register
Provides 16 inpui and 16 output iransistor logic lines．
12597 A 8－星it Duplex register
Provides 8 input and 8 output register logic lines．
12565日 Microcircuit intertace
Provides 16 inpul and 16 outpul DTL／TTL compati－ ble lines．
12030A Universal Intertace
Provides 16 input and 16 output lines with differen－ Lial Iransmitlers and receiver for operation up to 500 feel．Can be operated in elther a single or dual－channel mode．
12604日 Data source interface
Provides 32 input lines for sensing external voltages relative to an externally provided reference level．
12555日 Digital to analog converter
Provides two analug output channels ranging from 0 $10+10$ volus with 8 bils per channel resolution，Also provides two logic level outputs for external device con－ trol．

## 59370A Hewleft－Packard Interface Bus contraller

Allows any 2100 or 21 MX Series processor 10 inter－ face with instruments that are programmable via the HP Interface Bus．The HPIB is Hewlett－Packard＇s imple－ mentation of JEEE Standard 488－1975．＂Digital Inter－ face for Progammable Instrumentation．＂

Permils automatic dialing of a compuler－generated phone number when used in conjunction with a Bell 801

ThP COMPUTERS: COMPONENTS AND SYSTEMS

## High Reliability Disc Units

NEW


Hewicte-Packard dise drives are highly reliable, random accoss mov-ing-head memory devices. They are compactly designed for use as peripheral units in small and medium size compuring systems.

## 7900A 5 Megabyte Disc Drive

This dual platter dise drive uses one permanent dise and one removable 2315 type cartidge to provide 4.9 million bytes of formated storage. This highly reliable drive has an average scek time of 30 milliseconds, and a dara ransfer rale of 2.5 million bits per second. Rotalional speod is 2400 RPM. A pholoclectric posilioning syszem, working in conjunction with a velocily transducer and voice coil driven aclustor provides exceptionally fast and aceurate head positioning over a wide temperature range. Carıridge interchangeability between drives of the same type is guaraniced. Model I321SA Power Supply is required.

## 7905A 15 Megabyte Disc Drive

This dual platicr dise drive has one removable and one fixed disc. It provides 10 megabyes of formaticd, removable storage in a frontloading cantridge. One side of the fixed disc is used for track following servo positioning. The other contains 5 megabyces of formatled dala. Track to track seek time is 5 ms and the average random seek time is 25 ms . Rotational speed is 3600 R PM. yielding a data transfer rate of 7.5 million bits per second,

## 13037A Storage Control Unft

The 13037a Storage Control Unit is a microprocessor-based controller with a powerful set of instructions implemented with a IK-24 bit word ROM. It offers a unique high level interface which simplifies the design of the CPU J/O card. Multiple drives and CPU's may be connected to the SCU. All drive-related functions have been included, leaving only the processor-rclaled design. A fexible archulecture is used which will accommodate future additions to a family of drives. Macro 1/O commands reduce CPU overhead. Error detection and correction plus scveral means of data protection are included.

## DISCU/15 13390A

A new high performance pair from HP consists of the 7905A Dise Drive and 13037A Skorage Control Unit. The DISCU/15 is designed for OEM systems where improved throughput. redundancy reliability and quick interfacing are sequired.
The DISCU/IS's high performance moving head mass storage is ideal for demanding minicomputer system applications. The capacily is from is megabyter (1 drive) to 120 megabyles (8 drives) with iwo CPU's accessing the data base. Big systum data base features such as track following head positioner, error cosrection and macro $/ / 0$ operations, plus broad environmental specilications offer the OEM a new lcuel or performance.

```
7905A Disc drive specifications
Seek Tlme: Track-to-Track 5ms(avg.)
 Average Random 25 ms
 Maximum Stroke 45 ms (max.)
Rotatlonal spoed: 3600 RPM
Seek Tlme: Track-to-Track 5 ms (avg.) Average Random 25 ms Maximum Stroke 45 ms (max.)
Rotaltonal spoed: 3600 RPM
```

Average rotalional delay: 8.3 ms
Recordling: MFM (Modifice FM)
4680 birs/inch (inside rack)
192 tracks/inch
4JJ tracks/surface: 406 usable, guaranteed
Dala tranafer rale:

## 7.5 million bits/sec

### 937.5 K bytes/sec

## Carlidge change

Spindle stop lime: 25 scc .
Spindle stard time: 30 sec .
Power requirements:
$100,120,200,220,240 \mathrm{~V}$, all $+5 \%,-10 \%$
Single phasc, 471066 Hz
500 wats (1707 BTU) al $120 \mathrm{~V} / 60 \mathrm{~Hz}$ or $220 \mathrm{~V} / 50 \mathrm{~Hz}$
Environmental apecificatlona:
$50^{\circ}$ to $104^{\circ} \mathrm{F}\left(+10^{\circ} \mathrm{C} 10+40^{\circ} \mathrm{C}\right.$ )
$8 \% 1080 \%$ Rel. Hum., non-condensing
( $78^{\circ} \mathrm{F}$ max. wes bulb)
Non-operafing speciflcations:
$-40^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}\right)$
$5 \% 1095 \%$ Rel. Hum., non-condensing
( $85^{\circ} \mathrm{F}$ max. wei bulb)
Acluator voice coil actuator with track follower strio and velocity lecdback
Interchangeability: the 7905A allows any dise wrillen on any 7905 A within its operating specification to be read on any other 7905A unit operaling wilbin thal range.

## Allitude

Operaling: Sea Level to $10,000 \mathrm{H}$.
Non-operating: $1,000 \mathrm{ft}$. below Sea Level to $15,000 \mathrm{H}$.
Tllf: $\pm 30^{\circ}$ about either horizontal axis.
Welght: $73.5 \mathrm{~kg}: 162 \mathrm{lb}$. Power Supply integrated into drive.
Vibration: meels HP Class $C$ vibration specs. Test is 15 min, in each of 3 mutually perpendicular axes. Vibration inpul of 0.010 inches from 10 to 55 Hz resulus in amplitude of 1.54 g "s at $5 \mathrm{j} \mathrm{H} \%$.
Dimenslons
Panel Haight: $10.44^{\text {in. }}(26.52 \mathrm{~cm})$
Wldih: 18.91 in. ( 48.03 cm )
17.38 in. (44.15 cחו) bchind panel

Depth: $28.00 \mathrm{in} .(71.12 \mathrm{~cm})$
$26.81 \mathrm{in} .(68.10 \mathrm{~cm})$ bchind panel

## 13037A Storage control unit specifications

Environment: HPClass B
Temperature
Operating: $0^{\circ}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ io $\left.131^{\circ} \mathrm{F}\right)$
Nor-Operating: $-40^{\circ}$ to $75^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.167^{\circ} \mathrm{F}\right)$
Humidity: $0 \%$ 10 $95 \%$ Non-condensing

## Encodlng: MFM

Altitude: operating 0 to 15.000 ft.
Non-Operating: 0 to 25.000 n .
Card Size: $11 . S^{n} \times 13.7^{n}$. SCU has iwo emply slots available with 3
Amps al $+5 V$ on one.
Logle Levels: Schollky TTL
Line Voltages: $100,130,220,240 \mathrm{~V}$ ac at 50 or 60 Hz . All $+5 \%$, $-10 \%$.
Power Disslpation: $190 \mathrm{~W}(4-48$ BTU) al $120 \mathrm{~V} / 60 \mathrm{~Hz}$ or $220 \mathrm{~V} / 50$ Hz
Welght: 15.9 kg ( 15 lb ).

## Dimenalons

Panal Height: 5.25 in. ( 13.34 cm )
Wldth: $18.91 \mathrm{in} .(48.03 \mathrm{~cm})$
$16.75 \mathrm{in} .(42.55 \mathrm{~cm})$ behind panel
Depth: $22.69 \mathrm{in} .(57.63 \mathrm{~cm})$
Options $21.55 \mathrm{in} .(54.61 \mathrm{~cm})$ behind panel
908: Rack Flange Kit for 7900A or 7905A
Price
908: Rack Flange Kil for I3037A or I3215A
add \$15

Model number and name
Model 7900A Disc Drive
add $\$ 10$

Model I3215A Power Supply
DISCU/IS
Model 7905A Add-on Drive
\$12,800
ofom onces and nacicounl schedeles are avallate.


Hewletr-Packard offers a wide varien of digital magnetic tape units in its 7970 Serics. plus a number of fully interfaced magnelic lape subsystems.

## 7970 Magnetic tape units

Hewlet1-Packard Scrics 7970 Digital Magnetic Tape Units offer a compact and ecliable solution to your lape system needs. Units are available in a wide range of 7 -lrack and 9-1rack configorations utílizing cither NRZI or phase encoded electronics. All Series 7970 Tape Uniss have been designed to include the same fealures you would expect to find in higher-priced and more complex equipment. Plus you receive complete interchangeability of data with olfher IBM or ANSI compatible equipment.

Reel motors provide direct drive, eliminating troublesome belw and pulleys. Tape tensioning is performed by photoresistive conirolled iension arms that eliminate the need for vacuum system components. Head absemblics consist of read stack. write stack and full width erase head. All major transpore assemblies are casily occessible for servicing and/or replacement when required.

## Magnetic tape subsystem for use with 2100/21MX based systems

12970A Magnetic tape subsystem
59500
NRZ1 format 7970B, 9-irack tape drive subsystem. Provides 800 cpi capability at speeds of $25,37.5$. or 45 ips .
12971A Magnetic tape subsystem
$\$ 12,400$

12972A Magnetic lape subsystem
Phase-encoded format 7970E, 9-track tape drive subsystem. Provides 1600 cpi capability at speeds of 25. 37.5. or 45 ips.

	Densily											
Model-Option	200	556	800	1600	master	slave	7-1!	9.17	NR21	PE	RO	RRW
$\begin{aligned} & 79708 \cdot 127 \\ & 79708 \cdot 136 \end{aligned}$	-	-	$\bullet$		$\begin{aligned} & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	-	-	$\bullet$			$\bullet$
$\begin{aligned} & 7970 \mathrm{E} \cdot 150 \\ & 7970 \mathrm{E} \cdot 15 \vdots \end{aligned}$				$\bullet$	*	-		-		$\bullet$		$\cdots$
$\begin{aligned} & 7970 \mathrm{E} \cdot 152 \\ & 7970 \mathrm{E} \cdot 153 \end{aligned}$				$\bullet$	-	-		-		-	-	
$\begin{aligned} & 7970 E \cdot 162 \\ & 7970 E \cdot 163 \end{aligned}$			$\bullet$	$\bullet$	-	-		-	$\bullet$	$\bullet$	$\bullet$	
$\begin{aligned} & 7970 E \cdot 164 \\ & 7970 \varepsilon \cdot 165 \end{aligned}$			-	$\bullet$	*	-	-	$\bullet$	-	$\bullet$	$\bullet$	

All above units operate at 45 ips
RAW = Read After witle.
$R O=$ Read Only
Master $=$ initial PE unit
Slave $=$ additional $P$ P unit ( 3 pet master )

## Options

001 Change speed to 37.5 ips
002 Change speed to 25.0 ips
003 Change speed to 22.3 ips ( 7970 E only)
007 Add firont panel unit select (available with Opt. 020)
020 Add front panel purity selcct ( $7970 \mathrm{E}-164$ and 165 only)
021 Add dual speed (7970E -162, 163, -164, and -165 only)
Tape speed: 22.5. 25. 37.5. or 45 ips .
Real diameter: up to 10.5 in . $(26.7 \mathrm{~cm})$.
Tape. computer prade.
Widih: 0.5 in.
Thickness: 1.5 mils
Tape tension: 8.5 ounces nominal.
Tape format: IBM/ANSI compatible
Rewind speed: 160 ips
Start/Slop Travel: Read-After-Write: $0.187 \mathrm{in}, \pm 0.020 \mathrm{in}$
Powes requirements: 115 or $230( \pm 10 \%) \mathrm{V}$ ac, 48 to 60 Hz single phasc. 400 VA maximum (on high line).
Operating environment (hardware)
Ambient temperature: 0 to $+55^{\circ} \mathrm{C}\left(+3210+131^{\circ} \mathrm{F}\right)$.
Relatlve Humidity: $20 \%$ to 80 g noncondensing
Alltude: $10,000 \mathrm{ff}$. ( 3048 meters)
Physical characteristics
Slie: $610 \times 483 \times 400 \mathrm{~mm}(24 \mathrm{in}$. H . I9 in. W, 15.75 in . D). Depih
from mounting surface, 305 mm ( 12 in.).
Welght: $63.5 \mathrm{~kg}(140 \mathrm{lb})$ maximum.
Model number Price
7970B-127
7970E-151
$\$ 6360$
For complete spetifications and a lis! pl accessories, reguest technical dats
theets ( 9970 B/C or $7970 E$ I DEM Drices and discount schedules art available:


Hewlett-Packard provides iwo powerful icrminats in its new interactive display terminal family. The firsi unit, the HP 2640A Terminal, includes a versatile microprocessor and up $10 \$ \mathrm{Kbyics}$ of 4 K RAM semiconductor memory to provide features unavailable in terminats at its low price. The HP 2644^ Data Station adds mass memory for onor off-line program development. dala handling and edifing. tape copying and tape to print capabilities.

Thesc units are particularly usciul for:
entering and preparing data
displaying and ediling information
programming development

## Family features

Easy to read display: both lerminals feature a $\$ \times 10$ inch rectangular display. This display has a capacity for 1920 characters ( 24 lines of 80 characlers each). These characters are formed by a $7 \times 9$ dot matrix pencrated in a $9 \times 15$ dol character cell. High resolution is oblained by dol shifting. Enlareed character cellis, underlining, line desoenders and inverse video leatures improve display readability. Flick. es is reduced by 60 rrame/second refresh rates ( 50 frames/second on mos( non U.S. units).

Full ediling capabiltiea: the terminals operate both character by character and one block of data al a time. Terminal functions can be initiated from the keyboard or from the computer. Text can be composed and edited locally before transmission to the central procebsor or after fransmission. Editing and CPU connecl times are significantIy reduced by features such as:

- characler or line insertion anó deletion.
- addressability and positianing contol (ud. down, leil, right and home)
- programmable protected fields in any combination ol display po. sitions.
- oflscreen storage with scraling (scrold ug. scroll down, next page, previous page).
- slandard horizonial labulations and prolecled field labulations.
- Iransparent display conirol codes.
- eight special function keys for user-delined roulines. such as forms entry or on-bine error delection, and
- positranable memnay prolection

Data communlcations capablities: the terminals are serial asyochronous, full or half duplex and meet EIA RS-232C specifications. Bolh units are Bell 103 and 202 modern compatible with switch selectable data rates of $100,150,300$. 1200 and 2400 baud. Either unir is easily interfaced to a hard copy device.

Versatlle heyboard: the delachable, expanded ASCII keyboard is easy and lexible enough to fill a varicty of noeds. It contains a fen-key numeric pad. cursor contro), tab and page contral pad. cdieng. control and special function keys. A simplified keybaard for the 2640A is optional.

Dynamic memory allocation: the ierminals dynurnically pack information into memory permiting 8 to 50 lines of information to bc stored in 1,024 characters of display memory' Winh memory expansion to 8 Kbytes, over 3 pages of data cim be stored. Twenty four lines may be vicwed al a time by using the rall up, roll down, next page and previous page keys.

Pop-in expandablity: Digital electronics are containcd on easy to remove printed circuil cards. Additional cards can be inserted for a choice or options.

Easy self test: by depressing a single bution on the keyboard you gel an immediale indication of the status of the memory, firmware and display.

Plugiln character sets: in addition to the standard 64 character Roman sel and oplional 128 Roman set, up Io 3 additional 128 charaeter sels may be added. Adjacent characteri on the display may be from any of the four optional charicter sets. Inverse video presentation of data is offered as a standard festuse with underline, blinking and hall-bright oprions. Mathematics and line drawing characier sels are also available.

Microprocessor control: much of the power and versatility of the terminals is oblained through a sophisticaled microprocesior. This device manages menory allscation, data communication functons, keyboard scanning operalions, and display' functions.

## Model 2640A Terminal

This member of the Hewlett-Packard Interactive Display Terminal family has been widely iecupted in the marketplace for its versatility. how price and casce ur ure.


## 2640 General specifications

Screen size: $127 \mathrm{~mm}(5 \mathrm{in}.) \times 254 \mathrm{~mm}(10 \mathrm{in}$.)
Screen capacily: 24 lines $\times 80$ columns ( 1,920 characters)
Cheracter generallon: $7 \times 9$ enhanced dol marrix: $9 \times$ is dat character cell; non-interlaced raster scan
Character size: $2.46 \mathrm{~mm}(0.097 \mathrm{in}$ ) $\times 3.175 \mathrm{~mm}(0.125 \mathrm{in})$.
Charaoter set: 64 upper-cisce Roman
Cursor, blinking-underlinc
Display modea: white on black: black on whitc (inverse video)
Retresh rale: 60 Hz ( 50 Hz oplionsl)
Tube phosphor: PA
Imploston Protection: bonded implosion pancl
Memary: MOS; ROM: 8 XbyIa (program): RAM: sid. 1024 bytes; 8192 bytes max.
Koyboard: full ASCil Code Keyboard, 8 special function keys, and 12 additional control and ediling keys; Ten-key numeric pad; Cursor pad: Multi-speed outo-repeat; N.key roll-over; Stand-alone, 4 foot cable.

## Data communications

Date Rate: 110. 150. 300. 1200, 2400 baud, and external switeh selecrable ( 110 selects nwo stop bits)
Communications interlace: ElA standard RS-232C: 103 and 202 modem compalible
Trangmlesion modes: full or half dupicx, asynchronous
Operaling modes: on-line; Off-linc: Character, Block
Parlty: swilch seleclable: Even. Odd, None

## Power Requirements

Input valtage: $110(+15 \%,-20 \%)$ at 60 Hz
$220(+15 \%,-20 \%$ at 60 Hz
Power consumplon: 75 W to 125 W max.
Environmental conditions
Temperature, Iree apace amblent:
Non-operaling: $-4010+75^{\circ} \mathrm{C}\left(-4010+167^{\circ} \mathrm{F}\right)$
Oparating: $010+55^{\circ} \mathrm{C}\left(+3210+131^{\circ} \mathrm{F}\right)$
Humidly: 5 to $95 \%$ (non-condensing)
Heat Dissipation: 426 BTU/hour
Altifude:
Non-operating: sea level to 25,000 feel ( 7620 melers)
Operaling: sca level to 15.000 feel ( 4572 melers)
Vibration and shock:-
Vibration: $30 \mathrm{~mm}\left(0.012^{\prime}\right) \mathrm{pp} .101055 \mathrm{~Hz}, 3$ axis
Shock: $30 \mathrm{~g}(294 \mathrm{~N})$. $11 \mathrm{Ms}, 1 / 2$ sine


Physical specifications
Display monitor weight: 37 pounds ( 16.8 kg )
Keyboard welght: 7 pounds ( 3.2 kg )
Display monitor dimensions: $444.5 \times 457.2 \times 342.9 \mathrm{~mm}(17.5 " \mathrm{~W}$ $\times 18^{\prime \prime} \mathrm{D} \times 13.5^{\circ} \mathrm{H}: 647.7 \mathrm{~mm} \mathrm{D}\left(25.5^{\circ} \mathrm{D}\right)$ including keyboard Keyboard dimensions: $44.5 \times 215.9 \times 88.9 \mathrm{~mm}\left(17.5^{*} \mathrm{~W} \times 8.5^{*} \mathrm{D}\right.$ $\times 3.5^{\circ} \mathrm{H}$
Product support
Warranty: 90 day on-site parts and labor warranty
Hardware supplied: 2640A Interactive Display Terminal
Documentation suppled: model 2640A interacive Display Terminal Operating and Reference Manusl (2640-9001I) Installation and Scrvice Manual (2640-90014)

## Model 2644A Mini DalaStalion

This terminal has the same user benefits as the 2640 A Terminal but also inciudes mass storage. Mass storage is obtained with dual mag. netic tape units and compact removable magnetic tape cartridges.

With the additional capability to store and transfer large amounts of information, the HP Mini DataStation becomes an integrated data syslem. Program preparation, data entry, editing. tape copying and tape to print functions are all standard capabilities in the stand alone mode.

To case dota entry, forms can be stored on one data cartridge and selectively displayed by an operator in seconds. Data accuracy is improved by protected fields, video highlighting and simplified insertion and deletion capabilities. Once date is collected, it can be stored on the second data cartridge by puihing a single button. Off-bine or on-line, these capabilities can significantly reduce cemtral system CPU loading and connect lime.

The mass storage medium, a Mini Data Cartridge is a highly reliable alternative to $1 / 3^{4}$ magnecic tape cassette. This unit is available only on the HP 2044A Data Station.

The two cartidges are capable of storing up to 110 kilobytes of formatted data cach. Variable length records from I to 256 byies, may be stored on a single data cartridge in ASCll or binary format. Direct access is provided to 255 lites.

The lape mechanisms are miniature units containing precision ape guides to assure cartridge interchangeability without loss of data. A single motor drive powers the unit and assures high reliability. Full lape width recording reduccs data loss. A unique isoelastic band controls tape tension to minimize tape wear.

Eight user function keys provide additional capabilities on- and offline. In the off-line mode, thesc keys are used to provide complete control of lacal tape operations. In the on-line made. depressing these eight function keys sends a special two character sequenee to the central system or CPU that ean initiate program subroutines.


## 2644 General Specifications

Scre日n size: $127 \mathrm{~mm}(5 \mathrm{in}$.) $\times 254 \mathrm{~mm}$ ( 10 in.$)$
Screen capactly: 24 lines $\times 80$ columns ( 1.920 characters)
Character generafion: $7 \times 9$ enhanced dol matrix: $9 \times 15$ dol charaeter celli non-interlaced raster scan
Character size: $2.46 \mathrm{~mm}(0.097 \mathrm{in}$ ) $\times 3.175 \mathrm{~mm}(0.125 \mathrm{in}$.)
Character set: 64 upper-case Roman
Cursor: Blinking-Underline
Dlsplay modes: White on Black; Black on White (Inverse Video)
Relreshrate: 60 Hz ( 50 Hz optional)
Tube phosphor: P4
Implosion protecllon: bonded implosion panel
Memory: MOS: ROM: 12K byles (program): RAM: 4096 bytes
Keyboard: Full ASCII Code Keyboard, 8 special function keys, and
16 additional control and ediling keys: (en-key numeric pad; Cursor
pad: Multi speed auto-repeat; N-key roll-over: Stand-alonc, 4 Cool
cable.
Cartrlage tape: two mechanisms
Read/Write speed: 10 ips
Search/rewind apeed: 60 ips
Recordlng: 800 bpi
Mini carlidge: 110 kilobyte capacity (maximum)

## Data communications;

Data rate:
ASCII Mode: 110. I50. 300, 1200, 2400 baud, and external switch sclectable ( 110 selects two stop bils)
Communlcalions interface: EIA standard RS232C; 103 and 202 modem compatible
Tranemission modes: full or half duplex, asynchronous Operaling modes: Or-linc; Offaline; Character, Block
Parlty: switch seleclable: Even. Odd, None
Blnary mode: 9600 boud output from terminal

## Physical specifications

Display monitor weight: 21.3 kg ( 47 lb )
Keyboard welght: 3.2 kg (7 lb)
Display monlior almensions: $444.5 \mathrm{~mm} \mathrm{~W} \times 457.2 \mathrm{~mm} \mathrm{D} \times 342.9$ $\mathrm{mmH}\left(17.5^{\prime \prime} \mathrm{W} \times 18^{*} \mathrm{D} \times 13.5^{\prime \prime} \mathrm{H}\right)\left(647.7 \mathrm{~mm} \mathrm{D}\left(25.5^{\circ} \mathrm{D}\right)\right.$ including keybosrd)
Keyboard dimensions: $444.5 \mathrm{~mm} \mathrm{~W} \times 215.9 \mathrm{~mm} \mathrm{D} \times 88.9 \mathrm{~mm} \mathrm{H}$ (17.5" $\mathrm{W} \times 8.5^{\circ} \mathrm{D} \times 3.5^{4} \mathrm{H}$ )

Environmental specifications
Temperature, free space amblenl:
Non-operating: $-1010+65^{\circ} \mathrm{C}\left(-1510+50^{\circ} \mathrm{F}\right)$
Operating: 5 to $+40^{\circ} \mathrm{C}\left(+41\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$
Humldfy: 20 to $80 \%$ (non-condensing)
Heal Disglpation: 483 BTU/hour
Altitude:
Non-operating: sca level 1025,000 feel ( 7620 meters)
Operaling: sea level to 15,000 feet ( 4572 meters)
Vibratlon and shock:-
Vibration: $30 \mathrm{~mm}\left(0.012^{\mathrm{N}}\right) \mathrm{pp}$. 10 10 $55 \mathrm{~Hz}, 3$ axis
Shock: 30 g, II Ms, $1 / 2$ sine

- Type sesied to wealify lor pormol stinpipilia and mandinge

Power requirements
Input voltage: $115(+10 \%,-23 \%$ ) at 60 Hz
$230(+10 \%,-23 \%)$ at 60 Hz
Power consumplion: 85 W to 125 W max.
Produc: support
Warranty
30 day on-site paris and labor warrancy
Model 2644A Data Station
Quantity discounts available.

# COMPUTERS: COMPONENTS \& SYSTEMS <br> Optical mark readers for data entry and collection <br>  

## - Flexible card format

- High speed operation
- Easy to interface


The Huwicte-Packard Models 7260A and 7261A Opical Mark Retaders are detk-tisp datit (ransmission insirumenls. The Readers oplically (pholo-reflectively) read standard $82.6 \mathrm{~mm}(31 / 1 \mathrm{in}$ ) wide paper infermation processing cards. Card lengiths from 187.3 mm to 282.6 mm ( $71 / \mathrm{s}$ in. $1011 / \mathrm{in}$.). having 40 or $8(0$-column marked or keypunched information using on-data or after-data clocking are acceptad. Wilh Oplion 003. the Readers can also read tards without clock marks. They ean handie 4SO processing cards at a time at feed rates of up 10100 cards per ninule.

## 7260A Optical Mark Reader Specifications

Code capacity: recognizes 128 characters Hollerith code Other codes uvaluble on request.
Translation: Iranslates to bit serial 7-level ASCII with selectable parity.
Operational modes: demand and conlinuous feed.
Parily: generates and ranismits selectable parity.
Data rates: 110, 150,300,600, 1050, 1200, 2400 baud. switch scleciable.
Tab cards dimensions: standard tab card sisc $82.6 \times 187.3 \mathrm{~mm}(31 / 4$ $\times 7 / 8$ inches) or $82.6 \times 282.6 \mathrm{~mm}$ ( 31 ; up $10 ~ 111 / 4$ inches).
Hopper capacity: 450 cards inpul, 450 cards oulput.
Inlerface: RS-232C and CCITT V24.
Inlerface Connectors: 2 Cinch/Cannon DBM-2sSiscar pancl.
Invalld Code: iransmils a selectable character when dala oulside 128 character sel is marked.
Mute and Line - Local Operallon: allows operation with local uerminal, and aljous muting of terminal Printer.
Ninemonle Conirof: allows 3 leter mnemonics to conirol Reader when control codes would interfere with system operation.

- OEM and quantity discounts available
- Service contracts available

Image: 1 ransmits Binary card image as two syping characters with solectable parity. activated by conirol codes from computer.

## Software available

7260A OMR DOS HI-B Logical Driver (ACROI) Binary Tape

07250-16001
Manual
07260-90001
72614 Optical Mark Reader Specifications
Cord code and output codes: the information from each card is convered by the Reader to a parallel 12 -channel format. Tab cards dimensions: slandard lab card size. $82.6 \times 187.3 \mathrm{~mm}$ ( $31 / 4 \times 7 \%$ inches) or $82.6 \times 282.6 \mathrm{~mm}$ ( $31 / 4 \mathrm{up} 1011 / \mathrm{s}$ inches).
Hopper capaelty: 450 cards input, 450 cards ouipul.
interiace connector: 36 Pir Cinch Micro-Ribbon - rear panel.
Software avallable
7251A - DOS III-B
7261A - DOS III-B Driver (DVR-15) Blnary Tape

> 24307-16017
$\begin{array}{ll}\text { Manual } & 24307-90020\end{array}$
7261A - RTE Driver (DVR-15)
alnary Tapa
92201-16001
Manual $09001-93014$
7281A Dlagnostlc
Glnary Tape 07261-16005
Manual 07261-9000s
7251A-acs Driver (D.15) Relocatable Tape 20819-60001C
Manual 12602-9002
7261A - SIO Drivers 4 K Binary Tape $20520-60001 \mathrm{C}$ $8 K$
Binary Tape
$20521-60001 \mathrm{C}$ 16 K Binary Tape $\quad 20522-60001 \mathrm{C}$ Manual 12602.90022

All software for Model 7261A is included in the 12986A
Optical Mark Reader Subsysiem.

## Common Speclifications

Dimenslons: $610 \times 368 \times 305 \mathrm{~mm}$ ( $24 \times 141 / 2 \times 12$ inches).
Welght: net, $24.6 \mathrm{~kg}(54 \mathrm{lb})$. Shipping. 33.2 kg ( 73 lb ).
Environment (exclusive of tab cards):
Storage temperature: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$.
Exposure power on: $-20^{\circ} \mathrm{C}$ 10 $+65^{\circ} \mathrm{C}$
Meets specificallons: $0^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}$
Humidly. $5 \%-95 \%$ al $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Vibration: $10-55 \mathrm{~Hz}, 01$ in, peak-to-peak excursions
Environment (tab cards): from $20 \%$ 10 $75 \% \mathrm{RH}$ at $23^{\circ} \mathrm{C}$
AG Power: (sec Option 005 for $220 / 240 \mathrm{~V}$ ac operation) 100 or 120 V
ac. $+5 \%-10 \%$, swich selected $47.5 \mathrm{~Hz}, 66 \mathrm{~Hz}: 300 \mathrm{VA}$
Line fuse: 4 A 58
Transformer fuse: 2 A SB
U.L. approval: the reader has U.L. approval and CSA approval pending and meets IEC specifications.

Optlons	Price
002: Select Hopper	add \$230
003: Encoder	add \$230
004: Bell	add \$60
005: 220,240 V ac +5\% - 10 石 (line fuse 2 A SB,	
Transformer ( A SB).	N/C
006: 50 Hz	N/C
421: DOS III Logical Driver (7260A only)	add \$55
Model number and name	
7260A Oplical Mark Reader	\$3820
726:A Optical Mark Reader	\$3290
I2986a Oplical Mark Reader Subsystom for 7261A	
with interface to HP 2000 computer systems (includes sollware described above)	\$4100

Automate Your Process with Either Controller:


## Description

When you automate your process with an HP Mulkiprogrammer, you stan off on a foundatioo of proven components that are easily interfaced and readily expandable. As shown above, the Multiprogrammer búilding-block components include a controller, two types of mainframos and a family of programmable plug-in cards.
For small systems. you can start with a minicompuler or HP galculator (with 59500A interface unit). a 6940 B Mainframe and from one 1015 plug-in cards. The cards are randomly addressed by the controlles program allowing them to be mixed in any order within the system without upselling the operating software. The program "writes" dala on oulpul cards or "reads" data from input cards. An oulpul or "write" operation is carried out by simply addressing the desired card and depositing 12 bits of dala in the card's storage registers. Conver-
sion circuits then develop the oulpur function (contant closures, D/A conversion, stepping motor drive, etc.) unigue to that lype of output card.
To "read" dala, the controller sends out the desired input card's address and reads in digital data from the external device.

System expansion up to 240 1/O functions is easily accomplished by adding 6941B Extendes mainframes, wach accommodating up to is plug-in cards.

Stown in the adjacent table arc the functions and applications of most Multiprogrammer plug-in cards. More detalled specificalions for all 1/O cards and mainframes are given on succeeding pages. Complete lechnical data on both computer and calculator-based Multiprogrammers is available free of charge from your local HP Field Engincer. Ask for literature Nos. 5952-3956. -3977, and -3978.

## Multiprogrammer I/O card functions

Functions			Applications	Cards Used
SIIMULU$S$		Programmable DC Voltare and Current	The oulput voltage (up to 100 V) and current tup to 1000 A) of thilly different HP power supplies can be programmed 10 provide bias in aütomatic test systems of control ol olectromechanical process equipment.	Resistanice Oulpu: 69501A-69513k
		Digital-to-Analog Conversion	Iwelve-bit voltage and curent DAC's for strip chart $x-y$. and arialog lape recordings as well as control of amalog programinable instruments and process control devices wilt $0-5$ voll er 4.20 ma inputs.	Voltage DAC 6932)B:Current DAC, 69370A; Regulator 693518.
		Time and Firequency Relarence	One-shot liming oulses, programmable from $1 \mu \mathrm{sec}$ to 40 days, and crystal-controlled pulse trains in fixed trequencies of 1, 10. $100.1 \mathrm{~K}, 10 \mathrm{~K}$, and 100 kHz serve as lime-base ralerences for control, measurement, and data acquisilion.	Timer, 69600A: Frequency Ref. 69601 A
$\begin{gathered} M \\ E \\ A \\ S \\ U \\ R \\ E \\ M \\ E \\ N \\ T \end{gathered}$	$\frac{\frac{1}{\frac{2}{T}}}{\frac{1}{T}} v_{x}\left\{A_{x}\right.$	Vollage. Current and Resislance Measurements	Measure vollages in the presence of 100 V of commonmade noise Conrecting a resistor across the inpat permits current measuremenis fot 4.20 mA current loops used in process control. Combire viltage monitor and current DAC cards for resistance measurements.	Voltage Monitor, 69421 A; Current DAC, 69370A; Regulator 69351 .
	$\stackrel{1}{t} \wedge \wedge \wedge M$	Fiequency Measuramenis	The pulse counter card accumulates counts over a precise furne interyal when a programimable hiner card is connec!ed to the enable line of the counter The progran divides the count by the time interval to micasure freguencies trom 700 KHz to 0.001 Hz .	Pulse Counter. 69435A, Vimer. 69600A.
		Pulse Counting, Praset and Up/Down.	Counter may be presel to any value within court ranee of 0 10 4095. The progran can exarfine the counter withoul disturbing the counting process (read-on-the-fly).	Pulse Counter. 69435 A
$\begin{aligned} & C \\ & 0 \\ & N \\ & T \\ & R \\ & 0 \end{aligned}$		Stepping Moter Cortrol	One output word to card produces from 1 to 2047 square. wave pulses at eilther of two outpuls (CW or CCW) to contrel muthe lransiators. Output pulses are also used for pulseIrain update of supervisory conitrol stations.	Stepping Motor Control, 69335A.
		Digital Output and Switching	Twelve-bils of dala in $\Pi$ L, open collector, or SPST reiayconlacl form provide digital control of instruments. indicalors, and solid-stale AC relays.	ITL 69331A: Open Collector, 693324: Relay Oill. 69330A: Relay Out/Readtack, 69434 A.
		Time Interval Measuremenl	Elapsed thme briween Iwo events can be measured in the range at $10 \mu \mathrm{sec}$ to 1 hour by counting a known frequency over the unknown interval. The program divides the accumulated count by the known frequency to determire the inferyal.	Pulse Counles, 69435A: Frequency Reserence, 69601 Á.
$\begin{aligned} & A \\ & C \\ & Q \\ & U \\ & 1 \\ & S \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & H \end{aligned}$		Scanning and input Mulliplexing	Simple single-ended swilctes of riulti-wire scanner matrices are formed by interconnecling relays on a Relay Oulput or a Relay Dutput/Readback Card. The relay Dulpul eard scanners act as input milltiplexers for Voltage Monitor, Pulse Counter, and Diglal Input Cards.	Relay Outpul. 69330n, Relay Outpul/Readback. 69433A.
		Event Sensing	It is often necessary for a system to respond quickly to alarm conditions, operator intervention or other requests for Immediate service. This service request is made via a program interrupt zenerated by eithet an evenl sense or a process intertupl card.	Evenl Sense. 6943ak: Poncess Interrupt. 69436 شि.
		Digilal Ingul	Oigital input raids accepl 12 bits of data from digital measuring insiruments. push. 2 uthons, switches, relays, and other figital dewices in the form of logic tevels go contact closures. Digutal dala scurces with more than 12 bits of dala use several digital inpul cards.	Digitäl Input, 69431A: Isolated Digital Inpul, 69430A.


#### Abstract

The Muliprogrammer mainframes and plug-ins function together as an integrated unit possessing many built-in systems features. Among these Features arc: (1) Diginal data storage on plug-in outpul cards to reduce controlIer processing overhead. (2) The ability to program most output eards to a safe state (in case of system failure or alarm). (3) The ability 10 program specific outpul cards individually or in selected groups. (4) The gencration of a service request when digital lines being sensed change slate. (5) The program sclection of date transfer fates between the controller and the Muluprogrammer to proceed either at the maximum possibic rate or at a rate governed by a paricular device being conirolled by a plug-in card. (6) A froil-pancl switch register on the 6940 B mainframe which permits mianual control of the system.


## Minicomputer-based multiprogrammers

The program stored in the Minicomputer directs each plug-in card in the Multiprogrammer and Multiprogrammer Extender mainframes to control, meature, or monitor system variables. The minicomputer's binary sulput commands are digitally stured on Muluprogrammer oulpul cards for conversion to control signals. Multiprogrammer input cards convert system risponse and alarm signals into binary data that the minicomputer can gather and analyze quickly.
Hewlett-Packard computers are interfaced to the Mulliprogram. mer with HP Interface Kil 14550A, which contains the HP compuler 16-bit duplex I/O card. eomputer-to-6940B cable, verification and driver soflware. and plug-in lest cards and cable. Computers with word siect different from 16 buls, may also be interfaced with Multiprogrammers. For eximple. HP Interface Manual 5952-393s describes how to use DEC logic modules and HP Model I1546A cable to consiruct on inteflace for the 13-bil DEC PDP-8/I and the Muliprogramumer.

## Accessories for minicomputer-based mutilprogrammers

14550A interface kit for HP computers: this kil provides all the equipment necessary to install, verify, and operate a Multiprogrammet wilh HP 2100 series computers. This kit includes:

1. A specially modified 12566 B Card. I (o-bit duplex register card that plugs into the HP computer. Hardware manuals, a test connector and a software verification routine for the Mierocircuit card are provided in the kit.
2. A 14540A Multiprogrammer-to-125668 12-100 cable.
3. A 09431 A Digial Inpul Card with Oplion 095. 69331A Digital Oulpul Card. 14550-60001 Slot Verification Cable, and 14910A Complete Diagnostic rape. This equipment is used to completely test the digital paths between the computer and the Mierocircuil card. 14540A cable. Multiprogrammer Mainframe, 14541 A Chaining Cables, 6941 B Multiprogrammer Exienders and each Multiprogrammer plug-in I/O slot. The diagnostic also tests the front panel lamps and proximity switches by interiacing with the operator.
4. Binary object tapes and software operating manuals for BCS. DOS/DOS-M, and RTE Multiprogrammer Drivers. Also included is a cape and manual for the BCS Muhtiprogrammer Library that allows the Multiprogrammer BCS Driver to be used with FORTRAN or ALGOL.
5. Instructions that allow you to comptetely test the Interface Kit and Mainframes. On-ste installation by HP is not included with the kit. The kit is designed to help you become familiar with the Multiprogrammer as you install it and verify its operation.

14548A Intertace cable for DEC PDP-8/1: this cable connects the Multiprogrammer wilh interface hardware that functions as a 16 -bil duplex register under control of the 12 -bit DEC PDP-8/I. Instructions for assembling ithis interface from DEC logis modules (not included with the cable) are provided in HP Interface Manual 5952. 3935

14540A Main Input cable: this 12 -foot cable connects the Mulliprogrammer to the specially Modified Ground True 12566B Microcircuit Card. This cable is included in the I4550A Interiace Kit.
14541A Chaining cable: this cable connects 6940B to 69418 Mainframes and 6941 B to other 6941 $\mathrm{B}^{\prime} \mathrm{s}$. Cable is $18^{\prime \prime}$ long.
14533日 Pocket programmer: the Pocker Programmer is usco 10 chock digital inpui/oulput connector Jl of the 6940 B . Changes in the switch positions on the Pocket Programmer are visible on the fron: panel of the 6940 B . and the oulputs of the 6940 B proximity switches are available at lest points on the Pocket Programmer.
14534A Pocket programmer cable: the Pocket Programmer plugs direcily into the 6940B. The 3 -foot extender cable allows you to operste the Pocket Programmer in front of the 6940B.

## Calculator-based HP-IB multiprogrammers

Unless your automatic system requifes ihe high-speded execution of a computer. therc's a good chance you can take advantage of the economy. hexibility, and ease-ol-programming offered by a caleulator. based HP-IB - Multiprogrammer. The heart of the HP-1B - Mulliprogrammer approach to real-time system design is the HP Programmable Calculator. Any of threc calculators can be used: Model 9830A. 9820A. or 9821A.
9830A BASIC language calculator: powcrful capabilities, lypewriterstyle keyboard. magnetic tape cassithe programming and data recording: large memory option.
9820A Aigebralc language calculator: magnetic cara progeamming and recording; conversational alphanumeric display and print-

> er. 0,0

9921A Algebraic language calculator: magnctic lape cassettc programming and data recording: alphanumeric display and printer.
The components required to assemble a basic system include an HP calculator, a 59405 A HP-1B-C:Iculator Interface. a 59500 A Interface Unit, a 6940 B Muliprogrammer, and from 1 to 15 programmable plug-in cards. 6941B Extenders and additional plug-in cirds permit further system exponsion.

## Cabling for HP-IB multiprogrammers

Calculator-10-59500A Intertace Unlt: slandard 72-inch ( 1.8 meters) HP-IB cable No. 10631 B, supplied with 59500A.
59500A-10-6940B: standard 18 -inch ( 0.46 meters) chaining cable No. 14541A. supplied with 59500A.
69408-10-6941B: standard 18 -inch ( 0.46 meters) chaining cable No. 14541 A . purchased separately. Lenglhs up to 100 -feel ( 30 neters) are available on special order.

## Multiprogrammer plug-in card-to-user's system:

nector provided with most plug-in cards for user to fabricate own cable.

## Data package

A complete data package is supplied with each purchase, including a User's guide for the selected calculator, an HP-IB-Mulliprogrammer User's Guide. and Operating and Service Manuals for the various Multiprogrammer mainframes and plug-in cards.

## Specifications

## 69408/6941B Common specifications

Input/output card positions: maximum of 15 plug-in input or output cirds per mainframe. Side-hinged front pancl provides access to card slons.
Malnframe data connectors: two 50 -conlact. ribbon connectors.
Data transler rate; 20 k words $/ \mathrm{sec}$.
Maximum dala resolution: 12 bils per plug-in card.
Accessories furnished: Data Inpui Plug, PC Board Extender Card. Cooling: natural convection.
Temperature: 0 to $+55^{\circ} \mathrm{C}$ uperating, $-4010+75^{\circ} \mathrm{C}$ storage.
Dlmenalons: $425.4 \mathrm{~mm} \mathbf{W} \times 172.2 \mathrm{~mm} \mathrm{H} \times 539.8 \mathrm{mmD}\left(16.79^{2} \times\right.$ $\left.6.78^{\prime \prime} \times 21.25^{\prime \prime}\right)$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}$ ac (selectable), 48 to $440 \mathrm{~Hz}, 230$ walls.

## 69408 Specifications

Front panel controls: power ON/OFF switch and indicator lamp. REMOTE/LOCAL switch for selecting computer or manual control. 19 proximity switches for manual data entry and control.
Interfacing: a 6940 B nainframe aquipped with the standard interface card is designed to interface with binary sources emplaying TTL or DTL microcireuit logic. An interface kil (14550A) conlanning the necessary hardware and software to interface the 6940日 with any Hewlett-Packard computer is avsilable.
Weight: net, 15.9 kg ( 35.0 lb ). Sbipping, $19.5 \mathrm{~kg}(43.0 \mathrm{lb})$

## 6941B Specifications

Front panel controls: power ON/OFF switch and indicator lamp
Weight: nel. 15.2 kg ( 33.5 lb ), Shipping, $18.3 \mathrm{~kg}(40.3 \mathrm{lb})$.

## 59500A Interlace unit specifications

Converis the serial ASCII alphanumerics of the HP-IB to the 16-bit paraliel format required by the $6940 \mathrm{~B} / 69418$ Multiprogrammer. The 59500A design is optimized for case of programming.
Front panel controls: power ON/OFF switch and indicator. LED's indicate mode and gate/ $\Pi$ ag status between HP-IB and the Multipro. grammer for system check-oul and maimenance.
Data transier lime (with calculator as controller): typically 30 msec for input data (ransfer; 3 msec for output.
Cooling: natural convection.
Temperature: 0 to $+55^{\circ} \mathrm{C}$ operating: -40 to $+75^{\circ} \mathrm{C}$ storage.
Dimensions: $425.4 \mathrm{~mm} \mathrm{~W} \times 82.6 \mathrm{~mm} \mathrm{H} \times 425.5 \mathrm{~mm} \mathrm{D}\left(16.75^{\circ} \mathrm{W} \times\right.$ $3.25^{\prime \prime} \mathrm{H} \times 18.25^{\mathrm{n}} \mathrm{D}$ ).
Welght 5.4 kg ( 12 lb ).
Power: $100 / 120 / 220 / 240 \mathrm{~V}$ ac (seleciable) $48-440 \mathrm{~Hz}$. 15 W .

## Programmable plug-in cards

## Output cards

69500A-69504A Reslatance oulput cards: provide a single 12 -bil resistance programming chamnel. The programming coefficients of these models ore compatible with HP progeammable power supplies equipped wath Option 010. Model 69500 A is supplied withoul resistors allowing the user to install his own series adding elements. 89510A-69513A Resisiance oulpul cards: provide two 5-bil rcsistance programming channels: these models program the current limic of HP power supplies equipped with Option 040
69321B Voltage D/A converter card: provides a high speed, bipolar output voltage. Outpul range is from -10.240 to +10.235 V . at 0.5 mA . Conversion speed is $30 \mu \mathrm{sec}$ maximum to within 5 mV of final value. (69351A voluge regulator ilso required.)
69370A Current D/A converter card: provides a high specd constant current oulput Outpul range is 0 to +20.475 mA , at $0-10.5 \mathrm{~V}$ dc. Conversion speed is $30 \mu \mathrm{sec}$ maximum $10 \mathrm{~S} \mu \mathrm{~A}$ of final value (69351A voltage regulator also required).
69330A Relay output card: provides 12 separate form A (SPST. normally open) mercury-wetted contact outputs that reflect the stalus of 12 progtammed data bits. Includes gate/lag circuits for exchange of conirol signals with user's device.
69433A Relay outputreadback card: provides 12 separate form A (SPST, normally open) mercury-wetted contact outputs. Also supplics 12 input data lines that can be read by the controller and which indicate the relay coil voltage status.
693314 Dlgltal output card: provides programmed microcircuit logie level oulputs on 12 separate output lines. Card includes gate/nag circuils for exchange of control signals with user's device. 69332A Open collector oulput card: provides 12 open-collector drivec outpuls. IC bulfers on the card act as switches for voltages up to 30 volls de and curfents up to 40 mA .
69335A Stepping molor control card: used to drive stepper motor and pulse-update type concrols. Can be programmed to gererate from I to 2047 pulse outputs to either of two terminals.
69600A Programmable timer card; can be programmed to generate erystal controlled, one-shot diming pulses. Time increment is variable from $1 \mu s$ to 40 days.
69380A Breadboard oulput cerd: this card allows user to design and build a custom analog or digilal output card. Card includes basic address. storage and control signal buffer circuits.

## inpul card

69421A Voltage montior cerd: this card monitors bipolar de vollages in the range of +10.235 to -10.240 V . and returns a 12 -bit two's complement digital word to the controller to indicate the mapnilude and sign of the measured voltage. Up 10150 conversions per second can be performed as commanded by the prograin or an external gate inpui.
69431A Digital input card: this card monitors 12 bits of TTL. DTL, or contact dosure data from user's device. Curd ineludes gate/nag circuits for exchange of control signals with user's deviec. Refurt bits 10 controller reflect the status of 12 input bits.
69430A laolated digital linput card: this card monitors 12 bits of input data from user's device. All input lines are isolated from one another and from the Multiprogrammer power supply. Eight options of the card are aviilable to accommodate either ground-true or positive-true logie sense inputs and a wide range of input levels. 69434A Evenl sense card: this curd compares the magnitude of an external 12 -bit inpot word with a stured reference word and generates a service request for any of four conditions, depending on the placemeni of a jumper on the card. The four possible conditions are: $I_{n}=\operatorname{Ref}$, $\ln \neq$ Ref. In $>$ Ref, $I_{n}<$ Rel. The reference ward is loaded from the controller. Both the input and reference words can be read back to the controller.
69435A Pulse counter card: this card counts pulses. up or down. in the range of 0 to 4095. A carry or borrow pulse is generated as the count goes above 4095 or below 0 . These pulses altow multiple counter cards to be eascaded for greater counting capability or they can serve as alarm signals. The card can also be used as a pre-set counier.
69436A Process laterrupl card: this card provides TTL and open collector compatible edge detectors: one positive and one negative for each of 12 storage latches. Logic transitions lasting 100 nsecs or longer are delected, slored, and used to generate a scrviec request io the controller.

Accessories available:	Price
14550A Interface Kit for HP Computers	\$1800
14546A Interface Cable for DEC PDP 8/1	\$155
14533日 Pockel Programmer	\$150
14540A Main Input Cable	\$170
14541A Chaining Cable	\$170
14534A Pockel Programmer Cable	\$75
Model number and name	
6940B Multiprogrammer	\$1700
69418 Extender	\$1100
59500A Multiprogrammer Interface (for HP-IB Multiprogrammers)	00
69321 B Vollage D/A Converier Card	\$450
69325A-69328A Amplifier Control Cards	\$400
69330A Relay Contact Closure Output Card	\$300
69331 A TTL Outpul Card	\$210
69332A Open Collector Driver Card	\$130
693351 Stepping Motor Control Card	\$400
69351A Voltage Regulator Card	\$150
69370A Current D/A Converter Card	\$450
69380A Breadboard Output Card	\$125
69421A Voltage Monitor Card	\$500
69430A Isolated Digital Input Card	\$250
69431 A Digital Input Card	\$210
69433A Relay Outpul/Readback Card	\$300
69434A Event Sense Card	\$400
69435A Pulse Counter Card	\$250
69.436A Process Interrupi Card	\$400
69480A Breadboard Input Card	\$125
69500A Resistance Plug-In Card	\$350
69501A-6951Ja Resistance Programming Cards	\$400
69600A Timer Card	\$300
69601A Frequency Reference Card	\$250

the COMPUTERS: COMPONENTS AND SYSTEMS
Interface Bus 1/O Kit for 2100, 21MX Computers 59310A


A General Purposc Interface Bus Controlier enables 21MX or 2100 minicomputers to be interfaced to instruments that are programmable via HP's interface Bus. The HP-IB is Hewlett-Packard's implementation of IEEE Standard 488-1975. "Digital Interlace for Pragrammable Instrumentation."

This Model 59310A plug-in eard now lets you have an Inexpensive. high-powered, and versatile controller for your instrumentation system. It is a duplex $1 / \mathrm{O}$ card that can connect up to 14 HP - IB compatible instruments to the 21 MX or 2100 processors.
This plug-in card connects to the signal lines shown in Figure One. aeting as Device A. Eight bi-directional DATA lines carry coded messages in bit-paralki, byte-serial form to/from other devices on the bus. with each bye transfersed from one TALKER to one or more LISTENERS simulancously. Dala is exchanged asynchronously using interface messages to sel yp, maintain. and terninate an orderly how of device-dependent messager. Three DATA BYTE TRANSFER CONTROL lines are used to control the transfer of each byte of woded data on the eight data lines. The five remaining GENERAL INTLLRFACE MANAGEMENT lines ensure an orderly llow of information within the HP-IB.

Easy Inplementation of user-assembled systems
The Buis System provides a simplified means of physically-connecting HP-1B cornpatible digital mulumeters, scanners, counters, power meters. signal and sweep generators, liming generators, printers, and other digital devices to the compuler. Devies may be quickly interconnected in the most convenich way, using standardized bus cables that allow for liexible piggyback connection. Standardization of physical hardware and general signal meanings. for the individual devices in the system also simplifies system programming and operation.

## 59310A Software

To facilitate programming, the 59310A includes a software package for operation under the Basir Control System. This consists of a driver and a utility library. The driver is suppled in both DMA and non-DMA versions. The ulibly libtary provides the following roulines for managing HP-IB I/O transters.
REMOT and LOCL: Switches the bus 10 remote or local operation. DEVCL: Clears devices.
CMD; Bus command.
READB: Bufiered read.
CIOC: FORTRAN-callabie I/O incerface.
The 59310A soflware package also includes a diagnostic rowine for quickly cunfirming correct operation, or locating fauls. Options provide for selecting DMA/non-DMA operation, looping on specific tests, elc., as communicated via the computcr's switech register or system keyboard-display unii.
Model 59310A Inierlace Eug I/O Kil
\$1545


HP Interlace Bus Concepi


Today. Hewlett-Packard conlinues io maximize value for its systems customers in many ways. HP offers a broad range or equipment from low-cost measurement syslems used in production lesuing to medium scale networks satisfying the needs of targe incustrial organizations. Hewlett-Packard continues its plan of providing optímum customer value through product innovation. The first true timesharing system based on a minicompoter was marketed by HP. Today, HP offers a multi-language, multi-lerminal minicomputer with data basc management capabililies - anoiter firsi for a minicomputer sysiem. Customer value is also assured through a sull range of services.

## Customer value through professional gupport

Hewlet-Packard provides support from 172 service locations in 65 countrics; HP lends a supporing hand where you need it. when it's required.

## Versathe customer service agreements

Customer Service Agrements may be tailored to meet your specific needs to provide

- maximum system reliability through regularly seheduled preventive maintenance:
- quick reaponse in emergency situations
- insuranoc against bills for repair of high cose fiems
- budgeling simplicity through known annual cost
- system documentation maintenance
- fewer administrative beadaches - every máintenance need does not require a purchase order.


## Professlonal Iraining

Sctect from a broad range of maintenance or user oriented training courses. Many are provided at no cost with the purchase of HP equipment. Qualified instructors offer these courses regularly at five training centers around the globe. Get first hind classroom and hands-on experience in chasses from several days to swo weeks in tength.

## Large parts invertory

To meet the diverse noeds of modern computational equipment. HP keeps a large number of parts as spares. Approximately 1 G of total production is devoted to spare boards which are available on an exchange basis at low cost.

## Syatems analyals

Call upon HP computer professionals for sonware supporn and answers to your speciric problems. Systems analysts are available to give you the support necessary to make your installation a continuing sutcess.

## Customer value through flexible financing plans

Purchase the equipment directly or select the options from HP's flexible lease plan that best fil your needs:

- periods ranging from one to five years
- provision for upgrading equipment
- lease renewal - three added one year terms at the conclusion of the base peried.
- purchase option - at a fixed percentage of the coniract or fisir markel value
- early conversion to purchase
- nine month termination option


## Customer value through complete documentation

With each system purchased, you receive complele docunsentation - documentation that has gained an industry reputation for thoroughness and clarity. You receive software and hardware manuals, and operator guides with cach system.

## Customer value through single cource

 buyingHewlett-Packard offers the most complete line of systems and peripherals. This means that you can start with a relatively simple sysfem and purchase additional units as your needs grow, With HP as your source, you will be assured that naking these additions will be inexpensive and easy since most units simply plug into existing equipment.

With suel a broad range of customer valwes buiti into each and every system, it is no wonder that HP is a leading ninicompoter company. Join the HP family of satisfied customers with your next valuo-packed system.


Hewleth-Packard 3000 CX Series Mini DataCenters are multi-lerminal, multi-língual computer systems for business and scientific data processing. These systems have gained worldwide acceplance for their power and versatility, yes low cost. The lowest priced model sells for $\$ 99.500$. Hewlete-Packard's larger models are ideal for use shroughoul all functional departments ol a company since they provide five in. teractive languages, spooling, which permils access 10 system periphtrals by cach user, virtual memory for ncarly unlimited program size and a communications subsystem that makes distributed compuling a praclical reality. For comprehensive processing power, Mini Data Centers link to each other and to large non-HP systems as well.

## Features

## Advanced operating system

The 3000 CX 's multiprogramming execulive sontware operating system (MPE) supervises the processing of user programs. MPE/3000 relieves the user or housckeeping responsibilities by montoring and controlíng the input, compilation, preparation, run, loading. execution and output of user programs. MPE/3000 also improves the efficiency of operation of the system by controlling the order in which programs are execuled and allocates the hardivare and software sesources they require.

## Powerful data base management capabilify

IMAGE/3000 sofiware on 3000 CX Systems permits data basca 10 be easily developed and modified. This versarile, easy-lo-use software paekage operates in both the terminal and batch mode. Input to the data base may be ifrough punched cards, magnelic tape, dise or interactive terminals. Application programs which interact with the data base may bc written in COBOL. RPG-31. FORTRAN or SPL (Hew-Iell-Packard's Systems Programming Language).

QUERY/3000 sofiware used in conjunction with IMAGE/3000 enables easy locating, reporting and updating of data wiltin the data base.

## Versatile communication capability

With a new $2780 / 3780$ Emulation Subsystem, a 3000 CX Mini DataCenter communicates with any central system that supports IBM 2780 or 3780 unils. Thus a user can transfer data between a 3000 CX and a variety of remote processors in a fall muli-programming envi-
sommunt. Communication may be over public lelephone or private leased lines at up to 4800 bits per second.
Broad language cholce
Six useful language subsystems are gevilable for 3000 CX systems: COBOL. Repori Program Generalor (RPG). FORTRAN, System Programming Language (SPL). BASIC interpreter and the lirst BASIC language compiler. All these sofware subsystems may be used concurrently by multiple users in the same progran!. HP 3000CX Mini DalaCentcrs are available in four models to meet a variely of needs and budgels:

## Model 300 - Intensive batch and terminal power

This Mini DataCenter meets the maximum processing needs of sophisticated compuler wsers. Boib intensive baich and terminal capdbilitics are provided to up to 32 users concurrently.

## Model 200 - Intensive terminal power plus batch capabilities <br> This model is ideal for the company or department whose applied-

 tions are primarily terminal oriented. Up 1016 users may interact concurrently.
## Model 100 - Low-cost terminal power plus batch capability

This Mini DataCenter supports both batch and terminal activities for four 10 eight concurtent users depending on the applications. With additional core memory. up to 16 concurrent users can be supported. This is an ideal starter system for the user who needs limiled bateh and terminal processing capabilaties.

## Model 50 - Low-cosl terminal power

This powerful, low-cost system provides eerminal power for four to eight users depending on the application. Batch eapabilitues can be casily provided at any time with hardware and sofiware addilions.
Model number and name
Price
3000 CX Model 300 \$203,500
3000 CX Modél $200 \quad 5171,000$
3000 CX Madel 100
$\$ 217, .000$
$\$ 129.500$
3000 CX Model 50
\$99,500


## HP 2000 Access systems - Models 30 and 40

Unlike any other minicomputer-based system, the Hewlelt-Packard 2000 Access System offers new. mulli-terminal, on-line data processing capability with unique, concurrent multi-terminal remote job enIry (RJE) available at each terminal.

This outstanding combination of capabilities is made possible by the use of two state-or-the-art procossors with high speed semiconductor mecories, A system processor is dedicated to disc storage management (up to 8 disc drives), program interpretation and computing. Additionally, a communications processor assures fast response to users al terminals and efficient use of peripheral devices. This processor manages local peripherals, asynchronous eerminal communications at speeds up to 2400 baud, and synchronous communications to IBM or CDC computers at speeds up 104800 baud.
The HP 2000 Access System simulates either an IBM HASP It Multi-leaving Work Station or a CDC User 200 Terminal for syncbronous communication. As a result, as many as 32 interactive terminals on the HP 2000 Accoss System, can smoothly manage concurrent batch RJE functions. They can initiate data transfers and other RJE functions to 18 M or CDC host systems in distributed compuler networks. An oplional Telecommunications Supervisory Package (TSP /2000) ean automatically direct the oulpul from the hosis system to a particular device specified by the user, or to a file in the user's library. Moreover. aulomatic supervision frecs the user's port for execution of other on-line programs, and allows the uscr to periodically check the status of a job.

All terminals on the system also have accoss to the system with full processing power for computation, data entry, administration, data management, program development, instructional problem solving. elc. A user may execute applications that can access up to seven card readers, seven line printers, four magnetic tape drives, and a paper tape reader. Data to be sent to the central host system may, of course, be processed on the HP 2000 Access System before transmission.

The collection of dala al the source is an ideal application for the HP 2000 Access System since this technique reduces data preparation crrors and costs and reduces host CPU processing. The system also operates efficiently with the new microprocessor-equipped Hewlet1Packard family of interactive CRT terminals; with these in the system, non-technical persons can easily format the screeo to resemble source documencs, then enter data conversationally by filling-in blanks. Datz entered through sll of HP's interactive terminals can be transmitted concurrently to the central host system.
Simple and powertul exiended BASIC language
Simple enough for the novioc to use. HP 2000 /A ccess BASIC includes an English-oriented conversational BASIC language processor, which permits the development and execution of BASIC programs from all user terminals simultaneously. A few simple stalements formed with meaningful words provide the basic capabilities for manipulating data, performing calculations, and conirolling program now.

Ycl. HP 2000/Access BASIC is versatile and powerful enough for more advanced users to efficiently implement sophisticated applications involving data base mumagement and remote job entry to central IBM and CDC computers.

Data management capabilities
In addition to Lhe compulation facilitis normally found in BASIC. HP's 2000/Access BASIC provides extensive character string manipulation and powerful data file management abilities. Dise files may be both sequential and direct access. Files may be created and purged under program control. New statements and functions make it easy to develop file-oriented applications accessed by muluple terminals concurrently. Each program may access up to 16 data files al the same time, and each file can be opened and clasod dynamically.

## 2000 Access hardware - Models 30 and 40

Each includes two HP 21 MX procestors, an 800 bpi magnetic tape drive, and 500 eps paper lape photoreader wilhin the system cabine1, plus a separatc 30 cps system console.

Model 30 has 96 Kbytes of main memory, a 5 Mbyte carsidge disc. and a 16 -port asynchronous communicalion mulliplexer.

Model 40 has 128 Kbytes of main memory. a 15 Mbyle carıridge disc, and a 32-port asynchronous communicalions multiplexer.

Mocill number and name	Price
2000 Access System - Model 30	$\$ 62,900$
2000 Accoss System - Model 40	$\$ 70,600$



Industrial measurement and control sysiem (doors removed 10 show screw-lerminal signal connection assembiles).

Hewlen-Packard 9600 Sysiems acquire, process, and control physical measurements in rescarch, development, manulacluring. and production applications. By using these systems 10 speed up the aequisition. processing, and output of data, you can significantly increase the produclivity and profitability of your opcration.

## Wide selection of capabilities

The major functions of Hewlell-Packard measurement and control systems are shown in the block diagram. Hewlett-Packard 9600 Systems are svailable in a range of configurations with capabilities to meel virtually every sensor-based measurement and conerol necd. You can choose the system that bet suils your application needs from the rollowing:
(a) For high-resolution, noise-immune de measurement of slowlyvarying signals, with ac, resistance, and/or frequency measurement and digital $1 / O$ optional. choose the 9602 A system.
(b) For scitntific measurement and control with fast sampling of ana. log inputs (to 45 KHz ) and optional digital I/O. choosc the 9603A or 9604A system.
(c) For industrial measurement and control with conditioncd analog and digital 1/O and convenient serew-terminal connection of inputs and oulpuls, choose the $96 \| A$ sysicm.
(d) For dsta processing and program development support whithout instrumentalion, choose the 9640A syblem.
(e) Further, you can choose from live softwarc operaling systems:
(1) The RTE-B (for 9602A/9603A/9611A/9640A) is low-priced. cou memory based solware system combining the speed and ease of conversational Real-Time BASIC language programming with real-time multi-tasking operation of up to 16 different lime and cuent scheduled tasks. Jl offers program-compatible upgrading to disc-based RTE-I] or RTE-[1I system.
(2) The RTE-C ( (or 9602A/9603A/96IIA/9640A) is a lowpriced. cpu menory based mulliprogramming sysicm for realtime applications not requiring the full capabilities of a dise based system. It offers program-compatible uperading to disc based RTE-II or RTE-[I] sysicm.
(3) The RTE-[1 (for $9602 \mathrm{~A} / 9603 \mathrm{~A} / 9611 \mathrm{~A} / 9640 \mathrm{~A}$ ) is a fore-ground-background. disc-bascd system supporting alt or the capabilities of the RTE-B and RTE-C systems and providing on-line program development and many wher capabilitics as well. It supports 4.910118 Nibytes of dise scorage and offers program-compatible upgrading io RTE-Il| system.
(4) The RTE-Ill ( $\operatorname{lor} 9602 \mathrm{~A} / 9603 \mathrm{~A} / 961$ IA/9640A) is a discbased system combining support of all of the capabilitics of ine RTE-B, RTE-C, and RTE-11 systems with dynamic management of up to 256 K words of cpu memory. which can be divided among as many as 64 multi-uster, disc-resident swapping panilions. Il includes batch spooling and file management capabilities.
(5) The BCS (Basic Control System - standard in 9604A. optional in $9(40 \mathrm{~A}$ ) is a cpu memor' basco, single-lask, event. schoduled sysiem programmable in Hewletl-Packard Assembly language. FORTRAN, and Hewleti-Packard ALGOL. The interrupl-driven design of BCS provides for concurrent measurement, processing, and logging of results.


## Computation and system coritrol

Central element in the 9600 systems is a Hewlelt-Packard misio prograthmable computer using highly-reliablc. low-cosi 4 K RAM semiconductor memory. Two computers are available, offering a choice of maximum $1 / O$ channel and memory capacily.

## 9802A High-accuracy measurement

For measurement of slowly-changing analog signals from thermocouples, strain gauges, and other physical sensors, the 9602 A system lets you select from two different Integrating DVM Analog-In-Digial Subsystems, whose principal performance specifications are summarized below. These subsystems combine 1 microvolt resolution on the 0.1 volt range with guarding and integration that preserve system accuracy by rejecting both common mode and superimposed noise.

Sample Rale (de chail/sec)	Inpul Rango	Accuracy	Channels	Measurement Optlons
14	0.110 1000 V (500 V max.)	$0.01 \% \mathrm{rds} \pm$ $0.007 \%$ is	2003 -wire	AC. resistance. frequency
40	$\begin{aligned} & 01 \text { to } \\ & 100 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.012 \% \mathrm{idg} \pm \\ 0.005 \% \mathrm{fs} \end{gathered}$	103 -wire expandable to 1000	AC Trequency

## 9603A/9604A/9611A High-speed measurements

For rocovery of signsl dynamics from acceleromelers, or for frequent sampling of muny channeis, the 9603A, 9604A, and 9611A syslems vide a variety of performanct capabilitics, as summarized below.

Plug- in Funclion	Throughpul Rale	Range (fs)	Numher of Channels ${ }^{*}$	Accuracy (fs)
High Level Multiplexer	$\begin{aligned} & 45,000 \\ & \text { chan/sec } \end{aligned}$	$\pm 10.24 \mathrm{~V}$	UD 10 1056 S.E or 528 dift.	$\begin{aligned} & \pm 0.09 \% \\ & \pm 1 / 2 \mathrm{LSB} \end{aligned}$
Low.Level Mulkiplexer	8,000 chan/sec	$\begin{array}{ll}  \pm 10 & \mathrm{mV} 10 \\ \pm 800 & \mathrm{mV} \end{array}$	UD to 528 dilterential (16 pet mulliplexer)	$\begin{aligned} & \pm 0.33 \% \text { to } \\ & \pm 0.14 \% \end{aligned}$
Relay   Multiplexer	$150$   chan/sec	$\begin{aligned} & \pm 10 \quad \mathrm{mV} \mathrm{lo} \\ & \pm 400 \mathrm{mV} \end{aligned}$		$\begin{aligned} & \pm 0.299_{6}^{\circ} \text { to } \\ & \pm 0.140^{\prime} \end{aligned}$
D.A Conyerter	45,000 poinls/sec	$\pm 10.2 \mathrm{~d} \mathrm{Y}$	UD 1044 (IWO chan/convertet)	$\pm 0.025 \%$

 swine only that function is used.

A sample-and-hold amplifier in the analog I/O subsystem assures minimum samplesample liming variation when used with an optional Hewlett-Packard pacer that provides measurement commands with very low jitter. The subsysiem achicves a 50 -nanosecond absolute aperture lime when paced and messuring inpuls via the high-level mulliplexer.

## 9602A/9603A/9604A/9811A Digltal Inpuł/output

Hewlell-Packard 9600 Sysiems can be equipped to receive conlacl closures and other digizal inputs, and to send digital outputs to dis. plays of controlled devies. The 9602A, 9603A, and 9604A systems offer a choice of digital $1 / O$ via computer interface, each using one compuler $1 / O$ channcl, or via a digital $1 / O$ subsystem capable of mulliplexing hundreds of digital $1 / 0$ signals via a single computer $1 / 0$ channel. The digital $1 / O$ subsystem is standard on the 9611A syitem.

The digital I/O suhaystem offers a wide range of plug-in capidility, consisting of: (a) 12-bil direat and isolated digital inpuls with NPN/PNP, DTL/ITL, and higher contact closure logic levels. (b) cvent sense inguts that interrupt the system when the external 12 -bit
input salisfies specified comparison with a programmed 12 -bit reference word. (c) a 12 -bil counter that counts up to/down from 4095. (d) 12-bit TTL oulpul. (c) relay output with 12 normally-open conlacts, (1) a stepping motor control outpul capable of up 102047 programmed steps clockwise or counterclockwise, (g) a I microsecond to 409.5 second programmable limer, (h) a frequency reference with dec-ade-multiple autpuls from 1 Hz to $100 \times \mathrm{Hz}$, (i) a digital-to-3nalog current converker with 0 to 20.475 mA is output, and ( j$): 010 \pm 10.24$ volt digital-to-andog converter.

In the 9611A system, the digital I/O subsykem plug-ins include screv-terminal connextion assemblies that, optsonally, may prowide for plug-in, single-line modules aceommodating contact closore inputs to 130 volis rms ac or 55 volts de. Similarly, plug-in solid-state relay modules may be used io switch digital outpuls up to 250 volts rins ac or $5 S$ volts de. Each of these plug-int provides up to 250 volts isolation.

The digital l/O capabiltices offered by computer interfaces are available for: (a) 32-bit data source input o「 a wide range of levels. (b) 16 bil duplex input and sutput in a choice of registers offering NBN/PNP. DTL/TTL, or differential logic levels. (c) relay bupul from 16 isolated, nomally open contact peirs. and (d) 40-bit output with a choice of jumper-sclociable NPN/PNP or DTL/TIL logic lov. els.

## g603A/9611R Remote measurement and control stations

The analog and digital I/O subsystems of the $9603 \mathrm{~A} / 9611 \mathrm{~A}$ can be remoted in 9603R/9611R Remote Measurement and Control Stalions, up 103 km ( 10,000 fect) from a $9602 \mathrm{~A}, 9603 \mathrm{~A}, 9611 \mathrm{~A}$, or 9640 A master (controlling) system. Measurement snú control instrumentalion can thus be located close 10 sigrial sources and destinations, simplifying installation and reducing cable costs without requiring computers at the remote sites.

## 9602A/9603A/9604A/9611A/9640A Operafor comimunicalions

Hewleit. Packard offers a wide choice of keyboard lerminals for operator communication with 9600 systems. These include 240 charisee keyboard-CRT display terminals, 30 and 120 char ; sec terminal printcrs, and a modified ASR-33 Teleprinter wilh tape punch-read c:rpabilities in addition to keyboard and printout, all al 10 char/see.

A 500 char $/ \mathrm{sec}$ punched tape reader for list input of programs or dala is included in 9600 systems. For program and/or data input via Iab cards. 9600 systems can be cquipped with a 300 eard/min oplical mark reader (For both mark-sense and punched eards) or a 600 card/min card reader (for punched cards only).

## Data recording, atorege, and dlsplay

In addition to the direct prinlout provided by the leminal printer or teleprinter used for operator communication, 9600 systoms can be provided with a medium or high-speed line printer, with capability of printing 132 columns/line at rates from 200 to 1250 lines/minute. Data can also be recorded by a 75 char/sec tape pulich, of on 7 ar 9 track magnelic tape unil capable of read/write rates to 72,000 char/sec. In 9(m2A/9603A/9611A/9640A sysiems with RTE-I) or RTE-[ll operating system, data can be slored on/retrieved from dise at transfer rales as fast as 937 k bytes $/ \mathrm{sec}$. Data can be displayed on a $25 \times 38 \mathrm{~cm}(10 \times 15 \mathrm{in}$ ) graphic plotter subsystem, of on a low-cost. user-furnished commercial TV monitor interfaced to the system via Hewlett-Packard's new TV interface kit.

Model number	Price
$9602 A^{1.2}$	$\$ 48,900$
$9603 A^{1.2}$	$\$ 22,900$
$9604 A^{1}$	$\$ 22,900$
$961 A^{1.2}$	$\$ 29,900$
$9640 A^{1.2}$	$\$ 16,800$

'Requires a System console.
'Requires an Operating Systern lion the RIE-B and MIE-C to the RIL-III systoms with 4.9 Megabyle Gisc. cabinel. ued dyamic mappira components.


AAS-400 Aulomalic Recelver System

## Automatic network analysis

The 8542B Automatic Network Analyzer is a precision phase and amplinde measurement systen used to measure complex or Iransfer functions, to 18 GHz , in order to characterize components ir circuils. The 8542 B achicves high accuracy by calibrating with precision standards 10 characterize. store, and correct for systenalic errors - mismalch. diroetivity, erosstalk, and ifequency response crrors afe thus removed.

The 8542B is supplied with a complete sel of ready-10-run Microwave Applications Prugrams (MAP). The General Purpase Measurement programs GPM-I and GPM-2 provide for display of any seven of 28 different paramelers, including VSWR, inservion loss, phase devialion, and groud delay. The multi-measurement program. VAT.I, provides forward characlerization of up to eight mensurement paths with cross comparison of any two paths. Program XT'K-2 is used for measuring transistors, including device biasing. Program CUP-I provides highly accutale coupler dirccivity measuremenis.

The 8542 B is also supplied with a BASIC langtage interpreter conlaining high-level microwave measurement insfructions. Intersetive graphics (optional) allows rapid display of data in either graphical or tabular format. Optional test-oriented disc system capability allows loading al MAP soltware frum tice disc to elimimatc tape loading and thus save production test time.

OPNODE. a soliware package that aids engineers in designing linear circuits and systems from de to microwave lirequencies. is avaitable for use with 8542B Systems.

## Automatic spectrum analysis

The 8580 B Aulomatic Spectrum Analyzer medsurci absoluti frequency and chacacierizes mixers. doublers, and oiher frequency conversion devices, io 18 GHz .

The key measuring instrument in the s 580 B Automatic Spectrum Analyzer is a calibrated receiver with programmable tuning and bandwidth. The receiver can be tuned from 10 kHz to 18 GHz by BASIC language measurement programs using simple, onc-linc slatements. Receiver bandwidth is selectable trom 10 Hz to 300 kHz . Other programmable system functions include: input port selcetion. inpul altemation. IF bandwidth. IF gain, and video filtering.

The 8580 B Aulomatic Spectrom Analyzer is a valuable fool for gathering spectral data on signals present in complex electronic equipment or in a geographic region.

## Automatic receiver system

The ARS 400 Automatic Reciver System provides automalic signal monitoring, detection, and analysis in the $100 \mathrm{kH} \geq 1018 \mathrm{GHz}$ ree. quency range. The system is used in a varlely of applicalions including spectrom management. system monitoring, electronic imelligence, electromagnelic interference, and site surveillance.
The ARS-400 Aulomatic Rectiver System fcalures: synthesized higly speed tuning, self-calibration of all receiver modes. Nexible delection ( $\triangle$ M. FM. SSB), broad dynamic range, exceptional frequency accuracy and resolution. automatically-tuncd preselection fors spuri-ous-free responsc. and time-calibrated data collection.

The system incopporates a digital compuser with 32 K words of memery and 14 1/O channels to commonicate with instruments and or peripherals. Final measurement information is displayed one a CR't. printed out. or stored on dise or magnetic tape.

Wilh the ARS 400 , key system performance characteristics are verified and guaramted so that you can rely upon them fot your requirements.

## Automatic stimulus-response testing

The 95IOD and 9500B/D Automatic Test Systems ulilze stimulusresponsi lechilyues ind encompass a wide range of testing capability. From individual circuit modules and sub-assemblies to highly complex avionic systems. The block diagram shows a general layoul typical of Hewlelt-Packard automatic test systems.


Hewlell-Packard Automatic Test System overall concepl

The 95100 Automatic Test System is a stinulus-response system that covers the frequency range from de to 10 MHz . and optionally. up 10500 MHz .

The 95100 offers a significant contribution to the field or automatic testing because it is a total system, thoroughly engineered with sys-tem-level performance specified at the point where the UUT interliaces with the system.

The 95100 System stimulates and miasures de and ac voltages, resistance, and frequency functions. In addition, dmertion, FM deviation, and phase are measured by means of innovative tochniques using sofiware algorithms. This eliminates the need for corresponding measuring instrumens whik providing equivalent performance al far luss cost Optional RF' (to 500 MHz ) lest capability provides for automatic stimulus and measurement of carrier froquency. RF nower. AM modulation depth. FM devialion, plus AM and FM modulition distortion. Other optional capabilities include pulse stimulus and waveform amalysis. While the majority of applications involve testing of analog devices. the 9510D can also perform digital testing with an optional Digital Tesi Modulc.

The 9510D System is supplied (oplional in 9500B/D Systems) with - UUT adapier moduke that provides a general purposc sabling interface between the system stimulus, measurement. and switching modules and the UUT.

The 9500B/D Automatic Test Systems are general-purpose sysiems based on modular buildeng-block techniques, that provide a wide latitude in testing capabiltice, with easy expansion to handle future testing needs The Systems cover stimulus-responsc lesting over the frequency range of de 1018 GHz .

Hewlett-Packard's 9500 Systems are, at the sante time, fuliy stondardized and fully nexible in configuration and uperalion. The broad esting capatilities of the 9500B/D Systems lic in the fact that they are supplied with a standard paper-lape of dise-based contsoller while all stimulus. measurcment. switching. and interlace hardware ate available as oplions.

The automatic teat systems incorporate HP ATS BASIC as the primary text language. Additionally, the dise-based 9500D/9510D Systems incorporate a sofluzire conirol executive - Hewleti-Packard's Test-Orienied Dise System (TODS).

Powerful sonware capabilities - TESTAID-11/FASTRACE and HP ATLAS - are optionally available for usc on 9500 disc-based systems.

TESTAID-II/FASTRACE is digual tesi generation and faut wolation software. TESTAID-11 is a fault-inscrting digtial logic simulalor which runs on a Hewlell-Packard minicompulcr. TESTAID-ll accepts patterns entered by the operator and augnents this procedure with automatic patiern generation capability. A path-sensibizing pathtern gencaitor and a pscudo-random generator may be used to generde patlerns: foules in a digital network are identified by the response to these patserns, und faules which may not be delectable are listed tor further operator action. FASTRACE is a soltware search program and logic probe instrument which compares failed PC hoard oulpui data and internal logic states with expected responses (gencrated by TESTAID-II) to accuratcly locate digital faults to the faling circuit node.
Hewlett-Packard ATLAS is a common lest language that can easily be used by desmeners, test engineers, and lest technicians. HP ATLAS is compatitile with and meels the slandards of ARINC ATLAS. the official standitrd for the ATLAS langungc.

## Transceiver test system

Specialized systems dedicated to specific automalic lesting needs are: 9S40D Transcciver Tusi System and 95sID Instrumeni Calibration System.

These computer-controlled systems incorporate the same program. ming language. HP ATS BASIC. and the tume operating system, Hewlett-Packard's Test-Oriented Disc Systum (TODS), as the 9500 Systems.

The 9540D Tiansaiver Tesi System provides a (asi, accurate, ind consistenly repeatable means of tertirig communications reccivers. Irianmillers, power supplies, as well as complete two-way radio sels. These systums perfurm all the esting noeds for $\lambda M$ and $F M$ iwo-way radios operating from 10 MHz to 1300 MHz al one watl to 100 watls power output (special attenuators allow testing below one witl ind above 100 watts).

The 9540D Transceiver Test System is supplied with several sample test programs (measuring recelver nensitivity, audio divitortion, ele.) for use as a guide to assist in writing programs for specific needs. Tosting capabilitite of the y540D System are shown in the tuble.

Pransmitter tests___	
Carfier Power Output	FM Deviation
Carrier Frequency and Stability	Audio Distortion
AM Hum and Noise	Audio frequency Response
fM Hum and Noise	Audio Sensitivity
AM Modulation	
Heceiver tests -	
SINAD Sensitiulty	Audio frequency Response
Quieling Sensitivily	FM Modulation Acceplance
Audro Sensitivity	Bandwid!h
Squelch Operalion	Hum and Noise Levels
Audio Power Output	Image Channel Rejection
Audio Distortion	IF Rejection
Modules \& subassemblies -	
Modulators and Subassemblies	Audio Amplifiers
Local Oscillators	Filters
Frequency Synthesizers	Selective Signaling Circuits
IF Amplitiars	Power Supplies

05400 Transceiver Test System tesiling capabilites

## Instrument calibration system

The 9551D Instrument Calibration System brings to the cistaration laboratory a cosineffective solution to calibrating the nyriad complex instruments in use loday. The system incorporates a wide buricly of calibralion-quality instruments, cusily recognized by those involved in cal lab wark as required for calibration puposes. The system calibrates a wide varicty of passive metens, multimeters, eltestronic meters (voliage. cursenI, VSWR, power, enc.), differential volemelers, dipitil volimeters, frequency counten, and oscillascopes along with therr plug-ins and implificrs. In addition, the sysuem can optionally calibrate signal sources and gencrators, oscillators. pulse gencrators, and function generators.

## Distributed systems capability

Parlicularly uncful and advantageous in multiple test station applications (remolc tcsu sitcs) is Kicwlett-Packard's Distributed Systems capabiluty. A distributed system consists of a central computcr (Jistbased) system and in number of satellite systems (usually one al each remote sile). Siteilites commonly concentrate the measured dala prior to transmission to central. Satellites and central share the uice of peripherals (disc. line prinicr, card reader, ploter, elc.), thus minimizing 10 tal system cost. The concept and applications of dist ributed systents is covered in greater detail on the next page.

Brochures covering the $5500 / 9500$ Serces systems described here are available from Hewlels-Packard Field Sales Orlices.

Model number and name	Price
8542B Automatic Melwork Analyzer	\$200,000
8580B Automatic Speetrum Analyzer	\$150,000-250,000
ARS-400 Automatic Recolver System	\$200,000-250.000
9500B/D Aulomalic Test Sysicms	5100,000-300.000
9510D nutomalic Test System	\$150.000-200.000

## Data communications and networks

 Models 2000, 3000, 8500, 9500 and 9600 Series

Throughout the Data Systens product linc. Hewlen-Packard ofFers data commumiations and networking sapabilities - capabilities that make your systems and your data more useful by moving it quickly and aceurutely' frone poinss of acquisition to localions that require up-10-date information for decision-making and action.

## 2000 Access data communications

In addition in time-shared multiterminal input and output, the 2000 Access System can be cquipped io communicate synchronously with IBM or CDC host systems in distributed computer nelwarks by simulaling either an IBM HASP If Multi-laving Work Station or a CDC User 200 Terminal. Thus, the extensive daly gathering capability of the 2000 Access System. from up to 32 different lerminals, can be conneeted direclly to large EDP centers.

## 3000CX Data communications

The multuprogramming power of the 3000 CX system can be connected to uny central system that supports IBM 2780 or 3780 terminal units, vid a 2780/3780 Emulation Subsystem. The subsystem may use enther public or private leased telephone lines for communication al rales to 4800 bils per sccond.

## The distributed systems network

Hewlett-Packard 8300 and 9300 Automatic Test Systems and 9600 Automatic Measurement and Control Systems are all capable of funclioning as satellite systems communicating with a Hewlent. Packard 9700A Distributed Systems Central system via hardware and/or

telephone-and-modem links. (See the simplified block dingram). The $8500 / 9500 / 9600$ satellite systems in the network perform their nor. mal automatic testing or measurement and control lasks, but with several important added advantages resulting from their connection to the central system. The central system can support the satellites with dise-based program development, dise storage and retrieval for programs and data, and data processing assistance. The sitellites feod dita bitie of information for real-time reporting to mathagement.

## Modular implementation

Hewlell-Packard distributed systems communication hardware and sonware make il practical and cemomical to automale large-scale operations in science and industry with minicomputer systems in easy. low-cost steps, with each satellite sysicm proving its valat before the next is implemented.

## Supertor refiability and responsiveness

Because each satelite surtem can function on its uwn, anaffected by the tatiure or workloading of otherx. the distributed systems network gives better reliability than a big computer. For the same reason, disributed systems also respond more quickly to local needs.

## Eig-computer capabilities

At the same time, interconnection of satelite systems to the central system gives big-computer capabilities - dise-based program devel. opment ithat doesn't interrupt productive work at the satellites, central program stornge with fast retrieval. sharing of dala processing workloads, sad multi-satellite access to e large data base of information usable for reporing to management.

## The distributed systems central

The 9700A Distributed Systems Central is a disc-based systent specifically configered and equipped to coordinate and support the functions of a distributed multiprocessor network of 8500,9500 , or 9600 systems. The cenimi is equipped with either the RTE-ll foregroundbackground mulliprogramming real-ime execulive or, optionaliy, with the new 64-partition RTE-III system. It includes one data communications interface and a eentral communications executive that carries out all requested distributed system functions in response to high-level requests in user's programs, working with the RTE-11/III operating system and communication executives in the satellite systems. The central is thus equipped 10 communicate with and support a single satellite system, and can support additional satellites with the simple addition or more dite communications interfaces. It can also
be equipped with card readers. line printers, tape punch, magnelic tape units, or plotters whose capabilities are sharable among all of the satellites via the communication networks.

## Extensive network capabilities

Distributed systems connection gives extensive cilpabilsty to the satellites, as shown in the table below.

## Linking to IBM 360/370 and HP 3000

In addition 10 supporting multiple satellite systems, the 9700A Ceniral can be equipped to communicate with IBM $360 / 370$ or HP 3000 systims, using a remote data teansmission subsystem. Thus, the distributed system can take advantage of the tremendous processing power and extensive litraries of data processing and report genciating programs available at large EDP centers.

## A choice of communication modes

The satellite systems can communicate with the Central vis cither direct wire or modens and ielephone lines. Direct wire can be used in iengiths up 103 km ( 10,000 「ecl) to provide fastest transmiksion and lowest line cost. Modem and celephone lime communication is available for longer distances, or where great routing fexibility is important.

## Model number and name

301300 2780/3780 Emulation Subsysiem (for 3000CX) 9700A Distributed Systems Central (requires system console)

Price
$\$ 4500$

91007A - 91008A Discributed Systems Kits for 8500 Sateltites (complete, two-interface link to Central, includes instillation)
91703A - 91705A Distributed Systems Kits for 9600 Satellites (complete two-interlace link to Central).

91707A -91708A Disıributed Systems Kits for 9500 Satellites (complete two-interface link to Central)
$\$ 5500$
91780A Remsote Data Transmission Subsystem

## Data communications interfaces

In addition to complete hardware-software communicalion packages for our systems, Hewlelt-Packard oflers the following data communications imerfaces lor the 21 MX and 2100 Serits computers. These provide the hardware basis for user-programmed data communications sysiems and nelworks.
Interface numben and name
Price
12966A. Buffered Asynchronous Communications Interface with 128 -character buffer and hardware break detection.
12968A Asynchronous Communicution Inzerface with hardware break detection.
12587B Asynchronous Muhiplexer (for lype 103A Modems).
|2920B-00I Asynchronous Multiplexer (for type 202A Modems)
12967A Synchronous Communications Interface (for type 201, 203, and 208 Modems).
12618A Synchronous Communications Interface (for type 201 or equivaleal Nodems).
12531C Teleprinter Interface.
12531D Terminal Interfice (iumper-selectable sates to 2400 bps ).
12880^ Terminal Interface (ierminal-controlled rates to 9600 bps ).
12589A Automatic Dialef Interlice.
12889A Hardu'ired Serial Interface (rales to 2.5 M bils/sec).

Distributed System Capabilitios	8500 Satelilies	9500 Satellites		9600 Satellites with		
		Memorydased	Disc. based	RIE.C	81E. 8	BCS
Soletilite system generation at Central	-			-	-	-
Salelite program preparalion at Central	$\bullet 1$	${ }^{2}$	-1	-	-	-
Cross loading Cemial-lo-satellile	-					
Remote job eniry for program development al Central	-		-	*		
Remote programitesi <Satellise program execuled at Cenlrat')				-		
Program slorage on Central dise	-	-	-	$\bullet$	-	$\bullet$
Remote program loading. Central. to salelitite	-	-	-	-	-	-
Linkine of programs slored on Central disc	-	-		$\bullet$	-	-
Remote access to dala tiles on Ceniral disc	-	-	-	-	-	$\bullet$
Remote task scheduling, Satellite-to-cenlial	-	-	-	-	-	-
Remote task scheduling, Central-tu-salelite				-	-	
Cooperative real-lime muliprocessing				-	-	
Dynamie masle--slave switching				-	-	
Shaped oeripherals	$\bullet$	$\bullet$	*	$\bullet$	-	-
Forced program loading. Central-to-salellite				-		
Access to Cembal real-lime clock	-	$\bullet$	-	*	-	-


eAIS QLasic only

## General information



Model 2802A Platinum Resistance Thermometer

The Hewlelt-Packard 5526A Laser Calibration System ulilizes a precisely-known wivelength of light to provide a portable, casily used dimensional measurement lool for such parameters is iength. angle, straightnews, squareness and Iatness.
The 5526 A Loser Calibration Sysicm is used in a wide variely of applications where very accurate physical measuremenis are required. such as characterizing the positioning iccuracy and getometry of machine tools and mesturing machines.
A wide variely ar oulput devices are avallable to record the measurement data including digital printers and $X \cdot Y$ recorders. The Option 200 Laser/Calculator System allows the measurcment data to be transferred direcily from the Later Calibration System to the 9820 A Programmable Calculator and immediately processed by pre-written meltology programs. The reduced dala is then presented in etther printed format or plotted to provide report quality graphs of the measurements.

## Quartz Crystal Technology

Hewlett. Packard laboratories have devcloped quariz crystals which respond to lemperature or pressure with amazing linearity, slability. accuracy, and sensitivily. Quartz
crystals resonate in eloctronic oscillator cir cuitry al a very precise frequency. HewlellPackard has discovered it way 10 produce quartz erystals whose resonate frequencies vary extremely linearly with iemperature or pressure. For example, the resonate frequency of a 2850 temperature sensing crystal varies 1000 Hz (nominal) per ${ }^{\circ} \mathrm{C}$. These resonate frequencis are conditioned by elecironic circuilry to produce exceplionally high resolution iemperature or pressure measurements.

## Digital Thermometer

HP's 2801A Quartz Thermomeler provides exiremely precise, reliable measuremenis with standard resolution of $0.0001^{\circ} \mathrm{C}$ over the range -80 to $+250^{\circ} \mathrm{C}$. The excellent sunsing characteristics of the quarta thermometic are enhanced by the advantages of direct digiol reodout (no bridge balancing, or reference to resisiance- or voltage-iemperature tables or curves). immunity to moise and cable resistance effects, and no requirement for external equipment such as reterence junction. Temperalure can be measured up to 4500 ree: from the 2801 A with optional ampliliers.

Nearly all intermedtate range digital thermometers use resistance. thermistor. or ther-
mocouple sensors. Because of its good sersing characteristics. Hewhett-Packand uses is platinum resistance sensor in ils general purpose 2802A hermometer. Platinum resis. tance sensors have very good uccuracy. slabilicy. Incurity and reproducibility. The 2802A fcalures two ranges: $-300^{\circ} \mathrm{C}$ to $+600^{\circ} \mathrm{C}$ with $0.1^{\circ} \mathrm{C}$ rasolution and $-100^{\circ} \mathrm{C}$ $10+200^{\circ} \mathrm{C}$ with $0.01^{\circ} \mathrm{C}$ resolution. Battery. BCD, or ASCII oulput accesisaries easily smap into place. Also, the display mit may be used with ther HP snap in madules to mitke a voltmeter, a multimeter as well as other insiruments.

## Quartz Pressure Gauge

The Hewlell Packard 281IB Quariz Pressure Gauge can delcol pressure changes as small as 0.01 psi in 10,000 psia. Precision pressure measur̃ing capability and rugged construction make the HP 281IB Quariz Pressure Gauge (Probe and Sigpal Processor) ideal for applications requiring surface readoul such is oil well logging. oceanograplic rectarch, and studies of subicreanesen hydrodynamics. The 2811 B recording options can be connociod direcily to the pressure gauge oulput lor direct readoul, strip chart recording or digilal printoul of pres. sure dala.

Unique Dual Range

- Linear Analog Output
- Digital Temperature Display



## Description

Two modular units make up the HP 2802A Thermometer: at thermomodule (lower unit) which contains temperature measuring circuits. probe connections, and operating conirols: an HP 34740 A display unit with $41 / 2$ digit light-entuing diodes, which snaps into place on the thermomodule. Batery or BCD module acoessories easily snap inie place between the thermomodule and display unit. In addition, the display unit may be used with other HP snap-in modules to make a voltmeter, a multincter. a pre-amp ammeter, as well as other conbinations offered hy Hewlent-Packard in this catalog under Digial Voltmeters.
A variety of probes can be used with the 2802A. All HP probes of fered are interchnongeable and neect high standard, in-house clectrical spocifications which allow then to provide maximum accuracy. The HP 2803 A drives very low curtent through the platinum sensor, so self-heating is negligible. Less than 0.1 mW is dissiputed. A four-wire technique used to measure sensor resistance eliminatios errors due to connector of lead resistances.
Rugged cast aluminum casen with shock resistant slides and chemically resistant point prowide ample protection for the HP 2802A in just aboul any operating environment.


- Simple one-point calibration
- Battery operation and BCD output available


## Speciffications

These specifications are "total system specifications" meaning they apply to both the instrument and the probe working rogether (not just the best electronic specifications for the instrument by itself). HP 2802A Thermometer specifications relate direetly to system performance under actual working conditions.
Ranges: $-20010+600^{\circ} \mathrm{C}$ and $-10010+200^{\circ} \mathrm{C}$
Resolution: $0.1^{\circ} \mathrm{C}$ on -200 to $+600^{\circ} \mathrm{C}$ range
$0.01^{\circ} \mathrm{C}$ an $-10010+200^{\circ} \mathrm{C}$ range
Accuracy: $\pm 0.5^{\circ} \mathrm{C} \pm 0.25 \%$ of reading on both ranges
Dlsplay: $41 / 2$ digits LED on HP 34740 A Module
Stablilly: $\pm 0.2^{\circ} \mathrm{C}$ for 7 das's $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ ambicn!)
Linear Analog Oulpur
$1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ on $-20010+600^{\circ} \mathrm{C}$ range $(-0.2 \vee 10+0.6 \vee \mathrm{FS}$.
$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ on $-10010+200^{\circ} \mathrm{C}$ range ( $-1.0 \mathrm{~V} 10+2.0 \mathrm{~V}$ F.S.)
Voltage accuracy cqual to that of digital display'.
Oulput impedance I k ? on both ranges.
Environmental standard: HP 2802A Thermometer operales within above specifications in environments of $01050^{\circ} \mathrm{C}$ and up $1095 \%$ relative humidity over most of this temperature range. Alter calibration in some arbitrary ambient temperature, instrument calibration remains valid with ambient temperature dhanges up to $10^{\circ} \mathrm{C}$.
Power requirementa: operated on any of four, simgte phase ac line voltages: 100, 120, 220, or 240 volts rms ( $+5 \%$. $-10 \%$ ), 48 to 440 Hz . Power dissipation is 8.7 voll-amperes.
Dimenslons: thermomodule with display unit is 159 mol wide. 98 mm bigh. 248 mm decp $(61 / 4 \times 3 / 4 \times 9 \% / \mathrm{in}$ ): net wetght is $2.27 \mathrm{Kg}(5$ lb ), shipping weight about $3.39 \mathrm{~kg}(7 \mathrm{l} / \mathrm{lb})$.
Thermometer options Price
2802 A HP digital thermomeler - Includes $41 / 2$ digin
$\$ 750$ 34740A Display. Requires HP 18640 series probe and option 050 or 060 . See list which follows.
$050: 50 \mathrm{~Hz}$, ac, single plusse N/C
$060: 60 \mathrm{~Hz}$ ac. single phase $\quad \mathrm{N} / \mathrm{C}$
001 : HP digital thermomodule Thermometer unit only; without display unit or probe. NOTE: Since thermo. module will not operate without display, his option is for those planning to use thermomodule with therr own HP 34740A or HP 34750A Display Modules.

## Probes

Note: Time constant for probes measured in water flowing at 3 m per sec.
1841A High Temperature Probe
Stainless steel sheath. For -200 so $+500^{\circ} \mathrm{C}, 10+600^{\circ} \mathrm{C}$
short lerm (prevent cible movement above $250^{\circ} \mathrm{C}$ ). Time Constant 5 sec .
18642A General Purpose Probe
Same as 18641A probe except with teflon-insulated cable. Cable must be kept below $250^{\circ} \mathrm{C}$.
18643A Fast Response Probe
Stainless steel sheath, for -200 to $+500^{\circ} \mathrm{C} .10600^{\circ} \mathrm{C}$ short term. Tenon cable must be kepi below $250^{\circ} \mathrm{C}$. Time constant 1.8 sec .
18644 Probe Kit
Includes platinum sensor cariridge, cable conncelor, complete instructions for 「our wire hookup. Time con. stant 0.5 sec.

# PHYSICAL \& OPTICAL MEASUREMENTS 

Quartz crystal thermometer and probes
Models $\mathbf{2} \mathbf{8} \overline{0} 1 \overline{\mathrm{~A}}, 283 \hat{0}, 2831,2833 \mathrm{C}, 2850 \mathrm{~A} / \mathrm{B} / \overline{\mathrm{C}} / \mathrm{D}$

- $0.0001^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ Resolution
- Simple operation
- Direct Digital Readout
- Remote Measurement up to 1372 m (4500 tt)
- No cable or noise resistance problems
- Compatible with digital and analog recorders


2801A Ouanz Thermometer

The Model 2801A Quariz Thermometcr provides exceptionally high accuracy, resolution and stability with a direct reading digital display. There is no need to ballance a bridge or perform calculations using re-sistance- or vollage-temperature lables or curves. All electronic circuils are contained in a sirgle instrument easc. No external equipment such as a reference junction is required.
The HP 2801 A is cquipped with two temperature sensing probes. The HP 2801A will display the temperature at either probe or the temperature difference belwen the probes. Display of the iemperalure of either probe or their difference can be seleted either by push bution or external signals. A 6 -digit display provides direct temperature readout in degrees Celsius. Option DDI fealures readout in degrees Fahrenheit. Standard resolutions of $0.01,0.001,0.0001^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ can be selocted by pushbuttons on external signals. Option 010 increases all sample times by a factor of 10 , providing a maximum rexolution of $0.00001^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$.

## Quartz crystal thermornetry

The method of temperature sensing employed in the HP 2801A Quariz Thermometer is based on the sensitivily of the resonant frequency of a quartz crystal to temperalure change. Use of this characteristic to measure temperature is known as quarli crystal thermomeins.
While the principle of the quartz crystal themometer is not new, a new and unique angle of cut is used in the HP 2801A Quartz Thermometer which exhibits a very linear and yet sensitive correspondence belween resonani frequency and emperalure. This has been named the LC cut, standing for Linear Cocflicient of resonant frequency change with emperature.
Temperaluse range of the HP 2801 A Quartz Thermometer is -8010 $+250^{\circ} \mathrm{C}\left(-11210+482^{\circ} \mathrm{F}\right.$ ). The quartz thermometer is considerably more lincar than a platinum resistance thermometer: $\pm 0.55 \%$ for the same range. Linearity of the quarte thenmometer is also considerably superiar to that of thermocouples, and thermistors (which have :t characleristic that is approximately exponential).
The quartz thermometer oflers: very high resolution. Usable resolution of the FIP $2801 \Lambda$ is $0.0001^{\circ} \mathrm{C}$ for both absolute and differential measuremens. In comparison, useful resolusion of platonum resistance ind thermistor systems (assuming instrumentation comparable in cost to the quarz thermometer) is in the order of $0.01^{\circ} \mathrm{C}$. While it is possible to obtain resolution of several tenths of a millidegree with a plannum resistance themometer, this requires a high quality Mueller bridge and a sensituve galvanometer, at a combined cost cunsiderably higher than that of the quart thermometer, and withou the convenience of direct readoul. In segard to other performanoce eharacteristics such as measurement repeatability. long-lerm stabillily, speed of response, self-heating. prohe interchangeability, etc., the quartz thermometer is equal to or helter than commercial-grade platinum resistance. thermistor. and thermocouple measuring systoms.

## Simplicity of operations

The excellient sensing characteristics of the quartz thermometer are supplemented by the advantages of direct digital display (ro bridge balancing. or reference to resistance-or voliage-temperature tables or curves), immunity to noise and cable resistance effects, and no requirement for external equipment such as a reference junction.

## Data recording

As a standard feature, the HP 2801A Quartz Thermometer provides elecarical (binary-coded decimal) outpuls for each displayed digit, polarity, decimal posifion, and for the operating mode (i.e.. $\mathrm{T}_{\text {, }}$, $\mathrm{T}_{2}$. $\mathrm{T}_{1}$ - $-\mathrm{T}_{2}$ ). Temperature readings can therefore be printed out on paper tape by connecring thest oulputs dirccily to an HP 5050B Digital Reiorder. Maximum printing rate is 4 readings per secend (for $0.01^{\circ}$ resolution).

Quartz thermometer readings can also be recorded graphicslly on a strip-chart recorder by first converting the digital output to analog form. Full seale dencitions from $250^{\circ} \mathrm{C}$ down to $0.01^{\circ} \mathrm{C}$ are obtainable with this 「eature. (Or down $100.001^{\circ} \mathrm{C}$ with the optional 100 -secord sample period for the HP 2801A.

## 2801A Specifications

Temperature range: -80 to $+250^{\circ} \mathrm{C}\left(-11210+482^{\circ} \mathrm{F}\right.$ with Option 001.$)$

Callbration accuracy: thermometer-probe combination calibrated at factory to within $0.02^{\circ} \mathrm{C}\left(0.04^{\circ} \mathrm{F}\right)$ absolvte, rraceabic to NBS .
Linearlty: $0.2^{\circ} \mathrm{C}\left(.36^{\circ} \mathrm{F}\right)$ over range $-40^{\circ} \mathrm{C}\left\{-40^{\circ} \mathrm{F}\right)$ to $+250^{\circ} \mathrm{C}$ $\left(+482^{\circ} \mathrm{F}\right)$, rejerred to best-fil straight line ithrough $0^{\circ} \mathrm{C}$ : increases to $1{ }^{\circ} \mathrm{C}$ below $-40^{\circ} \mathrm{C}$. referred to same line. Nate: Factory calibration also includes correction factors which significantly reduce the linearily distortion quancilies indicated above.
Stabillity
Short ferm: less than $\pm 0.0001^{\circ}$.
Long term: zero drifi less than $\pm 0.01^{\circ} \mathrm{C}\left(0.018^{\circ} \mathrm{F}\right)$ at constant probe Iemperature for 30 days.
Hysteregts: liss than $\pm 0.05^{\circ} \mathrm{C}$ over $-80^{\circ}$ to $+250^{\circ}$.
Amblent temperature etfect: liss than $0.002^{\circ} \mathrm{C}$ per ${ }^{\circ} \mathrm{C}$ change.

## Nayraw range operation

Callbration accuracy. since HP 2801A can be calibruted to aciuracy of user's temperature reference. absolute accuracy al given temperature can be enhanced by calibrating close to that temperaturc. e.g.. $\pm 0.001^{\circ} \mathrm{C}$ in region of $0^{\circ} \mathrm{C}$, using good ice-point refer. ence.
Linearlty: $0.002^{\circ} \mathrm{C}$, over any $10^{\circ} \mathrm{C}$ span belween $0^{\circ}$ and $100^{\circ} \mathrm{C}$.
Hysleresla: $0.001^{\circ} \mathrm{C}$ typical. over any $10^{\circ} \mathrm{C}$ span between $-80^{\circ}$ and $+250^{\circ} \mathrm{C}$.
Dligplay: 6-digit in-line readout in ${ }^{\circ} \mathrm{C}$, or ${ }^{\circ} \mathrm{F}$. Decimal point. ${ }^{\circ} \mathrm{C}$ or ( ${ }^{\circ} \mathrm{F}$ ) annuncisior. and polarity indication ineluded.

Digltal recorder output: $B C D, 42^{\prime}-2-1$, positive true, for each digit, decimal point (exponent), polarity, and operaling mode. 8-4-2-1 posilive true BCD output optionally available.
Exiernal programming: selecied by contact elosures or transistor circuil closures to ground. Measurement initiation, probe selecion ( $T_{1}, T_{2}$. or $T_{1}-T_{2}$ ), and resolution ( $0.01,0,001$. or $0,0001^{\circ}$ ) programmable.
Power required: $115 / 230 \mathrm{Y} \pm 10 \%$. 50 to $60 \mathrm{~Hz}, 85 \mathrm{~W}$.
Instrument environment: ambient temperalures from 0 to $+55^{\circ} \mathrm{C}$ $\left(+1210+130^{\circ} \mathrm{F}\right)$, al relative humidity $1095 \%$ as $40^{\circ} \mathrm{C}$.
Welght: net, $10.1 \mathrm{~kg}(22.5 \mathrm{lb})$. Shipping $15.9 \mathrm{~kg}(35 \mathrm{lb})$.

Quarte temperature sensing probes (2B50A, B,C,D)
In all probe models, the sensor erystal is hermetically sealed in a cylindrical copper case. in a helium atmosphere. This case is enclosed within a stainless stcel lubular body which varies in length with the probe model. The only probe material in contact with the measurand is thercfure stainless steel (type 304). The sensitive quastz dise is situated parallel to and about 0.25 mm ( 0.010 inch) away from the flat end of ahe probe.

The HP 28 S0B and HP 2850C probes are equipped with a $1 / 4$ inch NPT fillung and hexagonal end piece for easy inserion into pipes and lanks, st pressures to 3000 pas ( $20 \times 10^{2} \mathrm{Pi}$ ).

With all models, a 3.7 m ( 12 -foot) lengilh of flexible coaxial cable is permanently attached to the probe. TFE Tenton is used both as the dielectric ind outer sheath; this material can withstand iemperytures as high as $250^{\circ} \mathrm{C}$. The cable is sealed to the probe body; and is terminated at the other end with a water-light conncetor mating with the assoeiated sensor oscillator in the 280) A main frame assembly. With the HP 2850C probe, the cable is enclosed in a slainless sleel, sirip-wound, Лexible hose to prevent the kinking or crushing that could oceur durfing frequent handling or in exposed instatlations.

## Remote operation of probes

The standard 3.7 m ( 12 -foot) cable length from the probe to the 2801A main frime assembly may be extended up to 1372 m ( 4,500 feet) withoul am loss of aceuracy or sensitivity. This extersion is accomplished by using RG-59/U couxial cable and inserting one or two 2831 A Amplificrs al appropriatc intervals along the cable.

## HP 2850 series probes speclfications

Response tlme: (response 10 step function of temperalure. messured by inseting probe into water al dissimilar temperature flowing al $0.6 \mathrm{~m} / \mathrm{s}(2 \mathrm{pps})$ :
$63.2 \%$ of final value in $<2.5 \mathrm{~s}$
$99.0 \%$ of final valuc in $<9.0 \mathrm{~s}$
$99.9 \%$ or linal valuc in $<14.0$ s
Thermal masa: (equivalent mass of water) HP 2850A 0.5 gm. HP 2850 D 1.5 gm (Thermal mass of HP 2840B and C probes is considerably greater bocause of thecaded fitting and metal cable sheath.)
Thermal leak rate: for probes without metal cable shcath, heat loss from cable 10 relatively sijll surrounding air is approximately $4.2 \times$ $10^{-3} \mathrm{~J} / \mathrm{s} /{ }^{\circ} \mathrm{C}\left(1 \times 10^{-3} \mathrm{cal} / \mathrm{s} /{ }^{\circ} \mathrm{C}\right)$.
Probe materlal: probe body is made ol type 304 suainless steel. Cable external covcring is TFE Teflon.
Probe environment:
Measurand: gases and liquids non-reaclive with probe materials.
Temperature: -80 to $+250^{\circ} \mathrm{C}\left(-11210+480^{\circ} \mathrm{F}\right)$. Probe life re duced if subjected to temperature outside this range.
Pressure: $20.7 \mathrm{MPa}(3000 \mathrm{psi})$ maximum for probes 2850 B and C when iosened in prosiure vessel. Probes 2850A and D sealed for immersion of the metal sheath. Probe-lo-cable seal will withstand occasional immersion to depths less than 3 m ( 10 feel) of wales.

Welght: nel. including 3.7 m ( 12 -fool) cable. Less than 90 gm ( 3 oz. ). Shipping. 0.5 kg ( 1 lb ) approx.


## Oceanographic temperature bensor

The Model 2833C Occanographic Temperalure Sensor Assembly for the 2801A Quarz Thermometer is especially desiened for use in rugged environments such as oceans, rivers, harbors and industrial fluids al presisures up 1068.9 MPa ( 10.000 psi )

## 2833C Oceanographic sensor specticatlong

Temperalure range: -40 to $120^{\circ} \mathrm{C}\left(-40\right.$ 10 $+248^{\circ} \mathrm{F}$ )
Response time (step change): $63.2 \%$ of final valua in $3 \mathrm{~s}, 99.0$ 贸 in 16 s , $99.9 \%$ in 24 s : flow at $[0.6 \mathrm{~m} / \mathrm{s}(2 \mathrm{fps})$ ].

## 2801A Oplions, probas, accessories

Option 010: increases sample linies by 10X. increasing maximum resolution $100.00001^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ Price

Option 001: reudout in ${ }^{\circ} \mathrm{F}$
Option 006: 8-4-2-1 positive-true BCD output in lien of standard 8CD (4-2'-2-1) oulpui
-
Option 908: rack חange kil
2850A probe 17.5 mm ( $11 / 10^{* *}$ ) long
$\$ 520$
2850 D probe $228.6 \mathrm{~mm}\left(9^{*}\right)$ long
$\$ 520$
28508 probe $50.8 \mathrm{~mm}\left(2^{*}\right)$ long. $1^{* *}$ NPT fiuting $\$ 620$
2850C probe $152.4 \mathrm{~mm}\left(6^{\circ}\right)$ long, $1 / \mathrm{s}^{\prime \prime}$ NPT Filling $\$ 620$
2830A Sensor Oscillator
S110
2831A Amplifier, one inereases allowable distance to probe to $762 \mathrm{~m}(2500 \mathrm{n})$; no amplifiers increase allowablc distance to 1372 m ( 4500 ft )
2833C Oceanographic probe, 15 m (50') waterprool cable with load bearing lermination
2833 C Opl 002: is m (50') amored waterpcoof cable with load bearing termination in lieu of standard cable.

# PHYSICAL \& OPTICAL MEASUREMENT 

Quartz pressure gauge
Model 2811B

- 0.01 psi resolution (69Pa)
- $0.025 \%$ Full Scale Accuracy
- Direct Suriace Readout
- Simple Operation
- Long Term Stability


2811日
0.01 psi Resolution at $10,000 \mathrm{psi}(69 \mathrm{~Pa}$ ( 69 MPa )

The HP 2811 B Quarie Pressure Gauge measures wellbore pressure with a resolution of 0.01 psi over a dynamic range in excess or 10,000 pss. This capability makes it possible accurately 10 measure pressure changes that cannot be detected with conventional gauges using bourdon tube transducers.
This ability to detect and record small pressurc changes allows sophisticated test techniques te be used economically. For cxample, since the super-sensitive HP Quartz Pressure Gauge cand deleet small pressure cransients at obscivation wells, pulse lests can be conducted with extremely short pulse cyele times at the stimulus well. Because the shut-in time is reduced, the permeability and formation theckness beiween wells can be determmed al a substantially lower cost.
With the 28118 recording oplions, pressure transients can be observed and recorded on the surface wbile the test is in progress. lt is nol necessary to wait to resrieve down-hole recording gauges. Pressure data can be read and recorded direcily withoul intermediate scal. ing or other calculations.
The 28118 Quanz Pressure Gauge was spocifically designed for pressure messurement in oil and gas wells and it is used by many oil compankes and well service companies. However. is high resolution pressure measuring eapability and rugged construction also make it ideally suited for oceanographic research and subterrancan hydrodynamic studies.

## Features

## High resolution and accurscy:

Pressure changes of 0.01 psi ( 69 Pa ) can be resolved over the entire range.
Absolute accuracy is belter than $0.025 \%$ of reading at full scale.
Factory calibrated to $11,000 \mathrm{psi}(75.8 \mathrm{MPa})$ and $300^{\circ} \mathrm{F}\left(150^{\circ} \mathrm{C}\right)$.
Surface readout and recording
Direct readoul and recosding of wellbore pressure on the surface.

Integrated sirip chan recorder and digital printes options available.
Operates whit a single conductor, amored coaxial cable (electric line). (Thes cable is nol supplied by Heswlelr. Packard.)

## Easy to use

Easy operation by personnel unskilled in electronics.
Rugged design withstands rough handling and hostile wellbore condiions.
Less than 500 walts power is required wath recording uptions. Unlque quarlz transducer
Quarzz crysial oscillator pressure (ransducer.
Excellent long:erm stability with negligible hysteresis and virtually zero drife.
Calibration required no more often than once a year.

## Description

The HP 28IIB consists of an HP 2813B Quart Pressure Probe and an HP 28I6A Pressure Signal Processor. A signal, with frequency proportional to pressure, is transmitted from the downhole pressure probe to the signal processor on the surface through a single conduclor, armored electric linc. The processor conditions the pressure-related signal to drive a separate eloctronic frequeney counter for visual readout. If a preset counter is used (included in HP 28118 recording options), wellbore pressure hill be displayed in psi (or Pa). No scaling or intermediatc calculalions arc nevessary.
For ficld use, the HP 281IB Analog Digital Recording Options are available. They provide a convenient method of oblaineng diroce display of pressure data in English or metric units, a permanent strip charl record of pressure transients, and a digital printout of pressure and time. All instruments are shock mounted in two rugged lield cases 10 wilhstand rough handling.
The HP 28) IB A nalog Recording Oplsons are available as $3 n$ alternotive. All the insiruments needed to provide direct prewure readout and a sirip chart record are mounted in a single ficld case.


Analog and Digital Recording Optlon 036／037

## 2813日 Ouarty pressure probe

Ruggedness and simplicity make the Quartz Pressure Probe easy 10 use in the fegld．Housed in a $1 / 10$ inch（ 36.5 mm ）OD case made of 17 ． 4 PH stainlesis steel．lie probe can withstand pressures in excess of 12 000 psia（ 8.2 .7 MPa ）．It can be operated in flowing gas or liquid wells． Mechanical vibration has no effect on its performance．The HP 2813B case contains a quartz crystal pressure－sensing oscillator and a refer－ enee oscillotor．The frequency of the sensor oscillator varies with pres－ sure and is sublracted from the reference ostillitor frequenty．The re－ sulting difference frequency，which is a function of pressurc，is erans－ mitted up the cable to the signal processor on the surface．Pressure changes as small as 0.01 psi can be detected in ambient pressures up 10 12000 psia，lis high resolution is essentially constant，independent of operating prisisufe and emperalure．The inherent stability of the quarlz ascillator minimizes hysteresis and zero drift，thus climinating the neod for frequent recalibration．The usual recalibration cycle is grealer than one year．

## Armored coaxial cable

A single conductor coaxisl cable（electric line）connects the probe 10 the sigrial processor．It furnishes all operating power to the probe and transmils the prexsure－dependent signal to the processor．Standard one－conductor，ammored eleciric line can be used in lengths up to 20 000 feet．The cable is not supplicd by Hewlett－Packard，and ean be purchased directly from a cable supplicr．

## Field Serviceable

The field proven HP 2813B Quaniz Pressure Probe is highly reli－ able，even when used at temperalures and pressures near design oper－ aling limils．Modular design permits rouline service such as replace－ ment of silicon oil and Viton（ 8 O－rings to be casily performed in the ficid．

## System specifications

Calibraled pressure range： $200-11000$ psia（1．A－75．8 MPa）
Probe operating pressure range： $0-12000 \mathrm{psi}(0-82.7 \mathrm{MPa})$
Probe operating temperalure range： $32^{\circ}$ to $302^{\circ} \mathrm{F}\left(0\right.$ to $150^{\circ} \mathrm{C}$ ） Signal processor operating temperature range： $32^{\circ}$ to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ $1055^{\circ} \mathrm{C}$ ）
Resolullon： $0.01 \mathrm{psi}(69 \mathrm{~Pa})$ when sampling for a 1 －second period
Repeatablity：$\pm 0.4 \mathrm{psi}( \pm 2.76 \mathrm{kPa})$ over enlire range
Accuracy（at thermal equillbrlum）If operating iemperature is known
within $1.8^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$ ：$\pm 0.5$ psi or $\pm 0.025 \%$ of reading（ $\pm 3.45 \mathrm{kPa}$ or $\pm 0.025$ 宗R）
within $18^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right): \pm 1 \mathrm{psi}$ or $\pm 0.1 \%$ of reading $( \pm 6.89 \mathrm{kPa}$ or $\pm 0.1$ 家 R ）
withln $36^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ ： 45 psi or $\pm 0.25 \%$ of reading（ $\pm 34.5 \times \mathrm{Pa}$ or $\pm 0.25 \% \mathrm{R}$ ）
Sensldulty： $105 \mathrm{~Hz} /$ psi nominal（ $105 \mathrm{~Hz} / 6.9 \mathrm{kPa}$ ）oulpul ar signa） processor
LInearliy（without callbratlon）： $1 \%$ maximum deviation from straight line through frequency at zero pressure and at Il．000 psia （ 75.8 MPa ）
Dimensions and Welghls
28138 Probe：$I / 10$ in．（ 36.5 mm ）OD by $393 / \mathrm{in}$ ．（ 1000 mm ）long． Weight： $11 \mathrm{lb}(5.0 \mathrm{~kg})$
2816A Signal Processor：61／is in．high $\times 7 / 1 / 2 \mathrm{in}$ ．wide $\times 11$ in．deep
（ $154 \mathrm{~mm} \times 197 \mathrm{~mm} \times 279 \mathrm{~mm}$ ）．Weight： 3.2 kg （ 7 lb ．）

## HP2811日 optlons，instruments and accessory

 InstrumenkPrice
Optlon 016：Analog Recording（English units） provides a linearized digial display and continuous in－ alog pressure data on a strip charl recorder．Includes HP 5330－H4）Prese Counter，HP 380A Digiral to Ana－ log Convertor．HP 680 Sirip Chan Recorder，power line regulator，power strip，and provision for mounting the HP 2816A Pressure Signal Processor： $60-\mathrm{Hz}$ operation． Optlon 017；same as Opl． 016 except metric unit and 50－1Hz operalion
Optlon 038：Analog and Digital Recording（English unis）same as Opi 016 plus digital printour of time and pressure data and time marks on strip chart recording． Digital printer will handle up to four（4）additional data channels．Includes all items in Opl 016．plos HP 5055A Digital Printer．HP K $10-5055 B$ Digital Scanner，and HP K22－532IB Digital Clock（hours，minutes，seconds），all mounted in a rugsed fiekd casc： $60 \cdot \mathrm{~Hz}$ operation
add \＄11，980 Opion 037：Analog and Digital Rucording（meinic un－ its）same as Opl 036 except Opt 17 is included inslead of Opr 016： 50 Hz operation
2813日 Quartz Pressure Probe．carrying casc，calibra－ tion tables．Operating and Survice Manual 2816A Prassure Signal Processor，requires an electronic counter for visual display of prissore data in eerms of「requency，or Pre－Set Counter，such as the HP 5330A－ H4l furnished with the recording options（or equiva－ leni），for visual display of dala in presisure units
HP 5330A－44）Presel Counter．6－digit display，thumb－ wheels for sctting the slope and offse constants that are easily calculated using the furnished Operating Note
28118 Quartz pressure gauge，includes HP 2813日 Quartz pressure probe and carrying case，calibratlon tables，manual and 2816 A． Pressure signal processor．＇
add $\$ 6275$
add $\$ 627$ s
$\$ 11,980$
$\$ 10,250$


## Systems description

The S501a Laser Transduoer is the basis of a linear displacement measuring system which brings the many advantages of interferemctry to builders and users of accurate positioning equipment at a cost comparable with conventional devices. U'sing a single laser source, up 106 axes of motion may be monitored simulancously. This jeature. plus numerous other design innovations, signiñicantly lowers the cost of laser interferometer feedback. A range of outpul devices offers the choio: of feedback conirol or digital displas. Although the Laser Transducer is designed for original equipment manufaclurers (OEM). simple installation techniques make it altractive for retrofil by endusers as well.


## Oplical accessories

A wide variety of Interferometcrs. Retroreflectors. Beam Spliticrs, and Bcam Benders allows application of the 5501A Laser Transducer 10 the most complex measurement problems.
LInear Interierometer - moss economical and widely used for linear displacement mesusurments.
Plane miryor interterometer - used for precision measurement and conirol of $X-Y$ slage motion.
Single beam Interferometer - exirencly small lincar me:tsurement interferometer for applications where size and weight are critical.
Beam splitlers and benders - oplical componcrits to divide and direct the laser beam to the individual measurement axes.

## Electronic outpuls

A range of outpul formats are available for the SSOIA Laser Transducer which provide compatability with a wide variely of measurement applications.
Compuler Interface electronics interfacc the 5501A Laser Transducer to virtunlly any digital processor or controller. This universal binary interface is ideul for position control systems with the most demanding response requirements.
Calculator interface electronics based on Hewleti-Packard Programmable Cillculators und the Hewlett-Packard Interface Bus provide completely integrated measurement packipes. Designed for acquiring, reducing and displaying measuremen data, his interface allows simple application of the S501^ Laser Transducer to a wide variely of measurement oriented machines.
English/melric pulse oulput electronics provide a universal interface to almosi all numerical controls for machine rools. Designed primarily to facilitate installation of the 5501A Lastr Transduces on machine tools by Original Equipment Manufacturers, this inierlace provides inch of metric value pulses over a wide range of resolutions.

## Specifications

Resolution: $0.16 \mu \mathrm{~m}$ ( 6 microinches) of $0.08 \mu \mathrm{~m}$ ( 3 microinches) using Plane Mirror interferometer. Resolution Extension can increasc measurement resolution up to a factor of 10 .
Accuracy: $\pm 0.5$ pars per million.
Range: up 1060 meters ( 200 fect) depending upon conditions (sum of axes for multi-axis configurations).
Number of axes: up in six, depending on system configuration and environmental conditions. Maxinum allowable nseasurement velocity: 18.3 melers/min ( 720 incher/min).

Choice of options for Length, Angle, Flatness, Straighlness Non-contact and 2 Axes

Model 5526A Laser/Display System Base

## Configuration

The 5526A Laser Measurement System is a major advance in economical dimensional metrology. A choict of options aliows the measurement of lenguh, angle. Пatness, straightness, squareness, and parallelism. In addition, output options are available to reduce the data to printed or plotted formal. The 5526A, which forms the base of the sysrem includes the 5500C Laser Head and the 5505A Laser Display. Measuring and outpot options are added to this base system to allow modular build-up of measurement capability.

## General capabilities

The system is a bighly aceurate displacement measuring 2001 with a resolution of one millionith of an inch ( $0.01 \mu \mathrm{~m}$ ) for linear measurements and 0.1 arc-second for angular measurements. Futly automatic tuning, instant warm-up and remote interferometric measurement techniques assure drin-free accuracy from the moment of switch-on. A laser tube lifetime in excess of 10.000 hours can be confidently expected and the unique optical helerodyning principle makes for pracical, convenient measurements in adverse envirorments.

## Measurement options

Option 010 linear interferometer
This option consists of the 10565B Ramote Interferometer and a 10550B Retroreflector. Since the Remote Interferometer is complete ly passive, it makes for an almost perfect lincar measuring insırument. Complete thermal stability is ussured since the laser head can be somu distance away on a Iripod.

## Option 020 linear + angular/flatness interferometer

While including all the capabilities of the Oplion 010 Linear Interferometer, (his option also provides angular measurement ability. The addition of passive optical modules allows fast, accurate measurements of pitect, yow, or Пatness. The option also includes (wo turning mirrors designed cspecially for rapid calibration of surface plates.
Option 030 straightness interterometer
This option converts the 5326A into an interferometric straightedge. Lateral deviations from a perfectly siraight linc are displayed to a resolution of one millionah of an inch $(0.01 \mu \mathrm{~m})$ over an axial range of 10 feet ( 3 m ). Unlike alignment lasers, the Hewlett-Packard system does not depend on the pointing stability of the laser beam for its referenee. but instead uses iwo rigidly mounted plane mirrors and a special prism incerferometer, A long range version (Option 3i) is also available with a resolution of ten millionths of an inch $(0.1 \mu \mathrm{~m})$ over an axial range of 100 feel ( 30 m ).

Ideal for determining geometric characteristics of machine tools, the Straightness Option cán also méasute such parameters as parallelism and with an optional optical square, squareness.
Option 200 series laser mensurement/calculatar systems
The combination of the 5526A Laser Measurement System with the Model 9820 or 982 I Calculazors provides a complete problem solving system for a wide variety of measurements.

A package of metrology applications programs enables fast data reduction and ploting of measurements such as surface plate calibration. lead error anslysis and geometry characteristics of machine tools and measuring machines. including straightess. parallelism and squarencss. One important program included implements the NMTBA (Nationa! Machine Tool Builders Association) recommendations for accuracy and repeatability of numerically contsolled machine lools.

## S510A Automatic compensator

The 5510A Aviomatic Compensalor provides accurale, conlinuous correction for variations in the refractive index of air and for temperature of the matcrial being measured. Air lemperature, pressure, humidity and material temperalure are measured by rugged sensors designed especially for use in macbine shops.

## Additional options

Other options to the S526A Laser Measurement System are available including a Single Beam Interferonteter which in conjunchion with the non-Contact Converter measures displacement of reflecsive surfaces. The Plane Mirror Converter when added to the Remote Inerferometer of Option 010 allows measurements from a plane mirror surface with relalive insensitivity to mirror tilh.

## Brief specification

## 5526A Laser/display

Laser: Helium-Ncon lype. Fully automatic tuning. Instant warmup. Accuracy (for all linear displacement measurements): $\pm 0.5$ parts per million $\pm 1$ counl (Metric $\pm 0.5$ parss per million $\pm$ ? counts).
Resolution: normal and smooth modes
Narmal 0.000 .01 In . Metric: $0.1 \mu \mathrm{~m}$. Angular: 1 arc-8ec $\times 10$ $0.000,001 \mathrm{in}$. Metric $0.01 \mu \mathrm{~m}$. Angulat: 0.1 arc-sec.
Maximum silowable aignal loss: $95 \%$ ( -13 dB ).
Maximum measuring valocily: $720 \mathrm{in} / \mathrm{min}(182 \mathrm{~m} / \mathrm{min})$.
Almospheric and material compensation: manual inpui from lables.
5510A Automatic compenisator optional.
Option 10 linear interteromeler
Accuracy: as for 5526 A Laser Display
Maximum messuring renge: up to 200 fect ( 60 m ) depending on conditions.
Option 20 linear + angular/fistness interlerometer
Linear specifications are as for Option 10.
Accuracy: $\pm 0.1$ are-second ( $\pm 1$ count in last digit) up to $\pm 100$ urcseconds. $\pm 1$ are-seconds ( $\pm 1$ count in last digit) up $t 0 \pm 1000$ are-seconds. $\pm 4$ arc-seconds per degree ( $\pm 1$ coum in lase digit) up $10 \pm 10 \mathrm{dc}$ grees using contutlion rable.
Option 30 short range straighiness interierometer

## Accuracy

Inch: $\pm 5$ microinches $/$ /ool $\pm 1$ count in last digit
Metrle: $\pm 0.4$ micrometer/meter $\pm 2$ counes in lasi digit.
Callbration: $\pm 3 \%$ of reading.
Resolution: as for 5525A Laser/Display
Lateral eange: $\pm 0.1$ inch ( $\pm 2.5 \mathrm{~mm}$ ).
Axlal range: 10 「ecl ( 3 m )
Option 31 long range straightness interferometer
Accuracy: as for Option 030.
Callbration: $\pm 10 \%$ of reading.

## Resolution

Normal: 0.0001 inch ( $1 \mu \mathrm{~m}$ ).
$\times 10: 0.0000$ inch $(0.1 \mu \mathrm{~m})$.

## 5510A autornalle compensator

S526A/5S10A System accuracy (worst case):

1. For air temperature within range $68-85^{\circ} \mathrm{F}\left(20-30^{\circ} \mathrm{C}\right) 1.3 \mathrm{ppm} \pm 1$ count (metric $1.3 \mathrm{ppm} \pm 2$ counts).
2. For air temperature within range $55-105^{\circ} \mathrm{F}\left(13-40^{\circ} \mathrm{C}\right) 1.5 \mathrm{ppm}$ $\pm 1$ coum (metric $1.3 \mathrm{ppm} \pm 2$ counts).
Options
Price
010 Lincar Inlesferometer $\$ 3895$
020 Lincar + Angular/Flatness Interferometer $\$ 5985$
030 Straightness Interictometer $\$ 3895$
200 Lascr Mcasurement/Cafculator System $\$ 33,845$
908 Rack Flange Kit
add \$10
Model number and name
5510A Automatic Compensator
5526A Laser/Display

## Distance meters



HP3800A/E

## HP 3800A/B Distance Meters

The HP 3800A / B Distance Meters are medium range, electro-oplical distance measuring instruments employing an infrared light source. The HP 3800A measures slope dislance in foel, the HP 3800B in meters. These instrumenis combine a range of 10,000 feel ( $3,000 \mathrm{mc}$ ters), high accuracy and uase of operation into one lightweight. rugged meter. Use of graphic symbol notation on the operating pancl serves as a constant reminder of the measurement sequence. A visual display of the total measured distance in feel or meters, corrected for atmospheric conditions, is accomplishod in less than two minutes. Unique circuitry climinates effocts on measured distance caused by momentary beam interruptions. The compuct HP 3801 Power Unit with almospheric correction dial and buill-in charger gives long operating time and provision lor operating from an external power source. Primary applications for the HP 3800's are high order control surveys.

## HP 3800A Specifications

Range: 10.000 fect with triple prism assembly (favorable conditions). $7.50 Q$ feet with iriple prism assumbly (average conditions).
Readoul: 0000.000 to 9999.999 feet. Leasi count 0.002 feel (cstimate to 0.001 feet .
Accuracy: $\pm(0.01 \mathrm{FI}+0.01$ it per 1000 fl$) \mathrm{M} . S \mathrm{E}$. 아 $+15^{\circ} \mathrm{F} 10$ $+105^{\circ} \mathrm{F}$. $\pm(0.02 \mathrm{fl}+0.04 \mathrm{f}$ per 1000 II$) \mathrm{M} . \mathrm{S} . \mathrm{E}$. © $-5^{\circ} \mathrm{F} 10+15^{\circ} \mathrm{F}$ and $+105^{\circ} \mathrm{F} 10+130^{\circ} \mathrm{F}$.
TIII range: $\pm 30^{\circ}$
Aiming acope: internal focus, $18 x$, ereet image.
Power unlt 3801A: imernal batery and battery charger. provision to operate from external source.

## General

 HP $3801 \mathrm{~A}\left(6.9^{*} \times 6.9^{\prime \prime} \times 86^{\prime \prime}\right)$
$\begin{array}{lr}\text { Model number and name } & \text { Price } \\ \text { HP 3800A Distance Meter - Kern/Wild interface } & \$ 4300 \\ \text { HP 3801A Power Unit - Scaled Lead-Gel Batiery } & \$ 600\end{array}$


HP3805A

## HP 3805A Distance Meter

The HP 3805A Distunce Meler is a shon range, automatic readout. infrared light source insirument. The range of the HP 3805A is one mile ( 1.600 meters) with the measured slope distance displayed in feet or metcrs at the תip of a switch. The HP 3805A reatures a built-in computer that controls the instrument's internal functions and allows the instrument to evalluate the quality of measurement. A minimum of 3,000 readíngs are laken for each distance measuremenl and displayed in six seconds. This instrument also has an internal self-check capability for verifying its electronic performance in the field or of. fice, and automatic almospheric correction. The optional batitry pod that snaps into the boltom of the insirument provides cable free operation for a lightweight portable field system. Primary applications for the HP 3805A are boundary and engincering surveys.

## HP 3805A Specifications

Range: One mile ( 1600 meters) with triple prism assembly (under average conditions)
Readout: automatic digital LED display 0000.00109999 .99 fcet; least count 0.01 fees.
Accuracy: $\pm(0.02 \mathrm{ft}+0.01 \mathrm{fl}$ per 1000 fi$)$ M.S.E. © $+15^{\circ} \mathrm{F} 10$ $+105^{\circ} \mathrm{F}$. $\pm(0.04 \mathrm{ft}+0.03 \mathrm{n}$ per 1000 ft$) \mathrm{MS}$ S. (3) $-5^{\circ} \mathrm{F} 10+15^{\circ} \mathrm{F}$ and $+105^{\circ} \mathrm{F} 10+130^{\circ} \mathrm{F}$.
Till range: $\pm 30^{\circ}$
Aiming scope: adjustable focus, Isx, ercet image.
Power requirement: optional rechargeable intcrnal Battery Pod or external $12 \mathrm{~V} \mathrm{dc} \mathrm{(10.5} \mathrm{10} 15.0 \mathrm{~V}$ ).-

## General

Dimenslons: $13^{\prime \prime} \times 10.3^{\prime \prime} \times 5.8^{\prime \prime}$
Model number and name Price
H.P 3805A Distance Meter - Kern/Wild interface \$3825

11440A Recharger
II441A Ballary Pod
$\$ 95$


## HP 3810A Total Station

The new HP 3810A Total Station combines distance and angle measurement capabilities into one compact infrared light source instrument with a range of one mile ( 1600 merers). The HP Tolal Station measures the slope distance and zenith angle, corrects for the carth's curvature and refraction, then automatically displays the horizontal distance. With the 20 -second least count horizontal angle base you can estimate horizoneal angles to 5 seconds, allowing all angles and distances to be measured from one instrument Operation of the HP 3810A is very simple. just aim the instument at the target and press the measure button. The built-in computer then balances the signal level, checks the quallity of the oneasurement, corrects for curvalure and refraction, and computes ithe horizontal and vertical distance. A selectable track mode, which allows horizontal distance measurements to be made in three seconds, makes the Total Sataion an ideal instrument for layout and location surveys. Precise measuremenis can be made in as little as six seconds. Selectable units of display are foel/meters for distance measurements, and degrees/grads for angle measurements.

## HP 3810A Specifications

Range: one mile ( 1.6 km ) with triple prism assembly (under average condilions). Average condlions are those found during the day when moderale heat shimmer is evident.
Units of measurement; sclectable in either rect/meters and degress/grads.
Display rate - Irack mode: 2 sec/rcading - slope dislance: 3 $\mathrm{sec} /$ reading - horizontal and vertical distance: $1 / 2 \mathrm{sec} / \mathrm{reading}$ zenith angle.
Tilf range: $\pm 30^{\circ}$

## Horizontal angle base

Horizontal angle clrcle: 75 mm ( 2.95 inch) diameter glass circle graduated to I degree Micrometer scale reads direct 1020 seconds or $50^{\circ}$ with estimation 105 soconds or $10^{\circ}$.
Optical micromeler reading; horizontal angle circle rcadings are
oblsined through a reading microscope located on the side of the yoke.
Level vial: plate level vial sensitivity 30 seconds per 2 mm .
Interface: interfaces only to Wild GDF-6 Iype tribrachs.
Base optlons: opsion 011 - Degrec graduation with Witd interface.
Option 021 - Grad graduation with Wild interfacc. Note: 3801 A is also available without horizontal angle base.
Telescope: internal focus, $18 x$ erect image.
Power supply: oplional rechargeable ballery pod or exicrnal 12 V dc .

Accuracy - slope distance
$\pm\left(0.016 \mathrm{ft}+0.01 \mathrm{n}_{\text {per }} 1000 \mathrm{n}\right)$ M.S.E. a $+15^{\circ} \mathrm{F}$ to $+105^{\circ} \mathrm{F}$. $\pm(5 \mathrm{~mm}+10 \mathrm{~mm}$ per km$) \mathrm{M} . S . \mathrm{E}$. ©. $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
$\pm(0.030 \Omega+0.03 \mathrm{f}$ per 1000 ft$) \mathrm{M} . S . \mathrm{E}$. (3) $-5^{\circ} \mathrm{F}$ to $+15^{\circ} \mathrm{F}$ and $+105^{\circ} \mathrm{F} 10+130^{\circ} \mathrm{F}$.
$\pm\left(10 \mathrm{~mm}+30 \mathrm{~mm}\right.$ per km) M.S.E. 시 $-20^{\circ} \mathrm{C} 10-10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ $10+55^{\circ} \mathrm{C}$.
Accuracy - zenith angle:
Temperature ( ${ }^{\circ} \mathrm{F}$ )


Unil of display: 0.001 nor 0.001 m Distance: 1 sec or $10^{\circ}$ Zenith Angle.
General
Dimenalons: $330 \mathrm{~mm} \times 262 \mathrm{~mm} \times 147 \mathrm{~mm}\left(13^{\mu} \times 10.3^{\circ} \times 5.8^{\prime \prime}\right)$
Welght: total station withoul battery 11.9 kg ( 26.2 lbs ). Snap-in batlery pod 1.0 kg ( 2.3 fbs ).
3810A Tolal Station


Low cost components, now available from Howleti-Packerd, offer exceptional performance in consumer, industrial, and other OEM equipment. With sophisticated semiconductor processing equipment, and the industry's most extensive hybrid thin-film microcircuit manufacturing facilities, Hewlett-Packard applies newly developed technologics to component manufacturing, offering high performance diodes, eransistors, soldd statc numeric and alphanumeric readouls plus LEDs and other oploelectronic devices - in quantity at economically atrractive prices.

## Transistors

Fer RF and microwave oscillators. Hewlell-Packard has devios available that are useful to 8 GHz . The range of mictowave fransistors includes devices optimized for gain, low noise, and línear power output such that devices are available for the majority of microwave solid state designs.
Hewietl-Packard transistors fill all requirements for multistage VHF-UHF and microwave amplificrs: low-noise input stage, highgain intermediale slages, and power outpul stage. Complete dala sheet characterization and excellent processing uniformity make it possible to design your circuil by calculation instead of by rial-and-error.
Hewiet-Packard transistors are supplied in chip form, or in several stripline packages in either common-base or common-cmituer conlig. urations. The chips have tantalum-nitride-gold contact pads that don"t deteriorale under high bonding temperalures, improving yields of thin-film hybrid microcircuits.
Look to Hewletl-Packard for further advancements in mierowave iransistor performance and pricing.


## Diodes

Slep recovery diodes: Thuse are intended for use as comb generators and harmonic frequency multipliers. When used as a comb generator, the abrupe termination of the diode's reverse recovery cursent generales voliage pulses up to tens of volts with pulse widths as narrow as 100 ps giving useful power al frequencies in excess of 20 GHz . By optimizing the circuil around any specitic harmonic. high efliciency frcquenty mulliplication can be accomplished.
Impatt diodes: A fundamental source of ri power at frequencies above 4 GHz is offered. CW devices can supply 2.5 W al 11 GHz with $10 \%$ efficiency, while pulse-optimized devices at the same frequency offer 14 W at 800 ns pulse widh and $25 \%$ duty cycle.
Schottky barrier diodes: These metal semiconductor diodes combinc extremely high retrification efficiency wilh pico second switching speods, low seriea resistance, and low noise characteristics. This combination makes the Sehoriky an excellent mixer/delector diode.

At HF. VHF and UHF rrequencies. HP delivers glass packaged Schotky performance in million piece quantities al economical pricer. These same diodes have many digital circuit applications where switching speed is imporiant such as clipping and clamping.

Al microwave frequencies, their low noise and repcalable RF impodance lead to oulstanding performance cither as mixers or delectors. Package configurations include beam leaded devices as well as conventional ceramic and axial lead packages.
PIN diodes: These make super smart resistors for microwave design engineers. By controlling the DC bias, the RF resistance of a PIN diode can be varied from 1 ohm io aboul $10 \mathrm{k} \Omega$. This unique property of the PIN diode makes it extremely useful as a switch, attenuator. modulator, phase shifter, limiter or AGC element al all frequencies from I MHz to microwsve.

## Integrated products

The combination of chip and beam lead dioder with hybrid thinfilm circuit technology has led to an extensive product line of components for the conversion and control or RF sigtals.

SPST Switches covering the frequency range from 0.1 to 18 GHz are offered either in modules or with connoctors. Absorplive Modulators with up to 70 dB of isolation at 18 GHz are available.

Other components include Limiters. Comb Generatars. Mixer/Detectors, and Double Balanced Mixers.

The 5082-9200 Primed Circuil Balanced Mixer is the designer's op. timum choice for broad band, low distorion, VHF/UHF mixing.
High reliability testing
Many Hewlet:-Packard components are SPACE QUALIFIED. The reliability of these deviecs is established by one of the finest high reliability testing racilities in the microwave component industry. Hewlett-Packard's High Reliability Test group maintains military approved JAN and JANTX parts in stock and can recommend Standard Screening programs, pattomed after MILSS-19500, for any HP component. Those who wish 10 design their own screening specificafions can consull with and oblain quotations from Hewlett-Packard's staff of Relistility Engineers.


## Solid state displays and optoelectronica

Hewlet1-Packard offers a complete line of GaAsP and GaP discrete light cmilting diodes (LEDs), numeric, and alphanomeric displays. Thusc components provide solid state reliability to visible data transmission. As statos indicstors, arrays, and solid state displays, these compact light emitting diodes are electrically compatible with monolithic integrated circuits, with useful life greater than 100,000 hours. HP offers visible emitters and displays in red, yellow and green.
Low cost numeric displays. packaged single or clustered, with or without on-board electronics. are available in character heighes from 1/a to $1 / z^{\prime \prime}$. In addition. alphanumeric and hexadecimal displays are available in single or multi-digit packaging for a varicty of applicaLions. Small character, low puwer displays have been designed for portable instrumentation and calculator applications.
These light emiting diode (LED) displays arc offiered in plastic encapsulated or hermetic packages. Designed for low cost and case of application, these displays are ideal for conventional indicator requirements as well as allowing many new applications in the display of information.
Discrcle LED indicator lamps are designed for easy panel mounting with clips or direct PC board application. Both plastic and hermetic packages offer high brightress over a wide viewing angle with low power requirements. Hewleti-Packard offers a wide selection of leads. lens, brightness, and package combinations.
Hewlett-Packard offers high gain and high speed optically coupled

isolators designed for analog and digital applications. These devices operate up 1020 M bits with an isolation greater than 2500 volts. High speed and high gain is achieved using an advanced photo inlegraledeirecit construction. Low input, dual and hermetic versions are also available. All devices are available in standard DIP packages.

Hewlett-Packard PIN pholodiodes are excellent light detecions with an exceptionally fast response of 1 ns , wide spectral response from near infrared to ultra-violet, and wide range linearity (constant efliciency over 6 decades of amplitude). Whit dark current as low as 250 pA at 10 V . these detectors are especially well-suited for operation at low light levels.

## Write for more information

Hewlelt-Packard component capabilities are described in caltalogs and data sheets available for the asking.
Dlode and Transiator Designer's Calalog: this contains key paramelers for our line of microwave transislors, Scholiky, PIN, Sicp Recovery and IMPATT diodes, including chips and devices for hybridu integrated circuits.
Solld State Dlsplay and Oploelectronica Designer's Catalog: Ihis contains key parameters for our broad line of LED readouls, LED lamps, new Oplically Coupled Isolators and Detectors.
These catalogs. application notes and other literature, including prices, are as near as your phone. Call any Hewlett-Packard Sales Oflice.


Widely recognized as a leading supplier of electronic measuring instruments and data handling equipment for the engíneer. Hew. letl-Packard is also rapidly developing a similar position in analylical instrumentation for the scientist. HP's analytical producls now include a full line of gas chromatographs, a liqwid ehromatogriph, aulomatic sampling sys. tems for GC. data handiang devices and sy's-
tems for the analytical laboratory as well as mass and ESCA spectrometers.

## Ges chromalographs

Although less than 20 years old, gas cheomalography (GC) has aken over from classical methods of analysis the bulk of analyitcal work performed in laboratorics around
the world. There is an excellent reason for the revolutionary popularity of tic gxs chsomatograph in anilydical chemistry: no other method gets more accurate results. al greater specd, and for less cost.

For the seientist whose interest is the chemical analysis ar unknown samples, HewlettPackard uffers threc basic types of gas chromatographs.

Serles 5830 A reporting gas chromatographs: these are a complete a nalytical sys. tem. They have a built-in digital processor thal operites the system throughout the aпаlyicical run, fullowing precisely the instacLions that you give it before ilae analysis. on an easy 10 use keyhoard. The processor coninuousty monitors delecior oulpul: reduces is 10 peak areas and limes according 10 a sophisticated integrilion algorithm; identifics the sample components and compules their contcolrations; generites the chromato. gram: and presents a complete analytical report. including a hist ul analysis conditions as well as the chromalogram and the compoлeni concentratsons, on its own built-n printer ploter.

5700A family of laboratory gas chromalographs: this family is comprised of Scrics 5710 A dual colunin instruments and Serics 5720A single column insiruments, and Serics 5730A Dual Column Dual Detector Insiruments. 5710A insirunents are available with an isothernal oven emperature controller or a digital programmer, and can accommodate name ionization, hermal conductivity, electron uapture ur llame photometric detector systems. Serics 5720A insiruments provide the same high performance and excellent precision as Serics 5710A and ars available with cither flame ionization or thermal conduclivity delectors. Scrics 5730A instruments can be equipped with thermal conduclivily (TC), Hame ionization (FI), and eleciron capture (EC) deicciors. Dual detcctor configurations available consisı of FI/TC. FI/EC and EC/EC. The modular design of these instruments makes possible the mosi coonomical GC at the highest performance level for laboratories that specialize in specific analyses such as drugs. pesticides. natural gas and air pollution.

Series 7610A high efliclency GC's: their large oven accommodates glass U-lube columns for the analysis of materials that are difficult to chromatograph. These instruments incorporate other design featurts that make them especially effective with biological samples and thermally sensitive or polar malcrials.

## Liquid chromatograph

Modal 1010B high-speed liquid chromatograph: this insirument was specifically designed for modern high pressure operalioll. It allows a wide latitude in choice uf deteelors and is applicable to all modes of liq. vid chromalography. Aulomatic gradienl and flow propramming are available as opfions to the banc unit and lae entire inslru. ment is expandable 10 mes your growing analytical requirements. Detectors available for the Model 1010B asc: differencial refracto. meter, ultraviolel absorption, Пuorescence. electrolytic conductivity and variable wavelenglh UV-visible.

## Sampling systems

Model 7670A/7671A automatle samplers: these automate the measurenent and injoction of samples into a gas chromatograph. Designed to be installeủ on either horizontal ( 7670 A ) or vertical ( 767 iA ) injection poris, thess sampling devices operated unattended overnight and even over weekends reducing operating cosis so significantly that even the smallest labs ctan justify the purchase.

## Data handling

Since gas chromalography produces both qualisative and quantitative information on large numbers of complex samples in a very short ime, its data oulpul is so large that automatic methods for handing it are economical if not essential. Hewlett-Packard manufactures a variety of insiruments and systems for automatic data handling.

The Nodel 3380A reporling Integrator: the first instrumest which provides all the functions that you need 10 gel a complete answer from your gas or liquid chromatograph. In a single unified instrumenl, it records chromatoprams. measures peak reienfion times and arcas. and calculates the anal$y$ sis results and primts the report. The 1380A does more than merely combine these three furctions in a single cabinet. It also materially improves the quality of eath function thal it performs, because it conducts all of its operations under the constant conirol of its own built-in digital processor. As a result, the analytical report that it gives you is more complete than you can get from any combination of separate recorders and integrators or computing integrators or computer systems.

The Model 3352 laboratory data sysfom: ihis turn-key system is ready to use when delivered, complolely conligured and pre-programmed for your laborsiory. It can be expanded, as often as your needs require. to as many as 15 modules without obsoleting the modular hardware. Its powerful data a nalysis soliware looks backward al data already stored and forward to data jusi received to integrate tolal peak arca. It corrects baseline drifi, detects low. slow peaks and perforims langent skim calculalions for peaks that appear on the rail of a solvent.

It lels you slore as many as 248 analytical methods in computer memory and apply any one to any channel. All or the traditional calculation procedures - area \%, normalization. internal standard. external standard are available in sofiware.

The Model 33738 electronic digital Integrator: automalically measures the retention lime and area of uach peak on a chromatogram. It presents the data either on a buill-if printer, on punched paper tape for use with time-sharc computers or directly to a digieal computer in real lime.

Sirlp chart recorders: scucral Hewleti.

Packard recorders gre available with special inpul circuitry for use in GC: Madules 7127A, 7128A, 7143A/B, 680. All selid state instruments, they uffer a choice of one or two recording pens and five- or en-inch calibrated charts.

## GC/Mass spectrometer

It is generally agreed among scientisis that the moss powerful cool for the qualitative and quantitative identification of unknown materials is the combination of a gas chromatograph and mass spectrometer. In the Hew. lelt-Packard system, these two insiruments are fully integrated with a computer, further increasing their analytical power and operalor convenience. All three componerts - gas chromatograph. mass spectrometer and computer - are manufactured and serviced world-wide by Hewlell-Packard.

HP mass spectrometers can be operated cither manually or automatically. In the automatic mode. The Dual Disc Dala System conIrols the operation of the spectrometer and accumutates the analytical data while it performs the necessary calculations. It does a mass scan in less than one second, fast enough to analyse every peak separated by the gas chromatograph. and stores all the analytical data for continuous GC/MS malyses as long as 10 hours. Data hardling is enhanced by the ability 10 seareh a 12,807 specural library and by powerful graphic display (CRT) sofware.

## ESCA spectrometer

Electron spectrocop; for chemical analysis ( ESCA ) is a relatively new technique for measuring the binding energies of core and valence clectrons in aloms and molecules. It has great potential in both structural and analytical chemistry. with applications in the study of surface chemistry, oxidation states, molecular structure and chemical analysis generally.

HP's 5950B ESCA Spectrometer has an advanced data gathering system that enables user interaction with the instrument via a central keyboard to control spectrometer functions. to store and to display collected dato, and to aid in the interprecation of the analytical resulis.

In addision, the HP 5950 incorporales an X-ray monochromalor and dispersion-compensated clectron optics, each an entirely unique lechnological breakthrough. When combined witl the S950B's pasition-sensilive detector, these design fealures serve to eliminate the line-width of the exciting radiation withoot introducing any slis in the spectrometer. The result is an instrumenl that can be operated under optimum anditions of baih sensitivity and resolation al all times.
The main perionmance characteristics of the 5950B include frecdom from backiground and frevdom from satellites á well as greatly improved resolution and sensitivity.


Sophisticated now Coronary Care Monltoring Systom can automatically detect, elassily. log and warn of mosi premonitory ventricular arrhythmias, lor as many as 16 patients simultaneously. Patient status display and a 9 -hour trend display are continuousty updateo; 3-level visual and audible alarms, graded by severity, alen stall to slgniflcant changes in patient's rhythm status.

## Growith of experience

Today physicians and researchers are using more than 300 differcur HP medical products to acquirc, display, record, store. and in some cases analyze, biomedical signals. This major insirumentation resource had its be ginnings in blood pressuse and melabolism equipment developed in the early 1920's by Sanborn Company, and has been steadily augmented during the last live decades. Sanborm became part of HP in 1961 and the com. bined experience and resources have now resulted in products and services for perinatal medicine. pulmonary function testing. anesthesiology, neurology, emergeney care, radiology', pathology and intensive care monitoring. HP also serves medicine with a variety of application planning, maintenancic and staff training serviocs. In recent years, mose than 800 hospital people responsible for main-
laining monitoring and ECG insiruments have gained valuable knowkedge ihrough iraining seminars conducted by HP.

## Where HP Instruments serve medicIne

 Cardlography applicatlons: these involve HP insirumenis und syssems for single- and three-channel ECG rccording: ECḠ slress lesting; computer-aided ineerpretation of ECGs: ECG recording with simultancous registration of heilri sound and pulse tracings: vectorcsediugraphy: and ECG computer terminals for telephone isansmission or lape recording of ECG dala. Instrument/system highlights: briufcase-size portable ECG weighs less lhan $20 \mathrm{lb}(9.1 \mathrm{~kg})$ completc. operates on AC or balteries: 3-channel amlomated ECGs produce 12 -lead records automatically in 10 sec.; ECG stress lesting system includes ECG. 3-channel menoryscope, heart rate meter and delibrillator in mobilc cart.
Cardlovabcular and research appllcaHons: these use multi-channel heated stylus or optical recording systems, complete in all clements lirom transducers to data displays. System capability and ficxibility comes from more than a douen different interchangeable plug-in signal conditioners and a choice of scopes. meler and numerical displays. plus magnelic tape recorders for malog data storage and playback. With signal conditioners for DC signals. physiological pressures, fow. tomperanure. ECG, EEG, muscle potentials, heari ratc. hearl sounds. pressure and pulse waveforms, ctc., these systems are widely used for clinical and research studies in cardiac eathekerifation laboratories, operating rooms and polmonary labs. as well as medical and pharmacculical rescaych labs. The widely accepled Computerized Cith Lab Systems aid the physician by assimilating and rapidly calculating data on blood pressures and cardias volumes, as well as preparing complete reports with much less time and ef. fort. The expanded Compulerized Caih Lab System handles data from congental and acquired hearl disease from multiple labs. with information storage in a patient data base allowing recrospective analysis.
Patlent monttoring: an establisked part of modern intensive care of the coronary, general medical and post-operative patient in critical condition, patient monitoring is a major area of HP medical instrument contribution. Curtently more than 100 modular insiruments, systems, zronsducers, caris and a eeneral station console are available, for monitoring the ECG. heart sate, pulse. cardiac arrhythmias, blood presisures. lemperslure. respiration rate, etc. For the patient on a venti, lator, an HP respiratory monitor continuously measures expired airlow and digitally displays idal volume or minute volume and respiration rate. Alarms warn if a valid breath is not delected within 22 seconds, and a bacterial filler helps reduce the possititity of eross-contammation. Central station instruments include non-fade scopes, numerical and meter displays. recorders and sutomatic alarms. For monitoring ambulatory patients. the HP ECG telemerry system transmis the ECG from a ballery-powered unit worn by the patienL to receivers and displays at the central station. To provide accurate record keeping and instant retrieval of monitored data in many forms to aid dagnowis. the HP patient data management systena links the monitoring system to an HIP computer. Operation is simplified by direct keyboard communication with the system, and response by video-displayed messages, charts. graphs. ctc. In addition. HP also offers a choice of mobile resuscitation systems which provide the specific combination of defibrillator, pacemaker, monitors and organized storage for medications needed by various medical. nursing and surgital services.


Ear Oximeter measures $\mathrm{O}_{2}$ saturationnonInvesively, continuously - independent ol skin plgmentation ear thickness, earplece motion. No individual patient calibration needed.

Perpications: these applications include instruments and systems for fetal/ maternal and neonatal intensive care monicoring. Fetal monitors measure beat-to-beat ietal heart rate and record it simultaneously wilh labor activity. Relating fetal hearl rate to labor contractions gives valuable information for obstertical diagnosis and management of labor and delivery, with the poiential end-result of reduced fetal mortatity and morbidity - i.e., "betler babies." HP fetal monitors offer all of the methods of delecling fetal heart race: iniernal scalp clecIrode; external heart sound, ultrasound. and the new state-of-the-ars. unique sbdominal ECG ieehnique. Comprehensive feral monitoring systerns are analogous to intensive carc monitoring systems, with ceniral swtion display and recording capabilitics. Noonatal intensive care monitoring systems employ hearl rate and respiration rate monitors (c.g., cardiorespirographs). and also have recording and alarm fealures.
Pulmonary function testing; pulmanary Funclion testing can be accomplished elfieienlly, with repeatable aceuracy and yirlually all data reduction and culculating chores performed automatically, with HP insisu-


350 kV Chest X-fay System provides better visualization of more soll lissue areas on a single chest illm, with consistent fim quality which significanily reduces retake rate and patient delays. Small size and simple power requirementg of System also permit rapld. economical installation.
menls croploying electronics and digital lechnology. A Pulmonary Function Analyzer automatically presets and calibrates isself. and graphs spirometry. FVC, Now-volume. of single-breath $\mathrm{N}_{2}$ washoul with cloxing volume, and digitally dixplays FRC for a mulli-ple-breath washout lest. Addation of an HP ealculutor with on-line signal analysis capability provides rapid workups and reporting. For special systenis and pulmonary research. HP offers a nitrogen anslyzer. digital pneumotach, how transducer, X-Y recorder, and recording sysiems eapable or measuring TV, MV, work of brathing. RR. resistunce and compliance. For measuring arterial oxygen saturation nan-invasively, with convenience, continuity and speed, the HP Oximeler offers unusual advantages. Opiical iransmission of the ear is measured using a patented multi-wavelength technique. and arterial $\mathrm{O}_{2}$ saturation is numerically displayed within 30 seconds. Accuracy is unatrected by patien's ear thickness or skin pigmentation.

Radology: in Radiology applications, HP now offers 2 group of high-performance $X$ my machines with automatic exposure control. They include a 350 XV chest $X$-ray sys.
tem which improves soft tissue visibility throughout the emtire chest, with considerably less radiation exposure to the patient: a complete system for X-raying the neonate in the nursery. with minimum distress to the in. fant and the most consistent radiagraph; and Faxilron- cabinet X-ray systems for specimen radiography and for laboralory train. ing of radiological rechnicians.
Hospleal and independent clinical laboratories: for hospitals and clinieal laboratories as well as medical research institutions. HP offers a full line of chemical analysis instruments. The wide variety available includes three different lypes of gas chromatographs, a high-pressure liquid chromatograph, and a gas chromatograph/mass specIrometer/data system. In addition, automatic liquid samplers for gas chromatographs and laboratory data handling sysrems for GC and LC are also availabie from H.P chemical analysis product line Divisions.
Delailed Information; for mare detaned information on any HP medical instrument or system, please call or write Hewlett-Pack. ard, indicating specific product(s) of inter. cst.


## Faxitron@ cabinet systems

Radiography. the art and science of making pictures with X-rays. bas an imporIant place in modern technology. It is one of the major nendestructive test methods available 10 industry, provides an indispensable tool in scientific investigations and is a valuable aid to law enforcement agencies. Hew-lett-Packard makes a major contribution to these activities with X-ray equipment that of. fers a "beller way" through advanced technology and design. This equipmen makes radiographs easier and safer to take, provides portability for field use or offers stop-motion capability for the study of dynamic events.

## industrial inspectlon

Industrial quality control and inspection procedures, especially in the field of electronics. benefil from nondestructive testing by radiography. The advantages of a testing method which does not harm the test objects are obvious. Radiography, thereforce offers benefits in desigo engineering, incoming inspection, production quality conerol, product reliability and failure analysis. $X$-rays are used to detect misregistration or plate-thru problems in multi-layer P.C. boards: porosily, poor subserate handirig and wiring or lead location in transistors and integrated circuits: voids and other encapsulation problems in polted components: and solder balls or oiber defects in sealed relays.

Die casing is anoliter industry that benefits from the nondestructive aspects and ability to "see inside" provided by radiography. Porosity, gas voids, tramp metal inclusion and other common defects can be wasily do rected and the cause delermined. Expensive maclsining thas can be avoided for castings found to ore defeetive through X-ray inspecton. The integrity of welds, algnment of con-
neeturs, inspection for proper assembly and mechathical defecls are further esumples of lests which radiography performs for indusryy. The benclits of X-ray lesting are reduced production cosis, better quatity assurance and produce salery. The results are increased profits.

## Scientific applications

Oceanography. geology, marine biology. palcontology. pathology, boiany. foresiry and agricultural research are a few examples

of scientific disciplines that use $X$-rays. Applications range from the study of the interior anatomy of fossils to determining the viability or seeds.

## Law enforcement applications

Radiography aids many law enforecment groups. Crime labs usc X-rays 10 visualize cerrain types of latent fingerpcints. For powder and lead splatter patterns in ballistics and for questioned-document examination. Medical examiners use X -rays for cause-of-death investigations and identification of remains. $X$-rays aid in cxamining parcels or mail to identify dangerous devices and 10 verify bomb circuilry.
Thesc are among the many applications served by HP Faxilron(ar Cabinet X-ray Sy'stems. They offer a unique combration of high quality radiographic capability, simplicity of operation and convenience of use which is expanding the capabilities of scientific and industrial concerns throughout the world.

## Portable X-ray systems

Portable systems of lightweight and small size are mude possible by lie ficld emission lype abbe. Hewlett.Packard markets several portable systems including the Model 43501 . a self-contained batery-operated portable system specifically designed for the unique field use requirements of explosive ordriance demolition squads. Integial power capability and small, remolely operated X-ray lubes make possible $X$-ray examination of suspected bombs.

X-ray inspection of otherwise inaccessible components in complex structures in aho facolitated by the 4350 .


Model 43501A Portable X-ray

## Puised radiation sources

Hewlell-Packard has pioneered in the design and manufacture of celd-cuthode. nlash X-ray lubes and systems. Cold-cillhode lubes, based on the field emission principle. are combined with a pulse penerator and appropritic eontrol units. The systeme praduce nanosecond bursts of X -pays. clectrons or super radiant tight (SRL). Output voltage and energy are provided by Marx-surge lype energy slorage modules charged in paralicl and discharged in series through a pressurized spark gap switch mechanism.

A number of channels can often be operated from common controls enabling a serics of stop motion radiugraphs at desired inctrvals.

Other capabilities include slow and fasi cine-systems providing a series of motion pic-(ure-like radiographs at rates from I to 1000 frames/sec. These systems are custom designed from standard́ units.

HP pulse radiation systems yield a reproducible $9-10.000$ ampere electron bearn in air at energies of $400-2300 \mathrm{keV}$ and pulse widths of 3-40 nanoseconds Current densities of 12,500 amperes per $\mathrm{cm}^{2}$ and dose rates up to $10^{15}$ Rads/sccond can be oblained.

Their reproducibility. high dose-raic outpul. case of operation and instrumentation and small space requirement make them ideal for radtation chemisiry or pulsed radiolysis studier as well as radiation effects slud. ics, radiation biology and laser pumping.

For specific information and consuleation regarding HP X-ray systems, contaci Hew. det-Packard. 1700 S. Baker Street. McMinnville. Oregon 97128, telephone: (503) 472. 5101.

## Communicating with HP

HP is commited (o) providing convenient local support and the best possitile altention to eustomer needs on a woridwide basis, and we now have more than 172 sales and service offices lacated in 65 countries. (A complete listing of our oflies appears on the inside back cover of this catalog.)

Your eniry point to the resources of Hew-ket-Packard is through the locial HP office nearest you. Our ficld engincers and order supporm ypecialists there are well-cquipped to provide you with pre-sile assistance in product exection, as well as relared business information such as currenl product avidabitity and price delivered to your localion.

HP ricld oflicis are lied into a sophisticated inira-company communications syslem. This not only means prompt transmission of orders to any of the 27 HP menufoc. iuring locations - it also speeds the now of regular messages among all HP field offices and fetciories. The obiectives of coursc, is 10 provide the linstest possible response to your product interests.

## Placing your order

Hewlete-Packiard people at the field oftice nearest you will be pleased to provide assislance in selecting the HP equipment mosi appropriate to your nceds, and en help you prepare your order.

The information in this cataleg will, in many cases, be sulficient for you to decide to buy a particular $H P$ produca. In those instances, a telephone call to the nearest HP orfice will provide you with (1) information on product availability. and (2) the product's price, delivered 10 your location (since any budgetary prices provided with this catalog are FOB appropriate HP factory of warehouse facilisy, and do no include ímporl surcharge, il' any).

We want to be sure the producl we deliver to you is exactly the one you wand. Therefore, when placing your order. please specify the product's catalos (model, accessory, or pari) number, as well as the product's nome. Be as complete as possible in specifying exacily what you'd lixe, including sandard options.

In the event you want special features or
capabilities such as different color ar a nonsti:ndard power line voltage, ask your HP field engmeer about availability and cost of Ihese "specials" first - and then. 10 prevent misunderstandings, include special instructions and specification detials with your order.

## Shipping methods

Inside the USA: Shipments to destinations in the USA :!re made directly from ferctories or local warchouses. Unless specifically requested olherwisc, express or truck transportation is used, whichever is less expensive and most serviceable to you. Small items are sent pareel posi. If last delivery is needed, we gladly ship by air liccight. air express, or air parcel posi, when specified on your order, al prevailing rates. In many purts of the USA. a consolidated air freight service provites the speed of air transpart al surface rates. Ask your HP field engincer for details.
Outsida the USA: Shipments to destiontions outside the USA are made from the appropriate Hewletl-Packard lacility by cither surface or air. as requested. Sea shipments usually require commervial exporr packaging al a nonsinal extra charge.

## Budgetary prices

Price information which may be supplied with this catalog is designed 10 provide you with helpful budgetary guidance. Linless otherwise noted. prices are based on HP 「aclory or warehousi shipping point. so please call your mearby HP ficld oflice to determinc a produci's delivered price al your localium.

Any priess which appear printed on the product pages in blue ink apply only to domestic USA customers. Thoy do not include an impors surcharge on applicible products; such surcharge is to be added to the price shown.

Prices furnished with this catalog are net prices prevailate at the time of printing. Hew-lett-Packiard restrves the right to change prices, and those prices prevating at the time an order is received wil? apply.

## Quotations and pro forma invoices

Destination prices and other delails you
may need 10 know before ordering can be quickly ohlained vís iclephome. Just call your ncares HP wrice.

If you dre an imernational enstomer requíjing formis! paperwork such as pro formil invoices or FAX, CII, or C\&F quotations. please consact the Hewlet-Packard olfice or represenlistive serving your ared. Expurtation or importation assistance is also available.

## Terms of sale

Inside the USA: Terms art nel 30 days from invoice date. Unkess credil with HewlellPackard bas already becn esiablished, shipments will be made COD or ols rewipi of cash in udvance.

Leasing and extended financiall lems are available. However, the assuciated costs are pol included in any product prices lurnished with this catialog. Your Iscarby IIP office will be pleased 10 diseuss your requitencnis, and work with you in selling up an appropriate program.
Outside the USA: Terms for arders from customers outside the United States of America which are placed with the Hewtett-Packard Company. Hewlell-Packard S.A. or Hewleti-Packird Inter-Americas, are irricvocable lethers of credil or certh in advance .unless other terins have been previesusly arranged. Terms for ordors placed with anihnrized Hewleti-Packard represmmaties of distributors are mutually determined between the customer and the representalive or distributor organizalion.

## U.S. government sales

Most products in thas catalog are covered on GSA fecteral supply schedulc multi-iward coniraces.

## Product changes

Alihough producl information and illus. Irations in this calslog were curtent it the lime it was approved for prinling. HuwletsPackard, in a continuing effort 10 offer excelient products at a fair value, reserves the right to change specolications, designs, and models wilhout nalice.


With Hewlett-Packard, you get excellent producls backed by a responsive customer service program

When you purchasc a Hewlelt-Puckard product, you also receive the asturance that in will continue to periorm to its published spoc. ifications today. lomorrow. next weck - and
for a reasonable number of monehs and ycars in the fulure.

We firmly believe that our obligation to you as a customer goes much beyond just the
delivery of your nuw HP produce. This philosophy is implemened by Hewlent-Packard in fu'o basic ways: (1) by dexigning and building excellent producis with gosed servictabil-
ity. and (2) by backing up those products with a customer service program which can respond 10 your needs with speed and compleieness.
The HP customer serviee program is one of the most important racets of our worldwide operations, providing a local service capability in virtually every one of our field offices (listed inside the back cover of this catalog.) Indeed, this customer service program is one of the major factors in Hewlet1-Packard's reputation for integrity and responsibility towands its customers.

## Warranty

As an expression of confidence in our products to conkinue mecting the high slam. dards of reliability and performance that customers have come to expect. Hewlett-Packard products carry the following warranty:

All Heswlen-Packard products are warranted agoinst defects in moterials and work. monship. The period of coverage is speciffed in a warmanty satemen provided whh each product. Hewlelt-Packord will repair or replace products which prove to be defective during the" warranty penod. In some cases, reference is made to a requirement for preventive maintenamce. No oher warranty is expressed or impliced Hewlen-Packard is not liable for conssquential damages.

## Certification

Some customers are especially interested in the tesi and quality assurance programs that HP applies 10 its producls. These HewleltPackard programs are documented in a Certificase of Conformance which is available upon request at the lime of purchase. This cortification states:

Proctucs, malerials, porls, and senvices furnished on this order have been provided in arcordance with all applicable Hewlen-Packard specifications. Actual inspection and iest dala pertaining to this order is on file and available for examinalion.

Hewlell-Patkard's callbralion measure. ments are traceable to the Naional Burean of

Standards to the extint allowed by the Bureau's calibration facililles.

The Hewlell-Packard Qually Program satisfles the requirentents of MIL-(0-9858, MIL-1-45208, and MIL-C-45662.

## Repair service

Help in maintaining your Hewlett-Packard equipment in first-rate operating condition is as close as a relephone call to the nearest Hewlett-Packard field office. Whether you want to repair an instrument yourself, or send if to a Hewlett-Packard facility for repair, iecalibration, or overhaul, your local HewlettPackard field office can olfer a complete range of technical assistance.
Local repair facilities are backed up by Regional Repair Centers, located in major indusirial areas around the world. The Regional Repair Centers bave more sophistiealed test equipment, factory-irained specialists, and a full line of replacement parts.

I $\Gamma$ your equipment instaliauion is $\bar{x}$ xed. and if justified by the lype of service required, Hewlett-Packard will purform survice at your racility.
You have accuss 10 all of Hewlett-Packard's extensive service network through your lacal Hewlen-Packard field offoe:

## Replacement parts

Replacement pares play a key role in Hew. lelt-Packard's eustomer strvice program. Prompt producs maintenance, whether it's performed in your shop or ours, depends on the ready availability of replacement parts. Your replacement parts orders are transmitted via high speed communicalions systerns 10 Parts Centers located in Germany and Califormis. Mosi orders are shipped the same day received al the Pares Centers.

To sustain equipment operation in remote areas, or where equipment downtime is exiremety critical, spare parts kiss are available.

When ordering a replacement part, please specify the Hewlett-Packard part number listed in the table and give the complete name. If circumstances require your ordering a part without specifying the part num-
ber, please include in your order the instrument mode! number, its serial number, a complete description of the part, its function, and its locotion in the cquipment.

## Customer service agreements

Your instrument maintenance requirements in many cases may be handled mosi economically by entering inte a HewletsPackard Customer Service Agreement. When you have a customer service agreement, HP assumes your maintenance responsibilities for a basic annual fee. This relieves you of having to hire your own trained maintenance spectalist, of having to maintain replacenent parts inventories, and of havilig to set up the administrative procedures needed for proper maintenance scheduling. Please contact your neares HP office for details.

## Service publications

The Operating and Service Manual supplied with each Hewlett-Packard test and measuring product contains mainledance, calibration, diagnostic and repair procedures, with ereubleshooting charts and circuit diagrams. All replaweable parts are listed. Exira manusls are available at reasonable cost from your nearby Hewlett-Packard field office. Most opersting and service manuals with changes and service notes are now available on COSATI standard, positive microfiche.
New or special calubravion procedures, instrument modifications, and special repair procedures are described in detail in Hew-letr-Packard Service Noles. This series of publications serves as a convenient means of updating operaling and service manuals.

Bench Briefs, a periodic newsletter, has gervicing lips, new modificalions and other suggestions to help repair and maintenance personnel get maximum perfomianoe from Hew-leti-Packard insiruments. It describes new service notes and other company publications as they become available. To become a regular subscriber, ask your local HP field of fice to place your name on the mailing list.

## Technical training



With Hewlet-Packard's extensive product line and worldwide customer mix there are two main avenues for teclanical customer training. These are live training sessions and video tapes. Live training sessions fall into threc subcategories: applications. service and intorial Application seminars aimed at incressing your utilizstion of gencral purpose test instrumentation are often available al no charge. On the other hand. seminars on the operation of dedicated systems are more specific in nature and are generally charged for. Service seminars are svailable on a supply-and-demand basis and, as such, there is usually a charge.
For detailed information on all HP seminars, contact your Hew-let-Packard field engineer or call the Hewlet-Packard office nenrest you-see the inside back cover.

> Digital troubleshooting
> A training package is available to keep serviee personnel up to date with current instrumentation technology.
> Entitled Digital Troubleshooting Techniques. this video lape series is intended for repair technicians and other personnel desining a practical approach to understanding digital logic circults.
> Topies covered include: Digital us Analog: RTL, DTL. TTL ECL, EECL., PMOS, and CMOS, IC Technologies: Gate circuils. Troubleshooting tools and iechniques; octal and binary number systems: lip flops, counters. dividers and shift registers: display technologies and data transfer techniques, and logic symbols. Also included are tecommended techniques for removing ICs from P.C. boards.

## HP video tapes

## A better way to learn

Pari of the "exira value" which comes with each Hewlen-Packard product is our continuing commitment to provide Hewletl-Packard customers with userul training information in the areas of applications and service. In the past, this information has often been in the form of classroom seminars, elther at your ncerty Hewlett-Packard sales office or at one of nur traning lacilities in California.

Now our capability is expanding by offering you both service and applications training via video tape. Video lape training is exceptionally convenient and readily available, seady for your own use at any lime or any place, including wilhin your own facilities.

Eflective: Hewlet1-Packard has found that video tape is a heghly ef. fective training medium. Video tapes can convey more information in less time. and with higher retenton, than even the best live insiruction. Hewletl-Packard programs are professionally produced and are based on measurable insiructional objectives. They consider what the student already knows. emphasize what he needs to know, and omit what he does nol need to know. Many video lapes utilize split-sereen techniques. allowing students to watch a procedure on one pars of the screen while observing its effect on another part. Most Hewletl-Packard video lapes are $100 \%$ w/sualized. as apposed to conventional, partially visualized video lape "Icctures."


Flexlble: With video tapes, you can tailor your training program to suit the many needs of your organization. You may setect training programs for individuals with different backgrounds and specific needs, present effoctive programs to audiences of just one or hundreds. and offer a library of lechnical programs your staff members can easily consuli on their own . . . for new information or for refresher purposes.
Faster: It has been our experience that Hewlett-Packard video programs compress tearning Ime by a factor of up to $6-10-1$. A video lape library also reduces the time needed to organize and schedule your training. You can schedule highly professional presentations anylime and anywhere, without arranging for outside instructors or juggling the deatailed logistics that are often required for live training sessions. More effective training in one-sixth the time:
Convenlent: Video lape programs come on small, easj-te-file magnetic tape recls or cassetucs. Inexpensive playback equipment is easily operated by enskilled personnel. Programs may be vieved on small portable monitors or on full-sereen TV sets. Video lapes can be quickly searched for specific information using "fast forward" or "fast rewind." and many recorders can stop on a single frame For more detailed study.
Time-Tested: Al the video tapes offered in the Hewlet-Packard Videotape Cabalog were developed to serve Hewlett-Packard's needs for a practical, low cost source of up-ho-date training in a wide variety of subjects. Now, after having been tested in HewletiPackard training activities throughout the world, many of these vidco programs are avaitable to help meet your training objec tives.

Praclical Transistors, a 15 -program series for training clectronics servict technicians, is one of the most effective and widely used video tape courses of its kind.
The purpose of the serics is to each technical service persomel the truly practical aspects of transistor and other semiconductor circuiry. The programs avoid the use of complex mathematical equivalent circuits, and inslead concentrate on presenting a clear and understandable look th the what, why and how of Uansistor circuits and the common techniques for troubleshooting them.
Throughout the rapes, ample use is made of demonstrations to compare measured with predieted results. Actual user experience has shown that the course is not only well received hy rechnicians, but also creates a definite improvement in their troubleshooting and maintenance performance.
This Hewlett-Packard video tape course is in wide use throughuut industry. colleges and universities, tecinical insitutes, rescarch organizations, vocational schools, and military' training departments.
A supplementary lextbook and a workbook, plus a complete sel of homework problems and answers, is included with the nearly nine hours of video taped material (additional texts and workbooks are availoble at a nominal charge). Available in $1 / 2^{N}$ or cassette formats (order 90100 ). For complete details, ask for the frec catalog HP VIDEO TA PES: A Benler Way io Learn (HP 59S2-0027).

## A mini index

The following list of video tapes relates primarily to programs about clecironic instruments and systems described in this catalog and does not inclade the many available programs on medical, calculators, data products, analytical, lasers and other applications. For a complete rundown about all of Hewlen-Packard's video lapes-including delailed program descriptions, formats, discount schedule, ordering instructions, language availability and prices-send for your Prec copy of MP VIDEO TAPES: A Benter Way to Leam (HP 3952-0027) to:

Hewdet-Packard
Yideo Products
1819 Page Mill Road
Palo Allo, Ca. 94304

## Analyzars

B050A Spectrum Analyzer Maintenance (90030_(4616) 20 Minutes.
6564A Spectrum Anolyzer (90050_3351) 40 Minutes.


0064A Spectrum Analyzer Service ( 90060 -
8064A Spectrum Analyzer Recallbration (90060-7663) 35 Minules.
8552A/8553L Spectrum Analyzer Malntenance (90060-_ 4321 ) 59 Minutes.
8552A/B553L Spectrum Analyzer Malntenance (90060_-4339) 32 Minutes.
141T/8552B/8553B Spectrum Analyzer Operation ( 90030 - 4607 ) 26 Minutes.
141T/8552B/855aL Spectrom Anslyzer Operation (90030_
141T/8552B/8555A Spectrum Analyzar Operalion ( 90030 - 4647 ) 28 Minutes.
141T/8552B/85S5A Specirum Analyzer Operation (90030-\$697) 18 Minutes.
141T/8552B/8556A Spectrum Analyzer Operation (90030-1631) 20 Minutes.
Measuring AM Signals Using a Spectrum Analyzer (90030_-4720) 16 Minules.
5451 Fourler Series: Fourler Analysle ( 90030 - ${ }^{-1717)} 17$ Minutes.
5451 Fourier Serles: Convalution, Correlation and Power Spectrum (90030 _ 718 ) 21 Minutcs.
5451 Fourier Serleg: Windowing (90030 - 7719) is Minules.

6407A Network Analyzer Sygtem (90030 - $\$ 475$ ) 29 Minutes.

8410A Network Analyzer System (90030 - 4473 ) 25 Minutes.

8410A/8411A Network Anelyzer Gervice (90030-d490) 23 Minutes.
3590/3591 Wave Analyzer Malnienance (90030-1672) 28 Minutes.
Mlcrowave LInk Analyzer Operation (90030-1728) 19 Minules.
Network Analysie (90060_\#338) 43 Minutes.

## Oscilloscapes

Oecliloscope Basics (90060_(360) 36 Min utes.
Samplling Scopes ( 90060 _ $/ 435$ ) 37 Min utes.
Understanding HP Storage Scopes: Theory (90030-4 449) 29 Minutes.
Underalanding HP Storage Scopes: Service ( 90060 _ 4359 ) 37 Minutes.
CRT Service and Troubleshooting (90030 -1704) 18 Minutes.
180A Oscliloacope Front Panal and Oparatton ( 90060 - - 370 ) 47 Minnies.
180A Oscllloscope Delayed Sweep Applleations ( 90030 - 401 ) 23 Minutes.
183A Osclloscope Mainframe Adjust. ments (90030- ${ }^{1503}$ ) 25 Minutes.
HP 1200A Oscllloscope Measurement Appllcatione ( 90060 - 713 ) 31 Minutes.
1700 Oacilloscope Serias (Service 1): Controls and Operation (90030_18673) 14 Minutes.
1700 Oecilloacope Serles (Service 2): Power Supply and Trigger Circults ( 90030 _ 4674 ) 20 Minules.
1700 Oscilloscope Serles (Service 3): 1710A Machanical (90030_-4797) 14 Minutes.

1700 Oscilioscapa Serias (Sarvice 4): 1710A Electrical (90030_4798) 14 Min utcs.
Basic Oscilloscope Measurements (90030 - 1820 ) 23 Minutes.

## Counters

5360 A Computing Counler Appilcations (90060-2343) 58 Minutes.
5380A Compuling Gounter Maintenance (90030_-3513) 27 Minules.
5375A Camputing Counter Kayboard ( 90060 _ ${ }^{\text {P459 }} 39$ Minuts.

Signal generators \& signal synthesizers 748A Maintenance (90030_- 4408 ) 28 Min ules.
0850A Series Signal Generator Service (90030_-4566) 23 Minutes.
8860A/B Synthesized Signal Generator (90030- 8698 ) 21 Minutes.
Troubleshooting the 8660 BCU (90030 - ${ }^{\text {P726) }} 20$ Minules.

The Indirect Generation (90030_\$759) 22 Minutes.
The 0640 Story: Chapter 1, Can You Turn Me On? ( $9006 \times$ _ $\quad$ i819) 31 Minutes.

## Recorders

$7123 / 7143$ Sifip Chan Recorder Service (90030-1448) 28 Minutes.
5050A/B Digital Recorder Malntenance (90060 . 1300 ) 43 Minutes.
7040 Family X-Y Recorders, Service (90210-) 30 Minules.

## Meters

3490 Mullimeter Sell-Test TroubleshootIng (90030-A705) 22 Minules.
432A Power Meter Malntenance (90060 -1298) 60 Minutes.

Communications test equipment Introduction to Pules Code Modulation (90060-(i874) 38 Minutes.
Demonstration of 3760A/3761A Blt Error Rate Measuring Systom (90030_1875) 20 Minutes.

Sound measurement \& monitoring
Akustlk: Theory of Sound Measurement, Part 1 ( 90060 - ${ }^{2} 233$ ) 58 Minutes.
Akustik: Theory of Sound Messurement, Part 2 ( 90060 - \$234) 50 Minules.
5061A Ceslum Beam: Theory of Operation (90030_-4716) 27 Minutes.
5061 A Cesium Beam Tube Replacement (90030 $\$ 6(-4) 30$ Minules.

## Correlator

3721A Correlator Appllcatione (90030 -1373) 23 Minutes.

## I.C. Tester

Big Beneilits From the Little I.C. Troubleahooters (90030-~715) 14 Minutes.

## Cable fault locating

Basles of Cable Fault Localing (90030 -i751) 14 Minules.


[^0]:    Advantages
    DC coupled modulation circuitry allows power leveling and remote programmisg.
    Periodie-permanent-magnet focusing means fewer alignment problems.

[^1]:    Model number and name Price
    Option WOI, Rechargeable batiery operation 548

[^2]:    Model name and number
    Price 16029A Test Fixture

[^3]:    

[^4]:    Model number and name
    Price
    Model l 7008 Opt $300,35 \mathrm{MHz}$
    Model I707B Opt 300, 50 MHz
    $\$ 2870$
    $\$ 3360$

[^5]:    

    - Calibrated $3.8 \times 415 \mathrm{~cm}$ reduced scan aed.

[^6]:    

[^7]:    - CV load regulation given tor rear terminals only. Al front teraimals, CV load regulation is 0.5 miv per amp
    greater due to fronl terminal resistance.
    PRefer to page 174 lor complete specification definitions.

[^8]:    - These sin fealures apply to 6256B-6274B only.

[^9]:    

[^10]:     188 defines the pernissible operating regions lot CV and CC modes of ogeration.
     $100 \%$ at $40^{\circ} \mathrm{C}$ to 808 at $50^{\circ} \mathrm{C}$.

[^11]:    
    tSee eage $1 / 4$ for specification definitions.

[^12]:    Opllons Price
    005：right hand zero
    （Positive voltage input causes pen to ofeneet from right to lefi）．
    005：event marker
    Contact closure on rear pancel causes approximately 0.06 cm （ 0.025 inch）deflection of event pen．Marking oocurs along left hand edge of paper．
    008：inicrnal batiery
    The jelled electrolyte butcery operates nine hours on a single charge（at $25^{\circ} \mathrm{C}$ ）．Recharging is from external AC only and requires approximately 14 hours to full charge． Instrument may be operated white charging．
    7155日 Portable strip chart recorder

[^13]:    

[^14]:    *For sny wave shopes maget entot (us) is less lidis $0.005 \mu$
    $\pm \frac{0.005 \mu}{\text { Signal Slope ( } \mathrm{V} / \mu \mathrm{cs})}$
     signar-to-noise ratio.

[^15]:    Model number
    105A
    $\$ 2290$
    105B

[^16]:    

[^17]:    Word generation
    One 4 to 32 bit word (even numbers only) or two 2 to 16 bil words. No clock period beiween words.
    Word content: independenily sel for both words by front pancl switches or remole programming (parallel data input). Complement of each word selectable by front pancl swithes. WORD A - WORD A. WORD B - WORD B.
    Word cycling: continuous or by eycle command (external irigger or manual).
    Bit rate: internal. 10 Hz to 10 MHz , four ranges, continuous adjustment within ranges. Manual or external clock 0 to 10 MH .
    Resel; manual reset of word outputs to bill in AUTO CYCLE mode and to word pause in SINGLE CYCLE mode.
    Word format: RZ/ NRZ/-NRZ scloctable for cach word oulput. Positive outputs have current sink capability 10 drive integrated circuits (TTL/DTL).
    Synch outpute: trigger pulses corresponding to the first bit (leading colge) and lass bit (railing cidge).

[^18]:    

[^19]:    -xio amalities lor $145 A$

[^20]:    '「oy level areuraty within 1 d , of CW ( $<0.16$ duty cycte).

[^21]:    1863208 is a heterodjife unil which muss be used with 8633as or 86331 B .

[^22]:    i. Includes uncertainty of reterence itandard and Iranstar unertainty. Directly traceable to NBS

[^23]:    2 Shuare roop of the sum of the indindual uncertainties squared (RSS)

[^24]:    'Option 011, furnished with APC-7 RF comector add $\$ 25$ ${ }^{2}$ Circular llange adapters:

[^25]:    

[^26]:    NOIE I: For use in oscilloscope mainlrames luiut and 141T tades 196.8541 with if section glue ins
    
    

[^27]:    ank its and reat panel standoff tee are supplies with aporoptiate mounting screws.

[^28]:    ＇All kits and support thell llems are suppliad with appropriale mounting screws and

[^29]:    Model number and name
    Price
    3550B Porlable Tesi Set (with 353A Patch Panel) \$1510
    H02-3550B (with H02-353A substitulca for slandard
    353A)
    H01.3550B (with H03-353A substituted for standard
    353)
    

[^30]:    with average conitol sat to 8

[^31]:    1height atove inctudets seet; wh feel removed height is 88.1 mm ( 3.12 inches).

